Sample records for residential heat pumps

  1. Residential Air-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Massachusetts offers rebates of up to $3,750 for the installation of high-efficiency, cold-climate air-source heat pumps (ASHPs) in residential buildings of one to four units. Heat pumps must be ...

  2. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  3. Regional Variation in Residential Heat Pump Water Heater Performance...

    Energy Savers [EERE]

    Regional Variation in Residential Heat Pump Water Heater Performance in the United States Regional Variation in Residential Heat Pump Water Heater Performance in the United States...

  4. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Office of Environmental Management (EM)

    Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector - Fact Sheet, 2013 Residential Multi-Function Gas Heat Pump: Efficient...

  5. Residential Cold Climate Heat Pump with Variable-Speed Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold Climate Heat Pump with Variable-Speed Technology Residential Cold Climate Heat Pump with Variable-Speed Technology Purdue prototype system Purdue prototype system Unico...

  6. Covered Product Category: Residential Heat Pump Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heaters Covered Product Category: Residential Heat Pump Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal...

  7. Efficient Engine-Driven Heat Pump for the Residential Sector

    Broader source: Energy.gov [DOE]

    Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that...

  8. Piedmont EMC- Residential Energy Efficient Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation (PEMC) offers a financial incentive for residential members to install energy efficient heat pumps and compact fluorescent lighting in eligible homes....

  9. Covered Product Category: Residential Air-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air-source heat pumps, which is an ENERGY STAR-qualified product category.

  10. Residential Geothermal Heat Pump Retrofit Webinar

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory Senior Engineer Erin Anderson about geothermal heat pump (GHP) technology options, applications, and installation costs for residences.

  11. Union Power Cooperative- Residential Energy Efficient Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Union Power Cooperative offers low interest loans to help its residential customers finance new, energy-efficient heat pumps. Interest rates, currently at 9%, will be fixed for the term of the loan...

  12. Sand Mountain Electric Cooperative- Residential Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least...

  13. Haywood EMC- Residential Heat Pump and Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Haywood EMC offers a low interest loan to their residential customers to finance the purchase of an energy efficient heat pump and certain weatherization measures. The current interest rate is 5%...

  14. EnergyUnited- Residential Energy Efficient Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    EnergyUnited offers rebates to residential customers who upgrade to high efficiency heat pumps. Rebates range from $150 - $300, varying by efficiency. The rebate form can be found on the program...

  15. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2011-09-01T23:59:59.000Z

    This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

  16. Covered Product Category: Residential Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including geothermal heat pumps, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  17. Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

  18. Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript

    Broader source: Energy.gov [DOE]

    Transcript for a U.S. Department of Energy Webinar on Dec. 14, 2010, about residential geothermal heat pump retrofits

  19. Residential gas heat pump assessment: A market-based approach

    SciTech Connect (OSTI)

    Hughes, P.J.

    1995-09-01T23:59:59.000Z

    There has been considerable activity in recent years to develop technologies that could reduce or levelize residential and light-commercial building space cooling electrical use and heating/cooling energy use. For example, variable or multi-speed electric heat pumps, electric ground-source heat pumps, dual-fuel heat pumps, multi-function heat pumps, and electric cool storage concepts have been developed; and several types of gas heat pumps are emerging. A residential gas heat pump (GHP) benefits assessment is performed to assist gas utility and equipment manufacturer decision making on level of commitment to this technology. The methodology and generic types of results that can be generated are described. National market share is estimated using a market segmentation approach. The assessment design requires dividing the 334 Metropolitan Statistical Areas (MSAS) of the US into 42 market segments of relatively homogeneous weather and gas/electric rates (14 climate groupings by 3 rate groupings). Gas and electric rates for each MSA are evaluated to arrive at population-weighted rates for the market segments. GHPs are competed against 14 conventional equipment options in each homogeneous segment.

  20. Covered Product Category: Residential Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including residential heat pump water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  1. Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump technology are supported by the Office of Building Energy Research and Development%) allocated to elec- tric and heat-actuated heat pump research. The remaining 15% is allocated to appliance

  2. Kosciusko REMC- Residential Geothermal and Air-source Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Kosciusko REMC offers rebates (as bill credits) to residential members for the purchase and installation of high efficiency air-source heat pumps, geothermal heat pumps, and electric water heaters....

  3. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps 

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Murphy, W. E.; Notman, J. R.

    1986-01-01T23:59:59.000Z

    The objectives of this study included: (1) development of classes of heat pumps, (2) evaluation and selection of a suitable heat pump design model, (3) characterization of suitable baseline heat pump designs, (4) selection of design options that can...

  4. White County REMC- Residential Geothermal Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    White County REMC offers incentives for the purchase and installation of energy efficient heat pumps. Air-source heat pumps are eligible for a rebate of $300, while geothermal heat pumps are...

  5. PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION

    E-Print Network [OSTI]

    PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION M in a ground source heat pump system falls near or below 0o C, an antifreeze mixture must be used to prevent freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications

  6. Development of a Residential Ground-Source Integrated Heat Pump

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Hern, Shawn [ClimateMaster, Inc.] [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC] [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  7. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Products: Central Air Conditioners and Heat Pumps EnergyResidential Central Air Conditioners and Heat Pumps.Products: Central Air Conditioners and Heat Pumps Energy

  8. Clark Public Utilities- Residential Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Clark Public Utilities offers loans of up to $20,000 for air-source heat pumps and $30,000 for geothermal heat pumps. Loans will help customers cover the up-front cost of installing a highly...

  9. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    SciTech Connect (OSTI)

    Anderson, E. R.

    2010-12-14T23:59:59.000Z

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  10. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  11. DOE Webinar ? Residential Geothermal Heat Pump Retrofits (Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Measuring the Costs and Economic, Social, and Environmental Benefits of Nationwide...

  12. Maine Public Service Company- Residential and Small Commercial Heat Pump Program (Maine)

    Broader source: Energy.gov [DOE]

    The Public Service Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to cover...

  13. Bangor Hydro Electric Company- Residential and Small Commercial Heat Pump Program (Maine)

    Broader source: Energy.gov [DOE]

    Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to...

  14. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01T23:59:59.000Z

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  15. Potential market analysis for residential solar assisted in-line heat pumps

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The method of studying the performance of the solar-assisted heat pump using the FCHART 4.0 computer program is described. The solar-assisted heat pump's performance was compared to that of an air-to-air heat pump and found to be inferior. The lifetime energy requirement is expected to be greater, as is its life-cycle cost. Moreover, conventional heat pumps are available now and are more easily suited to retrofit applications. It is recommended that the solar-assisted heat pump program be terminated in favor of more identifiable significant residential energy programs. (LEW)

  16. Alabama Power - Residential Heat Pump and Weatherization Loan...

    Broader source: Energy.gov (indexed) [DOE]

    no money down and can be used to finance an air source, geothermal or dual-fuel heat pump. The loans can also be used to cover associated water heating costs and wiring...

  17. Bandera Electric Cooperative- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    The Bandera Electric Cooperative offers a $200 rebate for the installation of a 15 SEER or higher heat pumps in existing homes. This program is designed to promote energy efficiency in existing...

  18. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: Energyfor Residential Heat Pump Water Heaters Installed in

  19. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    2001. Residential Heat Pump Water Heater (HPWH) Development2005. Residential Heat Pump Water Heaters: Energy Efficiencyfor Residential Heat Pump Water Heaters Installed in

  20. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01T23:59:59.000Z

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  1. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

  2. Dixie Electric Cooperative- Residential Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Dixie Electric Cooperative, a Touchstone Electric Cooperative, offers the Energy Resources Conservation (ERC) loan to residential customers pursue energy efficiency measures. The program allows a...

  3. Residential gas-fired sorption heat Test and technology evaluation

    E-Print Network [OSTI]

    Residential gas-fired sorption heat pumps Test and technology evaluation Energiforskningsprogram EFP05 Journal nr: 33031-0054 December 2008 #12;Residential gas-fired sorption heat pumps Test.............................................................................................................................................5 1 Residential gas-fired thermally driven heat pumps

  4. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  5. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect (OSTI)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21T23:59:59.000Z

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  6. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Murphy, W. E.; Notman, J. R.

    1986-01-01T23:59:59.000Z

    4-1 Model Methodology 4-1 Compressor Models 4-2 Condenser and Evaporator Models 4-2 Expansion Devices 4-3 Refrigerant Charge Inventory 4-4 Fan Power Calculations 4-4 Model Output 4-4 Conclusions of Model Selection 4-5 Steady State Model Validation 4...) Increased tube rows 5-21C) Increased fin density 5-2 1D) Increased heat transfercoefficient 5-3 2) Decreased Compressor Size 5-3 3) Increased Combined Fan and MotorEfficiency 5-3 4) Demand Defrost Control Systems 5-4 5) High Efficiency Compressors 5-4 6) Two...

  7. Covered Product Category: Residential Heat Pump Water Heaters | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013DepartmentEnterpriseDepartmentof Energy Heat

  8. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps, Final Report, May 1986 

    E-Print Network [OSTI]

    O'Neal, D. L.; Murphy, W. E.

    1985-01-01T23:59:59.000Z

    The objectives of this study included: (1) development of classes of heat pumps, (2) evaluation and selection of a suitable heat pump design model, (3) characterization of suitable baseline heat pump designs, (4) selection of design options that can...

  9. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01T23:59:59.000Z

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  10. Cowlitz County PUD- H2 AdvantagePlus Residential Heat Pump Program

    Broader source: Energy.gov [DOE]

    Cowlitz County PUD will provide rebates to customer homeowners who have a PUD-qualified heat pump dealer upgrade their heating system with the installation of a premium efficiency heat pump system,...

  11. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    2001. Residential Heat Pump Water Heater (HPWH) DevelopmentJ. 2003. Incorporating Water Heater Replacement into The2005. Residential Heat Pump Water Heaters: Energy Efficiency

  12. Development and Application of a Ground-Coupled Heat Pump Simulation Model for Residential Code-Compliance Simulation in Texas

    E-Print Network [OSTI]

    Do, Sung Lok

    2014-04-18T23:59:59.000Z

    The intent of this study was to improve residential energy efficiency in Texas by developing an improved tool for home builders and code officers to use for evaluating their designs. It was achieved by developing a new ground-coupled heat pump (GCHP...

  13. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  14. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    SciTech Connect (OSTI)

    Ashdown, BG

    2004-08-04T23:59:59.000Z

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers should reinvest in R&D to lower the price of the units. The manufacturers should work with ''do-it-yourself'' (DIY) stores to facilitate introduction of th

  15. Field comparison of conventional HVAC systems with a residential gas-engine-driven heat pump

    SciTech Connect (OSTI)

    Miller, J.D.

    1994-08-01T23:59:59.000Z

    Through its Office of Federal Energy Management Program (FEMP), the US Department of Energy (DOE) provides technical and administrative support to federal agency programs directed at reducing energy consumption and cost in federal buildings and facilities. One such program is the New Technology Demonstration Program (NTDP). In this context, NTDP is a demonstration of a US energy-related technology at a federal site. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate new technologies. The partnership of these interests is secured through a Cooperative Research and Development Agreement (CRADA). The Fort Sam Houston (San Antonio, Texas) NTDP is a field evaluation of a 3-ton gas-engine-driven residential heat pump. Details of the technical approach used in the evaluation, including instrumentation and methodology, are presented. Dynamic performance maps, based on field data, are developed for the existing residential furnaces and air conditioners at Fort Sam Houston. These maps are the basis for comparisons between the candidate and current equipment. The approach offers advantages over pre/post-measure evaluations by decoupling the measured equipment performance from the effects of different envelope characteristics, occupant behavior, and weather.

  16. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect (OSTI)

    Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

    2011-01-01T23:59:59.000Z

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  17. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners 

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

    1986-01-01T23:59:59.000Z

    This report summarizes: (1) the performance improvements possible for central air conditioners and heat pumps using conventional design improvements, (2) the development of a methodology for estimating the seasonal performance of variable speed heat...

  18. Design optimization of residential-sized air-source heat pumps

    E-Print Network [OSTI]

    Boecker, Curtis Layne

    1987-01-01T23:59:59.000Z

    larger heat exchangers and increased fan motor efficiency. Variable-speed heat pumps offer the greatest potential for efficiency increases as improvements in the variable-speed compressors progress. ACKNOWLEDGEMENTS I would like to thank Dr. Dennis O... for your support throughout. vi TABLE OF CONTENTS CHAPTER INTRODUCTION THE HEAT PUMP THERMODYNAMIC CYCLE Page Compressor Heat Exchanger Expansion Device Additional Equipment COMPUTER MODEL SELECTION AND VALIDATION . . 13 General Model...

  19. Monitored performance of residential geothermal heat pumps in central Texas and Southern Michigan

    SciTech Connect (OSTI)

    Sullivan, W.N.

    1997-11-01T23:59:59.000Z

    This report summarizes measured performance of residential geothermal heat pumps (GHP`s) that were installed in family housing units at Ft. Hood, Texas and at Selfridge Air National Guard base in Michigan. These units were built as part of a joint Department of Defense/Department of Energy program to evaluate the energy savings potential of GHP`s installed at military facilities. At the Ft. Hood site, the GHP performance was compared to conventional forced air electric air conditioning and natural gas heating. At Selfridge, the homes under test were originally equipped with electric baseboard heat and no air conditioning. Installation of the GHP systems at both sites was straightforward but more problems and costs were incurred at Selfridge because of the need to install ductwork in the homes. The GHP`s at both sites produced impressive energy savings. These savings approached 40% for most of the homes tested. The low cost of energy on these bases relative to the incremental cost of the GHP conversions precludes rapid payback of the GHP`s from energy savings alone. Estimates based on simple payback (no inflation and no interest on capital) indicated payback times from 15 to 20 years at both sites. These payback times may be reduced by considering the additional savings possible due to reduced maintenance costs. Results are summarized in terms of 15 minute, hourly, monthly, and annual performance parameters. The results indicate that all the systems were working properly but several design shortcomings were identified. Recommendations are made for improvements in future installations at both sites.

  20. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01T23:59:59.000Z

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  1. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  2. Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

  3. Residential energy-tax-credit eligibility: a case study for the heat-pump water heater

    SciTech Connect (OSTI)

    Cohn, S M; Cardell, N S

    1982-09-01T23:59:59.000Z

    Described are the methodology and results of an analysis to determine the eligibility of an energy-efficient item for the residential energy-tax credit. Although energy credits are granted only on a national basis, an attempt to determine the tax-credit eligibility for an item such as the heat-pump water heater (HPWH) analyzing national data is inappropriate. The tax-credit eligibility of the HPWH is evaluated for the ten federal regions to take into consideration the regional differences of: (1) HPWH annual efficiency, (2) existing water heater stocks by fuel type, (3) electricity, fuel oil, and natural-gas price variations, and (4) electric-utility oil and gas use for electricity generation. A computer model of consumer choice of HPWH selection as well as a computer code evaluating the economics of tax-credit eligibility on a regional basis were developed as analytical tools for this study. The analysis in this report demonstrates that the HPWH meets an important criteria for eligibility by the Treasury Department for an energy tax credit (nationally, the estimated dollar value of savings of oil and gas over the lifetime of those HPWH's sold during 1981 to 1985 due to the tax credit exceeds the revenue loss to the treasury). A natural-gas price-deregulation scenario is one of two fuel scenarios that are evaluated using the equipment choice and tax-credit models. These two cases show the amounts of oil and gas saved by additional HPWH units sold (due to the tax credit during 1981 to 1985 (range from 13.9 to 23.1 million barrels of oil equivalent over the lifetime of the equipment.

  4. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

    1986-01-01T23:59:59.000Z

    ) Increased tube rows 3.1 1C) Increased fin density 3.2 ID) Increased heat transfer coefficient 3.2 IE) Increased parallel circuits 3.2 2) Decreased Compressor Size 3.2 3) Increased Combined Fan and Motor Efficiency 3.2 4) Demand Defrost Control Systems (Heat... Pumps Only) 3.3 5) High Efficiency Compressors 3.3 6) Two Speed Compressors 3.3 References 3.4 iii CHAPTER PAGE 4 CONVENTIONAL DESIGN IMPROVEMENTS: RESULTS 4.1 Heat Pumps 4.1 Baseline Units 4.2 Final Conventional Designs 4.7 3 Ton Split Systems 4.7 3 Ton...

  5. A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2009-01-01T23:59:59.000Z

    Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

  6. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect (OSTI)

    None

    1981-03-01T23:59:59.000Z

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  7. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps, Final Report, May 1986

    E-Print Network [OSTI]

    O'Neal, D. L.; Murphy, W. E.

    1985-01-01T23:59:59.000Z

    -17 3 HEAT PUMP CLASSES 3-1 References 3-6 4 SELECTION AND VALIDATION OF PERFORMANCE MODELS 4-1 Steady State Model Selection 4-1 Model Methodology 4-1 Compressor Models 4-2 Condenser and Evaporator Models 4-2 Expansion Devices 4-3 Refrigerant Charge... 5-1 1) Increased Condenser and Evaporator Heat Exchanger Performance 5-1 1A) Increased heat exchanger frontal area 5-2 1B) Increased tube rows 5-2 1C) Increased fin density 5-2 1D) Increased heat transfer coefficient 5-3 2) Decreased Compressor Size...

  8. Portland General Electric- Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Portland General Electric's (PGE) Heat Pump Rebate Program offers residential customers a $200 rebate for an energy-efficient heat pump installed to PGE’s standards by a PGE-approved contractor....

  9. Performance of Horizontal Field Earth-Coupled Heat Pumps 

    E-Print Network [OSTI]

    Abbott, C. A.

    1986-01-01T23:59:59.000Z

    An alternative to traditional methods of residential heating and cooling is the heat pump. However, heat pumps which use the outside air as a heat source/sink become inefficient during the periods of highest demand. Another possible heat source...

  10. Performance of Horizontal Field Earth-Coupled Heat Pumps

    E-Print Network [OSTI]

    Abbott, C. A.

    1986-01-01T23:59:59.000Z

    An alternative to traditional methods of residential heating and cooling is the heat pump. However, heat pumps which use the outside air as a heat source/sink become inefficient during the periods of highest demand. Another possible heat source...

  11. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations

    E-Print Network [OSTI]

    Kirol, L. D.

    for water and gas connections, and temperature variations. Recent work on heat pump cycles using complex compound reactions includes development of energy storage systems at laboratories in Europe (11) and the United States (12), and residential...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

  12. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01T23:59:59.000Z

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  13. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    SciTech Connect (OSTI)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10T23:59:59.000Z

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  14. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Energy ConservationCentral Air Conditioners and Heat Pumps. Washington DC:Central Air Conditioners and Heat Pumps Energy Conservation

  15. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season

    SciTech Connect (OSTI)

    Miller, J.D.

    1995-11-01T23:59:59.000Z

    The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  16. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Energy ConservationW.R. Coleman. 1990. “Heat Pump Life and Compressor LongevityC.C.. 1990. “Predicting Future Heat Pump Production Volume

  17. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  18. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  19. Field Monitoring Protocol: Mini-Split Heat Pumps

    SciTech Connect (OSTI)

    Christensen, D.; Fang, X.; Tomerlin, J.; Winkler, J.; Hancock, E.

    2011-03-01T23:59:59.000Z

    The report provides a detailed method for accurately measuring and monitoring performance of a residential Mini-Split Heat Pump. It will be used in high-performance retrofit applications, and as part of DOE's Building America residential research program.

  20. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  1. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  2. Residential Solar Water Heating Rebates

    Broader source: Energy.gov [DOE]

    New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

  3. Industrial Heat Pumps- A Reexamination in Light of Current Energy Trends 

    E-Print Network [OSTI]

    Lewis, N.; Simon, M.; Terry, S.; Leach, J.

    2009-01-01T23:59:59.000Z

    Heat pumps have been used for nearly one hundred years mostly providing heating and cooling for homes and residential settings. However, industrial heat pumps are also used and may be driven by waste heat streams from the manufacturing facility...

  4. Industrial Heat Pumps- A Reexamination in Light of Current Energy Trends

    E-Print Network [OSTI]

    Lewis, N.; Simon, M.; Terry, S.; Leach, J.

    Heat pumps have been used for nearly one hundred years mostly providing heating and cooling for homes and residential settings. However, industrial heat pumps are also used and may be driven by waste heat streams from the manufacturing facility...

  5. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  6. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season

    SciTech Connect (OSTI)

    Miller, J.D.

    1995-09-01T23:59:59.000Z

    The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  7. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  8. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  9. Application of industrial heat pumps Proven applications in 2012 for Megawatt+

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Application of industrial heat pumps Proven applications in 2012 for Megawatt+ Heatpumps within a technical, commercial and sustainable framework Application of industrial heat pumps Proven applications Emerson Climate Technologies Core Offerings & Key Brands Residential Heating & Air Conditioning Commercial

  10. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  11. Mechanical Compression Heat Pumps 

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    1986-01-01T23:59:59.000Z

    to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical...

  12. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11T23:59:59.000Z

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  13. Ground-Coupled Heat Pump Applications and Case Studies 

    E-Print Network [OSTI]

    Braud, H. J.

    1989-01-01T23:59:59.000Z

    The paper presents an overview of ground loops for space-conditioning heat pumps, hot water, ice machines, and water-cooled refrigeration in residential and commercial applications. In Louisiana, a chain of hamburger drive-ins uses total ground...

  14. Optimal Design for a Hybrid Ground-Source Heat Pump

    E-Print Network [OSTI]

    Yu, Z.; Yuan, X.; Wang, B.

    2006-01-01T23:59:59.000Z

    Although the advantages of ground-source heat pumps over their conventional alternatives make these systems a very attractive choice for air conditioning, not only for residential buildings but increasingly also for institutional and commercial...

  15. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    of Residential Source Heat Pump Gas Furnace HeatingResidential Heating Equipment (1) Database Year Minimum Type Code Fuel Effective (2) Efficiency (3) Heat Pumpheating technology of choice for almost 40% of the residential sector. Heat pumps

  16. Marshall County REMC- Geothermal and Add-on Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Marshall County REMC provides a rebate for its residential customers for the purchase and installation of an add-on heat pump and/or a geothermal heat pump. Customers can receive $300 for the...

  17. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  18. The Role of the Consultant in Marketing Industrial Heat Pumps

    E-Print Network [OSTI]

    Gilbert, J. S.; Niess, R. C.

    (COP) in excess of 30. Engineers with only HVAC design experience often question these COPs, since they are so far removed from the less than three values typical of residential heat pump units. Others who have experience with only commercial HVAC... have looked to utilities to be the impetus in the marketplace. Their successful history of introducing the refri gerator (no longer an "icebox"), electric range, room air conditioner, and residential heat pump testifies to their marketing strengths...

  19. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  20. AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo, Manager, Heat Exchange Systems Research

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo S. E. Veyo, Manager, Heat 15235 KEYWORDS: heat pump, air conditioner, electric, residential, energy, compressor, fan, blower, heat exchanger, comfort. #12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo* ABSTRACT A two

  1. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  2. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  3. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  4. Mechanical Compression Heat Pumps

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs... requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling...

  5. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01T23:59:59.000Z

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  6. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  7. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  8. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  9. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  10. Heat Pumps - Theory and Applications

    E-Print Network [OSTI]

    Altin, M.

    1982-01-01T23:59:59.000Z

    compressors (heat pumps) with actual applications in Monsanto. Guidelines for possible application areas are drawn from the analysis, and conclusions are drawn both about the usefulness of exergy analysis and about the heat pump application areas....

  11. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  12. GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    the cost and feasibility of a residential ground coupled heat pump space conditioning system requiring#12;GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz _Solar and Renewables house in Upton, Long Island, New York has been heated and cooled by a liquid source heat pump using

  13. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  14. Field Monitoring Protocol: Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01T23:59:59.000Z

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  15. Tips For Residential Heating Oil Tank Owners

    E-Print Network [OSTI]

    Maroncelli, Mark

    · · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat

  16. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  17. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  18. Complex Compound Chemical Heat Pumps 

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    1987-01-01T23:59:59.000Z

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  19. Energy 101: Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe ...

  20. Complex Compound Chemical Heat Pumps

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  1. Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in

    E-Print Network [OSTI]

    Blumsack, Seth

    the potential for significant energy savings [1]. The performance of ground-source heat pumps for residential1 Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in Central, the efficiency gain for the ground-source heat pump compared to electricity is 43% for cooling and 81

  2. Heat Pump Strategies and Payoffs 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01T23:59:59.000Z

    After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

  3. Heat Pump Strategies and Payoffs

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01T23:59:59.000Z

    After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

  4. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  5. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  6. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01T23:59:59.000Z

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  7. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    ) [3] Yayun FAN. Experimental study on a heat pump technology in solar thermal utilization[J]. Acta Energiae Solaris Sinica, Oct.,2002; Vol.23,No.5 ? 581-585.(In Chinese) [4] Nengxi JIANG. Air-conditioning Heat Pump Technology and Its Applications...

  8. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System 

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01T23:59:59.000Z

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  9. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01T23:59:59.000Z

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  10. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  11. Heat Pump Markets UK in Europe

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Heat Pump Markets UK in Europe IEA Heat Pump Workshop 13. November 2012 Zoltan Karpathy #12;2 Excellence in Market Intelligence Agenda About BSRIA WMI UK in the European Heat Pump Market Heating BSRIA WMI UK in the European Heat Pump Market Heating Technologies in New and Existing Buildings Hybrid

  12. Development Requirements for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    1985-01-01T23:59:59.000Z

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  13. Development Requirements for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  14. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov (indexed) [DOE]

    HUMAN HEALTH SCIENCE BLDG GEO HEAT PUMP SYSTEMS Principal Investigator Source Heat Pumps Demo Projects May 20, 2010 This presentation does not contain any proprietary confidential,...

  15. Residential Wood Heating Fuel Exemption (New York)

    Broader source: Energy.gov [DOE]

    New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from...

  16. EWEB- Residential Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Eugene Water & Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of...

  17. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  18. Industrial Heat Pump Case Study

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    with operating the evaporator. The open-cycle heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. (Steam was the original heat source but is now only needed for start...

  19. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  20. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  1. Water-loop heat pump systems

    SciTech Connect (OSTI)

    Eley, C.; Hydeman, M. (Eley (Charles) Associates, San Francisco, CA (United States))

    1992-12-01T23:59:59.000Z

    Water-loop heat pump (WLHP) systems are reliable, versatile, energy-efficient alternatives to conventional systems such as packaged rooftop or central chiller systems. These systems offer low installed costs, unparalleled design flexibility, and an inherent ability to recover heat in a variety of commercial and multifamily residential buildings for both new construction and retrofit markets. Southern California Edison Co. (SCE) teamed with EPRI to develop a comprehensive design guide for WLHP systems that incorporated recent research by EPRI, SCE, and others. The project team reviewed current literature, equipment data, and design guidelines from equipment manufacturers. They next discussed design and application practices with consulting engineers as well as design and building contractors. The team also ran extensive computer simulations on commercial and multifamily residential building models for Southern California, both to determine the sensitivity of energy use to WLHP system design parameters and to establish optimal design parameters. This information culminated in a comprehensive engineering guide. Volume 1 of this report, provides step-by-step technical design data for selection, application, and specification of WLHP systems. This guide emphasizes energy-efficient design principles and incorporates the findings of the computer simulations and research. For example, it recommends lowering the loop temperature in buildings dominated by internal loads. Reducing the loop temperature from 90 to 80[degrees]F provides a 7--10% savings in the total system energy in Southern California climate areas. Other recommendations include (1) installing a cooling tower with a propeller fan, which uses one fourth to one third of the energy of a cooling tower with a centrifugal fan; and (2) incorporating variable-speed pumps in conjunction with two-position valves in the heat pumps to reduce the system pump energy use by up to 50%.

  2. Industrial Heat Pump Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  3. Industrial Heat Pump Design Options 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01T23:59:59.000Z

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  4. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    Heat Pump Air Conditioner District Heating Boiler Gas Boiler Electricity Figure 11 Space Heating Technology Shift in Residential

  5. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14T23:59:59.000Z

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  6. Heat pump market and statistics report 2013

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Heat pump market and statistics report 2013 Thomas Nowak Secretary General European Heat Pump Summit 15.10./16.10.2013 | Nuremberg #12;European Heat Pump Association (EHPA) · 107 members from 22 countries (status 08/2013) ­ Heat pump manufacturers ­ Component manufacturers ­ National associations

  7. Process Integration of Industrial Heat Pumps

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    PROCESS INTEGRATION OF INDUSTRIAL HEAT PUMPS* S. J. Priebe EG&G Idaho, Inc. Idaho Falls, Idaho ABSTRACT The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated... properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve, the type of heat ?pump drive, and the kind of heat pump cycle were examined to determine their effects on the placement of industrial...

  8. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as...

  9. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  10. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  11. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  12. Integration of heat pumps into industrial processes

    SciTech Connect (OSTI)

    Chappell, R.N. (USDOE, Washington, DC (USA)); Priebe, S.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01T23:59:59.000Z

    The Department of Energy and others have funded studies to assess the potential for energy savings using industrial heat pumps. The studies included classifications of heat pumps, economic evaluations, and placement of heat pumps in industrial processes. Pinch technology was used in the placement studies to determine the placement, size, and type of heat pumps for a given applications. There appears to be considerable scope for heat pumping in several industries, but, where maximum process energy savings are desired, it is important to consider heat pumping in the context of overall process integration. 19 refs., 15 figs.

  13. Environmental benefits of different types of heat pumps, available and expected

    SciTech Connect (OSTI)

    Hughes, P.J.

    1993-11-01T23:59:59.000Z

    A brief overview of integrated resource planning (IRP) is provided, with emphasis on how stakeholders interact within the process and where the opportunities may lie for heat pump advocates in cold climates. Five heat pump options that represent various approaches for improving heat pump cold weather performance are included here in a comparative analysis: 2-speed electric air source heat pumps, variable-speed electric air source heat pumps, electric ground-source heat pumps, natural gas engine-driven heat pumps, and natural gas absorption heat pumps. The comparative analysis addresses seasonal performance, seasonal peak demand, air pollutant emissions, customer energy costs, and recognition of environmental externalities in IRP, all in the context of a residential application in the Great Lakes region of the US. Several actions that may be in the interest of heat pump stakeholders in cold climates were identified, including: development of improved software for utility planners, advocacy of a practical form of the Societal Test for use in IRP that credits heat pumps for the residential air pollutant emissions that they avoid, and development of practical methods to credit heat pumps with other environmental benefits for which they may be responsible.

  14. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions 

    E-Print Network [OSTI]

    Kirol, L.

    1987-01-01T23:59:59.000Z

    Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place...

  15. Connexus Energy- Residential Efficient HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Connexus Energy offers rebates for residential customers to improve the energy efficiency of homes. Rebates are available for air source heat pumps, ductless heat pumps and ground-source heat pumps...

  16. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  17. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  18. Process Integration of Industrial Heat Pumps 

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    1986-01-01T23:59:59.000Z

    The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve...

  19. Industrial Heat Pumps: Where and When 

    E-Print Network [OSTI]

    Ranade, S. M.; Chao, Y. T.

    1989-01-01T23:59:59.000Z

    A brief review of the types of industrial heat pumps is presented. General guidelines are provided for appropriate placement of industrial heat pumps. Industrial applications are used as examples to illustrate key points.

  20. CenterPoint Energy- Residential Gas Heating Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  1. Jones-Onslow EMC- Residential Heating and Cooling Rebate Program

    Broader source: Energy.gov [DOE]

    Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat...

  2. GEOTHERMAL HEAT PUMPS Jack DiEnna

    E-Print Network [OSTI]

    GEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps IS GEOTHERMAL HEAT PUMP TECHNOLOGY ??? Answer: It is a 60 year old technology! #12;FACT GHP's were first written

  3. Heat Pump Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of EnergyHearingsWater Heating »

  4. PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS

    E-Print Network [OSTI]

    ......................................................................................................... 4 2.1. Heat Pump and Chiller Models

  5. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer) which employs a natural gas fired Stirling engine to drive a Rankine cycle vapor compressor is presently by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  6. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01T23:59:59.000Z

    DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS K. Dao, M.ABSORPTION AIR CONDITIONERS AND HEAT PUMPS* K. DAO, M.

  7. Sustainable Energy Resources for Consumers Webinar on Residential...

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript Sustainable Energy Resources for Consumers Webinar on Residential...

  8. Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry S.Heat Pumps Heat

  9. absorption heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating capacity k jet nozzle Closed Cycles: AbsorptionAdsorption heat pump thermal compressor driven by waste heat1 Industrial heat pumps in Germany - potentials,...

  10. absorption heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating capacity k jet nozzle Closed Cycles: AbsorptionAdsorption heat pump thermal compressor driven by waste heat1 Industrial heat pumps in Germany - potentials,...

  11. advanced heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  12. advanced heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  13. agency heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  14. automotive heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  15. The Evolution of the U.S. Heat Pump Market

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL] [ORNL; Khowailed, Gannate [Sentech, Inc.] [Sentech, Inc.

    2011-01-01T23:59:59.000Z

    The heating and cooling equipment market in the United States (U.S.) evolved in the last two decades affected by the housing market and external market conditions. The average home size increased by 25% since 1999, contributing to increased average equipment size of heat pumps (HPs) and air conditioners (ACs). The home size increase did not correlate with higher residential energy used. The last decade is recognized for improved home insulation and equipment efficiency, which has made up for the larger home size and still yielded lower residential energy use. The lower energy use coincides with more homes using HPs. HP growth was supported by the price stability and affordability of electricity. The heating and cooling equipment market also seems to be rebounding faster than the housing market after the economic crises. In 2009 only 22% of HPs were sold to new homes, reflecting increased heat pump sales for add-on and replacement applications. HPs are growing in popularity and becoming an established economic technology. The increased usage of HPs will result in reduced residential heating energy use and carbon dioxide emissions.

  16. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  17. Heat Pump Application- An Industrial Case Study

    E-Print Network [OSTI]

    Shukla, D.; Umoh, R.

    of additional compressor work required to lift thermal energy from a low source temperature to a high sink temperature. A reduction of this work improves the heat pump economics. This paper presents the results of a heat pump study conducted by TENSA... technology and by making some process modifications, the compressor work can be reduced significantly. INTRODUCTION Heat pumps, used in conjunction with conventional heat exchangers networks (HEN) provide an effective means for reducing the energy...

  18. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report

    SciTech Connect (OSTI)

    Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

    1992-07-01T23:59:59.000Z

    Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  19. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California

    SciTech Connect (OSTI)

    Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

    1992-07-01T23:59:59.000Z

    Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  20. Residential heating oil prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheating oil9,heating

  1. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3, 2014heating

  2. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3, 2014heating5,

  3. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3,heating oil

  4. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3,heating

  5. Heat pumps: Industrial applications. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The bibliography contains citations concerning design, development, and applications of heat pumps for industrial processes. Included are thermal energy exchanges based on air-to-air, ground-coupled, air-to-water, and water-to-water systems. Specific applications include industrial process heat, drying, district heating, and waste processing plants. Other Published Searches in this series cover heat pump technology and economics, and heat pumps for residential and commercial applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1

    E-Print Network [OSTI]

    Johnson, F.X.

    2010-01-01T23:59:59.000Z

    residential home heating equipment, depending on product class and size. Figure E.6b: Electric Heat Pump

  7. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  8. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  9. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average retail price

  10. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average retail

  11. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average retailheating

  12. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average

  13. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The averageheating oil

  14. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The averageheating

  15. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The averageheating6, 2014

  16. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The averageheating6,

  17. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The averageheating6,4

  18. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The

  19. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheating oil price

  20. Residential heating oil price increases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheating oil

  1. Residential heating oil price increases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheating oil9, 2015

  2. Residential heating oil price increases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheating oil9, 20155,

  3. Residential heating oil price increases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheating oil9,

  4. Residential heating oil prices decline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheating

  5. Residential heating oil prices decline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheatingheating oil

  6. Residential heating oil prices decline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheatingheating

  7. Residential heating oil prices decline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases Theheatingheatingheating

  8. Residential heating oil prices decline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases

  9. Residential heating oil prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil prices decrease

  10. Residential heating oil prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil prices

  11. Residential heating oil prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil pricesheating

  12. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil

  13. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3, 2014

  14. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3,

  15. Numbers of Abstract/Session (given by NOC) 00090 -1 IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan

    E-Print Network [OSTI]

    Boyer, Edmond

    Numbers of Abstract/Session (given by NOC) 00090 -1 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan R-1234yf MIXTURES FOR REPLACING R-407C IN RESIDENTIAL HEAT PUMPS Marcello BENTIVEGNI: This paper deals with the design of air-to-water heat pumps dedicated to the replacement of old oil boilers

  16. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Project objectives: Construct a ground sourced heat pump, heating, ventilation, and air conditioning system for the new Oakland University Human Health Sciences Building utilizing variable refrigerant flow (VRF) heat pumps. A pair of dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

  17. Great Lakes Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Great Lakes Energy offers rebates to residential customers for the purchase of efficiency air-source heat pumps or geothermal heat pumps. A rebate of $250 is available for air-source heat pumps,...

  18. Non-Residential Solar Water Heating Site Assessment at Milwaukee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Residential Solar Water Heating Site Assessment at Milwaukee Apartment Buildings The Midwest Renewable Energy Association's certified site assessors conducted 25 site...

  19. Duquesne Light Company- Residential Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying...

  20. Utilities District of Western Indiana REMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Utilities District of Western Indiana REMC offers residential customers incentives for energy efficient heat pumps, water heaters, and air conditioners. Eligible air-source heat pump and air...

  1. Geothermal Heat Pump Profitability in Energy Services

    SciTech Connect (OSTI)

    None

    1997-11-01T23:59:59.000Z

    If geothermal heat pumps (GHPs) are to make a significant mark in the market, we believe that it will be through energy service pricing contracts offered by retailcos. The benefits of GHPs are ideally suited to energy service pricing (ESP) contractual arrangements; however, few retailcos are thoroughly familiar with the benefits of GHPs. Many of the same barriers that have prevented GHPs from reaching their full potential in the current market environment remain in place for retailcos. A lack of awareness, concerns over the actual efficiencies of GHPs, perceptions of extremely high first costs, unknown records for maintenance costs, etc. have all contributed to limited adoption of GHP technology. These same factors are of concern to retailcos as they contemplate long term customer contracts. The central focus of this project was the creation of models, using actual GHP operating data and the experience of seasoned professionals, to simulate the financial performance of GHPs in long-term ESP contracts versus the outcome using alternative equipment. We have chosen two case studies, which may be most indicative of target markets in the competitive marketplace: A new 37,000 square foot office building in Toronto, Ontario; we also modeled a similar building under the weather conditions of Orlando, Florida. An aggregated residential energy services project using the mass conversion of over 4,000 residential units at Ft. Polk, Louisiana. Our method of analyses involved estimating equipment and energy costs for both the base case and the GHP buildings. These costs are input in to a cash flow analysis financial model which calculates an after-tax cost for the base and GHP case. For each case study customers were assumed to receive a 5% savings over their base case utility bill. A sensitivity analysis was then conducted to determine how key variables affect the attractiveness of a GHP investment.

  2. Industrial and Commercial Heat Pump Applications in the United States

    E-Print Network [OSTI]

    Niess, R. C.

    compression cycle. Using readily available fluorocarbon refrigerants as the heat pump working fluid, this cycle is commonly used because of its wide application opportunities. Compressed Vapors Heat Pump Compressor Heat Sink PrOCess (Condenser... and refrigerants most commonly used and the open-cycle mechanical vapor compression heat pumps. Waste heat sources, heat loads served by heat pumps--and typical applications using heat pumps for large-scale space heating, domestic water heating, and industrial...

  3. Availability of refrigerants for heat pumps in Europe

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    grids Smart cities #12;8 Residential HPs Refrigerants Use of aero-geo- +hydrothermal renewable energy cooling and heating Residential Future: Heating of electric cars and cooling the batteries Future: Smart

  4. Geothermal heat pump grouting materials

    SciTech Connect (OSTI)

    Allan, M.

    1998-08-01T23:59:59.000Z

    The thermal conductivity of cementitious grouts has been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. The cement-sand grouts were also tested for rheological characteristics, bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the thermal conductivity, permeability, bonding and exotherm data for selected cementitious grouts. The theoretical reduction in bore length that could be achieved with the BNL-developed cement-sand grouts is examined. Finally, the FY 98 research and field trials are discussed.

  5. Frostless heat pump having thermal expansion valves

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN)

    2002-10-22T23:59:59.000Z

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  6. Industrial Heat Pumps--Types and Costs 

    E-Print Network [OSTI]

    Chappell, R. N.; Bliem, C. J.; Mills, J. I.; Demuth, O. J.; Plaster, D. S.

    1985-01-01T23:59:59.000Z

    this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various...

  7. Industrial Heat Pumps--Types and Costs

    E-Print Network [OSTI]

    Chappell, R. N.; Bliem, C. J.; Mills, J. I.; Demuth, O. J.; Plaster, D. S.

    workings. from the waste heat flowing toward the cooling The three categories are: (a) electrically driven, utility. In practice, achieving. this objective (b) prime heat driven, and (c) waste heat driven. requires both proper integration of' the heat... shown in Figure 2 still holds except that the low temperature or waste heat is split, with part, Qb, going to the heat pump to be boosted to a higher temperature and part, Qd, going to the driver to drive the heat pump. The COP is defined as: COP...

  8. Residential home heating oil and propane survey, 1991--1992

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    This report contains pricing and consumption data on heating oils and propane for the Maine residential sector during the heating season 1991--1992. The information was gathered by survey. (VC)

  9. D-Zero HVAC Heat Pump Controls

    SciTech Connect (OSTI)

    Markley, Dan; /Fermilab

    2004-04-14T23:59:59.000Z

    This engineering note documents the integration of Dzero Heat Pump 1 through Heat Pump 15 into the cryo/gas process control system commonly referred to as the cryo control system. Heat pumps 1 through 15 control the ambient air temperature on the 3rd, 5th, and 6th floor office areas at Dzero. The entire Johnson HVAC control system was replaced with a Siemens control system in 1999 leaving behind the 15 heat pumps with stand-alone Johnson controllers. Now, these 15 heat pump Johnson controllers are being replaced with small stand alone Beckhoff BC9000 controllers. The Beckhoff BC9000 controllers are network able into the existing Intellution control system. The Beckhoff BC9000 controllers use the cryo private Ethernet network and an OPC driver to get data into the Intellution SCADA node databases. The BC9000 is also programmed over this same Ethernet network.

  10. Promotion of efficient heat pumps for heating (ProHeatPump)

    E-Print Network [OSTI]

    .444283 Supplementary report: Heat pumps in Norway May 2009 Work Package 4: Policy context and measures Authors: Nils ............................................................................................................................1 2 Norway's energy sector .........................................................................................................1 3 HP industry and market in Norway

  11. MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP

    E-Print Network [OSTI]

    MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS Thesis Approved by: Dr.................................................................................................................... 16 MODELING OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS

  12. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Including. May,pump technology to extract heat from the surrounding air (air flow requirements of HPWHs increase installation costs. Introduction A heat pump

  13. air heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Pump Texas A&M University - TxSpace Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water...

  14. air source heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Pump Texas A&M University - TxSpace Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water...

  15. air heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water is supplied to the water loop heat pump unit....

  16. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31T23:59:59.000Z

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  17. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01T23:59:59.000Z

    In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air...

  18. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump 

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01T23:59:59.000Z

    In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air...

  19. TVA Partner Utilities- Energy Right Heat Pump Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation,...

  20. TVA Partner Utilities- Energy Right Heat Pump Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation,...

  1. Natural Refrigerant High-Performance Heat Pump for Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Refrigerant High-Performance Heat Pump for Commercial Applications Natural Refrigerant High-Performance Heat Pump for Commercial Applications Lead Performer: S-RAM -...

  2. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis from Ground Source Heat Pump Demonstration Projects Data Analysis from Ground Source Heat Pump Demonstration Projects Comparison of building energy use before and after...

  3. Develop Standard Method of Test for Integrated Heat Pump - 2013...

    Energy Savers [EERE]

    Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Emerging Technologies...

  4. Flathead Electric Cooperative Facility Geothermal Heat Pump System...

    Broader source: Energy.gov (indexed) [DOE]

    Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Project Will Take Advantage of...

  5. Flathead Electric Cooperative Facility Geothermal Heat Pump System...

    Broader source: Energy.gov (indexed) [DOE]

    Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade CHERYL TALLEY, PE Flathead Electric Cooperative Ground Source Heat Pumps Demonstration Projects May 19,...

  6. Residential Ground-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Project sites must be located in a utility territory that contributes to the Renewable Energy Trust Fund (National Grid, NSTAR, WMECO, Unitil, and municipal light plants that have agreed to pay i...

  7. Residential Cold Climate Heat Pump (CCHP)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments |FossilThisDepartment of Energy

  8. Residential Cold Climate Heat Pump (CCHP)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments |FossilThisDepartment of EnergyCraig Messmer,

  9. 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-47 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily. HP Wnet,in QH QL TL TH Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible, 5.7 K026K300 K300 COP maxHP, LH H TT

  10. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression 

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    of each approach as a function of the source and sink temperatures and magnitude of heat flow. Generic heat pumps and vapor recompression designs are explained, costed, estimated in performance, and evaluated as a function of the economic parameters...

  11. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  12. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  13. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  14. Heat pump with freeze-up prevention

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  15. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage 

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar...

  16. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-28T23:59:59.000Z

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  17. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1986-01-01T23:59:59.000Z

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  18. Hybrid Heat Pump Design and Application 

    E-Print Network [OSTI]

    Wagner, J. R.; Koebberman, W. F.

    1985-01-01T23:59:59.000Z

    The Hybrid Heat Pump (HHP) converts industrial waste heat into process steam. Waste heat at temperatures as low as approximately 200°F can be used. Steam output covers a range between 12,000 Ib/h and 50,000 Ib/h, depending on the application...

  19. Heat Pump Application- An Industrial Case Study 

    E-Print Network [OSTI]

    Shukla, D.; Umoh, R.

    1990-01-01T23:59:59.000Z

    The economics of heat pumping across a distillation column is usually dependent on the amount of additional compressor work required to lift thermal energy from a low source temperature to a high sink temperature. A reduction of this work improves...

  20. Absorption Heat Pumping- Have You Tried It? 

    E-Print Network [OSTI]

    Davis, R. C.

    1985-01-01T23:59:59.000Z

    The concept of a thermal powered absorption heat pump is not a new or revolutionary idea. It has been successfully demonstrated in the lab and prototypes have been installed in the field. Units have been successfully applied in a number...

  1. State Regulatory Oversight of Geothermal Heat Pump

    E-Print Network [OSTI]

    State Regulatory Oversight of Geothermal Heat Pump Installa:ons: 2012 & 2009 Kevin McCray, Execu:ve Director #12;2009 #12;Sponsors ·The Geothermal Hea requested geothermal hea:ng and cooling regulatory data. · An email containing

  2. Geothermal Heat Pump Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    [http://www.emnrd.state.nm.us/ECMD/LawsRegulationsExecutiveOrders/documen... HB 375], signed in April 2009, created a tax credit in New Mexico for geothermal heat pumps purchased and installed...

  3. Geothermal Heat Pump Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    [http://www.emnrd.state.nm.us/ECMD/LawsRegulationsExecutiveOrders/documen... HB 375], signed in April 2009, created a tax credit in New Mexico for geothermal heat pumps purchased and installed...

  4. Marshfield Utilities- Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Marshfield Utilities offers cash-back rewards for Ground Source Heat Pumps, as well as Focus on Energy program incentives. A rebate of $550 will be given to customers who purchase and install...

  5. Absorption Heat Pumping- Have You Tried It?

    E-Print Network [OSTI]

    Davis, R. C.

    The concept of a thermal powered absorption heat pump is not a new or revolutionary idea. It has been successfully demonstrated in the lab and prototypes have been installed in the field. Units have been successfully applied in a number...

  6. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions

    E-Print Network [OSTI]

    Kirol, L.

    ADVANCED CHEMICAL HEAT PUMPS USING LIQUID-VAPOR REACTIONS LANCE KIROL Senior Program Specialist Idaho National Engineering Laboratory Idaho Falls, Idaho . ABSTRACT Chemical heat pumps utilizing liquid-vapor reactions can be configured... in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynam...

  7. The Energy Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Energy Cooperative offers incentives to residential customers for the installation of dual fuel heating systems, water heaters, geothermal heat pumps and central air conditioners. Equipment...

  8. Carroll County REMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Carroll County REMC offers incentives to residential customers who purchase and install energy efficiency equipment for the home. Rebates are available on geothermal heat pumps, air source heat...

  9. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  10. Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  11. Lake Worth Utilities- Residential Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A...

  12. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  13. Utilization of Heat Pump Water Heaters for Load Management

    SciTech Connect (OSTI)

    Boudreaux, Philip R [ORNL; Jackson, Roderick K [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Lyne, Christopher T [ORNL

    2014-01-01T23:59:59.000Z

    The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

  14. Simulation of a High Efficiency Multi-bed Adsorption Heat Pump

    SciTech Connect (OSTI)

    TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

    2012-05-01T23:59:59.000Z

    Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

  15. temperature heat pumps applied to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    losses (waste heat) 250-300°C......1100°C ~ 100 TWh/year Low temperature thermal losses (waste heat) 25°C;Waste heat recovery (1) In a decreasing energetic interest order Achema 2012 Frankfurt June 21th 2012>>Twaste #12;Waste heat recovery (2) Achema 2012 Frankfurt June 21th 2012 There is no interesting thermal

  16. Ground-source heat pump case studies and utility programs

    SciTech Connect (OSTI)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01T23:59:59.000Z

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  17. Cold Climates Heat Pump Design Optimization

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Heat pumps provide an efficient heating method; however they suffer from sever capacity and performance degradation at low ambient conditions. This has deterred market penetration in cold climates. There is a continuing effort to find an efficient air source cold climate heat pump that maintains acceptable capacity and performance at low ambient conditions. Systematic optimization techniques provide a reliable approach for the design of such systems. This paper presents a step-by-step approach for the design optimization of cold climate heat pumps. We first start by describing the optimization problem: objective function, constraints, and design space. Then we illustrate how to perform this design optimization using an open source publically available optimization toolbox. The response of the heat pump design was evaluated using a validated component based vapor compression model. This model was treated as a black box model within the optimization framework. Optimum designs for different system configurations are presented. These optimum results were further analyzed to understand the performance tradeoff and selection criteria. The paper ends with a discussion on the use of systematic optimization for the cold climate heat pump design.

  18. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, J.C.

    1997-05-13T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  19. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, Joseph C. (Gainesville, GA)

    1997-01-01T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  20. Building America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, the Consortium for Advanced Residential Buildings evaluated three newly released heat pump water heater products in order to provide publicly available field data on these products.

  1. OTEC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Oregon Trail Electric Cooperative (OTEC) assists residential members in reducing electric consumption by providing rebates for energy efficient equipment. Rebates are for appliances, heat pumps,...

  2. East Central Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and appliances. To qualify for the rebate...

  3. Industrial and Commercial Heat Pump Applications in the United States 

    E-Print Network [OSTI]

    Niess, R. C.

    1986-01-01T23:59:59.000Z

    The energy crisis of 1973 accelerated the development of large-scale heat pumps in the United States. Since that time, the commercial, institutional, and industrial applications of heat pumps for waste heat recovery have expanded. This paper reviews...

  4. A Comparative Economic Evaluation of Industrial Heat Pumps 

    E-Print Network [OSTI]

    Mills, J. I.; Bliem, C. J.; Chappell, R. N.

    1986-01-01T23:59:59.000Z

    This paper presents the findings of a study on the cost of delivering process heat with state-of-the-art heat pump systems. Sixteen heat pump systems were configured for relative cost comparisons. These systems consisted of electrically driven...

  5. Idaho Falls Power- Energy Efficient Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers zero interest loans to all eligible customers for the purchase and installation of energy efficient heat pumps. The Heat Pump Program applies to heating or cooling in...

  6. Heat Pump Cycle with Solution Circuit and Internal Heat Exchange

    E-Print Network [OSTI]

    Radermacher, R.

    Vapor compression heat pumps which employ working fluid mixtures rather than pure substances offer significant advantages leading to larger temperature lifts at low pressure ratios or to completely new applications. The main feature of such cycles...

  7. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22T23:59:59.000Z

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  8. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Uselton, Robert B. [Lennox Industries, Inc] [Lennox Industries, Inc; Shen, Bo [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  9. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  10. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs 

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  11. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01T23:59:59.000Z

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  12. Advanced Variable Speed Air-Source Integrated Heat Pump 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program...

  13. Multi-stage quantum absorption heat pumps

    E-Print Network [OSTI]

    Luis A. Correa

    2014-01-16T23:59:59.000Z

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized $N$-dimensional ideal heat pumps by merging $N-2$ elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths, and study their maximum achievable cooling power and the corresponding efficiency as a function of $N$. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  14. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  15. Geothermal Heat Pump Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics Geothermal Heat Pump Basics

  16. Control and optimal operation of simple heat pump cycles

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd Skogestad in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined

  17. Industrial heat pumps in Germany -potentials, technological development

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    jet nozzle Closed Cycles: Absorption/Adsorption heat pump thermal compressor driven by waste heat, waste heat, waste water/air (heat recovery) Refrigerant R134a, R407C, R410A, R717 Heating capacity [k

  18. Field Performance of Heat Pump Water Heaters in the Northeast

    SciTech Connect (OSTI)

    Shapiro, C.; Puttagunta, S.

    2013-08-01T23:59:59.000Z

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  19. Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

  20. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01T23:59:59.000Z

    AIR CONDITIONERS AND HEAT PUMPS K. Dao, M. Wahlig, E. Wali,are liquid paths. DM: multistage pump driver, driven by highvapor. DW: main circulation pump driven by strong absorbent.

  1. Submersible pumping system with heat transfer mechanism

    DOE Patents [OSTI]

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15T23:59:59.000Z

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  2. Industrial Heat Pumps: Where and When

    E-Print Network [OSTI]

    Ranade, S. M.; Chao, Y. T.

    because it precludes consideration of other more cost effective alternatives or combination of alternatives. Recent studies sponsored by EPRI and DOE (3,6) clearly support this claim. Recent studies conducted by TENSA Services for Hercules Chemicals..., Inc. 's Pextor process demonstrated a combination of heat integration and heat pumping to be more cost effective compared to either option alone (11). Several software packages are available to aid engineers in applying the technology. EPRI...

  3. Geothermal Heat Pumps Produce Dramatic Savings 

    E-Print Network [OSTI]

    Niess, R. C.

    1983-01-01T23:59:59.000Z

    applications. One approach now expanding the direct use of geothermal energy is coupling this energy resource with high temperature, industrial-type water-to water heat pumps. Such systems can tap geothermal energy in 50 F to 120 F water, normally available...

  4. Ground Loops for Heat Pumps and Refrigeration 

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  5. Brayton Cycle Heat Pump for VOC Control

    E-Print Network [OSTI]

    Kovach, J. L.

    The first full size continuous operation Brayton Cycle Heat Pump (1)(2)(3) application for VOC recovery occurred in 1988. The mixed solvent recovery system was designed and supplied by NUCON for the 3M facility in Weatherford, OK (4). This first...

  6. Geothermal Heat Pumps Produce Dramatic Savings

    E-Print Network [OSTI]

    Niess, R. C.

    1983-01-01T23:59:59.000Z

    applications. One approach now expanding the direct use of geothermal energy is coupling this energy resource with high temperature, industrial-type water-to water heat pumps. Such systems can tap geothermal energy in 50 F to 120 F water, normally available...

  7. Ground Loops for Heat Pumps and Refrigeration

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  8. Advances in the Research of Heat Pump Water Heaters 

    E-Print Network [OSTI]

    Shan, S.; Wang, D.; Wang, R.

    2006-01-01T23:59:59.000Z

    This paper presents the progress of many recently correlative research works on the heat pump water heater (HPWH) and on solar-assisted heat pump water heaters. The advances in the research on compressor development, alternative refrigerant...

  9. Advances in the Research of Heat Pump Water Heaters

    E-Print Network [OSTI]

    Shan, S.; Wang, D.; Wang, R.

    2006-01-01T23:59:59.000Z

    This paper presents the progress of many recently correlative research works on the heat pump water heater (HPWH) and on solar-assisted heat pump water heaters. The advances in the research on compressor development, alternative refrigerant...

  10. Tennessee: Ground-Source Heat Pump Receives Innovation Award...

    Office of Environmental Management (EM)

    the pump and blower motors when heating or cooling demand is low, the heat pump reduces electricity consumption by 80% or more during much of the year. Based on field tests and...

  11. Red River Valley REA- Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

  12. Pinch Application- Heat Pump Study in a Food Plant

    E-Print Network [OSTI]

    Chao, Y. T.; Tripathi, P.

    was to appropriatly place and size the heat pump system in a food plant. A change in the process configuration was recommended as a result of this study to increase the heat pump profitability and to improve the product quality....

  13. adsorption heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995...

  14. adsorption heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995...

  15. Heat Pump Water Heater using Solid-State Energy Converters |...

    Energy Savers [EERE]

    Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

  16. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  17. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01T23:59:59.000Z

    SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS K.Driven Absorption Air-Conditioner", K. Dao, M. Simmons, R.SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS* K.

  18. Solar-powered turbocompressor heat pump system

    DOE Patents [OSTI]

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12T23:59:59.000Z

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  19. Development of a High Performance Air Source Heat Pump for the US Market

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Iu, Ipseng [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

  20. Comfort-constrained distributed heat pump management

    E-Print Network [OSTI]

    Parkinson, Simon; Crawford, Curran; Djilali, Ned

    2011-01-01T23:59:59.000Z

    This paper introduces the design of a demand response network control strategy aimed at thermostatically controlled electric heating and cooling systems in buildings. The method relies on the use of programmable communicating thermostats, which are able to provide important component-level state variables to a system-level central controller. This information can be used to build power density distribution functions for the aggregate heat pump load. These functions lay out the fundamental basis for the methodology by allowing for consideration of customer-level constraints within the system-level decision making process. The proposed strategy is then implemented in a computational model to simulate a distribution of buildings, where the aggregate heat pump load is managed to provide the regulation services needed to successfully integrate wind power generators. Increased exploitation of wind resources will place similarly themed ancillary services in high-demand, traditionally provided by dispatchable energy ...

  1. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, Robert (Churchill, PA); Lackey, Robert S. (Pittsburgh, PA); Fagan, Jr., Thomas J. (Penn HIlls, PA); Veyo, Stephen E. (Murrysville, PA); Humphrey, Joseph R. (Grand Rapids, MI)

    1984-01-01T23:59:59.000Z

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  2. Comparative Performance of Heat Pumps and R&D Requirements

    E-Print Network [OSTI]

    Ally, M. R.

    COMPARATIVE PERFORMANCE OF HEAT PUMPS AND R&D REQUIREMENTS M. R. ALLY Research Staff Member Energy Divisi.on Oak Ridge National Laboratory Oak Ridge, Tennessee INTRODUCTION One of the major programs conducted by the U.S. Department... of Energy's Office of Industrial Programs is the Industrial Heat Pump Program. The objective of this program is to develop and advance heat pump technology to help American industry use its energy resources more efficiently. It involves using heat pumps...

  3. A Comparative Economic Evaluation of Industrial Heat Pumps

    E-Print Network [OSTI]

    Mills, J. I.; Bliem, C. J.; Chappell, R. N.

    )st of delivering process heat with state-of t:ll(:-iJrt heat pump systems. Sixteen heat pump systems w~re configured for relative cost comparisons. These systheat pumps of the open, semiopen and closed type. In addition, a waste energy driven absorption heat pump was analyzed. A conceptual 11{~sign of each system was created using off-the-shelf components generally available to engineering firms...

  4. NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

  5. Modelling and simulation of a heat pump for simultaneous heating and cooling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    production and space cooling at the same time. An answer to a dual energy demand is the heat pump, sinceModelling and simulation of a heat pump for simultaneous heating and cooling Paul Byrne1 *, Jacques-012-0089-0 #12;1. ABSTRACT The heat pump for simultaneous heating and cooling (HPS) carries out space heating

  6. Value of electrical heat boilers and heat pumps for wind power integration

    E-Print Network [OSTI]

    Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

  7. Heat Pump Systems | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| DepartmentPump Systems Heat Pump Systems

  8. Tips: Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe| Department ofAir Ducts Tips:Heat Pumps

  9. APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO

    E-Print Network [OSTI]

    APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. By MAHADEVAN Chapter Page 1. Introduction 1.1. Overview of hybrid ground source heat pump systems 1.2. Literature review 1.3. Thesis objective and scope 2. Optimal sizing of hybrid ground source heat pump system

  10. Lessons learned How to Build Successful Heat Pump Markets

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;2 Lessons learned ­ How to Build Successful Heat Pump Markets Lukas Bergmann, Delta Energy & Environment European Heat Pump Summit 2013 Nürnberg, 15th October 2013 Contact: lukas CHP Small Wind Photovoltaics Energy Efficiency Smart Demand Heat Pumps Networks Micro-CHP Energy

  11. 2005 ASHRAE. 109 Groundwater heat pump systems using standing column

    E-Print Network [OSTI]

    ©2005 ASHRAE. 109 ABSTRACT Groundwater heat pump systems using standing column wells the well through the heat pump in an open-loop pipe circuit. Standing column wells have been in use in growing numbers since the advent of geothermal heat pump systems and are recently receiving much more

  12. www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    for buildings in cold climates Annex 40 - Heat pump concepts for near zero- energy buildings (Operating Agent boilers and gas boilers Annex 38 - Systems using solar thermal energy in combination with heat pumps (Operating Agent: CH) The aim is to analyse solar and heat pump configurations with respect to energy savings

  13. Achema Congress 2012 Application of Industrial Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Achema Congress 2012 Session Application of Industrial Heat Pumps Improving energy by Information Centre on Heat Pumps and Refrigeration - IZW e.V. International Energy Agency - IEA Agreements "Heat Pump Programme" and "Industrial Energy-related Technologies and Systems" Programme Introduction H

  14. Ground-Source Heat Pumps in Cold Climates

    E-Print Network [OSTI]

    Wagner, Diane

    Ground-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review of the Literature and contributions from individuals and organizations involved in ground-source heat pump installation around Alaska

  15. Pee Dee Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pee Dee Electric Cooperative offers a variety of programs for residential members to save energy in participating homes. Rebates are available for dual fuel heat pumps, geothermal heat pumps, and...

  16. Refrigerant charge management in a heat pump water heater

    DOE Patents [OSTI]

    Chen, Jie; Hampton, Justin W.

    2014-06-24T23:59:59.000Z

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  17. Foundation Heat Exchanger Model and Design Tool Development and Validation

    E-Print Network [OSTI]

    Heat Exchangers for Residential Ground Source Heat Pump Systems - Numerical Modeling and Experimental. Fisher, J. Shonder, P. Im. 2010. Residential Ground Source Heat Pump Systems Utilizing Foundation Heat. Feasibility of foundation heat exchangers in ground source heat pump systems in the United States. ASHRAE

  18. IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    00149 -1- 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH R-1234yf Sorina Mortada, Ph.D. student, Center for Energy and Processes Abstract: Significant improvements in energy performance of air-to-air heat pumps are the major reason

  19. IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP SEASONAL PERFORMANCES C. T. Tran, PhD student, Centre for Energy and Processes, MINES, Research Engineer, ENERBAT, Electricity of France R&D, Moret/Loing, France Abstract Heat pump systems have

  20. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24T23:59:59.000Z

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  1. CenterPoint Energy (Gas)- Residential Heating and Hot Water Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  2. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    E-Print Network [OSTI]

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-01-01T23:59:59.000Z

    the effect of heating and cooling system inefficiencies onwith inefficient heating and cooling systems in CaliforniaOperation of Residential Cooling Systems. Proceedings of the

  3. Heat transfer enhancement resulting from induction electrohydrodynamic pumping 

    E-Print Network [OSTI]

    Margo, Bryan David

    1992-01-01T23:59:59.000Z

    pump operated at various tilt angles with two working fluids. The main difference between this study and other work in EHD heat transfer enhancement is that the induction EHD pump is the only source of pumping as well as the basis for heat transfer... HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  4. Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

  5. air-to-air heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annum. 12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National...

  6. absorption-type heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  7. air-to-water heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  8. absorption-sorption heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  9. Ozark Border Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Ozark Border Electric Cooperative has made rebates available to residential members for the installation of energy efficient geothermal and air source heat pumps, electric water heaters, and room...

  10. Independence Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps,...

  11. Omaha Public Power District- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Omaha Public Power District (OPPD) offers energy credit refunds to its residential customers for installing high-efficiency heat pumps through the Energy Conservation Program. Newly constructed...

  12. City Water Light and Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    City Water Light and Power (CWLP) offers rebates to Springfield residential customers for increasing the energy efficiency of participating homes. Rebates are available for geothermal heat pumps,...

  13. Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)

    Broader source: Energy.gov [DOE]

    To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

  14. Commercialization of Industrialized Absorption Heat Pumps in the US

    E-Print Network [OSTI]

    Pettigrew, M. G.

    COMMERCIALIZATION OF INDUSTRIAL ABSORPTION HEAT PUMPS IN THE US MALCOLM G. PETTIGREW LITWIN ENGINEERS &CONSTRUCTORS, INC. HOUSTON, ABSTRACT The recovery of waste heat through absorption heat pumping is quite appeal ing to U.S. industry.... However, although this technology has been successfully applied in Europe and Japan, a cauti ous atmosphere wi 11 continue to prevail in the U.S. until the first absorption heat pump is built and successfully demonstrates it's viability...

  15. Energy 101: Geothermal Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground)...

  16. Modeling of Residential Buildings and Heating Systems

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  17. Modeling of Residential Buildings and Heating Systems 

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  18. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating of a transcritical carbon dioxide heat pump system are presented in this article. A computer code has been developed conditions. q 2004 Elsevier Ltd and IIR. All rights reserved. Keywords: Optimization; Heat pump; Carbon

  19. Industrial Process Heat Pumps--Some Unconventional Wisdom

    E-Print Network [OSTI]

    Karp, A.

    to be incorrect and/or i.llusory. Similar situa tions were uncovered in other industries as part of an EPRI-funded pinch analysis by Union Carbide of heat-pumped evaporators in ten processes.(12) Figure 8 from that study shows that heat pumping applications... additional design insights important to the heat pump I s cost effec tiveness. Figure 9. also from the EPRI study. shows how heat pump sizing can be limited to that which is truly useful. taking into account other process heat integration possibilities...

  20. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    SciTech Connect (OSTI)

    Horton, W. Travis [Purdue University] [Purdue University; Groll, Eckhard A. [Purdue University] [Purdue University; Braun, James E. [Purdue University] [Purdue University

    2014-06-01T23:59:59.000Z

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested compression technologies is a lower discharge temperature, which allows for continued operation at lower ambient temperatures. A bin analysis of the vapor injected prototype cold climate heat pump predicts a 6% improvement in HSPF for Minneapolis. This improvement is mainly a result of the increased capacity of the system for active vapor injection. For the oil flooded system, a slightly larger performance improvement is predicted, in this case mostly caused by an increase in heating COP. Based on an economic analysis of these results, the maximum additional cost of the system changes, for the Minneapolis location, are $430 for the vapor injected system and $391 for the oil flooded system. These estimates assume that a 3-year simple payback period is accepted by the customer. For the hybrid flow control of evaporators, a new type of balancing valve was developed together with Emerson Climate technologies to reduce the cost of the control scheme. In contrast to conventional stepper motor valves, this valve requires less cables and can be driven by a cheaper output circuit on the control board. The correct valve size was determined in a dedicated test stand in several design iterations. The performance benefits of the hybrid control of the evaporator coil were determined for clean coil conditions as well as with partial blockage of the air inlet grille and under frosting conditions. For clean coil conditions, the benefits in terms of COP and capacity are negligible. However, significant benefits were noted for severely air-maldistributed operating conditions. For the H2-test, the maximum COP improvement of 17% along with a capacity improvement of nearly 40% was observed. Overall, the hybrid control scheme leads to a significant amount of performance improvement, if the air inlet conditions to the evaporator are maldistributed.

  1. Heat pumping with optically driven excitons

    E-Print Network [OSTI]

    Gauger, Erik M

    2010-01-01T23:59:59.000Z

    We present a theoretical study showing that an optically driven excitonic two-level system in a solid state environment acts as a heat pump by means of repeated phonon emission or absorption events. We derive a master equation for the combined phonon bath and two-level system dynamics and analyze the direction and rate of energy transfer as a function of the externally accessible driving parameters. We discover that if the driving laser is detuned from the exciton transition, cooling the phonon environment becomes possible.

  2. Heat pumping with optically driven excitons

    E-Print Network [OSTI]

    Erik M. Gauger; Joachim Wabnig

    2010-06-07T23:59:59.000Z

    We present a theoretical study showing that an optically driven excitonic two-level system in a solid state environment acts as a heat pump by means of repeated phonon emission or absorption events. We derive a master equation for the combined phonon bath and two-level system dynamics and analyze the direction and rate of energy transfer as a function of the externally accessible driving parameters. We discover that if the driving laser is detuned from the exciton transition, cooling the phonon environment becomes possible.

  3. Tips: Heat Pumps | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar SolarHeat Pumps Tips:

  4. Supercharger for Heat Pumps in Cold Climates

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -BlueprintThis document details the Supercharger for Heat Pumps

  5. Heat Pump System Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResourceEmploymentHealth, Safety,Heat Pump

  6. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'i EstablishesChillerEastHomesHeat Pump

  7. NREL: Learning - Geothermal Heat Pump Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorking withFuel Cell VehicleHeat Pump

  8. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorgeGeothermal Heat Pumps

  9. An experimental study of heating performance and seasonal modeling of vertical U-tube ground coupled heat pumps

    E-Print Network [OSTI]

    Margo, Randal E.

    1992-01-01T23:59:59.000Z

    , 1985; Mei & Emerson, 1985; Couvillion, 1985; Edwards & Vitta, 1985; Mei & Baxter, 1986; Cane & Forgas, 1991, Deerman, 1991; Dobson, 1991]. Ground coupled heat pumps have the potential to perform more efficiently than air source heat pumps (ASHP... configurations of heat pumps: air source heat pumps (ASHP) and ground coupled heat pumps (GCHP). Air source heat pumps extract energy from the outdoor air in the heating mode and reject excess heat in the cooling mode. One significant drawback to ASHP...

  10. PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE

    SciTech Connect (OSTI)

    BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

    2011-07-01T23:59:59.000Z

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82�ºC (180�ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

  11. Thermoeconomic Analysis of a Solar Heat-Pump System 

    E-Print Network [OSTI]

    Gao, Y.; Wang, S.

    2006-01-01T23:59:59.000Z

    This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

  12. Thermoeconomic Analysis of a Solar Heat-Pump System

    E-Print Network [OSTI]

    Gao, Y.; Wang, S.

    2006-01-01T23:59:59.000Z

    This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

  13. Marketing Ground Source Heat Pump Advanced Applications that

    E-Print Network [OSTI]

    Marketing Ground Source Heat Pump Advanced Applications that Deliver Competitive Advantage Al is the fastest growing market with the available capital and need for the benefits of ground source heat pumps Heating ... and Cooling n Comfort & Indoor Air Quality n Homes have domestic hot water - DHW n Less

  14. An Economic Analysis of Industrial Absorption Heat Pumps

    E-Print Network [OSTI]

    Kaplan, S. I.; Huntley, W. R.; Perez-Blanco, H.

    Absorption heat pumps are a viable technology for waste heat recovery in industry. Yet, no U.S applications exist to date. In sharp contrast, large scale heat pumps are used in Japan, and a few recent installations have been reported in Europe...

  15. Kentucky Power- Residential Efficient HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Power's High Efficiency Heat Pump Program offers a $400 rebate to residential customers living in existing (site-built) homes who upgrade electric resistance heating systems with a new,...

  16. Low GWP Working Fluid for High Temperature Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Low GWP Working Fluid for High Temperature Heat Pumps: DR-2 Chemical Stability at High Temperatures Temp Heat Pumps: DR-2 Very Low GWP AND Non-Flammable HFC-245fa DR-2 Chemical Formula CF3CH2CHF2 HFO 171.3 Pcr [MPa] 3.65 2.9 Kontomaris-DuPont; European Heat Pump Summit, Nuremberg, October 15th, 2013

  17. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01T23:59:59.000Z

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  18. Residential heating oil prices virtually unchanged

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3,heating4

  19. Residential heating oil prices virtually unchanged

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3,heating40,

  20. Residential heating oil prices virtually unchanged

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3,heating40,5,

  1. Residential heating oil prices virtually unchanged

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating oil3,heating40,5,4

  2. Dual Heating and Cooling Sorption Heat Pump for a Food Plant

    E-Print Network [OSTI]

    Rockenfeller, U.; Dooley, B.

    Complex compound sorption reactions are ideally suited for use in high temperature lift industrial heat pump cycles. Complex compound heat pumping and refrigeration provides a number of energy-saving advantages over present vapor compression systems...

  3. Monitoring SERC Technologies —Geothermal/Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory Project Leader Dave Peterson about Geothermal/Ground Source Heat Pumps and how to properly monitor its installation.

  4. Optimal Ground-Source Heat Pump System Design

    Broader source: Energy.gov (indexed) [DOE]

    Ground-Source Heat Pump System Design May 19, 2010 Geothermal Technologies Program 2010 Peer Review ENVIRON International PI : Metin Ozbek Track : GSHP Demonstration Projects This...

  5. NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)

    SciTech Connect (OSTI)

    Hudon, K.

    2012-05-01T23:59:59.000Z

    A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

  6. Illustrative Calculation of Economics for Heat Pump and "Grid...

    Broader source: Energy.gov (indexed) [DOE]

    America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Building America...

  7. A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates 

    E-Print Network [OSTI]

    Gonzalez, Jose Antonio

    1993-01-01T23:59:59.000Z

    between GSIM and two commercially available heat exchanger sizing methods, the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA) methods, was performed. GSIM heat exchanger lengths for Dallas were... Pump Capacity and Cooling Load. . . . . Oversizing and Undersizing the Heat Pump. . . . . . . . . . . . . . Summary. . 72 74 76 78 80 82 85 87 90 92 IX COMPARISON OF HEAT EXCHANGER SIZING METHODS . . 93 International Ground Source Heat...

  8. Open cycle heat pump development for local resource use

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Glick, J.F.; Becker, F.E.

    1990-04-01T23:59:59.000Z

    District heating (DH) systems provide thermal energy to their customers in the form of hot water or steam. These systems can use one or more types of heat sources to meet the thermal load, including boilers, cogeneration systems, or low-grade heat sources in conjunction with a heat pump. Most large-scale heat pumps operate using the closed-cycle concept and usually use a chlorinated fluorocarbon (CFC) as the working fluid. An alternative to this approach is the quasi open-cycle heat pump, which was first studied in a Phase 1 report entitled Open-Cycle Heat Pump Development for Local Resource Use,'' DOE/CE/26563-5. The quasi open-cycle (QOC) heat pump actually uses the district heating transport medium as its working fluid. This document is the Final Report prepared as a part of Task 6 of Open-Cycle Heat Pump Development for Local Resource Use, Phase 2 District Heating Case Study Analysis. The objective of this study contract was to assess the application of the QOC heat pump in an actual case study. 43 figs., 11 tabs.

  9. Development of Environmentally Benign Heat Pump Water Heaters for the US Market

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Wang, Kai [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL; Roetker, Jack [General Electric - Appliance Park] [General Electric - Appliance Park

    2012-01-01T23:59:59.000Z

    Improving energy efficiency in water heating applications is important to the nation's energy strategies. Water heating in residential and commercial buildings accounts for about 10% of U.S. buildings energy consumption. Heat pump water heating (HPWH) technology is a significant breakthrough in energy efficiency, as an alternative to electric resistance water heating. Heat pump technology has shown acceptable payback period with proper incentives and successful market penetration is emerging. However, current HPWH require the use of refrigerants with high Global Warming Potential (GWP). Furthermore, current system designs depend greatly on the backup resistance heaters when the ambient temperature is below freezing or when hot water demand increases. Finally, the performance of current HPWH technology degrades greatly as the water set point temperature exceeds 330 K. This paper presents the potential for carbon dioxide, CO2, as a natural, environmentally benign alternative refrigerant for HPWH technology. In this paper, we first describe the system design, implications and opportunities of operating a transcritical cycle. Next, a prototype CO2 HPWH design featuring flexible component evaluation capability is described. The experimental setup and results are then illustrated followed by a brief discussion on the measured system performance. The paper ends with conclusions and recommendations for the development of CO2 heat pump water heating technology suitable for the U.S. market.

  10. The Advantages of Sealless Pumps in Heat Transfer Fluid Services 

    E-Print Network [OSTI]

    Smith, M. D.

    1999-01-01T23:59:59.000Z

    in undesirable ways. Sealless pumps are well suited to HTF applications, eliminating many of the issues which challenge mechanical seals. In addition, one type of sealless pump, the canned motor pump, raises the thermal efficiency of HTF systems. Waste heat from...

  11. Residential heating oil prices virtually unchanged

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheating

  12. Residential heating oil prices virtually unchanged

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreasesheatingheating oil prices

  13. Clark County REMC- Clark County REMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Clark County REMC provides incentives for residential members to upgrade to more efficient household equipment. Rebates are available for air-source heat pumps, geothermal heat pumps, central air...

  14. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    SciTech Connect (OSTI)

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

    2012-07-01T23:59:59.000Z

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

  15. DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas for the market- place of the 1980's. 1 7//AA -'6 1 #12;DEVELOPMENT OF THE GENERAL ELECTRIC STIRLING ENGINE GAS Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO

  16. Overcoming Barriers to Ground Source Heat Pumps in California

    E-Print Network [OSTI]

    by consumers, industry and, government and high first costs. Compared to other states, California also has heat pump's constant lowlevel usage of electricity. · Integrate ground source heat pumps formally. It would increase energy efficiency of buildings, dramatically reduce fossil fuel consumption, reduce

  17. Corrosion protection of steel in ammonia/water heat pumps

    DOE Patents [OSTI]

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14T23:59:59.000Z

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  18. Working on new gas turbine cycle for heat pump drive

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor DO NOT 16 0 REMOVE 16 Small recuperated gas turbine engine, design rated at 13 hp and 27% efficiency of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

  19. Ground Source Integrated Heat Pump (GS-IHP) Development

    SciTech Connect (OSTI)

    Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

    2013-05-24T23:59:59.000Z

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

  20. INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND

    E-Print Network [OSTI]

    J. Stene

    designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

  1. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect (OSTI)

    Olszewski, M.; Zaltash, A.

    1995-03-01T23:59:59.000Z

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  2. Solar Assisted Heat Pump Studies: Heat Pump Hardware and Experiments, Simulations, Earth Coupling Contracts and Supporting Contracts

    SciTech Connect (OSTI)

    Kush, E. A.

    1980-01-01T23:59:59.000Z

    The status of the heat pump hardware development contracts, the results to date of the BNL in-house heat pumps experiments, the progress of the contractural effort in earth coupling and the activities of various supporting contracts are summarized. (MHR)

  3. IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SOURCE HEAT PUMP WATER HEATER Farouk Fardoun, Associate Professor, Department of Industrial Engineering of an air source heat pump water heater (ASHPWH). The mathematical model consists of submodels of the basic countries such as Lebanon, electric water heaters are often used to generate hot water. Electric water

  4. WARMWASSER ERNEUERBARE ENERGIEN KLIMA RAUMHEIZUNG Adsorption Heat-Pumps for domestic heating

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    1 #12;WARMWASSER ERNEUERBARE ENERGIEN KLIMA RAUMHEIZUNG Adsorption Heat-Pumps for domestic heating J. Üpping1, E. Wagner1, D. Brühling1, K. Schiefelbein1, I. Daßler2, R. Hermann2, W. Mittelbach2 Heat module Gas adsorption heat pump #12;5 Zeolite ­ a natural mineral [1] von www.vaillant.de [2] www

  5. Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling 

    E-Print Network [OSTI]

    Yu, G.; Chen, P.; Dalenback, J.

    2006-01-01T23:59:59.000Z

    For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating...

  6. Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling

    E-Print Network [OSTI]

    Yu, G.; Chen, P.; Dalenback, J.

    2006-01-01T23:59:59.000Z

    For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating...

  7. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01T23:59:59.000Z

    Star Residential Water Heaters: Final criteria analysis.2004. Heat pump water heater technology: Experiences ofmarket research on solar water heaters. National Renewable

  8. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    2004). Heat pump water heater technology: Experiences ofStar Residential Water Heaters: Final criteria analysis.market research on solar water heaters. National Renewable

  9. Economics of residential gas furnaces and water heaters in US new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2010-01-01T23:59:59.000Z

    al. (2004). Heat pump water heater technology: Experiencesstar residential water heaters: Final criteria analysis.market research on solar water heaters. National Renew- able

  10. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    E-Print Network [OSTI]

    Meyers, Steve

    2011-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Do Heat Pump Clothes Dryers Make Senseof California. Do Heat Pump Clothes Dryers Make Sense forCalifornia ABSTRACT Heat pump clothes dryers (HPCDs) can be

  11. "Elevated heat pump" hypothesis for the aerosolmonsoon hydroclimate link: "Grounded" in observations?

    E-Print Network [OSTI]

    Nigam, Sumant

    "Elevated heat pump" hypothesis for the aerosolmonsoon hydroclimate link: "Grounded April 2010; published 18 August 2010. [1] The viability of the elevated heat pump hypothesis, S., and M. Bollasina (2010), "Elevated heat pump" hypothesis for the aerosolmonsoon hydroclimate

  12. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    E-Print Network [OSTI]

    Meyers, Steve

    2011-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Do Heat Pump Clothes Dryers Make SenseUniversity of California. Do Heat Pump Clothes Dryers MakeCalifornia ABSTRACT Heat pump clothes dryers (HPCDs) can be

  13. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,Performance of ground source heat pump system in a near-zero

  14. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01T23:59:59.000Z

    for ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: Afor ground-source heat pumps: A literature review,

  15. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    multiple water-to-air heat pump units, which are connectedeach of the water-to-air heat pump units can run in eitheras other types of air source heat pumps, VRF systems need

  16. Methanol-based heat pump for solar heating, cooling, and storage. Phase III. Final report

    SciTech Connect (OSTI)

    Offenhartz, P O'D; Rye, T V; Malsberger, R E; Schwartz, D

    1981-03-01T23:59:59.000Z

    The reaction of CH/sub 3/OH vapor with solid (pellet) CaCl/sub 2/ to form the solid phase compound CaCll/sub 2/ . 2CH/sub 3/OH can be used as the basis of a combined solar heat pump/thermal energy storage system. Such a system is capable of storing heat indefinitely at ambient temperature, and can be used for space and domestic hot water heating, and for air conditioning with forced air (dry) heat rejection. It combines all features required of a residential or commercial space conditioning system except for solar collection. A detailed thermal analysis shows that the coefficient of performance for heating is greater than 1.5, and for cooling, greater than 0.5. This has been confirmed by direct experimental measurement on an engineering development test unit (EDTU). The experimental rate of CH/sub 3/OH absorption is a strong function of the absorber-evaporator temperature difference. The minimum practical hourly rate, 0.10 moles CH/sub 3/OH per mole CaCl/sub 2/, was observed with the salt-bed heat transfer fluid at 40/sup 0/C and the CH/sub 3/OH evaporator at -15/sup 0/C. a detailed performance and economic analysis was carried out for a system operated in Washington, DC. With 25 square meters of evacuated tube solar collectors, the CaCl/sub 2/-CH/sub 3/OH chemical heat pump should be capable of meeting over 90% of the cooling load, 80% of the heating load, and 70% of the domestic hot water load with nonpurchased energy in a typical well-insulated single family residence, thus saving about $600 per year. In small-scale production, the installed cost of the system, including solar collectors and backup, is estimated to be about $10,000 greater than a conventional heating and cooling system, and a much lower cost should be possible in the longer term.

  17. Laclede Gas Company- Residential High Efficiency Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

  18. An update of free-piston Stirling engine heat pump development

    SciTech Connect (OSTI)

    Ackermann, R.A.; Clinch, J.M.; Privon, G.T.

    1986-01-01T23:59:59.000Z

    A Free-Piston Stirling Engine Heat Pump (FPSE/HP) for residential applications has been under development for the past five years. The system consists of a natural gas combustor, free-piston Stirling engine, and a variable-stroke resonant piston refrigerant compressor. The compressor is linked to the engine via a unique hydraulic transmission that provides for both efficient power transfer and hermetic sealing between the engine working fluid (helium) and the compressor refrigerant. This development effort has led to a breadboard heat pump power module, engine/transmission/compressor, that has undergone a comprehensive test program to evaluate the performance of an FPSE/HP and to judge its potential for further development. The results obtained from this testing are presented in this paper.

  19. The Oak Ridge National Laboratory automobile heat pump model: User`s guide

    SciTech Connect (OSTI)

    Kyle, D.M.

    1993-05-01T23:59:59.000Z

    A computer program has been developed to predict the steady-state performance of vapor compression automobile air conditioners and heat pumps. The code is based on the residential heat pump model developed at Oak Ridge National Laboratory. Most calculations are based on fundamental physical principles, in conjunction with generalized correlations available in the research literature. Automobile air conditioning components that can be specified as inputs to the program include open and hermetic compressors; finned tube condensers; finned tube and plate-fin style evaporators; thermal expansion valve, capillary tube and short tube expansion devices; refrigerant mass; evaporator pressure regulator; and all interconnecting tubing. The program can be used with a variety of refrigerants, including R134a. Methodologies are discussed for using the model as a tool for designing all new systems or, alternatively, as a tool for simulating a known system for a variety of operating conditions.

  20. Mathematical and experimental modelling of heat pump assisted microwave drying

    SciTech Connect (OSTI)

    Xiguo Jia (Univ. of Queensland (Australia))

    1993-01-01T23:59:59.000Z

    Drying is one of the most energy intensive operations in industry and agriculture. In the quest to increase drying efficiency and product quality, new technologies and methods are constantly being sought. Of these technologies, heat pump assisted drying and microwave drying have proved to be the most promising contenders. In order to achieve a better understanding and provide a computer design tool for heat pump assisted convective and microwave drying, both mathematical modelling and experimental investigations of heat pump assisted microwave dryers have been undertaken in this study. A mathematical model has been developed to predict the steady-state performance of a heat pump assisted continuous microwave dryer, with emphasis on the simulation of heat and mass transfer processes in the evaporator and drying chamber. The model is intend to serve as a design tool in the study of heat pump dryers. To achieve the optimum design, the influences of the key design and operating parameters, as well as the comparison of different drying configurations, have been examined. Based on investigation results, several methods have been proposed to improve the performance of heat pump assisted microwave drying, such as the use of a recuperator. To validate the above mathematical model, extensive drying tests using foam rubber as the test material have been conducted on a prototype heat pump assisted microwave dryer. The prototype heat pump input power was 5 kW with a maximum microwave input power of 10 kW. The experimental performance data confirmed the veracity of the simulation model. The experimental results on drying test materials indicate that with careful design heat pump assisted microwave drying is comparable to convective drying in energy consumption while with a much higher drying speed.

  1. Second generation ground coupled solar assisted heat pump systems. Six month progress report

    SciTech Connect (OSTI)

    Rhodes, G W; Backlund, J C; Helm, J M

    1981-01-01T23:59:59.000Z

    Progress is reported on an investigation of the technical and commercial viability of a novel ground coupled, solar assisted heat pump system for residential space heating and cooling applications. Specific areas of study are solar collector/heat rejector performance, flat plate earth heat exchanger performance, system performance simulations, and commercialization and marketing analysis. Collector/rejector performance, determined by various thermal experiments, is discussed. The design and construction of an experimental site to study ground coupling is discussed. Theoretical analysis is also presented. The performance of the GCSAHP system and conventional alternatives, as determined by simple computer models, is presented and discussed. Finally, the commercial viability of this unique space conditioning system is examined.

  2. Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump

    E-Print Network [OSTI]

    Cong, X.; Liu, Y.; Yang, W.

    2006-01-01T23:59:59.000Z

    The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related...

  3. Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump 

    E-Print Network [OSTI]

    Cong, X.; Liu, Y.; Yang, W.

    2006-01-01T23:59:59.000Z

    The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related...

  4. Performance Evaluation of a Retrofit Industrial Heat Pump

    E-Print Network [OSTI]

    Wagner, J.R.

    the choice of power generation and heat pumping should be employed. The simplistic answer to only pump heat across the pinch will not provide sufficient guidance. The purpose of this paper is to provide a simple but accurate analysis to any process... that will indicate where power should be made through cogeneration and even prime power use as well as where heat pumps should be employed. Actual case studies are provided to illustrate the analytical framework and actual results for a small refinery, chemical...

  5. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    SciTech Connect (OSTI)

    Armitage, D.M.; Bacon, D.J.; Massey-Norton, J.T.; Miller, J.D.

    1980-11-12T23:59:59.000Z

    Groundwater is attractive as a potential low-temperature energy source in residential space-conditioning applications. When used in conjuncton with a heat pump, ground water can serve as both a heat source (for heating) and a heat sink (for cooling). Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground-water quality is considered as it affects the performance and life-expectancy of the water-side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface (usually via injection wells) is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and Federal levels. Although Federal regulations currently exist, the agencies are not equipped to regulate individual, domestic installations. Computer smulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life-cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  6. The Design of Ground-Coupled Heat Pump Systems 

    E-Print Network [OSTI]

    Parker, J. D.

    1985-01-01T23:59:59.000Z

    Ground-coupled heat pumps are being installed in increasing numbers due to proven performance and economy. The overall thermal resistance between the ground coupling fluid and a given type of surrounding soil is affected by pipe material, wall...

  7. A R&D Program for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Hayes, A. J.

    1985-01-01T23:59:59.000Z

    The overall goal of the DOE Industrial Heat Pump Program is to foster research and development which will allow more efficient and economical recovery of waste energy in industry. Specifically, the program includes the identification of appropriate...

  8. Industrial Process Heat Pumps--Some Unconventional Wisdom 

    E-Print Network [OSTI]

    Karp, A.

    1987-01-01T23:59:59.000Z

    Recent research on the cost-effective use of industrial process heat pumps challenges some popularly held perceptions about the appropriate use of this technology. Also challenged are some common approaches to identifying technically sound...

  9. Combined permeable pavement and ground source heat pump systems 

    E-Print Network [OSTI]

    Grabowiecki, Piotr

    2010-01-01T23:59:59.000Z

    The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

  10. Blue Ridge Electric Cooperative- Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Blue Ridge Electric Cooperative (BREC) offers low interest loans to help members finance the purchase of energy efficient heat pumps. Loans under $1,500 can be financed for up to 42 months, and...

  11. Advanced Mechanical Heat Pump Technologies for Industrial Applications

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    , advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

  12. The Design of Ground-Coupled Heat Pump Systems

    E-Print Network [OSTI]

    Parker, J. D.

    1985-01-01T23:59:59.000Z

    Ground-coupled heat pumps are being installed in increasing numbers due to proven performance and economy. The overall thermal resistance between the ground coupling fluid and a given type of surrounding soil is affected by pipe material, wall...

  13. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and...

  14. A R&D Program for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Hayes, A. J.

    The overall goal of the DOE Industrial Heat Pump Program is to foster research and development which will allow more efficient and economical recovery of waste energy in industry. Specifically, the program includes the identification of appropriate...

  15. Going Ductless with Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    conditioners less and less. To cut costs and energy consumption, we had a ductless heat pump installed in our bedroom. We liked it so much that we had an identical unit...

  16. Comparative Performance of Heat Pumps and R&D Requirements 

    E-Print Network [OSTI]

    Ally, M. R.

    1987-01-01T23:59:59.000Z

    in the U.S. are the Oak Ridge National Laboratory (ORNL) and the Idaho National Engineering Laboratory (INEL). This paper discusses the present state of heat pump technology and research opportunities in this field....

  17. Advanced Mechanical Heat Pump Technologies for Industrial Applications 

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    1985-01-01T23:59:59.000Z

    is currently being jointly explored by MTI, DOE, and the Electric Power Research Institute (EPRI). Marketing efforts are currently under way to place this hybrid heat pump in an industrial application. Companies who need help in determining whether...

  18. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    EIA) 2005 Residential Energy Consumption Survey (RECS) isEIA). 2009. Residential Energy Consumption Survey: 2005

  19. Butler Rural Electric Cooperative- Residential Rebate Program (Ohio)

    Broader source: Energy.gov [DOE]

    Butler Rural Electric Cooperative provides rebates for geothermal heat pumps, dual fuel heating systems, and water heaters. A $1,200 rebate is available to residential members that install a new...

  20. Heat transfer enhancement resulting from induction electrohydrodynamic pumping

    E-Print Network [OSTI]

    Margo, Bryan David

    1992-01-01T23:59:59.000Z

    HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1992 Major Subject: Mechanical Engineering HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Approved as to style and content by: Jamal Seyed- Yagoobi (Chair...

  1. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)

    1994-11-29T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  2. Lakeland Electric- Residential Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric offers a conservation program for residential customers to save energy in homes. Rebates are available for Heat Pumps, HVAC tune-ups, attic insulation upgrades, and Energy Star...

  3. Kirkwood Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kirkwood Electric offers rebates to its residential customers who install energy-efficient heat pumps and electric hot water heaters in their new and existing homes. Customers will be given a...

  4. The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction 

    E-Print Network [OSTI]

    Dai, X.; Song, S.

    2006-01-01T23:59:59.000Z

    Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed...

  5. The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction

    E-Print Network [OSTI]

    Dai, X.; Song, S.

    2006-01-01T23:59:59.000Z

    Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed...

  6. Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report

    SciTech Connect (OSTI)

    Moriarty, C.

    1996-05-01T23:59:59.000Z

    This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

  7. An experimental study of heating performance and seasonal modeling of vertical U-tube ground coupled heat pumps 

    E-Print Network [OSTI]

    Margo, Randal E.

    1992-01-01T23:59:59.000Z

    configurations of heat pumps: air source heat pumps (ASHP) and ground coupled heat pumps (GCHP). Air source heat pumps extract energy from the outdoor air in the heating mode and reject excess heat in the cooling mode. One significant drawback to ASHP... season. Ground coupled heat pumps use the ground as a heat source or heat sink through The format of this proposal follows that of the Transactions of the American Society of Heating, Refrigeration and Air-Conditioning Engineers. the use of a ground...

  8. The Earth-Coupled or Geothermal Heat Pump Air Conditioning System 

    E-Print Network [OSTI]

    Wagers, H. L.; Wagers, M. C.

    1985-01-01T23:59:59.000Z

    pump and the desuperheater as the latest developments in energy efficient air conditioning and water heating....

  9. Jason Demicoli 16 October 2013 1 EUROPEAN HEAT PUMP SUMMIT 2013

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Jason Demicoli 16° October 2013 1 #12;EUROPEAN HEAT PUMP SUMMIT 2013 Improved heat pump control with soft starters in heat pumps Reduction or elimination of light flickering Reduction in system Alarms can be shown on the heat pump display Low installation costs - Serial communication already

  10. THE IMPACT OF BUILDING ORIENTATION ON RESIDENTIAL HEATING AND COOLING

    E-Print Network [OSTI]

    Andersson, Brandt

    2014-01-01T23:59:59.000Z

    PASSIVE SOLAR RESIDENTIAL BUILDING* Introduction In order to provide a basis for thermal analyses examining the effects of design

  11. Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

  12. Two component absorption/phase separation chemical heat pump to provide temperature amplification to waste heat streams

    DOE Patents [OSTI]

    Scott, T.C.; Kaplan, S.I.

    1987-09-04T23:59:59.000Z

    A chemical heat pump that utilizes liquid/liquid phase separation rather than evaporation to separate two components in a heat of mixing chemical heat pump process. 3 figs.

  13. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    SciTech Connect (OSTI)

    Josh A. Salmond

    2009-08-07T23:59:59.000Z

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  14. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas 

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01T23:59:59.000Z

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  15. Thermodynamic analysis of the reverse Joule–Brayton cycle heat pump for domestic heating

    E-Print Network [OSTI]

    White, Alexander

    2009-03-20T23:59:59.000Z

    The paper presents an analysis of the effects of irreversibility on the performance of a reverse Joule–Brayton cycle heat pump for domestic heating applications. Both the simple and recuperated (regenerative) cycle are considered at a variety...

  16. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01T23:59:59.000Z

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  17. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    SciTech Connect (OSTI)

    Spitler, J.D.; Culling, J.R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30T23:59:59.000Z

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  18. An analysis of a reversed absorption heat pump for low temperature waste heat utilization

    E-Print Network [OSTI]

    Wade, Glenn William

    1979-01-01T23:59:59.000Z

    AN ANALYSIS OF A REVERSED ABSORPTION HEAT PUMP FOR LOW TEMPERATURE WASTE HEAT UTILIZATION A Thesis by GLENN WILLIAM WADE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1979 Major Subject: Mechanical Engineering AN ANALYSIS OF A REVERSED ABSORPTION HEAT PUMP FOR LOW TEMPERATURE WASTE HEAT UTILIZATION A Thesis by GLENN WILLIAM WADE Approved as to style and content by: Chai n of Committee...

  19. Water-to-Air Heat Pump Performance with Lakewater 

    E-Print Network [OSTI]

    Kavanaugh, S.; Pezent, M. C.

    1989-01-01T23:59:59.000Z

    The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

  20. Applications Tests of Commercial Heat Pump Water Heaters 

    E-Print Network [OSTI]

    Oshinski, J. N..; Abrams, D. W.

    1987-01-01T23:59:59.000Z

    Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

  1. Water-to-Air Heat Pump Performance with Lakewater

    E-Print Network [OSTI]

    Kavanaugh, S.; Pezent, M. C.

    1989-01-01T23:59:59.000Z

    The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

  2. Applications Tests of Commercial Heat Pump Water Heaters

    E-Print Network [OSTI]

    Oshinski, J. N..; Abrams, D. W.

    1987-01-01T23:59:59.000Z

    Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

  3. 1 CO2 Heat Pump System for Space Heating and Hot Water Heating in Low-Energy Houses and Passive

    E-Print Network [OSTI]

    J. Stene

    2008-01-01T23:59:59.000Z

    designed as a stand-alone system, i.e. a heat pump water heater in combination with a separate unit for

  4. Proposal for a novel chemical heat pump dryer

    SciTech Connect (OSTI)

    Ogura, Hironao; Mujumdar, A.S.

    2000-05-01T23:59:59.000Z

    A new chemical heat pump (CHP) system for ecofriendly effective utilization of thermal energy in drying is proposed from the viewpoints of energy saving and environmental impact. CHPs can store thermal energy in the form of chemical energy by an endothermic reaction and release it at various temperature levels for heat demands by exo/endothermic reactions. CHPs have potential for heat recovery and dehumidification in the drying process by heat storage and high/low temperature heat release. In this study, the authors estimate the potential of the CHP application to drying systems for industrial use. Some combined systems of CHPs and dryers are proposed as chemical heat pump dryers (CHPD). The potential for commercialization of CHPDs is discussed.

  5. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    SciTech Connect (OSTI)

    Dentz, J.; Podorson, D.; Varshney, K.

    2014-05-01T23:59:59.000Z

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  6. Stirling cycle engine and heat pump

    SciTech Connect (OSTI)

    Mitchell, M.P.

    1986-11-18T23:59:59.000Z

    A method is described of operating a hot gas engine comprising a cylinder having one end thereof connected to the other end thereof through at least two separate closed heat exchanger assemblies. Each comprises heated heat exchanger means and cooled heat exchanger means serially arranged, the hot end of each such closed heat exchanger assembly is attached to the same end of the cylinder. Each closed heat exchanger assembly is equipped with valve means at each end thereof, the cylinder accommodating a double-acting reciprocating piston means. The piston means cyclically displaces and is displaced by a volume of gas for each such closed heat exchanger assembly. The volumes of gas are alternately confined in and released from the closed heat exchanger assemblies by the valves.

  7. A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs 

    E-Print Network [OSTI]

    Do, S. L.; Haberl, J. S.

    2010-01-01T23:59:59.000Z

    Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over...

  8. Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC 

    E-Print Network [OSTI]

    Mu, W.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    With the implementation of the global sustainable development strategy, people pay more attention to renewable energy resources such as ground source heat pumps. The technology of ground source heat pump is widely applied to heat and cold...

  9. Industrial Heat Pumps: Appropriate Placement and Sizing Using the Grand Composite 

    E-Print Network [OSTI]

    Ranade, S. M.; Hindmarsh, E.; Boland, D.

    1986-01-01T23:59:59.000Z

    Correct thermodynamic placement of heat pumps is a necessary condition for optimality. The most sophisticated equipment designs can do very little to improve the cost-effectiveness of inappropriately placed heat pumps. The practice of designing heat...

  10. Heat pump water heater and method of making the same

    DOE Patents [OSTI]

    Mei, Viung C. (Oak Ridge, TN); Tomlinson, John J. (Knoxville, TN); Chen, Fang C. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

  11. Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in whichGCHP program was developed by a previous MS student to optimize the design of hybrid systems. The current design changes when actual yearly weather data are used and develop a means to increase the optimization

  12. Detecting sources of heat loss in residential buildings from infrared imaging

    E-Print Network [OSTI]

    Shao, Emily Chen

    2011-01-01T23:59:59.000Z

    Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

  13. FirstEnergy (West Penn Power)- Residential Solar Water Heating Program (Pennsylvania)

    Broader source: Energy.gov [DOE]

    West Penn Power, a First Energy utility, provides rebates to residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a rebate of up...

  14. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06T23:59:59.000Z

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  15. Residential Absorption Heat Pump Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric,RMPipeline FirstSpent NuclearHowResearchNobelPhoto credit:

  16. Residential Cold Climate Heat Pump with Variable-Speed Technology |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric,RMPipeline FirstSpent NuclearHowResearchNobelPhotoDepartment

  17. DOE Webinar … Residential Geothermal Heat Pump Retrofits (Presentation) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of Energy toDocumentedtoInterimDOEof

  18. Covered Product Category: Residential Geothermal Heat Pumps | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013DepartmentEnterpriseDepartment

  19. DOE Webinar … Residential Geothermal Heat Pump Retrofits (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | Department ofEnergyDepartment ofDOE

  20. Residential Cold Climate Heat Pump with Variable-Speed Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Geothermal Systems

  1. Duplex Stirling gas-fired heat pump. Phase 2. Breadboard demonstration. Final report, May 1981-November 1982

    SciTech Connect (OSTI)

    Gedeon, D.; Penswick, B.; Beale, W.

    1982-11-01T23:59:59.000Z

    This program represents the first attempt to design, fabricate, and test a breadboard gas-fired duplex Stirling heat pump in a heating only mode. The system was designed to obtain a COP of 1.5 at an ambient temperature of 17F and have an output sufficient for an average residential home. The design methodology, detailed system description and test results for sub components and the entire system are discussed. Technical problems encountered in the program, and recommendations for further efforts are detailed.

  2. Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Metzger, C.; Puttagunta, S.; Williamson, J.

    2013-11-01T23:59:59.000Z

    Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

  3. The Advantages of Sealless Pumps in Heat Transfer Fluid Services

    E-Print Network [OSTI]

    Smith, M. D.

    " ring around the outer magnet ring. Containment shell damage, from the inside, can occur due to problems with the process lubricated sleeve bearings but there is much more warning. Vibration and noise provide a warning, over a much longer period... of the issues which challenge mechanical seals. In addition, one type of sealless pump, the canned motor pump, raises the thermal efficiency of HTF systems. Waste heat from the drive motors of m'ost pumps is dissipated to the air. A shaft driven fan wastes...

  4. Walton EMC- Residential Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Walton Electric Membership Corporation (WEMC) is an electric cooperative that serves 100,000 customers in ten northeastern Georgia counties. WEMC provides a number of incentives to residential...

  5. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building 

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01T23:59:59.000Z

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  6. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01T23:59:59.000Z

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  7. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuickEnergyforDepartment ofEnergy Efficiency Tax

  8. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9,Award RecipientsActMission toResearch MentorsResearchDepartment

  9. Heat pump/refrigerator using liquid working fluid

    DOE Patents [OSTI]

    Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Solana Beach, CA); Knight, William R. (Corvallis, OR); Warkentin, Paul A. (San Diego, CA)

    1982-01-01T23:59:59.000Z

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  10. Enchancement of heat pipes with ion-drag pumps 

    E-Print Network [OSTI]

    Babin, Bruce Russell

    1991-01-01T23:59:59.000Z

    ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Submitted to the Office of Graduate Studies of Texas AE'M I. niversity in partial fulfillment of the requirements for the degree of MASTER OF SCIEiVCE August 1991... Malor Subject: Mechanical Engineering ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Approved as to style and content by G. P. Peterson (Charr of Committee) L. S. Fletcher (Member) . Hassan ( Member) W. L...

  11. Enchancement of heat pipes with ion-drag pumps

    E-Print Network [OSTI]

    Babin, Bruce Russell

    1991-01-01T23:59:59.000Z

    ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Submitted to the Office of Graduate Studies of Texas AE'M I. niversity in partial fulfillment of the requirements for the degree of MASTER OF SCIEiVCE August 1991... Malor Subject: Mechanical Engineering ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Approved as to style and content by G. P. Peterson (Charr of Committee) L. S. Fletcher (Member) . Hassan ( Member) W. L...

  12. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuickEnergyforDepartment ofEnergy Efficiency

  13. Degrees of freedom and optimal operation of simple heat pump cycles

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Degrees of freedom and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined as COPh = Qh

  14. Control and optimal operation of simple heat pump cycles Jrgen B. Jensen and Sigurd Skogestad

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control and optimal operation of simple heat pump cycles Jørgen B. Jensen and Sigurd Skogestad cycle. Keywords: Operation, heat pump cycle, cyclic process, charge, self-optimizing control 1. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (re- frigerator, A

  15. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    SciTech Connect (OSTI)

    Liu, Xiaobing [Oak Ridge National Lab] [Oak Ridge National Lab

    2014-06-01T23:59:59.000Z

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  16. Application and Technology Requirements for Heat Pumps at the Process Industries 

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    1987-01-01T23:59:59.000Z

    There are basically three categories of equipment used to manage heat energy flows in an industrial process. First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat...

  17. Design optimization of conventional heat pumps: application to steady-state heating efficiency

    SciTech Connect (OSTI)

    Rice, C.K.; Fischer, S.K.; Ellison, R.D.; Jackson, W.L.

    1981-01-01T23:59:59.000Z

    A physically-based heat pump model was connected to an optimiztion program to form a computer code for use in the design of high-efficiency heat pumps. The method used allows for the simultaneous optimization of selected design variables, taking proper account of their interactions, while constraining other parameters to chosen limits or fixed values. For optimiztion of the steady-state heating efficiency of conventional heat pumps, ten variables were optimized while heating capacity was fixed; the results may, however, be scaled to other capacities. Calculations were made for a range of component efficiencies and heat exchanger sizes. The results predict substantial improvement in heating performance due to both optimal system configurations and the use of improved components. Sensitivity analyses show that there is considerable latitude for deviating from the optimum design to make use of available component sizes and for accomodating the compromises needed for good cooling performance.

  18. Field Performance of Heat Pump Water Heaters in the Northeast, Massachusetts and Rhode Island (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring, A.O. Smith Voltex, and Stiebel Eltron Accelera 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  19. Dawdon Mine Water Heat Pump Trial

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;System re-built Replacement heat exchanger Y-strainer filter installed Flow meter installed ­ strainer filter had to be cleared every couple of days (see photo) System finally failed again in April

  20. Heat Pump Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'i EstablishesChillerEastHomes &Pump