Powered by Deep Web Technologies
Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

2

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Method for Measuring the Energy Consumption of Furnaces andcalculating the energy consumption of two-stage furnaces.residential gas furnace energy consumption in the DOE test

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

3

Measurement of airflow in residential furnaces  

E-Print Network (OSTI)

Barometric Pressure Fan Motor Volts Fan Motor Amps Fan MotorBarometric Pressure Fan Motor Volts Fan Motor Amps Fan MotorBarometric Pressure Fan Motor Volts Fan Motor Amps Fan Motor

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-01T23:59:59.000Z

4

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

5

Characteristics of Residential Housing Units by Ceiling Fans, 2001  

U.S. Energy Information Administration (EIA)

A reporting of the number of housing units using ceiling fans in U.S. households as reported in the 2001 Residential Energy Consumption Survey

6

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

7

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

8

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

9

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

10

Measurement of airflow in residential furnaces  

E-Print Network (OSTI)

cut out of a piece of plywood that is attached to the inlet.the size of the furnace outlet cut in the plywood. ESLtaped the furnace to the plywood and strapped it in place.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-01T23:59:59.000Z

11

Laboratory Evaluation of Residential Furnace Blower Performance  

E-Print Network (OSTI)

showing different blade design and fan to housing clearancesfan efficiencies are on the order of 15%, but poor cabinet and duct design

Walker, Iain S.; Lutz, Jim D.

2005-01-01T23:59:59.000Z

12

Measurement of airflow in residential furnaces  

SciTech Connect

In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-24T23:59:59.000Z

13

BPM Motors in Residential Gas Furnaces: What are theSavings?  

Science Conference Proceedings (OSTI)

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

14

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Furnaces Gas Furnaces Covered Product Category: Residential Gas Furnaces October 7, 2013 - 10:39am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

15

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Eligibility Multi-Family Residential...

16

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

is standard in HVAC design and fan selection books 6 . Theof modulating design options. The cooling fan curve passesfan curve and the duct system curve. We calculated the furnace fuel consumption for each design

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

17

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

SciTech Connect

Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.

Lekov, Alex; Franco, Victor; Lutz, James

2006-05-12T23:59:59.000Z

18

Laboratory Evaluation of Residential Furnace BlowerPerformance  

SciTech Connect

A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

Walker, Iain S.; Lutz, Jim D.

2005-09-01T23:59:59.000Z

19

The effects of improved residential furnace filtration on airborne particles  

SciTech Connect

Forced air furnaces with distributed ducting systems have always had an air filter, but traditionally the filter quality was only adequate to protect the furnace fan and heat exchanger from debris. In the past several years, there has been an increasing number of more effective particulate filters that are being marketed to reduce airborne particulate or dust. These include upgraded panel filters, passive electrostatic, active electrostatic, and HEPA or near-HEPA variants. Consumers are bewildered by the lack of standardized and comprehensible performance results and need better advice on whether it would be useful for them to upgrade their current furnace filter. In order to help them make these decisions, the whole range of available furnace filters were tested in six occupied houses. The filter efficiency was determined by particulate measurement in the ducting system before and after the filter. Indoor particulates were measured in a bedroom and living room, and outdoor levels were monitored simultaneously. Testing encompassed several weeks in each house, and the results are available in the whole range of particle sizes. The project also looked at the air-cleaning effectiveness of a stand-alone air cleaner and at the ozone production of electrostatic precipitators installed in 20 houses. Test results will be helpful in specifying suitable filtration for houses.

Fugler, D.; Bowser, D.; Kwan, W.

2000-07-01T23:59:59.000Z

20

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

SciTech Connect

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

Brand, L.

2012-03-01T23:59:59.000Z

22

BPM Motors in Residential Gas Furnaces: What are the Savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity...

23

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this...

24

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Air-Handler Efficiency. ASHRAE Transactions, V. 110, Pt.1,Air Heating System Performance. ASHRAE Transactions, V. 104,Furnace Air Handlers Save? , ASHRAE Transactions, V. 110,

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

25

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

26

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

DOE and 2006 ASHRAE Test Procedures Furnace Controls Household Heating Requirementsprocedure (DOE 2004; Habart 2005) Heating Requirements areIn the DOE test procedure, the heating requirements of the

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

27

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

28

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

29

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieving the Best Installed Performance from High- Efficiency Residential Gas Furnaces Larry Brand Partnership for Advanced Residential Retrofit (PARR) March 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade

30

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

31

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

32

Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

24 24 Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. Homes James Lutz, Camilla Dunham-Whitehead, Alex Lekov, and James McMahon Energy Analysis Department Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 February 2004 This work was supported by the Office of Building Technologies and Community Systems of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. ABSTRACT In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an

33

Integrated emissions control system for residential CWS furnace. Final report, September 20, 1989--March 20, 1993  

SciTech Connect

One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen is developing a novel, integrated control system to control NO{sub x}SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. Final cleanup of any fine particulates exiting the reactor including respirable-sized particulates, is completed with the use of high efficiency bag filters. Under a previous contract with PETC (Contract No. DE-AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor to control NO{sub x}emission. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emission.

Breault, R.W.; McLarnon, C.

1993-03-01T23:59:59.000Z

34

Evaluation of ASD Systems for Electric Arc Furnace and Argon Oxygen Decarburization Refiner Baghouse Fans  

Science Conference Proceedings (OSTI)

An adjustable speed drive (ASD) offers opportunities to operate dust collection fans in a more energy efficient manner. This report focuses on the system requirements and provides a method for successfully applying ASDs to dust extraction baghouse systems in a steel melting and refining application in order to realize full energy savings and operational improvements.

1998-01-23T23:59:59.000Z

35

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

Supply Fan Motor Median Mean LCC Savings Ranges By DesignSupply Fan Motor Median Mean LCC Savings Ranges By DesignSupply Fan Motor Median Mean LCC Savings Ranges By Design

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

36

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network (OSTI)

seds.html. USDOE. 2009. Residential Energy ConsumptionUSEPA) 2008. Energy Star Residential Water Heaters: FinalExperiences of residential consumers and utilities. Oak

Lekov, Alex

2011-01-01T23:59:59.000Z

37

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Caulking/Weather Stripping: $200 Ceiling/Foundation/Wall Insulation: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Boilers: $150 - $400 Furnaces: $250 - $400 Efficient Fan Motor: $50 Programmable Thermostats: $25 Furnace or Boiler Clean and Tune: $30

38

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

1 FURNACE AND BOILER TECHNOLOGY19 Furnace and Boiler Lifetimes Used in the LCC Analysis (PBP RESULTS FOR GAS BOILERS USING ALTERNATIVE INSTALLATION

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

39

Coldwater Board of Public Utilities - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coldwater Board of Public Utilities - Residential Energy Efficiency Coldwater Board of Public Utilities - Residential Energy Efficiency Rebate Program Coldwater Board of Public Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Cooling Manufacturing Water Heating Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Refrigerator/Freezer Recycling: $50 Refrigerator: $50 Clothes Washer: $50 Ceiling Fans: $15 Dehumidifiers: $25 Heat Pump Water Heaters: $250 Furnace Fan ECM Motor: $100 CFL Lighting: In-store discounts at participating stores Provider Coldwater Board of Public Utilities The Coldwater Board of Public Utilities (CBPU), in conjunction with American Municipal Power's "Efficiency Smart" program, offers incentives

40

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

C-1 Residential Electricity Price Forecast (AEOC.1.2 Residential Electricity Price Forecast (AEO 2003) AEOdoes not require electricity price trends and discount

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

42

title Potential Global Benefits of Improved Ceiling Fan Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fan Energy Efficiency year month keywords bottom up Ceiling fan Celing Fans efficiency energy efficiency Financial incentives Market Transformation residential Standards and...

43

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

gy.gov/buildings/appliance_standards/residential/water_Efficiency in Domestic Appliances and Lighting (EEDAL 06).http://www1.eere.energy.gov/ buildings/appliance_standards/

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

44

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

equipment = furnace Heating fuel = oil Home type = single orequipment = boiler Heating fuel = oil Home type = single orHOME HEATING FUEL CON 3 NATURAL GAS FROM UNDERGROUND PIPES = 1 BOTTLED GAS (LPG OR PROPANE) = 2 FUEL OIL

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

45

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

of separate costs for natural gas or oil, and electricity.receives oil-fired boilers INPUTS First Cost Inputs The flowfurnaces, and oil-fired furnaces, we scaled the cost for

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

46

Chapter 5, Residential Furnaces and Boilers Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Residential 5: Residential Furnaces and Boilers Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 5 - 1 Chapter 5 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol ....................................................................................... 3 3 Savings Calculations .............................................................................................................. 5 4 Measurement and Verification Plan ....................................................................................... 8

47

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

alternative furnaces used in each house required derivation of the heating and coolingalternative efficiency levels and design options to meet the same heating and coolingand cooling loads of each sample house are known, it is possible to estimate what the energy consumption of alternative (

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

48

American Municipal Power (Public Electric Utilities) - Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Funding Source American Municipal Power Start Date 01/2011 Expiration Date 12/31/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Ceiling Fan with Lights: $15 Dehumidifier: $25 Select Clothes Washer: $50 ENERGY STAR Refrigerator: $50 Refrigerator/Freezer Recycling: $50 Furnace Fan with ECM: $100 Heat Pump Water Heaters: $250 CFLs: up to 85% of cost Efficiency Smart (tm) provides energy efficiency incentives to the American

49

Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Hudson Gas and Electric (Electric) - Residential Energy Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency Rebate Program Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Manufacturing Appliances & Electronics Water Heating Maximum Rebate Air Sealing: $600 Program Info State New York Program Type Utility Rebate Program Rebate Amount Central AC: $400 - $600, depending on efficiency Air-source Heat Pumps: $400 - $600, depending on efficiency Electronically Commutated Motor (ECM) Furnace Fans: $200 Electric Heat Pump Water Heaters: $400 Programmable Thermostats: $25

50

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

SciTech Connect

In 2001, the U.S. Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered.

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers,Steve; McMahon, James

2004-01-20T23:59:59.000Z

51

Residential Sector Demand Module 1998, Model Documentation  

Reports and Publications (EIA)

This is the fourth edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System (NEMS). It reflects changes made to themodule over the past year for the Annual Energy Outlook 1998. Since last year, severalnew end-use services were added to the module, including: Clothes washers,dishwashers, furnace fans, color televisions, and personal computers. Also, as with allNEMS modules, the forecast horizon has been extended to the year 2020.

John H. Cymbalsky

1998-01-01T23:59:59.000Z

52

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Weatherization Home Weatherization Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Program Info Start Date 1/1/2011 Expiration Date 12/31/2012 State South Dakota Program Type Utility Rebate Program Rebate Amount Furnaces: $250-$400 Furnace Fan Motors: $50 Boilers: $150-$400 Water Heaters: $50-$100 Energy Audit: Free including water heater/pipe insulation Building Insulation: 70% or $750 Provider MidAmerican Energy Company MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of homes. Eligible customers are eligible for rebates on furnaces, furnace fan motors, boilers, water heaters, air conditioners, air-source heat pumps, geothermal heat pumps and insulation. Customers should see the equipment brochure for more rebate information and

53

Energy saving furnace controller  

Science Conference Proceedings (OSTI)

This patent describes a forced air heating system including a furnace controlled by a household thermostat. The furnace includes a burner, burning valve, heat exchanger, plenum and fan for circulating air through the heat exchanger and plenum. An auxiliary controller comprises: relay means connectable between the household thermostat and the furnace burner valve; and timing means for controlling the duty cycle of the furnace burner valve by opening and closing the relay. The timing means includes means for timing alternating first and second intervals, the first interval at least substantially equal to the length of time the furnace delays between a cell for heat from the household thermostat and the start of the furnace fan when the furnace is started from a cool state. The second interval corresponds to a percentage of the first interval.

Johnson, H.R.; Lombardi, S.E.

1987-05-26T23:59:59.000Z

54

Furnace Systems Technology Workshop  

Science Conference Proceedings (OSTI)

TMS Networking and Online Tools, X ... TMS Social Network and Site Tools .... furnace technology, fundamentals of fans and blowers, reduction of melt loss, refractory ... Sutton - Harbison-Walker Refractories; Jon Gillespie - Gillespie & Powers ...

55

Residential Forced Air System Cabinet Leakage and Blower Performance  

E-Print Network (OSTI)

CA.   CEC (2008b).  Residential Alternative Calculation Standard for Air Handlers in Residential Space Conditioning of Standards Options for Residential Air Handler Fans.   

Walker, Iain S.

2010-01-01T23:59:59.000Z

56

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

57

ConEd (Gas) - Residential Energy Efficiency Incentives Program...  

Open Energy Info (EERE)

Eligible Technologies Boilers, DuctAir sealing, Furnaces, Programmable Thermostats, Steam-system upgrades, Water Heaters, Boiler Reset Control, ECM Furnace Fan Motor Active...

58

Austin Utilities (Gas and Electric) - Residential Conserve and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for each EER point over requirement, plus 250 per desuperheater Natural Gas Rebates Boilers: 100 - 300 Electronic Ignition Hearth: 75 Furnaces: 100 - 200 Furnace Fan Motor:...

59

Residential Energy Efficiency Tax Credit (Federal) | Open Energy...  

Open Energy Info (EERE)

Central Air conditioners, Doors, Furnaces, Heat pumps, Roofs, Water Heaters, Windows, Biomass, Circulating fans used in a qualifying furnace, Stoves that use qualified...

60

Detroit Public Lighting Department - Residential Energy Wise...  

Open Energy Info (EERE)

Multi-Family Residential, Residential Eligible Technologies Ceiling Fan, Lighting, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Residential Energy Efficiency Rebates (Offered by 11 Utilities) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Construction Heating Heat Pumps Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Ceiling Fan: $25 Clothes Washer: $50 Decorative Light String: $3.50/string (6 string limit) Dehumidifier: $10 Dishwasher: $25 Refrigerator: $50 Room A/C: $15 Central A/C: $100 Furnace with ECM: $150 Air Handler with ECM: $150 Air-Source Heat Pump: $200 - $350 Geothermal Heat Pump: $200/ton Desuperheater: $250 Heat Pump Water Heaters: $300 Provider Missouri River Energy Services Bright Energy Solutions offers energy efficiency cash incentive programs to

62

List of Ceiling Fan Incentives | Open Energy Information  

Open Energy Info (EERE)

Fan Incentives Fan Incentives Jump to: navigation, search The following contains the list of 99 Ceiling Fan Incentives. CSV (rows 1 - 99) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Residential Building Insulation Ceiling Fan Central Air conditioners Custom/Others pending approval Duct/Air sealing Heat pumps Lighting Motors Programmable Thermostats Windows Yes AEP Ohio (Gas) - Residential Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Residential Building Insulation Ceiling Fan Central Air conditioners Custom/Others pending approval Dehumidifiers Duct/Air sealing Heat pumps Lighting Motors Programmable Thermostats

63

Rochester Public Utilities - Residential Conserve and Save Rebate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rochester Public Utilities - Residential Conserve and Save Rebate Rochester Public Utilities - Residential Conserve and Save Rebate Rochester Public Utilities - Residential Conserve and Save Rebate < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Dehumidifier: $65 Custom measures: contact RPU for consultation Dishwashers: $25 Refrigerators/Freezers: $25, plus $15 bonus if properly recycled Room Air Conditioners: $25, plus $15 bonus if properly recycled Compact Fluorescent Light Bulbs: 50% of cost CFL Light Fixtures: $15 LED Bulbs: $10 - $15 LED Fixtures: $20 Central AC/Ductless Mini Split( Furnace Fan Motors: $50

64

Alexandria Light and Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alexandria Light and Power - Residential Energy Efficiency Rebate Alexandria Light and Power - Residential Energy Efficiency Rebate Program Alexandria Light and Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 - $75 Refrigerator: $50, with recycling of old, working model Dishwasher: $25 Dehumidifier: $10 Room Air Conditioner: $15 Heat Pump Water Heater: $300 Central A/C: $200 Mini-Split Ductless A/C: $100 ECM in New Furnace/Air Handler/Fan Coil: $150 Air-Source Heat Pump: $250 - $350 Programmable Thermostat: $25 Geothermal Heat Pump: $200/ton

65

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliances & Electronics Appliances & Electronics Water Heating Program Info Expiration Date 12/31/2013 State Iowa Program Type Utility Rebate Program Rebate Amount Natural Gas Furnace: $250 - $400 Efficient Furnace Fan Motor: $50 Natural Gas Boiler: $150 - $400 Natural Gas Water Heater: $50 - $300 Programmable thermostat: $20 Provider MidAmerican Energy MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above provides specific rebate amounts, efficiency requirements and further details. After installing qualifying equipment, customers should submit a completed Equipment Rebate Application and a detailed invoice to MidAmerican. Heating and cooling

66

Furnace | OpenEI  

Open Energy Info (EERE)

Furnace Furnace Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

67

Barron Electric Cooperative - Residential Energy Resource Conservation...  

Open Energy Info (EERE)

Weather-stripping, Central Air conditioners, Furnaces, Heat pumps, Water Heaters, Windows, Ventilation Fans, LED Lighting, Heat Pump Water Heaters Active Incentive Yes...

68

Rui Fan  

NLE Websites -- All DOE Office Websites (Extended Search)

Rui Fan Rui Fan 1 Cyclotron Road MS 90-4000 Berkeley CA 94720 Office Location: 90-2087 (510) 486-6305 RFan@lbl.gov Vision & Mission Organization Awards Fellowship Staff Services...

69

Table 1. Household Characteristics by Ceiling Fans, 2001  

U.S. Energy Information Administration (EIA)

A reporting of the number of housing units using ceiling fans in U.S. households as reported in the 2001 Residential Energy Consumption Survey

70

Electricity and Natural Gas Efficiency Improvements for Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S....

71

Anaheim Public Utilities - Residential Home Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Home Efficiency Rebate Residential Home Efficiency Rebate Program Anaheim Public Utilities - Residential Home Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Air Duct Repair: $300 Ceiling Fan: 3 fans Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Refrigerator Recycling: $50 Dishwasher: $50 Room A/C: $50 Central A/C: $100/ton High Performance windows: $1/sq ft Air Duct Repair: 50% of repair cost Ceiling Fan: $20 Whole House Fan: $100

72

Fan Dai  

NLE Websites -- All DOE Office Websites (Extended Search)

Fan Dai Fan Dai China Energy Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2002 Berkeley CA 94720 Office Location: 90-2117S (510) 486-4000 FDai@lbl.gov Fan Dai is a Ph.D. Candidate in Environmental Policy at the College of Environmental Science and Forestry, State University of New York, and a LL.M. Candidate at Berkeley School of Law, University of California. Fan's research during her stay in LBNL's China Energy Group focuses on Energy Efficiency Governance, U.S.-China Clean Energy Partnership, the Carbon Cap-and-Trade Program in California and what China can learn from California's program. Prior to LBNL, she interned at the China National Center for Climate Change Strategy and International Cooperation (NCSC), China Youth Action Climate Network (CYCAN), and China State Forestry

73

FANS - Control  

Science Conference Proceedings (OSTI)

... If set to H+ and a magnet controller is connected, you are ... Typically motors 3, 4, 5, and 6 are fixed for FANS operation A fixed motor will not be ...

74

ZHAOSHENG FAN  

NLE Websites -- All DOE Office Websites (Extended Search)

ZHAOSHENG FAN Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 Phone: (630) 252-1566; email: zfan@anl.gov EDUCATION Ph.D., Soil Physics, 2007, North Dakota...

75

Residential Energy Efficiency Rebates (Offered by 16 Utilities) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Utilities) 6 Utilities) Residential Energy Efficiency Rebates (Offered by 16 Utilities) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Heat Pumps Commercial Lighting Lighting Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Ceiling Fan: $25 Clothes Washer: $50 Decorative Light String: $3.50/string (6 string limit) Dehumidifier: $10 Dishwasher: $25 Refrigerator: $50 Room A/C: $15 Central A/C: $100 Furnace with ECM: $150 Air Handler with ECM: $150 Air-Source Heat Pump: $200 - $350 Geothermal Heat Pump: $200/ton Heat Pump Water Heater: $300 Programmable Thermostat: $25 Weatherization: 75% of cost, up to $750 Provider

76

Missouri River Energy Services (23 Member Cooperatives) - Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri River Energy Services (23 Member Cooperatives) - Missouri River Energy Services (23 Member Cooperatives) - Residential Energy Efficiency Rebate Missouri River Energy Services (23 Member Cooperatives) - Residential Energy Efficiency Rebate < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Ceiling Fan: $25 Clothes Washer: $50 Decorative Light String: $3.50/string (6 string limit) Dehumidifier: $10 Dishwasher: $25 Refrigerator: $50 Room A/C: $15 Central A/C: $100 Furnace with ECM: $150 Air Handler with ECM: $150 Air-Source Heat Pump: $200 - $350 Geothermal Heat Pump: $200/ton Heat Pump Water Heater - $300

77

Ameren Illinois (Gas) - Residential Energy Efficiency Rebates...  

Open Energy Info (EERE)

upgrades and improvements. Incentives are currently available to residential homeowners for natural gas boiler, furnaces, insulation, certain ENERGY STAR appliances, and...

78

Museum Fan Downloads  

NLE Websites -- All DOE Office Websites (Extended Search)

Museum Fan Downloads Participate with us Participate Share your Stories Museum Fan Downloads invisible utility element Museum Fan Downloads Help the Bradbury Science Museum by...

79

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

80

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network (OSTI)

from residential natural gas appliances. CH 4 Furnace (2)ng/J) distribution from residential natural gas appliances.rates from unvented gas appliances," Environ. Intern. 12:

Traynor, G.W.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Optimization (Electric) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Ceiling Fans: 4 Smart Power Strip: 2 Pipe Wrap: 10 ln. ft. CFL Bulbs: 12 Refrigerator Recycling: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Bulbs: Varies by retailer Ceiling Fan: $15 CFL Fixture: $15 LED Fixture/Downlight Kit: $20 LED Light Bulbs: $10 Smart Power Strip: $20 Room Air Conditioners: $20

82

EVALUATION OF TRANSITIONS FOR TESTING AGRICULTURAL VENTILATION FANS WITH THE FAN ASSESSMENT NUMERATION SYSTEM (FANS).  

E-Print Network (OSTI)

??The Fan Assessment Numeration System (FANS) is an improved air velocity traverse method for measuring in situ fan performance. The FANS has been widely used,… (more)

Lopes, Igor Moreira

2012-01-01T23:59:59.000Z

83

Fan Mei | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Fan Mei Postdoctoral Research Associate Fan is currently working as a postdoctoral research associate with Jian Wang, investigating aerosol microphysical properties in three recent...

84

State-of-the-Art in Residential and Small Commercial Air HandlerPerformance  

SciTech Connect

Although furnaces, air conditioners, and heat pumps have become significantly more efficient over the last couple of decades, residential air handlers have typical efficiencies of only 10% to 15% due to poor electric motor and aerodynamic performance. These low efficiencies indicate that there is significant room for improvement of air handler fans. The other 85-90% of the electricity used by air handlers is manifested as heat. This extra heat reduces air conditioning cooling and dehumidification performance and effectively acts as fuel switching for fossil fueled furnaces. For electric furnaces, this heat substitutes directly for the electric resistance heating elements. For heat pumps, this heat substitutes for compressor-based high COP heating and effectively reduces the COP of the heat pump. Using a combination of field observations and engineering judgment they can assemble a list of the problems that lead to low air handler efficiency and potential solutions to these problems, as shown. None of the problems require exotic or complex solutions and there are no technological barriers to adopting them. Some of the solutions are simple equipment swaps (using better electric motors), others require changes to the way the components are built (tighter tolerances) and other relate to HVAC equipment design (not putting large fans in small cabinets).

Walker, Iain S.

2005-03-01T23:59:59.000Z

85

Philadelphia Gas Works - Residential and Small Business EnergySense...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programmable thermostats. All equipment must meet program...

86

New England Gas Company - Residential and Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Type Utility Rebate Program Rebate Amount Residential Furnace: 300 - 450 Boilers: 1000 - 1500 Combined High Efficiency BoilerWater Heater: 1,200 Heat Recovery...

87

Avista Utilities (Gas)- Oregon Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers a variety of equipment rebates to Oregon residential customers. Rebates are available for boilers, furnaces, insulation measures, windows and programmable thermostats. All...

88

Minnesota Energy Resources (Gas)- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Minnesota Energy Resources provides rebates to their residential customers for the purchase of energy efficient natural gas equipment and set-back thermostats. Rebates are available for furnaces,...

89

Alabama Gas Corporation- Residential Natural Gas Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment....

90

Residential Humidity Control Strategies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Humidity Control Strategies Residential Humidity Control Strategies Armin Rudd Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas 2 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control goals  Comfort, and Indoor Air Quality  Control indoor humidity year-around, just like we do temperature  Durability and customer satisfaction  Reduce builder risk and warranty/service costs 2 3 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control challenges 1. In humid cooling climates, there will always be times of the year when there is little sensible cooling load to create thermostat demand but humidity remains high * Cooling systems that modify fan speed and temperature set point based on humidity can help but are still limited

91

Tube furnace  

DOE Patents (OSTI)

A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

1990-01-01T23:59:59.000Z

92

Enameling Furnaces  

Science Conference Proceedings (OSTI)

Table 13 Cycles for firing ground-coated and cover-coated sheet steel parts in a continuous furnace...Architectural panels 16-22 805 1480 2-4 Home laundry equipment 18-22 805 1480 4-5 Water heater tanks 7-16 870 1600 8-12 Range equipment 18-24 805 1480 3-5 Sanitary ware 14-18 815 1500 4-6 Signs 16-22 805 1480 3-5 (a) Temperature varies with composition of frit. (b) Time in hot zone of furnace...

93

Furnace assembly  

DOE Patents (OSTI)

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

94

Residential Enhanced Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Enhanced Rewards Program Residential Enhanced Rewards Program Residential Enhanced Rewards Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Program Info Funding Source Focus on Energy Expiration Date 05/31/2013 State Wisconsin Program Type State Rebate Program Rebate Amount Natural Gas Furnace: $475 Furnace with ECM (natural gas, propane, or oil-fired): $850 Hot-Water Boiler ( Natural Gas Furnace with AC: $1,500 Provider Focus on Energy Focus on Energy offers incentives for income-qualifying customers for the purchase of high efficiency heating equipment. Owner-occupied single-family and multifamily residences of 3 units or less are eligible for the incentives. Applicants must be able to document a gross household income of

95

Gas-Fired Boilers and Furnaces | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of...

96

The Lillehammer Submarine Fan Complex.  

E-Print Network (OSTI)

??Abstract The Lillehammer Submarine Fan Complex is a mixed mud/sand rich turbidite fan system. The fan complex was deposited in the Neoproterozoic Hedmark rift basin… (more)

Skaten, Maren Kristin Møllerup

2006-01-01T23:59:59.000Z

97

Ceiling Fan | Open Energy Information  

Open Energy Info (EERE)

Ceiling Fan Jump to: navigation, search TODO: Add description List of Ceiling Fan Incentives Retrieved from "http:en.openei.orgwindex.php?titleCeilingFan&oldid267151"...

98

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

99

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

100

Hutchinson Utilities Commission - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hutchinson Utilities Commission - Residential Energy Efficiency Hutchinson Utilities Commission - Residential Energy Efficiency Program Hutchinson Utilities Commission - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate 500 Program Info Expiration Date program offered until expiration of funding State Minnesota Program Type Utility Rebate Program Rebate Amount Natural Gas Furnaces: $150-$250, depending on efficiency Natural Gas Furnace Tune-up: $25 ECM Motor: $75 Natural Gas Boilers: $200 Central Air Conditioners: $250 Central Air Conditioner Tune-up: $25 Tankless Gas Water Heaters: $150 Storage Gas Water Heaters: $50 Air Source Heat Pumps: $75/ton

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

102

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

Science Conference Proceedings (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

103

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We...

104

Nien-fan Zhang  

Science Conference Proceedings (OSTI)

Nien-fan Zhang. Technical Areas of Research and Consulting: Statistical process control Time series analysis and forecasting. Awards: ...

2012-07-16T23:59:59.000Z

105

Fan Energy Savings Decisions  

E-Print Network (OSTI)

Axial fans are used for thousands of industrial applications consuming millions of kilowatts daily. The decision that saves dollars is to either automatically change fan speed or change blade pitch to save up to 50 percent of consumed power over a fixed pitch, constant speed fan. A discussion of the merits of each type is presented with actual test results.

Monroe, R. C.

1985-05-01T23:59:59.000Z

106

Measurement of airflow in residential furnaces  

E-Print Network (OSTI)

to settle after a change in ESP. However, ESL found that,external static pressure” (ESP); for the purposes of thisairflow, regardless of the ESP drop. PSC motors used in

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-01T23:59:59.000Z

107

Laboratory Evaluation of Residential Furnace Blower Performance  

E-Print Network (OSTI)

a brushless permanent magnet (BPM) motor and a prototype BPMwas a brushless permanent magnet (BPM) motor. These motorsby permanent magnets, this type of motor is more efficient

Walker, Iain S.; Lutz, Jim D.

2005-01-01T23:59:59.000Z

108

Costs and benefits of energy efficiency improvements in ceiling fans  

SciTech Connect

Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

2013-10-15T23:59:59.000Z

109

Progress in Residential Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

The Cutting Edge: Progress in Residential Retrofit The Cutting Edge: Progress in Residential Retrofit A geographic representation of saturations of ceiling fans based on data from the RASSes. White areas indicate a lack of data for that region. Many utilities survey their customers to learn more about the buildings and the occupants in their service areas. These surveys-usually called "residential appliance saturation surveys," or RASSes-ask for the number and types of appliances present, the number of people living in the home, and sometimes personal information. The RASSes are also used to collect information about the presence of conservation measures such as wall and ceiling insulation, weatherstripping, multipane windows, and water flow restrictors. Building Energy Analysis Group researchers Alan Meier and Brian Pon gathered RASSes

110

City Utilities of Springfield - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Utilities of Springfield - Residential Energy Efficiency City Utilities of Springfield - Residential Energy Efficiency Rebate Program City Utilities of Springfield - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Heating Heat Pumps Appliances & Electronics Maximum Rebate Varies by equipment and type of residence Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: $250 - $800 Energy Star Home Rating: 50% of certification cost, up to $400 Programmable Thermostat: $15 Insulation Upgrade: 20% of cost up $300 Natural Gas Furnace: $400 Natural Gas Furnace Tune-Up: $30

111

Alabama Gas Corporation - Residential Natural Gas Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Furnace (Replacement): $200 Dryer (Replacement): $100 Natural Gas Range/Cooktop (Replacement): $100 Water Heaters (Replacement): $200 Tankless Water Heaters (Replacement): $200 Provider Alabama Gas Corporation Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment. All equipment

112

Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities (Gas) - Residential Energy Efficiency Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Furnaces: $400 Boilers: $600 Tankless Boiler/Water Heater Combined: $850 - $1050 Indirect Fired/Tankless Water Heaters: $250 - $450 Provider Norwich Public Utilities Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for natural gas furnaces, boilers,

113

Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Residential Energy Efficiency Oregon Residential Energy Efficiency Rebate Program Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Forced Air Furnaces and Boilers: $200 Programmable Thermostats: $50 Windows: $2.25/sq. ft. Insulation: 50% of cost Provider Avista Utilities Avista Utilities offers a variety of equipment rebates to Oregon residential customers. Rebates are available for boilers, furnaces, insulation measures, windows and programmable thermostats. All equipment must meet certain energy efficiency standards listed on the program web

114

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Programmable Thermostat: 1 per address Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Programmable Thermostat: $20 Natural Gas Water Heater: $50 - $100 Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient measures and natural gas equipment. New furnaces, water heaters and programmable thermostats are eligible for a rebate incentive if the

115

Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Energy (Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heating Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Gas Furnace: $300 or $400 Duct Sealing: $200 Tune-ups: $100 Installation Rebates: Contact BGE The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available for furnaces, HVAC system tune-ups, and insulation measures. All equipment and installation

116

Montana-Dakota Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Residential Energy Efficiency Rebate - Residential Energy Efficiency Rebate Program Montana-Dakota Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Appliances & Electronics Maximum Rebate Programmable Thermostat: 1 per address Program Info State Montana Program Type Utility Rebate Program Rebate Amount '''Gas''' Furnace: 150 Energy Star Programmable Thermostat: 20 '''Electric''' Air Conditioner Replacement: 175/ton Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient equipment for natural gas and electric customers. Natural gas customers are eligible for rebates on furnaces and programmable thermostats

117

Record of Communication Concerning Ceiling Fan and Ceiling Fan...  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document-Docket No. EERE-2012-BT-STD-0045 Record of Communication Concerning Ceiling Fan and...

118

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other (8) 0.0 4.4 4.4 6.7 11.1 4.4% Adjust to SEDS (9) 13.6 13.6 5.4% Total 56.1 13.3 15.2 29.0 0.0 166.8 251.8 100% Note(s): Source(s): 0.5 0.5 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.5 billion). 3) Fan energy use included. 4) Includes residential recreational water heating ($1.4 billion). 5) Includes refrigerators ($15.3 billion) and freezers ($4.4 billion). 6) Includes color televisions ($11.0

119

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

BPM Motors in Residential Gas Furnaces: What are the Savings? BPM Motors in Residential Gas Furnaces: What are the Savings? James Lutz, Victor Franco, Alex Lekov, and Gabrielle Wong-Parodi Lawrence Berkeley National Laboratory, Berkeley, California ABSTRACT Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized

120

Control of energy use in a furnace  

Science Conference Proceedings (OSTI)

This patent describes, in a residential furnace of the type which is responsive to a thermostat and has an electronic ignitor, and a circulating air blower that May be operated on a continuous basis, an improved process of controlling the thermostat, electrical ignitor and blower in an ignition sequence of the furnace. It comprises: upon receiving a call for heat from a thermostat, checking to determine if the circulating air blower is on; if the blower is on, turning it off; and only after the blower is turned off, turning on the ignitor to initiate the combustion process.

Ballard, G.W.; Dempsey, D.J.

1990-01-02T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

122

Residential Energy Efficiency Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Hawaii Program Type State Rebate Program Rebate Amount CFL Bulbs: Instant Rebates Heat Pump Water Heater: $200 Refrigerators: $50 Refrigerators (with Trade-in): $125 Clothes Washers: $50 Ceiling Fans: $40 Variable Refrigerant Flow Air Conditioners: $200 Central AC Maintenance: $50 Whole House Fans: $75 Whole House Energy Monitor: 50% of the purchase price up to $100 Provider Hawaii Energy Efficiency Program As part of the Energy Solutions programs, the Hawaii Energy Efficiency

123

Residential Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Performance: guidelines, analysis and measurements of window and skylight performance Windows in residential buildings consume approximately 2% of all the energy used...

124

EA-1892: Direct Final Rule Energy Conservation Standards for Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

92: Direct Final Rule Energy Conservation Standards for 92: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps Summary This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 27, 2011 EA-1892: Draft Environmental Assessment

125

INFLUENCE OF FAN OPERATION ON FAN ASSESSMENT NUMERATION SYSTEM (FANS) TEST RESULTS.  

E-Print Network (OSTI)

??The use of velocity traverses to measure in-situ air flow rate of ventilation fans can be subject to significant errors. The Fan Assessment Numeration System… (more)

Morello, Gabriela Munhoz

2011-01-01T23:59:59.000Z

126

Burbank Water and Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Burbank Water and Power - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Program Info State California Program Type Utility Rebate Program Rebate Amount Products purchased from a Burbank retailer are typically awarded higher rebates than those purchased outside Burbank. Inside Burbank: Ceiling Fans: $25 (maximum three) Clothes Washer: $50 Dishwasher: $35 Refrigerator/Freezer: $75 Room A/C: $35 Low E Windows/Doors: $2.00/sq ft

127

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

128

Silicon Valley Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program Silicon Valley Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Commercial Heating & Cooling Program Info State California Program Type Utility Rebate Program Rebate Amount Attic Insulation: $175 Ceiling Fan: $35 each Heat Pump Water Heater: up to $1,000 LED Bulbs: $15/bulb installed Pool Pump: $200 Refrigerator: $50 Refrigerator recycling: $35 Room AC: $25 Room AC Recycling: $25 Solar Attic Fan: $100 Whole House Fan: $200 Provider Silicon Valley Power Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

129

Furnaces and Energy  

Science Conference Proceedings (OSTI)

Cast Shop for Aluminum Production: Furnaces and Energy ... Computational Analysis of Thermal Process of a Regenerative Aluminum Melting Furnace: Jimin ... and the appearance of innovative and competing stirrer systems in the market.

130

Furnace Design and Operation  

Science Conference Proceedings (OSTI)

...S. Lampman, Energy-Efficient Heat-Treating Furnace Design and Operation, Heat Treating, Vol 4, ASM Handbook, ASM International,

131

Anode Baking Furnace Operation  

Science Conference Proceedings (OSTI)

The course is directed toward plant managers, anode area managers, process engineers, technical managers, and baking furnace ... ENERGY MANAGEMENT.

132

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

133

SourceGas - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program SourceGas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Hot Water Insulation/Infiltration Measures: minimum purchase of $40 Programmable Thermostats: 2 per account Insulation/Air Sealing: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $200 - $300 Boiler: $150 Proper Sizing of Boiler/Furnace: $50 Hot Water Heater (Tank): $50 Hot Water Heater (Tankless): $300 Programmable Thermostat: $25 Hot Water Insulation/Infiltration Measures: $25 Insulation/Air Sealing: 30% of cost

134

Fan Repair Guideline  

Science Conference Proceedings (OSTI)

The successful repair of a fan component is affected by a number of different factors. These include correctly assessing the root cause of failure, determining the best repair option, implementation of proper repair procedures, and compliance with applicable codes and standards. However, in many situations the proper solution is not clearly evident. The purpose of this document is to provide guidance in the area of induced draft / forced draft fan repair. Specifically, this document deals with the repair...

2002-08-15T23:59:59.000Z

135

Efficiency United (Gas) - Residential Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Construction Design & Remodeling Other Ventilation Manufacturing Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: 50% of the cost Windows: $150 Water Heaters/Clothes Washers: 1 Pipe Wrap: Limit of 10 linear ft. Faucet Aerators: 2 High Efficiency Shower Head: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Boiler: $200 Furnace: $100 - $200

136

Berkshire Gas - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Weatherization - Single Family: 75% of cost Weatherization - Multi-Family: 50% of cost Weatherization - Low-Income: 100% of cost Furnaces: $500 - $800 Boilers: $1,000 - $1,500 Combined Boiler/Water Heater: $1,200

137

Atmos Energy (Gas) - Residential Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Efficiency Program (Gas) - Residential Efficiency Program Atmos Energy (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Furnace lowest $250, $325, or $400 Boiler: $150 or $400 Condensing Water Heater: $300 Storage Water Heater: $75 Tankless Water Heater: $300 Provider Energy Federation Incorporated '''As of August 1, 2012, Iowa energy efficiency programs are offered by Liberty Utilities. ''' Atmos Energy provides rebates for residential natural gas heating equipment through their High Efficiency Rebate Program. When Atmos Receives the

138

Residential Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rewards Program Rewards Program Residential Rewards Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Appliances & Electronics Water Heating Program Info Funding Source Focus On Energy Program Expiration Date 12/31/2013 State Wisconsin Program Type State Rebate Program Rebate Amount Furnace (90% AFUE with ECM): $125 Furnace (95% AFUE with ECM): $275 Furnace (95% AFUE with ECM) and AC (16 SEER): $400 Air Source Heat Pump (16 SEER): $300 Natural gas space heating boiler (90% AFUE): $300 Natural gas space heating boiler (95% AFUE): $400 Indirect Water Heater (with high efficiency space heating boiler): $100 Tankless Water Heater (0.82 EF or higher): $100 Storage Water Heater (0.67 EF or higher): $50

139

Laclede Gas Company - Residential High Efficiency Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential High Efficiency Heating Rebate Residential High Efficiency Heating Rebate Program Laclede Gas Company - Residential High Efficiency Heating Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Heating System: 2 maximum Programmable Thermostats: 2 maximum Multi-Family Property Owners: 50 thermostat rebates, 50 furnace rebates over the life of the program Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Gas Furnace: $150 - $200 Gas Boiler: $150 Programmable Setback Thermostat: $25 Gas Water Heater: $50 - $200 Provider Laclede Gas Company Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential

140

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

Evaluation of the Cooling Fan Efficiency indexfor a desk fan anda computer fan Stefano Schiavon 1,2,* , M. Sc. PhD

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Smart Fan Modules And System  

DOE Patents (OSTI)

A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals. A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.

Cipolla, Thomas M. (Katonah, NY); Kaufman, Richard I. (Somers, NY); Mok, Lawrence S. (Brewster, NY)

2003-07-15T23:59:59.000Z

142

NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Maximum Rebate 30% of cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Refrigerator/freezer Recycling: $50 Furnaces: $50-$125 Boilers: $75-$100 Provider Nevada Energy - Northern '''As of November 30, 2011, furnace and boiler rebates have been suspended until further notice. View the program web site for additional details and contact information.''' NV Energy offers rebates for the installation of high efficiency stand-alone gas furnaces and gas boilers for residential customers in

143

Residential Energy Efficiency Rebates (Offered by 5 Utilities) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebates (Offered by 5 Utilities) Residential Energy Efficiency Rebates (Offered by 5 Utilities) Residential Energy Efficiency Rebates (Offered by 5 Utilities) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State North Dakota Program Type Utility Rebate Program Rebate Amount Ceiling Fan: $25 Clothes Washer: $50 Decorative Light Strings: $3.50/string Dehumidifier: $10 Dishwasher: $25 Refrigerator: $50 Room Air Conditioner: $15 Home Heating and Cooling: Varies Provider Missouri River Energy Services Bright Energy Solutions offers energy efficiency cash incentive programs to residential and business customers of municipal utilities that are members

144

Cedar Falls Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Appliance Recycling: 2 rebates per residential account, per appliance type annually Ceiling Fan Light Kits: $20 per light kit; 6 per account per year Central A/C: $400 Air Source Heat Pump: $600 Attic/Ceiling Insulation: $1,000 Air Sealing/Caulking/Weather Stripping: $200 CFL: 50% of cost, up to $5 (10 per customer per year)

145

Alliant Energy Interstate Power and Light (Electric) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Electric) - Residential Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: $100 - $200 Air Source Heat Pumps: $100 - $400 Geothermal Heat Pumps: $300/ton + $50/EER/ton Fan Motors: $50/unit Programmable Thermostats: $25 Tank Water Heater: $50

146

Gulf Power - Residential Energy Efficiency EarthCents Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Residential Energy Efficiency EarthCents Program Gulf Power - Residential Energy Efficiency EarthCents Program Gulf Power - Residential Energy Efficiency EarthCents Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Manufacturing Insulation Water Heating Windows, Doors, & Skylights Program Info State Florida Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Energy Select Programmable Thermostat and Time of Use Control: Free HVAC Maintenance: $215 Duct Repair and Air Sealing: $150 - $300 Fan Motor Retrofit: $150 Heat Pump: $100 - $1000; varies by size and efficiency

147

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7) 0.0 7.7 7.7 47.9 55.7 19.3% Total 66.0 11.5 17.5 29.6 0.0 193.0 288.6 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.8 billion). 3) Fan energy use included. 4) Includes refrigerators ($14.1 billion) and freezers ($2.9 billion). 5) Includes color televisions ($14.2 billion). 6) Includes clothes washers ($0.8 billion), natural gas

148

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7) 0.0 6.4 6.4 38.7 45.0 17.3% Total 59.1 12.9 16.3 29.8 0.0 171.3 260.3 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.7 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.7 billion) and freezers ($2.8 billion). 5) Includes color televisions ($12 billion). 6) Includes clothes washers ($0.8 billion), natural gas

149

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7) 0.0 5.2 5.2 31.3 36.5 15.1% Total 51.3 14.9 15.7 31.1 0.0 159.3 241.7 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.6 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.3 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9 billion). 6) Includes clothes washers ($1.1 billion), natural gas

150

Furnaces and Boilers  

Energy.gov (U.S. Department of Energy (DOE))

Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating.

151

Fans for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fans for Cooling Fans for Cooling Fans for Cooling May 30, 2012 - 7:46pm Addthis Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger What does this mean for me? You may be able to keep your home cool with energy-efficient and well-placed fans. Fans are less expensive to operate than air conditioners. Circulating fans include ceiling fans, table fans, floor fans, and fans mounted to poles or walls. These fans create a wind chill effect that will make you more comfortable in your home, even if it's also cooled by natural ventilation or air conditioning. Ceiling Fans Ceiling fans are considered the most effective of these types of fans,

152

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

with four cooling fans of different designs available on thedesign, installation, and use, the performance of cooling fans

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

153

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

154

National Fuel (Gas) - Residential Energy Efficiency Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Rebate amount cannot exceed the purchase price Program Info Start Date 1/1/2013 Expiration Date 3/31/2014 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $250 Forced Air Furnace with ECM: $350 Hot Water Boiler: $350 Steam Boiler: $200 Programmable Thermostat: $25 Indirect Water Heater: $250 Provider Energy Federation Incorporated (EFI) National Fuel offers pre-qualified equipment rebates for the installation of certain energy efficiency measures to residential customers in Western

155

Furnace Black Characterization  

E-Print Network (OSTI)

Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher #12 of Crystallographic Studies #12;005F7 Methodologies #12;005F8 Summary · For all furnace carbon black 12� Surface Unorganized Carbon Identified #12;005F11 SRCC's Model #12;005F12 Carbon Black Surface Activity

156

Detroit Public Lighting Department - Residential Energy Wise Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Detroit Public Lighting Department - Residential Energy Wise Detroit Public Lighting Department - Residential Energy Wise Program Detroit Public Lighting Department - Residential Energy Wise Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFLs: $2-$10 LED Task Light: $10.00 LED Night light: $1.25 Energy Star Ceiling Fan: $10 Provider Detroit Public Lighting Department The Detroit Public Lighting Department (PLD) offers residential customers rebates for energy efficient lights. In addition, low-income residential customers may qualify for free compact fluorescent lights (CFLs). Specific rebate amounts, equipment requirements, and applications are available on

157

Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Residential Energy Efficiency Rebate Programs Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $80-$120 Boilers: $100 Storage Water Heater: $25-$90 Tankless Water Heater: $100 Attic/Wall Insulation, Sealing and Weatherstripping: 20% of cost Energy Audits: $60-$120 Home Performance with ENERGY STAR: average rebate amount is $710 Provider Xcel Energy Xcel Energy residential customers in Colorado can qualify for cash

158

San Isabel Electric Association - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Isabel Electric Association - Residential Energy Efficiency San Isabel Electric Association - Residential Energy Efficiency Rebate Program San Isabel Electric Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Marathon Water Heaters: $175 Marathon Water Heaters w/ SIEA Load Control Program: $425 Electric Water Heater (minimum 30 gallon): $100 Washers: $80 Dryer w/ Moisture Sensor: $50 Dishwashers: $60 Refrigerators: $90 Freezers: $90 ETS Room Units: $72 - $180 ETS Furnaces: $432 - $768 Provider San Isabel Electric Association San Isabel Electric Association (SIEA) provides incentives for its residential customers to install energy efficient equipment. Rebates are

159

Columbia Gas of Massachusetts - Residential Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Massachusetts - Residential Energy Efficiency Columbia Gas of Massachusetts - Residential Energy Efficiency Programs Columbia Gas of Massachusetts - Residential Energy Efficiency Programs < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Insulation Weatherization: 75% of project cost Energy Star homes: $350 - $8,000, varies by number of units and efficiency Warm Air Furnace: $500 - $800 Gas Boiler: $1,000 - $1,500 Integrated Water Heater/Boiler: $1,200

160

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $275 Boiler: $300 Storage Water Heater: $125 Tankless Water Heater: $150 Programmable Thermostat: $20 Attic Insulation: Up to $600 Wall Insulation: Up to $700 Air Sealing: Up to $250 Provider Vectren Energy Delivery of Ohio Vectren Energy Delivery offers residential natural gas customers in Ohio

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Maximum Rebate Ceiling Insulation: $200 Program Info Start Date 1/1/2013 Expiration Date 12/31/2013 State Missouri Program Type Utility Rebate Program Rebate Amount Furnace: $200 (Owner Occupied); $300 (Landlord) Boiler: $100 - $150 (Owner Occupied); $150 - $300 (Landlord) Programmable Thermostat: $25 or 50% of cost Ceiling Insulation: $0.008 x sq ft Comprehensive Audit Measures: Varies widely

162

Peoples Gas - Residential Rebate Program (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Water Heating Maximum Rebate 100% of project cost Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Furnace: $300 -$500 Boiler: varies, depending on size and efficiency Boiler Controls: $100/unit Complete HVAC System Replacement: $650 - $1,000 Water Heater (Tankless): $450 Water Heater (Indirect): $275 Water Heater (Storage Tank): $100 Attic Insulation: $0.10/sq ft Programmable Thermostat: $50

163

New England Gas Company - Residential and Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New England Gas Company - Residential and Commercial Energy New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Heat Pumps Appliances & Electronics Water Heating Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Residential Furnace: $300 - $450 Boilers: $1000 - $1500 Combined High Efficiency Boiler/Water Heater: $1,200 Heat Recovery Ventilator: $500 High Efficiency Indirect Water Heater: $400 Condensing Gas Water Heater: $500 High Efficiency On-Demand, Tankless Water Heater: $500 - $800

164

Orange and Rockland Utilities (Gas) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Gas) - Residential Efficiency Orange and Rockland Utilities (Gas) - Residential Efficiency Program Orange and Rockland Utilities (Gas) - Residential Efficiency Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140 - $420 Water Boiler: $350 or $700 Steam Boiler: $350 Boiler Reset Control: $70 Indirect Water Heater: $210 Programmable Thermostat: $18 Duct and Air Sealing: up to $420 Provider Orange and Rockland Utilities, Inc. Orange and Rockland Utilities provides rebates for residential customers

165

Montana-Dakota Utilities (Gas) - Residential New Construction Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana-Dakota Utilities (Gas) - Residential New Construction Montana-Dakota Utilities (Gas) - Residential New Construction Rebate Program Montana-Dakota Utilities (Gas) - Residential New Construction Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Eligible Furnace: $300 Natural Gas Water Heater: $50 - $100 Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers rebates to customers who install energy efficient natural gas equipment in new construction. New furnaces and water heaters are eligible for incentives through this offering. All new eligible homes with qualifying furnaces will receive a $300 rebate and

166

Minnesota Power - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Power - Residential Energy Efficiency Rebate Program Minnesota Power - Residential Energy Efficiency Rebate Program Minnesota Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heating Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $35-$50 Refrigerator: $25 Clothes Washer: $40 mail-in rebate General Lighting: In-store discounts CFLs: $2 mail-in rebate Lighting Fixtures: $15 mail-in rebate Central AC with ECM: $300 Central AC: $50 Forced Air Furnace: $200, $50 bonus with ECM Furnace Integrated ECM with CAC: $375 Replacement Multi-Speed ECM in Furnace: $100 Geothermal Heat Pump: $100 - 200/ton up to $1,500, $250 bonus with ECM

167

CenterPoint Energy - Residential Gas Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Storage Tank Water Heater: $75 Tankless Water Heater: $500 Forced-Air Furnace: $400 - $600 Forced-Air Furnace (Back-Up System): $125 - $175 Hydronic Heating System: $400 Provider CenterPoint Energy CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage water heaters and tankless water heaters. All equipment must meet program requirements for efficiency and

168

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

169

Regional Residential  

Gasoline and Diesel Fuel Update (EIA)

upward pressure from crude oil markets, magnified by a regional shortfall of heating oil supplies, residential prices rose rapidly to peak February 7. The problem was...

170

Measured Natural Cooling Enhancement of a While House Fan  

E-Print Network (OSTI)

An experimental study was carried out in the summer of 1991 to investigate the natural cooling potential of use of a whole house fan in Central Florida's hot and humid climate. The residential building, in Cocoa Beach, FL, is typical of much of the existing housing stock in Florida: a concrete block structure with R-11 ceiling insulation. The building was ventilated with all windows open during the three month summer test period (June- August). Air temperatures and relative humidity inside the home interior along with exterior meteorological conditions (insolation, wind speed, air temperature, relative humidity) were scanned every five seconds with integrated averages recorded on a multi-channel data logger every 15- minutes. The house was naturally ventilated during the first half of summer. After a significant period of pre-retrofit summer data had been collected characterizing the building's thermal response, a 24" whole house fan was installed. The house was then force ventilated during evening hours for the remainder of the summer to establish potential of whole-house fans to improve interior comfort conditions. The electrical consumption of the fan was measured at both available fan speeds. Measurements revealed that the building interior was 3 - 6°F cooler during the evening hours after the whole house fan was operated. However, data also showed that nighttime humidity levels rose: relative humidity increased from 74% to 83% during the nighttime period where fan-powered ventilation was used. Using the data results, an analysis was performed using Orlando, Florida TMY data to see how limits to whole house ventilation based on humidity and temperature conditions would affect the potential of such a cooling strategy.

Parker, D. S.

1994-01-01T23:59:59.000Z

171

Furnace Black Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Black Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher 005F 2 Definitions Particle Aggregate = 20nm to 100nm "Diameter" = 200nm to 1,000nm "Length" = Set of Percolated Aggregates Particle (?) Aggregate Agglomerate Constituents Size = Tech/Scientific Challenge 005F 3 Furnace Process High Temperature Refractory Feedstock Oil Air Natural Gas Reaction Zone Quench 005F 4 Specific Surface Area 005F 5 Structure 3-D Morphology Key Characteristic Summary of Crystallographic Studies 005F 7 Methodologies 005F 8 Summary * For all furnace carbon black 12Å < L C < 17Å * Crystallite L a ≈ 25Å * Amorphous Carbon * No micropores * Very few surface groups (hetero atoms) { 005F 9 Effect of Heat Treatment on Amorphous Carbon

172

Residential Energy Consumption Survey (RECS) - Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Furnace Fan: 76.3: 500 g: 38.2: 3.3: Dishwasher: 56.7: 512 l: 29.0: 2.5: Electric Range Top c: 59.7: 536 g: 32.0: 2.8: Electric Oven d: 47.8: 440 g: 21.0: 1.8 ...

173

High temperature furnace  

DOE Patents (OSTI)

A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

Borkowski, Casimer J. (Oak Ridge, TN)

1976-08-03T23:59:59.000Z

174

Pacific Power - Residential Energy Efficiency Rebate Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Power - Residential Energy Efficiency Rebate Programs Pacific Power - Residential Energy Efficiency Rebate Programs Pacific Power - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount Clothes Washers: $50-$75 Refrigerators: $20 Refrigerator Recycling: $35 Dishwashers: $20 Water Heater: $40 CFL Lamps: Retailer discounts Lighting Fixtures: $20 Ceiling Fans: $20 Room Air Conditioner: $30 Evaporative Coolers: $50-$150 Central A/C Equipment: $100 (homeowner); $25 (contractor)

175

Save Energy with Axial Fans  

E-Print Network (OSTI)

There are several ways to save energy in wet cooling towers and air cooled heat exchangers using axial fans. This paper will discuss ways to improve fan system efficiency in wet and dry towers both during the design phase and after installation by specifying energy efficient equipment. Variable pitch fan versus fixed pitch fan operation is discussed in terms of energy savings and means of control. The areas of interest to wet cooling tower users would be the influence on fan diameter and operating point on horsepower, how and when are velocity recovery stacks effective, the effect of varying fan speed to improve efficiency, and tip clearance effects. The areas of interest to dry tower (air cooled heat exchanger) users would be the effect of inlet losses, approach velocity losses, and losses due to air recirculation.

Monroe, R. C.

1981-01-01T23:59:59.000Z

176

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Evaluation of Installed Cooking Exhaust Fan Performance Experimental Evaluation of Installed Cooking Exhaust Fan Performance Title Experimental Evaluation of Installed Cooking Exhaust Fan Performance Publication Type Report LBNL Report Number LBNL-4183E Year of Publication 2010 Authors Singer, Brett C., William W. Delp, and Michael G. Apte Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords airflow & pollutant transport group, cooktop, energy analysis and environmental impacts department, gas burners, indoor air quality, indoor environment department, kitchen, nitrogen dioxide, oven, pollutant emissions, range hood, residential, source control, task ventilation, technology, sustainability and impact assessment group Abstract The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners. Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g. single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from <5% to roughly 100%) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

177

Xcel Energy - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Xcel Energy - Residential Energy Efficiency Rebate Programs Xcel Energy - Residential Energy Efficiency Rebate Programs Xcel Energy - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info Start Date 4/15/2011 Expiration Date 12/31/2012 State North Dakota Program Type Utility Rebate Program Rebate Amount Boiler: $100 Furnace: $75-$100 Tank Water Heater: $40-$60 Tankless Water Heater: $100 Home Energy Audit: 70% off cost In addition to home energy audits, Xcel Energy offers rebates to North Dakota residential customers for the purchase of energy efficient heating and water heating technologies. Xcel offers rebates to homeowners for natural gas furnaces and boilers and natural gas water heaters. Through the

178

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Residential Energy Efficiency Rebate Gas) - Residential Energy Efficiency Rebate Programs MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Program Info Expiration Date 12/31/2013 State Nebraska Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Furnaces: $250-$400 Boilers: $150 or $400 Water Heaters: $50 or $100 Provider Remittance MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating equipment such as boilers, furnaces, and water heaters. Free energy audits are also available

179

Philadelphia Gas Works - Residential and Small Business Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Small Business Equipment Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Start Date 4/1/2011 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler (Purchase prior to 02/17/12): $1000 Boiler (Purchase 02/17/12 or after): $2000 Furnace (Purchase prior to 02/17/12): $250 Furnace (Purchase prior to 02/17/12): $500

180

Texas Gas Service - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Gas Service - Residential Energy Efficiency Rebate Program Texas Gas Service - Residential Energy Efficiency Rebate Program Texas Gas Service - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Ventilation Heating Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Texas Program Type Utility Rebate Program Rebate Amount Attic Insulation: Up to $300 Duct Sealing: $0.08/sq ft. Natural Gas Equipment for Weatherization: Free Residential Hydronic Heating Program: $125 Water Heater: $40 Tankless or Super High-efficiency Water Heater: $300 Solar Water Heater with Natural Gas Backup: $750 Furnace $75 Furnace Tune-Up: $40

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

°C °F Cooling Effect (?t eq ) °C °F Fan Power, W (P f ) Cooling-Fan Efficiency (CFE) °C/W °F/Wand B. Jones. 1983. Ceiling fans as extenders of the summer

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

182

Partially Reduced Feedstocks and Blast Furnace Ironmaking ...  

Science Conference Proceedings (OSTI)

... Partially Reduced Feedstocks and Blast Furnace Ironmaking Carbon Intensity ... simple Rist-style blast furnace mass and energy balance, assuming furnace ...

183

Argonne Software Licensing: Glass Furnace Model (GFM)  

The Glass Furnace Model (GFM) The Glass Furnace Model (GFM) Version 4.0, a computational fluid dynamic (CFD) glass furnace simulation code was developed at Argonne ...

184

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Residential Energy Efficiency Rebate Gas) - Residential Energy Efficiency Rebate Programs MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Furnaces: $250 - $400 Boilers: $150 - $400 Water Heaters: $50 - $300 Provider MidAmerican Energy Company '''The availability of rebates through this program is unclear. Contact MidAmerican regarding the availability of gas incentives for residential customers.''' MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above provides specific rebate

185

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Attic and Wall Insulation: $1000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Construction: $600-$3500/home Home Energy Audit: Free Boilers: $150 or $400 depending on AFUE Furnaces: $250 or $400 depending on AFUE Programmable Thermostats: $25

186

Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Programs Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Natural Gas Furnace/Boiler: $400 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft. ENERGY STAR rated homes: $650 - $900 Replacement of Electric Straight Resistance Space Heat: $750 Provider

187

Black Hills Energy (Gas) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate All Incentives: $750/customer Ceiling/Wall/Foundation Insulation: $500 Infiltration Control/Caulking/Weather Stripping: $200 Duct Insulation: $150 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Qualified New Homes (Builders): Contact Black Hills Energy Evaluations: Free or reduced cost Storage Water Heater: $75 or $300 Tankless Water Heater: $300 Furnace/Boiler Maintenance: $30 or $100

188

Atmos Energy - Residential Natural Gas and Weatherization Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Residential Natural Gas and Weatherization - Residential Natural Gas and Weatherization Efficiency Program Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Comprehensive Upgrades (Energize Homes): Up to $5,00 Furnace: $200-$300 Boiler: $200-$300 Combination Boiler/Water Heater: $450 Storage Water Heater: $50-$125 Tankless/Condensing Water Heater: $200 Programmable Thermostat $25 Provider Energy Federation Incorporated '''As of August 1, 2012, Missouri energy efficiency programs are offered by

189

Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Water Heating Maximum Rebate Insulation: $750 Weather-Stripping and Caulking: $200 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Evaluation: Free Clothes Washers: $100 Dishwashers: $20 Replacement Furnaces: $250 - $400 Replacement Boilers: $150 or $400 Duct Repair/Sealing: $200 Duct Insulation (R-8): $150 Insulation/Weather-Stripping/Caulking: 70% of project cost

190

Xcel Energy - Residential ENERGY STAR Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential ENERGY STAR Rebate Program Residential ENERGY STAR Rebate Program Xcel Energy - Residential ENERGY STAR Rebate Program < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Heating Commercial Lighting Lighting Water Heating Cooling Maximum Rebate Ground Source Heat Pump: $1500 Program Info Funding Source Home Performance with ENERGY STAR State Colorado Program Type Utility Rebate Program Rebate Amount Air Sealing and Weatherstripping: $160 Attic Insulation and Bypass Sealing: $350 High Efficiency Lighting: $40 Wall Insulation: $800 Set Back Thermostat: $25 Furnaces: $170 - $200 Boiler: $160 Electric Heat Pump: $550

191

Pasadena Water and Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Pasadena Water and Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Maximum Rebate Ceiling Fan: Limit two Room A/C: Limit two Attic/Roof Fan: Limit two Shade Screens: Installation must be made to windows on south, west or east walls; screens must reflect 70% of the sun's heat and glare Skylights/Light Tubes: Limit one Program Info State California Program Type Utility Rebate Program Rebate Amount Incentive amounts increase with purchase from Pasadena retailers and with

192

IID Energy - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program IID Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Windows, Doors, & Skylights Maximum Rebate Central AC/Heat Pumps (Early Retirement/Replacement): $2,500 Program Info State California Program Type Utility Rebate Program Rebate Amount Attic Insulation (in pre-1978 houses): $0.60/sq ft Attic Insulation (in post-1978 houses): $0.15/sq ft Electric Attic Fan: $50 Solar Attic Fan: $125 Refrigerator: $50/unit Room Air Conditioner: $50/unit Dual Pane Windows: $2.00/sq ft Variable Speed Pool Pumps: $200 - $350/unit Central AC/Heat Pumps: $100 - $145/unit

193

The Internet World of Fan Fiction.  

E-Print Network (OSTI)

??Fan fiction, the most popular creative outlet for fans, allows the amateur writer an opportunity to be published and receive immediate feedback from peers. As… (more)

Herzing, Melissa Jean

2008-01-01T23:59:59.000Z

194

THE WORLD'S Biggest Fan Collection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WORLD'S Biggest Fan Collection WORLD'S Biggest Fan Collection If you only know the Big Ass Fan Company as the preeminent designer and manufacturer of high volume, low speed fans for factories and cows, it's time you get to know us better. While we continue to lead the way in industrial and agricultural air movement, we've also refined these designs to bring the same innovation and benefits of our famous fans to circulate an ocean of air in sound-sensitive commercial spaces and homes. And when our customers said they wanted something for smaller spaces, we listened - and we think you'll like the results. We've got you covered - ceiling to floor, wall to door! Features  New patented airfoil system uses 10 Powerfoil airfoils, winglets and patent-pending AirFence(tm) technology to increase

195

Residential Forced Air System Cabinet Leakage and Blower Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Forced Air System Cabinet Leakage and Blower Performance Residential Forced Air System Cabinet Leakage and Blower Performance Title Residential Forced Air System Cabinet Leakage and Blower Performance Publication Type Report LBNL Report Number LBNL-3383E Year of Publication 2010 Authors Walker, Iain S., Darryl J. Dickerhoff, and William W. Delp Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords air flow measurement, air leakage, blower power measurement, blowers, energy performance of buildings group, forced air systems, furnaces, indoor environment department, other, public interest energy research (pier) program, residential hvac Abstract This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit - indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called "ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823 "Performance Standard for air handlers in residential space conditioning systems".

196

PG&E (Gas) - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PG&E (Gas) - Residential Energy Efficiency Rebate Programs PG&E (Gas) - Residential Energy Efficiency Rebate Programs PG&E (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Furnace: $300 Program Info Funding Source System Benefits Charge State California Program Type Utility Rebate Program Rebate Amount Storage Tank Water Heater: $200 Central Furnace: $150 - $300/Unit Pacific Gas and Electric Company (PG&E) offers rebates for residential gas customers who install energy efficient furnaces or water heaters in homes. More information and applications for rebates are available at the program web site and customers can apply for the rebates online through the

197

PG&E (Gas) - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PG&E (Gas) - Residential Energy Efficiency Rebate Programs PG&E (Gas) - Residential Energy Efficiency Rebate Programs PG&E (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Storage Tank Water Heater: $200 Central Furnace: $150 - $300/Unit Program Info Funding Source System Benefits Charge State California Program Type Utility Rebate Program Rebate Amount Storage Tank Water Heater: $200 Central Furnace: $150 - $300/Unit Provider Pacific Gas and Electric Company Pacific Gas and Electric Company (PG&E) offers rebates for residential gas customers who install energy efficient furnaces or water heaters in homes. More information and applications for rebates are available at the program

198

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

199

Guidelines for residential commissioning  

E-Print Network (OSTI)

Potential Benefits of Commissioning California Homes”.Delp. 2000. “Residential Commissioning: A Review of Relatedfor Evaluating Residential Commissioning Metrics” Lawrence

Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

2003-01-01T23:59:59.000Z

200

Colorado Springs Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Colorado Springs Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Windows, Doors, & Skylights Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Maximum Rebate Visit website for details Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Duct Sealing: 40% of job up to $100 Dishwasher: $50 Gas Boiler: $250 Gas Furnace: $250 Gas Water Heater: $50 Insulation and Air Sealing: 40% of job up to $200 Irrigation: varies Refrigerator: $50 + $50 recycle bonus Toilets: up to $75 (max 2) Windows: $4.67/sq ft, up to $200 Provider Residential Efficiency Incentives Colorado Springs Utilities offers a variety of energy and water efficiency

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Unitil (Gas) - Residential Energy Efficiency Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unitil (Gas) - Residential Energy Efficiency Programs Unitil (Gas) - Residential Energy Efficiency Programs Unitil (Gas) - Residential Energy Efficiency Programs < Back Eligibility Commercial Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Other Ventilation Appliances & Electronics Water Heating Maximum Rebate Home Performance with Energy Star: 50% Utility Rebate up to $4,000 Home Energy Assistance (Low-income residents): $5,000 Program Info Start Date 1/1/2011 Expiration Date 12/31/2011 State New Hampshire Program Type Utility Rebate Program Rebate Amount Natural Gas Warm Air Furnace: $500 or $800 Natural Gas Boiler: $1,000 or $1,500

202

Reading Municipal Light Department - Residential ENERGY STAR Appliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Water Heating Maximum Rebate One rebate per Energy Star appliance or two rebates on the purchase of programmable thermostats Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Electric Heat Pump Water Heater: $250 Air Source Heat Pump: $100 Central AC: $100 Refrigerator: $50 Washing Machine: $50 Dishwasher: $50 Room A/C: $25 Dehumidifier: $25 Programmable Thermostat:$15 (limit 2) Ceiling Fan: $10

203

Tritium extraction furnace  

DOE Patents (OSTI)

This invention is comprised of apparatus for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having, negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible`s internal volume is sufficient by itself to hold and enclose the bundle`s volume after heating. The crucible can then be covered and disposed of, the sleeve, on the other hand, can be reused.

Heung, L.K.

1992-12-31T23:59:59.000Z

204

Furnace Blower Electricity: National and Regional Savings Potential  

Science Conference Proceedings (OSTI)

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

205

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

SciTech Connect

The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

Singer, Brett C.; Delp, William W.; Apte, Michael G.

2010-11-01T23:59:59.000Z

206

Furnace Blower Electricity: National and Regional Savings Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Blower Electricity: National and Regional Savings Potential Furnace Blower Electricity: National and Regional Savings Potential Title Furnace Blower Electricity: National and Regional Savings Potential Publication Type Report LBNL Report Number LBNL-417E Year of Publication 2008 Authors Franco, Victor H., James D. Lutz, Alexander B. Lekov, and Lixing Gu Document Number LBNL-417E Pagination 14 Date Published August 1 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80% of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressureused in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, whilewarm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

207

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

208

Furnace Technology Systems Workshop Preliminary Schedule ...  

Science Conference Proceedings (OSTI)

Mar 3, 2013 ... and emissions. 9:40 – 10:25. Robinson Fans Inc. Deanna Weaver. Blowers/ Exhausters. This presentation will cover the basics of fan design.

209

CWS-fired residential warm-air heating system. Quarterly report, January 22, 1987--April 30, 1987  

Science Conference Proceedings (OSTI)

The objective of this project is the development of a coal water slurry burning residential furnace. A literature survey has been performed. Also, the preliminary testing of prototype components was carried out. Design criteria and specifications are discussed.

Becker, F.E.; Smolensky, L.A.; McPeak, M.A.

1987-05-01T23:59:59.000Z

210

HIGH TEMPERATURE MICROSCOPE AND FURNACE  

DOE Patents (OSTI)

A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

Olson, D.M.

1961-01-31T23:59:59.000Z

211

Forced air fireplace furnace  

Science Conference Proceedings (OSTI)

The design of heating system for buildings including a fireplace with an open front hearth for burning firewood, a chimney extending from the upper portion of the hearth, a metal firebox being open in the front and closed on the sides and back, a plenum chamber within and surrounding the sides and back of the metal firebox and the chimney lower portion, a horizontal heat distribution chamber positioned in the building attic and communicating at one end with the plenum chamber is described. An air distribution duct connects to the other end of the air distributing chamber, the duct extending to discharge heated air to a place in the building remote from the fireplace. A fan is placed in the horizontal air distributing chamber, and a return air duct extends from selected place in the building and communicates with the plenum chamber lower portion so that the fan draws air through the return air duct, through the plenum chamber around the firebox where the air is heated, through the horizontal distribution chamber, and out through the distribution duct for circulation of the heated air within the building.

Bruce, R.W.; Gorman, R.E.

1980-10-28T23:59:59.000Z

212

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

In the DOE test procedure, the heating requirements areCooling requirements were calculated using DOE-2. Since theDOE-2 model to derive the hourly heating and cooling requirements

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

213

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

6. American Society of Heating Refrigeration and Air-Conditioning Engineers, ASHRAE 1997 Handbook - Fundamentals. 1997, Atlanta, GA.p. 3.12. 7. Proctor, J. and D. Parker, Hidden...

214

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

driven by first cost considerations and the availability of power vent and condensing water heaters. Little analysis has been performed to assess the economic impacts of the...

215

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

Conditions Electricity Consumption (kWh/year) Single-Stage (Stand by Electricity Consumption (kWh/year) Single-Stage (Stand by Electricity Consumption (kWh/year) Single-Stage (

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

216

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

Brushless Permanent Magnet (BPM) motor. Blowers account forIn a BPM motor the rotor contains permanent magnets. Themotors: Permanent Split Capacitor (PSC) and Brushless Permanent Magnet (

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

217

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Refrigerating and Air-Conditioning Engineers, Inc. [Lennox]Refrigerating and Air-Conditioning Engineers, Inc. Pigg,Refrigerating and Air-Conditioning Engineers, Inc. Stanely,

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

218

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

duct systems. In addition, standby power consumption in BPMthe air conditioner or standby power. Figure 1: Distributionseason, and during standby. In the DOE test procedure, the

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

219

National Fuel - Large Non-Residential Conservation Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Fuel - Large Non-Residential Conservation Program National Fuel - Large Non-Residential Conservation Program National Fuel - Large Non-Residential Conservation Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Manufacturing Appliances & Electronics Water Heating Maximum Rebate Commercial Custom Rebates: $200,000 Industrial Custom Rebates: $5,000,000 Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Rebates: $15/Mcf x the gas savings or 50% of the total project cost Unit Heater: $1000 Hot Air Furnace: $500 Low Intensity Infrared Heating: $500 Programmable Thermostat: $25

220

Questar Gas - Residential Energy Efficiency Rebate Programs (Idaho) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programs (Idaho) Programs (Idaho) Questar Gas - Residential Energy Efficiency Rebate Programs (Idaho) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Limit of one rebate per appliance type Duct Sealing/Insulation: $450 (Single Family); $250 (Multifamily) Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200-$400 Solar Assisted Water Heater: $750 Storage Water Heater: $50-$100 Gas Condensing/Hybrid Water Heater: $350 Tankless Water Heater: $300-$350 Boiler: $400 - $600 Solar Hot Water Heater: $750 Gas Clothes Washer: $50

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reduce Air Infiltration in Furnaces  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

Not Available

2006-01-01T23:59:59.000Z

222

Ceiling Fan and Ceiling Fan Light Kit use in the U.S. Results of a Survey on Amazon Mechanical Turk  

E-Print Network (OSTI)

Ceiling Fan and Ceiling Fan Light Kit use in the U.S. —Ceiling Fan and Ceiling Fan Light Kit use in the U.S. —fans and ceiling fan light kits in the United States (

Kantner, Colleen L.S.

2013-01-01T23:59:59.000Z

223

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

224

Cupola Furnace Computer Process Model  

Science Conference Proceedings (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

225

Sound maintenance practices protect fan investments  

Science Conference Proceedings (OSTI)

Since underground coal miners depend on axial fans, lack of maintenance could prove costly. A number of pre-emptive actions that can help keep fans running at optimal performance can also be taken. 2 photos.

Bauer, M.

2009-11-15T23:59:59.000Z

226

Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Indiana (Gas) - Residential Energy Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Attic Insulation: 40% of cost, up to $450 Wall/Ceiling Insulation: 40% of cost, up to $450 Duct Sealing: Total cost, up to $400 Boilers: $300 Furnace: $150 - $275 Programmable Thermostat: $20 Provider Vectren Energy Delivery of Indiana Vectren Energy Delivery offers its residential natural gas customers in Indiana rebates for the installation of certain high efficiency natural gas

227

Florida City Gas - Residential Energy Smart Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Gas - Residential Energy Smart Rebate Program City Gas - Residential Energy Smart Rebate Program Florida City Gas - Residential Energy Smart Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Appliances & Electronics Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Water Heater: $350 - $500 Tankless Water Heater: $550 - $ 675 Furnace: $500 - $725 Cooking Range: $100 - $200 Dryer: $100 - $150 Space Conditioning Conversion: $1,200 Provider Florida City Gas Florida City Gas (FCG) encourages residential customers to become more energy efficient by offering various rebates for the purchase and installation of efficient natural gas appliances. Rebate amounts depend on whether appliances are converted from a different power source or natural

228

NYSEG (Gas) - Residential Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Efficiency Program Residential Efficiency Program NYSEG (Gas) - Residential Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Cannot exceed total installed price Program Info Start Date 4/1/2011 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140-$600 (w/ECM) Water Boiler: $350-$1,000 Steam Boiler: $350 Boiler Reset Control: $100 Indirect Water Heater: $210 Programmable Thermostat: $18 NYSEG is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as they are not the same type of

229

ConEd (Gas) - Residential Energy Efficiency Incentives Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Gas) - Residential Energy Efficiency Incentives Program ConEd (Gas) - Residential Energy Efficiency Incentives Program ConEd (Gas) - Residential Energy Efficiency Incentives Program < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Program Info Start Date 7/1/2009 Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $200 - $600 Water Boiler: $500 or $1,000 Steam Boiler: $500 Boiler Reset Control: $100 Programmable thermostat: $25 Indirect Water Heater: $300 Duct Sealing: $100/hr Air Sealing: $75/hr Con Edison is offering the Residential HVAC Gas Rebate Program. Through this program, incentives are offered on energy efficient heating and

230

Fort Collins Utilities - Residential On-Bill Financing Program Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Collins Utilities - Residential On-Bill Financing Program Fort Collins Utilities - Residential On-Bill Financing Program Program (Colorado) Fort Collins Utilities - Residential On-Bill Financing Program Program (Colorado) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Commercial Heating & Cooling Heating & Cooling Heating Heat Pumps Water Heating Solar Maximum Rebate $15,000 Program Info State Colorado Program Type Utility Loan Program Rebate Amount $1,000 - $15,000 Fort Collins offers its residential customers low-interest loans that may be used to finance a variety of projects including adding insulation, replacing a furnace, upgrading water and space heating systems, and

231

Energy Smart - Residential Energy Efficiency Rebate Program (20  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart - Residential Energy Efficiency Rebate Program (20 Smart - Residential Energy Efficiency Rebate Program (20 Municipalities) Energy Smart - Residential Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Heating Commercial Lighting Lighting Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: $75-$150 Furnace with ECM: $150 Heat Pump Water Heater: $150 Electric Hot Water Heater: $25 Electric Clothes Dryer: $25 Programmable Thermostat: $15 Energy Star® Room Air Conditioner: $15 Energy Star® Refrigerator: $25 Energy Star® Dehumidifier: $15 Intelligent Surge Protector: $10 Energy Star® Personal Computer: $15

232

Residential Forced Air System Cabinet Leakage and Blower Performance  

SciTech Connect

This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

2010-03-01T23:59:59.000Z

233

MECHANICAL DRAFT FANS FOR THE MODERN INCINERATOR  

E-Print Network (OSTI)

design and modiftcation. Spe cial blading and fan construction for use under corrosive conditions this will be kept fairly constant by air or water cooling during noral op eration. Since the fan will be designed. Volume control on a single inlet fan can be accomplished with a variable inlet #12;vane, designed

Columbia University

234

Development of the household sample for furnace and boilerlife-cycle cost analysis  

Science Conference Proceedings (OSTI)

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

235

Regenerative Burners Assessment in Holding Reverberatory Furnace  

Science Conference Proceedings (OSTI)

The assessment showed that the regenerative burner furnaces are not profitable in saving energy in addition to the negative impact on the furnace life.

236

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

Science Conference Proceedings (OSTI)

The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (fromfan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

Singer, Brett C.; Delp, William W.; Apte, Michael G.

2010-11-01T23:59:59.000Z

237

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1993-01-01T23:59:59.000Z

238

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

239

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

240

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

Morris, D.E.

1993-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Rating of Mixed Split Residential Air Conditioners  

E-Print Network (OSTI)

A methodology is presented for rating the performance of mixed, split residential air conditioners. The method accounts for the impact on system performance of the indoor evaporator, expansion device and fan; three major components that are likely to be substituted for the matched components in a mixed system. The method allows calculation of capacity at 95°F rating point and seasonal energy efficiency ratio, SEER, without performing laboratory test of the complete system. Limitations of the procedure, present work, and anticipated improvements are also discussed.

Domanski, P. A.

1988-01-01T23:59:59.000Z

242

Anoka Municipal Utility - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anoka Municipal Utility - Residential Energy Efficiency Rebate Anoka Municipal Utility - Residential Energy Efficiency Rebate Program Anoka Municipal Utility - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Room Air Conditioner: limit of 2 units per account Lighting: limit of $15 per customer per year Program Info Expiration Date 03/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount Ceiling Fan: $25 Clothes Washer: $25 Refrigerator: $50 Freezer: $50 Refrigerator/Freezer Recycling: $25 Freezer: $50 Dishwasher: $25 Dehumidifier: $25 Air Conditioner Tune-Up: $25 Room Air Conditioner: $25/unit Central A/C: $225 - $400, varies by efficiency

243

New Smyrna Beach - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Smyrna Beach - Residential Energy Efficiency Rebate Program New Smyrna Beach - Residential Energy Efficiency Rebate Program New Smyrna Beach - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Insulation Design & Remodeling Windows, Doors, & Skylights Maximum Rebate Insulation: $375 Cool Roof: $375 Window Solar Screen: $375 Program Info Expiration Date 09/30/2013 State Florida Program Type Utility Rebate Program Rebate Amount Insulation: $0.125 per sq. ft. Window Solar Screen: $2 per sq. ft. Duct Leak Repair: 50% of cost, up to $200 AC/Heat Pump: $400 - $600 Cool Roof: $0.14/sq ft Solar Attic Fan: 25% of the cost, up to $200 Provider

244

SCE - Multi-Family Residential Energy Efficiency Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-Family Residential Energy Efficiency Programs Multi-Family Residential Energy Efficiency Programs SCE - Multi-Family Residential Energy Efficiency Programs < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Home Weatherization Windows, Doors, & Skylights Other Program Info Funding Source System Benefits Charge Start Date 1/1/2012 Expiration Date 12/31/2012 State California Program Type Utility Rebate Program Rebate Amount LED Pool/Spa Lighting: $75 - $100/unit Pool Pumps: $100 Energy Star Ceiling Fan (with Energy Star CFLs): $20/unit High Efficiency Clothes Washers: $50 - $100/unit Energy Star Refrigerators: $50/unit Dual Pane Windows: $0.75/sq. ft.

245

LADWP - Residential Energy Efficiency Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program LADWP - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Windows, Doors, & Skylights Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $65 Recycling Old Refrigerator/Freezer: $50 Clothes Washer: $300 Energy Star Windows: $2.00 per sq ft Cool Roofs: $0.30/sq. ft. Room Air Conditioner: $50 per unit Central Air Conditioner: $100 -$120/ton Heat Pump: $100/ton Whole House Fan $200 Variable/Multi-Speed Pool Pump and Motor: $500/unit Whole House Retrofits: up to $8,000

246

Modesto Irrigation District - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Residential Energy Efficiency Rebate Modesto Irrigation District - Residential Energy Efficiency Rebate Program Modesto Irrigation District - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Water Heating Program Info Expiration Date 12/15/2013 State California Program Type Utility Rebate Program Rebate Amount Room AC: $50 Clothes Washer: $35 Water Heater: $25 Heat Pump Water Heater: $100 Refrigerator/Freezer Recycling: $35 per unit Central AC: $250 Heat Pump: $350 High Efficiency AC/Heat Pump: $500 Mini-Split AC/Heat Pump: $500 Air Duct Sealing: up to $250 max Whole House Fan: $100 per unit

247

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI  

Open Energy Info (EERE)

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) Place Indiana Zip 46809 Sector Geothermal energy Product WaterFurnace develops and manufactures geothermal heating and cooling systems. References WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) is a company located in Indiana . References ↑ "WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))"

248

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

249

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

measured. The local exhaust flows can be measured or can meet prescriptive ducting and fan labeling requirements that use ratings provided by the Home Ventilating Institute (HVI,...

250

Variable frequency microwave furnace system  

DOE Patents (OSTI)

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

251

Development of a High Efficiency Ceiling Fan  

E-Print Network (OSTI)

The potential of ceiling fans to improve comfort during the cooling season is well documented (Rohles et al.. 1983; Fairey et al.. 1986). There are at least two cases: In the first where air conditioning is unavailable, adding ceiling fans may significantly improve building comfort and health although actually increasing energy use. However, the more common circumstance is where ceiling fans are used with the objective of providing a higher cooling system thermostat set point with acceptable comfort. Fans can also potentially avoid the use of air conditioning during "swing" seasons. Although studies commonly suggest a 2-6OF increase in the thermostat set point, data from 386 surveyed Central Florida households suggests that although fans are used an average of 13.4 hours per day, no statistically valid difference can be observed in thermostat settings between households using fans and those without them (James et al., 1996). Part of this may be due to the lack of sufficiently wide air distribution coverage within rooms (Rohles et al, 1983; Sonne and Parker, 1998). Studies touting potential cooling savings of up to 40% have usually been sponsored by fan manufacturers (eg. A.D. Little, 1981). These often make unrealistic assumptions such as presuming that occupants are within four feet of a fan with only one fan in use and a 6°F elevation of the thermostat setting. An environmental chamber study by Consumer Reports showed that the long-reported de-stratification benefits when heating are largely unsubstantiated (Consumer Reports. 1993). Thus. benefits from ceiling fans are only to reduce cooling needs and this is completely contingent on sufficient changes in interior comfort to warrant raising of the cooling thermostat. Two other factors must be taken into account in assessing the benefits of fans: their actual energy use and the added internal heat gains produced by the fans during operation. The measured electrical demand of ceiling fans varies between 5 and 115 Watts depending on model and speed selection. A power demand of 40 W at medium speed is probably typical (Chandra, 1985). Thus, a fan used for six months of the year would use 175 kwh. With 4.3 ceiling fans in an average Florida home, this amounts to about 800 kwh of fan energy consumption --about 5% of total electricity use. Also, all of the energy use of fans is eventually converted to heat within the home which must eventually be removed by ventilation air or the cooling system.

Parker, D. S.; Callahan, M. P.; Sonne, J. K.; Su, G. H.; Hibbs, B. D.

2000-01-01T23:59:59.000Z

252

Performance Assessment of U.S. Residential Cooking Exhaust Hoods  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Assessment of U.S. Residential Cooking Exhaust Hoods Performance Assessment of U.S. Residential Cooking Exhaust Hoods Title Performance Assessment of U.S. Residential Cooking Exhaust Hoods Publication Type Journal Article LBNL Report Number LBNL-5545E Year of Publication 2012 Authors Delp, William W., and Brett C. Singer Journal Environmental Science & Technology Volume 46 Issue 11 Pagination 6167-6173 Date Published 05/08/2012 Keywords Range Hood Test Facility Abstract This study assessed the performance of seven new residential cooking exhaust hoods representing common U.S. designs. Laboratory tests were conducted to determine fan curves relating airflow to duct static pressure, sound levels, and exhaust gas capture efficiency for front and back cooktop burners and the oven. Airflow rate sensitivity to duct flow resistance was higher for axial fan devices than for centrifugal fan devices. Pollutant capture efficiency (CE) ranged from 98%, varying across hoods and with airflow and burner position for each hood. CE was higher for back burners relative to front burners, presumably because most hoods covered only part of the front burners. Open hoods had higher CE than those with grease screen and metal-covered bottoms. The device with the highest CE-exceeding 80% for oven and front burners-had a large, open hood that covered most of the front burners. The airflow rate for this hood surpassed the industry-recommended level of 118 L·s-1 (250 cfm) and produced sound levels too high for normal conversation. For hoods meeting the sound and fan efficacy criteria for Energy Star, CE was <30% for front and oven burners.

253

Knowing fans, knowing music : an exploration of fan interaction on Twitter  

E-Print Network (OSTI)

know many local Ritter fans yet” 26 She responded about aI see you're a Buffy fanare you also a Browncoat? : )”The term Browncoats refers to fans of the short-lived sci-fi

McCollum, Nick

2011-01-01T23:59:59.000Z

254

Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Home Performance with Energy Star:$1,200 Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: Up to $1,200 Furnace: $25-$250 Boilers: $100 Tank Water Heater: $40-$200 Tankless Water Heater: $400 Insulation: 20% of labor and product, up to $300 In addition to home energy audits, Xcel Energy offers rebates to its

255

CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Air Sealing/Weatherization: $350 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Forced-air furnaces: $150-$400 Natural gas boiler: $300 Natural gas condensing boiler: $500 Natural gas water heater: $70-$100 Storage tank indirect water heater: $200 Attic Air Sealing: 50% of cost, up to $200 Attic/Wall Insulation: 50% of cost, up to $150 Energy Audit: Reduced Cost

256

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years December 20, 2013 Gas furnace efficiency has large implications for residential natural gas use December 5, 2013 EIA publishes state fact sheets on residential energy consumption and characteristics August 19, 2013 All 48 related articles › ResidentialAvailable formats PDF Modeling Distributed Generation in the Buildings Sectors Released: August 29, 2013 This report focuses on how EIA models residential and commercial sector distributed generation, including combined heat and power, for the Annual Energy Outlook. State Fact Sheets on Household Energy Use

257

Lake Country Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Country Power - Residential Energy Efficiency Rebate Program Country Power - Residential Energy Efficiency Rebate Program Lake Country Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $400 per ton Central AC: $30 - $630 Air Source Heat Pumps: $330 - $630 Ductless Air-source Heat Pump: $300 ECM Furnace Motor: $100 Off-Peak ETS Heating System: $25/KW Cycled AC/Heat Pump: $100 Off-Peak Water Heater: $100 - $200 Heat Pump Water Heater: $200 Refrigerator/Freezer: $75 (with recycling of old appliance) CFL: $1 per bulb LED holiday lights: $3 per strand

258

South Kentucky RECC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Kentucky RECC - Residential Energy Efficiency Rebate Program South Kentucky RECC - Residential Energy Efficiency Rebate Program South Kentucky RECC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Heat Pumps Maximum Rebate Button Up (weatherization): $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Caulking: Free Button Up (weatherization): $20 for every 1,000 BTU reduced in heating load Geothermal Heat Pump with Touchstone Energy Home: $500 Air-Source Heat Pump with Touchstone Energy Home: $300 Touchstone Energy Manufactured Home: $250 Geothermal Heat Pump: $200 Heat Pump/Furnace Tune-Up: $75

259

Dakota Electric Association - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Electric Association - Residential Energy Efficiency Rebate Dakota Electric Association - Residential Energy Efficiency Rebate Program Dakota Electric Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount CFL's: $1/bulb LED's: $3/bulb AC/Heat Pump Tune-Up: $25 Central AC/Heat Pump: $30 - $330 depending on SEER rating Air-Source Heat Pump: $330 for off peak control Ductless Air-Source Heat Pump: $300 Furnace Motor: $100 Geothermal Heat Pump: $400/ton Storage Electric Heating: $25 per kW Electric/Heat Pump Water Heater: $100 - $200 Refrigerator: $75 Freezer: $75 Provider Dakota Electric Service

260

Duke Energy (Gas and Electric) - Residential and Builder Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Gas and Electric) - Residential and Builder Energy Duke Energy (Gas and Electric) - Residential and Builder Energy Efficiency Rebate Program Duke Energy (Gas and Electric) - Residential and Builder Energy Efficiency Rebate Program < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heating Heat Pumps Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Existing Home Air-source Heat Pump: $200 (home owner); $100 (dealer) Existing Home Geothermal Heat Pump: $200 (homeowner); $100 (dealer) Existing Home Air Conditioner: $200 (home owner); $100 (dealer) Existing Home Gas Furnace: $200 (home owner); $100 (builder) Heat Pump/AC in New Home: $300/heat pump installed (builder)

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MassSAVE (Gas) - Residential Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MassSAVE (Gas) - Residential Rebate Program MassSAVE (Gas) - Residential Rebate Program MassSAVE (Gas) - Residential Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Program Info Start Date 1/1/2012 Expiration Date 12/31/2013 State Massachusetts Program Type Utility Rebate Program Rebate Amount Warm Air Furnaces with Electronic Commutated Motor (ECM): $300-$450 Forced Hot Water Boilers: $1,000-$1500 Programmable/Wi-Fi Thermostats: $25-$100 Indirect Water Heater: $400 Tankless On-Demand Water Heater: $500 or $800 Indirect Water Heater: $400 Condensing Gas Water Heaters: $500 Combined Boiler/Water Heating Unit: $1,200 Storage Water Heater: $100 After-Market Boiler Reset Controls: $225

262

Submitting Organization Hongyou Fan Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

&24; 2007 R&D 100 Award Entry Form &24; Submitting Organization Hongyou Fan Sandia National Laboratories Advanced Materials Laboratory 1001 University Boulevard SE Albuquerque, NM...

263

Active Noise Control of a Radial Fan.  

E-Print Network (OSTI)

??This thesis work aims at investigating the use of an active noise control (ANC) system on a radial fan. This was done by studying the… (more)

Murthy, Muddala

2009-01-01T23:59:59.000Z

264

Residential | OpenEI  

Open Energy Info (EERE)

Residential Residential Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

265

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

266

Advanced Energy-Efficient Filtration: Fan Filter Unit  

E-Print Network (OSTI)

Efficient Fan- Filter Units, Proceedings of SEMI TechnicalFor Evaluating Fan-Filter Unit Performance – Applications inPerformance of Fan-Filter Units, Version 1.2 (2004, public

Xu, Tengfang

2005-01-01T23:59:59.000Z

267

Advanced Energy-Efficient Filtration: Fan Filter Unit  

E-Print Network (OSTI)

Cleanrooms: Energy Efficient Fan- Filter Units, ProceedingsStandard Method For Evaluating Fan-Filter Unit Performance –Energy Performance of Fan-Filter Units, Version 1.2 (2004,

Xu, Tengfang

2005-01-01T23:59:59.000Z

268

Best Practice for Energy Efficient Cleanrooms: Fan-Filter Units  

E-Print Network (OSTI)

control F iltra ti on ? Fan Efficiency ? Right Sizing ?Energy Performance of Fan-Filte r Units, Version 1.3 (2005),RP36.1 (Draft). Testing Fan-Filter Units. Draft Recommended

Xu, Tengfang

2005-01-01T23:59:59.000Z

269

Residential Wood Residential wood combustion (RWC) is  

E-Print Network (OSTI)

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

270

The Effect of Inlet Flow Profile Distortion on Fan Performance  

Science Conference Proceedings (OSTI)

Performance tests on fans for utility and industrial applications are based on codes that expect a relatively uniform velocity profile at the fan inlet. Unfortunately, when fans scaled up from the ideal model fans are installed in actual utility and industrial applications, non-uniform or distorted flow patterns often occur at the inlet of the fan. This project sought to determine and, if possible, quantify the effect on fan performance of distorted inlet flow profiles. A second goal was to determine whe...

2010-02-22T23:59:59.000Z

271

Operation and Maintenance Guidelines for Draft Fans  

Science Conference Proceedings (OSTI)

The reliability, efficiency, and safety of draft fans in fossil fuel power plants depend on effective operating and maintenance practices. These guidelines systematically present state-of-the-art techniques that utility personnel can use in operation, maintenance, troubleshooting, inspection, and weld repair of major fan components and auxiliary systems.

1999-05-13T23:59:59.000Z

272

Redesign of ceiling fan - adapted to the Scandinavian market.  

E-Print Network (OSTI)

?? The master degree thesis project, at Halmstad University, was made in cooperation with Hunter Fan, one of the leading fan companies on the American… (more)

Eliasson, Anna

2007-01-01T23:59:59.000Z

273

Potential Global Benefits of Improved Ceiling Fan Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Benefits of Improved Ceiling Fan Energy Efficiency Title Potential Global Benefits of Improved Ceiling Fan Energy Efficiency Publication Type Report LBNL Report Number...

274

Characterization of air recirculation in multiple fan ventilation systems.  

E-Print Network (OSTI)

??Booster fans, large underground fans, can increase the volumetric efficiency of ventilation systems by helping to balance the pressure and quantity distribution throughout a mine,… (more)

Wempen, Jessica Michelle

2012-01-01T23:59:59.000Z

275

Fan-fold shielded electrical leads  

DOE Patents (OSTI)

Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

Rohatgi, R.R.; Cowan, T.E.

1996-06-11T23:59:59.000Z

276

Fan-fold shielded electrical leads  

DOE Patents (OSTI)

Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

Rohatgi, Rajeev R. (Mountain View, CA); Cowan, Thomas E. (Livermore, CA)

1996-01-01T23:59:59.000Z

277

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

278

Furnace Systems Technology Workshop Brochure (PDF)  

Science Conference Proceedings (OSTI)

To register, visit the furnace systems technology ... transfer, atmospheres and purging requirements, effective control systems, and fuel efficiency, production ...

279

Residential coal use: 1982 international solid fuel trade show and conference Atlantic City, New Jersey. [USA; 1974; By state  

Science Conference Proceedings (OSTI)

The US Department of Energy's anthracite and residential coal programs are described. The residential coal effort is an outgrowth and extension of the anthracite program, which has been, and continues to be, involved in promoting increased production and use of anthracite and the restoration of anthracite as a viable economic alternative to soft coals and to imported oil and gas now supplying the Northeast. Since anthracite is a preferred fuel for residential heating, residential coal issues comprise an important part of our anthracite activities. We have commenced a study of residential coal utilization including: overview of the residential coal market; market potential for residential coal use; analysis of the state of technology, economics, constraints to increased use of coal and coal-based fuels in residential markets, and identification of research and development activities which would serve to increase the market potential for coal-fired residential systems. A considerable amount of information is given in this report on residential coal furnaces and coal usage in 1974, prices of heating oils and coal, methods of comparing these fuels (economics), air pollution, safety, wood and wood furnaces, regulations, etc.

Pell, J.

1982-06-01T23:59:59.000Z

280

Ceiling Fan and Ceiling Fan Light Kit use in the U.S. Results of a Survey on Amazon Mechanical Turk  

E-Print Network (OSTI)

Intellect, LLC (2011). Ceiling fan consumer survey data fromconsumption from ceiling fans. 5 References Amazon.com. (January/February 2001). Ceiling fans: Fulfilling the energy

Kantner, Colleen L.S.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Burlington Electric Department - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Burlington Electric Department - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Appliances &...

282

Columbia Rural Electric Association - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Columbia Rural Electric Association - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home...

283

Ozarks Electric Cooperative - Residential Energy Efficiency Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ozarks Electric Cooperative - Residential Energy Efficiency Loan Program Ozarks Electric Cooperative - Residential Energy Efficiency Loan Program Eligibility Residential Savings...

284

Kootenai Electric Cooperative - Residential Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kootenai Electric Cooperative - Residential Efficiency Rebate Program Kootenai Electric Cooperative - Residential Efficiency Rebate Program Eligibility Residential Savings For Home...

285

Southwest Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

286

Kirkwood Electric - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kirkwood Electric - Residential Energy Efficiency Rebate Program Kirkwood Electric - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating &...

287

Central Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Central Electric Cooperative - Residential Energy Efficiency Rebate Programs Eligibility Construction Residential Savings For Other...

288

Cherokee Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cherokee Electric Cooperative - Residential Energy Efficiency Loan Programs Cherokee Electric Cooperative - Residential Energy Efficiency Loan Programs Eligibility Residential...

289

Marietta Power & Water - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power & Water - Residential Energy Efficiency Rebate Program Marietta Power & Water - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

290

SRP - Residential Energy Efficiency Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRP - Residential Energy Efficiency Rebate Program SRP - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home Weatherization Commercial...

291

Barron Electric Cooperative - Residential Energy Resource Conservation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Barron Electric Cooperative - Residential Energy Resource Conservation Loan Program Eligibility Residential Savings For Home...

292

Cedar Falls Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating & Cooling Commercial...

293

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Lighting: Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Residential and Commercial Requirements TOPIC BRIEF 1 Lighting: Residential and Commercial Requirements Residential Lighting Requirements The 2009 International Energy...

294

Minnesota Valley Electric Cooperative -Residential Energy Resource...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Eligibility Residential Savings...

295

Lake Region Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Region Electric Cooperative - Residential Energy Efficiency Rebate Program Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

296

PPL Electric Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program PPL Electric Utilities - Residential Energy Efficiency Rebate Program Eligibility Multi-Family Residential Residential Savings For Home...

297

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2012 (EIA)

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

298

Atmos Energy (Gas) - Residential Efficiency Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy (Gas) - Residential Efficiency Program Atmos Energy (Gas) - Residential Efficiency Program Eligibility Low-Income Residential Residential Savings For Heating & Cooling...

299

Benton PUD - Residential Energy Efficiency Rebate Programs |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Benton PUD - Residential Energy Efficiency Rebate Programs Eligibility Multi-Family Residential Residential Savings For Appliances &...

300

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Fans Furnace Fans Sign up for e-mail updates on regulations for this and other products Currently there are no energy conservation standards for residential furnace fans. A furnace fan is an electrically-powered device used in residential central heating, ventilation, and air conditioning (HVAC) systems for the purposes of circulating air through duct work. A furnace fan consists of a fan motor and its controls, a centrifugal impeller, and sheet metal housing. The Department of Energy (DOE) is currently conducting an energy conservation standard rulemaking for furnace fans. If any standard is established, its benefits will be explained in the final rule. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

PG&E - Residential Energy Efficiency Rebate Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PG&E - Residential Energy Efficiency Rebate Programs PG&E - Residential Energy Efficiency Rebate Programs PG&E - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Expiration Date 12/31/2013 State California Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Refrigerator: $75 Heat Pump Water Heater: $500> Variable Speed Motor Air Handler System: $50 Whole House Fan: $100 Pool Pump Replacement: $100 Refrigerator/Freezer Recycling: $35 Provider Pacific Gas and Electric Company Pacific Gas and Electric Company (PG&E) offers a variety of rebates for residential customers who install energy efficient equipment in eligible

302

Direct current, closed furnace silicon technology  

Science Conference Proceedings (OSTI)

The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

1994-05-01T23:59:59.000Z

303

The following comments are provided on behalf of Ingersoll Rand, Residential Sol  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

following comments are provided on behalf of Ingersoll Rand, Residential Solutions, following comments are provided on behalf of Ingersoll Rand, Residential Solutions, manufacturer of Trane and American Standard residential air conditioners, heat pumps, furnaces and accessories therefore. --- Ingersoll Rand appreciates the opportunity to comment on the Department of Energy's request for information on "Reducing Regulatory Burden" in the spirit of Executive Order 13563 ---- It is ironic that the response interval for the RFI on reducing regulatory burden overlaps the issuance of the Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment; Final Rule [the enforcement rule]. That rule

304

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

305

AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Appalachian Power - Residential Energy Efficiency Rebate AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) < Back Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Attic or Sidewall Insulation: $300 Basement or Crawl Space Insulation: $200 HVAC Maintenance: $100 Duct Sealing: $100 Envelope Air Infiltration Reduction: $200 Program Info Funding Source ApCo HomeSMART Program Start Date 3/11/2011 State West Virginia Program Type Utility Rebate Program Rebate Amount HVAC Maintenance: 50% of cost Insulation: $0.30/sq ft Air Source Heat Pump (replacing electric furnace): $100 or $200

306

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years December 20, 2013 Gas furnace efficiency has large implications for residential natural gas use December 5, 2013 EIA publishes state fact sheets on residential energy consumption and characteristics August 19, 2013 All 48 related articles › Other End Use Surveys Commercial Buildings - CBECS Manufacturing - MECS Transportation About the RECS EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage

307

Fan System Assessment - End User Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fan System Assessment - End User Training Fan System Assessment - End User Training Fan System Assessment - End User Training December 18, 2013 7:30AM to 4:30PM EST Boise, Idaho Optimizing industrial fan systems can take on many forms, but any fan optimization project must meet the needs of the process. This self-paced workshop highlights the benefits of fan system optimization and examines fan system performance characteristics and practical issues concerning measurement data. The session introduces the FSAT software. This powerful analysis software helps you quantify the potential benefits of configuring fan systems for optimal performance, calculate the amount of energy use by your fan system, and estimate fan system efficiency. Learn how the software works, what data is required for FSAT, and how to interpret assessment

308

Cooling with a Whole House Fan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling with a Whole House Fan Cooling with a Whole House Fan Cooling with a Whole House Fan May 30, 2012 - 6:54pm Addthis Whole house fan installed as part of a home retrofit project in California. | Photo courtesy of Lieko Earle, NREL. Whole house fan installed as part of a home retrofit project in California. | Photo courtesy of Lieko Earle, NREL. What does this mean for me? A whole-house fan may be sufficient to cool your house, at least for part of the year. In many climates, a whole-house fan can save you money and maintain comfort during the cooling season. How does it work? A whole-house fan works by pulling air in through windows and exhausting it through the attic and roof. Whole house cooling using a whole house fan can substitute for an air conditioner most of the year in most climates. Whole house fans combined

309

Laugh out loud in real life : women's humor and fan identity; Women's humor and fan identity.  

E-Print Network (OSTI)

??The emerging field of fan studies has, until recently, been defined only by the research that has taken place within it. Almost universally, this research… (more)

Klink, Madeline LeNore

2010-01-01T23:59:59.000Z

310

Fanning the Flames of Romance: An Exploration of Fan Fiction and the Romance Novel.  

E-Print Network (OSTI)

??Fan fiction and romance novels constitute two bodies of romantic literature being produced for and by women within dramatically different environments. The purpose of this… (more)

Morrissey, Katherine

311

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

between the cooling effect (measured with a thermal manikin)output is the body cooling effect [5]. Thermal manikins withThermal manikins can be used to measure the fan cooling

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

312

Advanced Manufacturing Office: Training: Fan Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

the tool and presents the basics-and the benefits-of using it to target opportunities for energy savings in your plant. Fan System Assessment - self-paced workshop Availability:...

313

OpenEI - Residential  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

314

Residential Price - Marketers  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per Thousand Cubic Feet ...

315

Essays on residential desegregation  

E-Print Network (OSTI)

Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

Wong, Maisy

2008-01-01T23:59:59.000Z

316

Choosing a Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Choosing a Residential Window LBNLs Windows and Daylighting Group provides technical support to government and industry efforts to help consumers and builders choose...

317

PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates PG&E (Gas) - Multi-Family Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info Funding Source System Benefits Charge Expiration Date 12/31/2013 State California Program Type Utility Rebate Program Rebate Amount Clothes Washers (In-Unit): $50 Clothes Washers (Common Area): $150 Central System Water/Space Heating: $1,500/Unit Storage Water Heater: $200/Unit Boilers: $500/Unit Furnace: $150 - $300/Unit Provider Residential Programs Through the Rebates for Multi-Family Properties Program, PG&E offers prescriptive rebates for owners and managers of multi-family properties of

318

RG&E (Gas) - Residential Efficiency Program (New York) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RG&E (Gas) - Residential Efficiency Program (New York) RG&E (Gas) - Residential Efficiency Program (New York) RG&E (Gas) - Residential Efficiency Program (New York) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Cannot exceed total installed price. Program Info Funding Source PSC-mandated System Benefits Charge (SBC) State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140-$600 (w/ECM) Water Boiler: $350-$1,000 Steam Boiler: $350 Boiler Reset Control: $100 Indirect Water Heater: $210 Programmable Thermostat: $18 RG&E is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as they are not the same type of

319

SoCalGas - Multi-Family Residential Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-Family Residential Rebate Program Multi-Family Residential Rebate Program SoCalGas - Multi-Family Residential Rebate Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Construction Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount Dishwashers: $30 Insulation: 25% Natural Gas Storage Water Heaters: $30 Tankless Water Heaters: $300 Central Furnaces: $200 Central System Water Heaters: $500 Central System Boilers: $1,500 Central Demand Hot Water Controllers: $700 or $1400 Provider Southern California Gas Company Southern California Gas Company provides incentives to encourage the owners and managers of multi-family residential buildings to increase their energy

320

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997 CONSUMPTION AND ...  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

322

An Innovative Method for Dynamic Characterization of Fan Filter Unit Operation.  

E-Print Network (OSTI)

Filtration: Fan filter units. Final Report, LawrencePerformance of Fan Filter Units, Version 1.3. ” BerkeleyEfficient Fan filter units,” Proceedings of Semiconductor

Xu, Tengfang

2006-01-01T23:59:59.000Z

323

Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan  

E-Print Network (OSTI)

of a stream-dominated alluvial fan, San Joaquin valley,on Quaternary fluvial fans, San Joaquin Basin, California,M. , (Eds), Alluvial Fans: Geomorphology, Sedimentology,

Lee, Victoria E.

2010-01-01T23:59:59.000Z

324

Parametric System Curves: Correlations Between Fan Pressure Rise and Flow for Large Commercial Buildings  

E-Print Network (OSTI)

Filter Pressure Loss Model for Fan Energy Calculation in Air2010. “Selecting Efficient Fans”. ASHRAE Journal, Vol. 52,Equipment: Chapter 20 – Fans”. Atlanta, GA: American Society

Sherman, Max

2010-01-01T23:59:59.000Z

325

An Innovative Method for Dynamic Characterization of Fan Filter Unit Operation.  

E-Print Network (OSTI)

Laboratory Methods of Testing Fans for Rating. ASHRAE. 1987.Efficient Filtration: Fan filter units. Final Report,Energy Performance of Fan Filter Units, Version 1.3. ”

Xu, Tengfang

2006-01-01T23:59:59.000Z

326

Coarse-clastic turbidite sedimentation : the neoproterozoic Imsdalen submarine fan complex, Hedmark Basin, South Norway.  

E-Print Network (OSTI)

??The Imsdalen Submarine Fan Complex is a gravel and coarse sand dominated turbidite fan system. The fan complex was deposited in the Neoproterozoic Hedmark rift… (more)

Stalsberg, Martin

2004-01-01T23:59:59.000Z

327

Ferrosilicon smelting in a direct current furnace  

DOE Patents (OSTI)

The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

Dosaj, V.D.; May, J.B.

1992-12-29T23:59:59.000Z

328

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

Furnaces Incentives Furnaces Incentives Jump to: navigation, search The following contains the list of 688 Furnaces Incentives. CSV (rows 1-500) CSV (rows 501-688) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit

329

Blast Furnace Granulated Coal Injection System Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880,...

330

Energy Control in Primary Aluminium Casthouse Furnaces  

Science Conference Proceedings (OSTI)

In order to effectively run a furnace with low energy consumption the burner's fuel ... Oxidation of Commercial Purity Aluminium Melts: An Experimental Study.

331

Condensing furnaces: Lessons from a utility  

SciTech Connect

for the last several years about 90% of the new natural gas furnaces installed in Wisconsin have been condensing furnaces and a number of lessons have been learned. If you avoid the common mistakes, condensing furnaces typically can deliver heating savings of 20-35 % assuming the old furnace was in the 60% AFUE range. This article describes the common mistakes and how to avoid them: outside air needed 100%; benefits of sealed combustion; follow the installation manual scrupulously; how to avoid potential problems; tips on venting.

Beers, J. [Madison Gas and Electric Company, WI (United States)

1994-11-01T23:59:59.000Z

332

Dataplot Commands for Furnace Case Study  

Science Conference Proceedings (OSTI)

... variable label run Run Number variable label zone Furnace Location variable label wafer Wafer Number variable label filmthic Film Thickness (ang ...

2012-03-31T23:59:59.000Z

333

High Performance Sealing for Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

Operation of an Open Type Anode Baking Furnace with a Temporary Crossover ... Wireless Communication for Secured Firing and Control Systems of Anode ...

334

Energy Efficiency Improvement in Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

One of the high energy consumption facilities in a smelter is the Anode Baking ... Hydro Aluminium's Historical Evolution of Closed Type Anode Baking Furnace ...

335

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

336

Vertical two chamber reaction furnace  

DOE Patents (OSTI)

A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

Blaugher, R.D.

1999-03-16T23:59:59.000Z

337

SDG&E (Electric) - Multi-Family Residential Efficiency Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-Family Residential Efficiency Program Multi-Family Residential Efficiency Program SDG&E (Electric) - Multi-Family Residential Efficiency Program < Back Eligibility Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount Clothes Washers: $75-$150 Room Air Conditioner: $50 Central Heat Pumps: $100 Insulation: $0.15/sq. ft. CFLs: $4-$10 Ceiling Fans with CFLs: $20 Interior Hardwired Fluorescent Fixtures: $32-$45 Exterior Hardwired Fluorescent Fixtures: $30 T12 De-lamping: $6/lamp Water Heaters: $30 Occupancy Sensors: $10 LED Exit Signs: $35 Photocells: $10/unit

338

Amazing furnace-free house  

Science Conference Proceedings (OSTI)

A new 24,450 ft/sub 2/ house is described which has the following features: (1) 100% solar heating in a 6500 degree-day climate; (2) a greenhouse which never drops below 32/sup 0/F; (3) steady fresh air inflow; (4) building costs comparable to conventional homes of the same size; (5) roof solar collector and high temperature attic thermal storage; (6) a Solar Staircase which controls seasonal insolation; (7) a rock bin (100 ton) for low temperature storage; and (8) durability with low maintenance. The design features necessary to obtain the above criteria are discussed as well as the operation of the house for winter and summer use. An air moving system (fan plus ducts) is an essential part of the house. (MJJ)

Shurcliff, W.A.

1982-11-01T23:59:59.000Z

339

Fan-less long range alpha detector  

DOE Patents (OSTI)

A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

MacArthur, Duncan W. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

340

Fan-less long range alpha detector  

DOE Patents (OSTI)

A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

MacArthur, D.W.; Bounds, J.A.

1994-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Optimized Design of a Furnace Cooling System  

E-Print Network (OSTI)

This paper presents a case study of manufacturing furnace optimized re-design. The bottleneck in the production process is the cooling of heat treatment furnaces. These ovens are on an approximate 24-hour cycle, heating for 12 hours and cooling for 12 hours. Pressurized argon and process water are used to expedite cooling. The proposed modifications aim to minimize cycling by reducing cooling time; they are grouped into three fundamental mechanisms. The first is a recommendation to modify current operating procedures. This entails opening the furnace doors at higher than normal temperatures. A furnace temperature model based on current parameters is used to show the reduction in cooling time in response to opening the furnace doors at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat from the furnace envelope. Heat transfer models based on convective Nusselt correlations are used to determine the increase in heat transfer rate. The last mechanism considers a modification to the current heat exchanger. By decreasing the temperature of the water jacket and increasing heat exchanger efficiency, heat transfer from the furnace is increased and cooling time is shortened. This analysis is done using the Effectiveness-NTU method.

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

342

Thermal Imaging Control of Furnaces and Combustors  

Science Conference Proceedings (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

343

Fan blade development. Final report Sep 81-Sep 82  

SciTech Connect

The objective of this program was to develop an improved fan blade that could be utilized in place of the current steel fan blade on the Pedal Ventilator Kit (PVK). The goals of the program were to reduce both the unit cost and weight of the fan while maintaining its effectiveness and reliability. A value analysis study was conducted on the fan blade to determine material/design revisions that offered potential manufacturing economies. Based on the conclusions of the study, two designs were chosen for fabrication. The two fan designs were constructed and tested. As a result of the performance testing, one fan blade emerged as the optimum design. Fifteen fan blades of the optimum design were constructed for FEMA inspection and distribution. Preliminary specifications were generated for the fan blade assembly. in addition, production cost estimates based on a procurement of 100,000 units were formulated for FEMA budgetary purposes.

Buday, J.M.

1982-09-01T23:59:59.000Z

344

Precision control of high temperature furnaces  

DOE Patents (OSTI)

It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

Pollock, G.G.

1994-12-31T23:59:59.000Z

345

Residential | Open Energy Information  

Open Energy Info (EERE)

Residential Residential Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

346

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

347

Residential Energy Disclosure (Hawaii)  

Energy.gov (U.S. Department of Energy (DOE))

A residential property owner is required to disclose electricity costs for the most recent three-month period in which the property was occupied as a condition of selling it. No proof or copies of...

348

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

from last week to 2.62 per gallon; up 37.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price...

349

Residential propane prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

from last week to 2.57 per gallon; up 32.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price...

350

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

351

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

352

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

353

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

354

Residential Gateways and Controllers  

Science Conference Proceedings (OSTI)

Energy companies are exploring two-way residential communications to help reduce the cost of providing standard energy-related services, such as itemized billing or demand reduction, as well as to provide nontraditional services, such as diagnostic services and e-mail. This report covers the key to development of these services -- residential gateways and controllers. The report was prepared with both technical and financial energy company managers in mind, for use as a reference tool and strategic plann...

1999-08-31T23:59:59.000Z

355

Laboratory evaluation of fan/filter units' aerodynamic and energy performance  

E-Print Network (OSTI)

such as motor types, fan wheels, design, and orientations ofventilation system design, testing of fans and ventilation

Xu, Tengfang; Jeng, Ming-Shan

2004-01-01T23:59:59.000Z

356

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network (OSTI)

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace, the energy efficiency improved by approximately 11%. The total savings are approximately 14,000 Million Btu/yr on one furnace. Insulation will be applied to several other furnaces at the site.

Haseltine, D. M.; Laffitte, R. D.

1999-05-01T23:59:59.000Z

357

Fan Blade Fracture in a Welded Assembly - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Failure Analysis and Prevention. Presentation Title, Fan Blade Fracture in a ...

358

Improving air handler efficiency in residential HVAC applications  

E-Print Network (OSTI)

of different blade design and fan to housing clearances forimprovements, such as fan blade and cabinet design are hardaerodynamic fan blade and housing design? ” To investigate

Walker, Iain S.; Mingee, Michael D.; Brenner, Douglas E.

2003-01-01T23:59:59.000Z

359

TR-034 Geomorphology March 2006 Coastal fan destabilization  

E-Print Network (OSTI)

the watershed boundary). 3.0 STUDY DESIGN AND METHODS To evaluate fans from a broad range of coastal conditionsTR-034 Geomorphology March 2006 Coastal fan destabilization and forest management by T.H. Millard Columbia V9L 1V2 Citation: Millard, T.H., D.J. Wilford and M.E. Oden. 2006. Coastal fan destabilization

360

Recent Sediments of the Monterey Deep-Sea Fan  

E-Print Network (OSTI)

T Or THE MONTEREV DEEP SEA FAN PLAlE Conpl1.d and ren1our.dO F THE MONTEREY DEEP- SEA FAN by P a t Wilde Berkeley,of segmented alluvial fans in w e s t e r n F r e s n o

Wilde, Pat

1965-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Efficiency Fans and High Efficiency Electrical Motors  

E-Print Network (OSTI)

Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin. By replacing old inefficient centrifugal fans with new higher efficiency fans, additional power savings can be achieved.

Breedlove, C. W.

1989-09-01T23:59:59.000Z

362

Data Linking with Ontology Alignment Zhengjie Fan  

E-Print Network (OSTI)

Data Linking with Ontology Alignment Zhengjie Fan INRIA & LIG 655, avenue de l'Europe, Montbonnot data on the web, so that users can share information semantically. Then, linking isolated data sets to to be compared, so that it enhances the accuracy of the linking process. I propose a data linking method

363

Lattice congruences, fans and Hopf algebras  

Science Conference Proceedings (OSTI)

We give a unified explanation of the geometric and algebraic properties of two well-known maps, one from permutations to triangulations, and another from permutations to subsets. Furthermore we give a broad generalization of the maps. Specifically for ... Keywords: Malvenuto-Reutenauer Hopf algebra, coexter group, fan poset, hyperplane arrangement, pattern avoidance, permutohedron, poset of regions, weak order

Nathan Reading

2005-05-01T23:59:59.000Z

364

Building America Top Innovations 2013 Profile … High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Fuel Utilization Annual Fuel Utilization Efficiency [AFUE] and Seasonal Energy Efficiency Ratio [SEER] and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter, and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

365

Building America Top Innovations 2013 Profile … High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

annual fuel utilization annual fuel utilization efficiency (AFUE) and seasonal energy efficiency ratio (SEER) and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

366

Reading Municipal Light Department - Residential ENERGY STAR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential ENERGY STAR Appliance Rebate Program Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program Eligibility Residential Savings For Heating &...

367

Chicopee Electric Light - Residential Solar Rebate Program |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Residential Solar Rebate Program Chicopee Electric Light - Residential Solar Rebate Program Eligibility Residential Savings For Solar Buying & Making...

368

Lane Electric Cooperative - Residential Energy Efficiency Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Loan Programs Lane Electric Cooperative - Residential Energy Efficiency Loan Programs Eligibility Multi-Family Residential Residential Savings For Home...

369

Membership Criteria: Better Buildings Residential network  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn Better Buildings Residential Network (BBRN) members must be supportive of residential...

370

Residential Mobility and Latino Political Mobilization  

E-Print Network (OSTI)

Brians, Craig Leonard. 1997. “Residential Mobility, VoterHighton, Benjamin. 2000. "Residential Mobility, Community2003. “ Language Choice, Residential Stability and Voting

Ramirez, Ricardo

2005-01-01T23:59:59.000Z

371

RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES  

E-Print Network (OSTI)

Report on Applicability of Residential Ventilation StandardsCharacterization of Residential New Construction PracticesJ - Load Calculation for Residential Winter and Summer Air

Meier, Alan K.

2008-01-01T23:59:59.000Z

372

Evaluation of evolving residential electricity tariffs  

E-Print Network (OSTI)

Evaluation of evolving residential electricity tariffs JudyEvaluation of evolving residential electricity tariffs Judyjdonadee@andrew.cmu.edu Abstract Residential customers in

Lai, Judy

2011-01-01T23:59:59.000Z

373

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network (OSTI)

465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

374

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Related  to  Residential  Ventilation  Requirements”.  Rudd,  A.   2005.   “Review  of  Residential  Ventilation and  Matson  N.E. ,  “Residential  Ventilation  and  Energy 

Sherman, Max

2008-01-01T23:59:59.000Z

375

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Field Performance the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: Chicago, IL Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Natural Gas Furnaces Application: New and/or retrofit; Single and/or multifamily Year Tested: 2012/2013 Applicable Climate Zone(s): All or specify which ones PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $250 for adjustments Projected Energy Savings: 6.4% heating savings Projected Energy Cost Savings: $100/year climate-dependent Gas furnaces can successfully operate in the field for 20 years or longer with

376

Cowlitz County PUD - H2 AdvantagePlus Residential Heat Pump Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cowlitz County PUD - H2 AdvantagePlus Residential Heat Pump Program Cowlitz County PUD - H2 AdvantagePlus Residential Heat Pump Program Cowlitz County PUD - H2 AdvantagePlus Residential Heat Pump Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Heat Pumps: $450 - $1,800 Conversion from Electric Forced Air Furnace: $1,400 - $1,900 Duct Sealing: $50 - $350 Heat Pump Controls: $300 Provider Cowlitz County Public Utility District Cowlitz County PUD will provide rebates to customer homeowners who have a PUD-qualified heat pump dealer upgrade their heating system with the installation of a premium efficiency heat pump system, in accordance with the PUD's rigid set of installation standards, and who upgrade their

377

List of Whole House Fans Incentives | Open Energy Information  

Open Energy Info (EERE)

Whole House Fans Incentives Whole House Fans Incentives Jump to: navigation, search The following contains the list of 26 Whole House Fans Incentives. CSV (rows 1 - 26) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives (Iowa) Utility Rebate Program Iowa Agricultural Agricultural Equipment Ceiling Fan Clothes Washers Custom/Others pending approval Dishwasher Doors Heat recovery Lighting Motor VFDs Motors Refrigerators Water Heaters Windows Whole House Fans Room Air Conditioners Ground Source Heat Pumps Yes Alliant Energy Interstate Power and Light - Farm Equipment Energy Efficiency Incentives (Minnesota) Utility Rebate Program Minnesota Agricultural Agricultural Equipment

378

Ladle Refining Furnaces for the Steel Industry  

Science Conference Proceedings (OSTI)

There has been a tremendous interest in the use of ladle refining furnaces in the last few years. Several units have been or are being constructed in the United States and most steel companies are seriously considering installing them. The purpose of this report is to inform the member companies of EPRI of the development and operations of ladle furnaces and to assist steel companies in determining if ladle furnaces fit their goals and which particular unit would be best for their operation. In this repo...

1990-01-31T23:59:59.000Z

379

About Residential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » About Residential Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to developing innovative whole-house energy efficiency solutions through Building America research projects. We also provide guidelines and tools for researchers conducting building related research projects. Promoting a trusted, whole-house process for upgrading existing homes with

380

Jasper County REMC - Residential Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jasper County REMC - Residential Residential Energy Efficiency Jasper County REMC - Residential Residential Energy Efficiency Rebate Program Jasper County REMC - Residential Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $35 Heat Pump Water Heater: $400 Air-Source Heat Pumps: $250 - $1,500/unit (Power Moves rebate), $200 (REMC Bill Credit) Dual Fuel Heat Pumps: $1,500/unit Geothermal Heat Pumps: $1,500/unit (Power Moves rebate), $500 (REMC Bill Credit) Provider Jasper County REMC Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Demonstration of Intelligent Control and Fan Improvements in Computer Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Intelligent Control and Fan Improvements in Computer Room Demonstration of Intelligent Control and Fan Improvements in Computer Room Air Handlers Title Demonstration of Intelligent Control and Fan Improvements in Computer Room Air Handlers Publication Type Report Refereed Designation Unknown LBNL Report Number LBNL-6007E Year of Publication 2012 Authors Coles, Henry C., Steve E. Greenberg, and Corrine Vita Document Number LBNL-6007E Date Published 12/2012 Publisher Lawrence Berkeley National Laboratory City Berkeley, CA Keywords air distribution, building technology and urban systems department, computer room air handler, crah control, data center, data center crah, ec fan, ecm, ecm fan, fan speed control, high tech and industrial systems group, plug fan, variable frequency drive, vfd, wireless control Abstract

382

Pollutant Removal Efficiency of Residential Cooking Exhaust Hoods  

Science Conference Proceedings (OSTI)

Capture efficiency (CE) of exhaust from a natural gas cooking range was quantified for three common designs of residential range hoods in laboratory experiments: (A) microwave exhaust combination; (B) short hood with grease-screen-covered air inlet at bottom; and (C) deep, open hood exhausting at top. Devices were evaluated at varying installation heights, at highest and lowest fan settings, and with the hood installed 15 cm away from back wall with intent to improve CE for front burners. Each configuration was evaluated for the oven and for three cooktop burner combinations (two back, two front, one front and one back). At highest fan settings and standard installation against the wall, Hoods A and C captured back cooktop burner exhaust at > 90 percent and Hood B at > 80 percent. In this configuration, CE for front burner exhaust was 73-78 percent for Hoods A and C but only 46-63 percent for Hood B. CEs followed similar patterns but were substantially lower on the lowest fan speed. Installing the hood away from the wall improved CE for oven and front burners on Hood A at low speed, but substantially reduced CE for back burners for all hoods at low and high speed.

Singer, Brett C.; Sherman, Alexander D.; Hotchi, Toshifumi; Sullivan, Douglas P.

2011-07-01T23:59:59.000Z

383

Avista Utilities (Gas) - Oregon Residential Energy Efficiency...  

Open Energy Info (EERE)

Amount Forced Air Furnaces: 200 Boiler Systems: 200 Programmable Thermostats: 50 Windows: 2.25sq. ft. Insulation: 50% of cost Equipment Requirements Forced Air Furnaces:...

384

Analysing International Sports Fan Motivations and Constraints: The Case of Japanese International Sports Fan Tourists and Rugby World Cup Fan Tourists.  

E-Print Network (OSTI)

??The scale of professional sports leagues and mega sports events has expanded recently. Many sports fans travel to foreign countries to watch international events featuring… (more)

Nishio, Tatsuru

2013-01-01T23:59:59.000Z

385

Residential Building Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

386

Building Technologies Residential Survey  

SciTech Connect

Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

Secrest, Thomas J.

2005-11-07T23:59:59.000Z

387

Multiple hearth furnace for reducing iron oxide  

SciTech Connect

A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

2012-03-13T23:59:59.000Z

388

Optical Furnace offers improved semiconductor device ...  

This means that the furnace is almost immune to the contamination from hot walls of ... NREL 94-26 US 5,897,331 High Efficiency Low Cost Thin Film ...

389

Furnaces and Boilers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency...

390

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

391

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

392

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

393

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

394

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

395

Firelands Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility...

396

South Alabama Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Alabama Electric Cooperative - Residential Energy Efficiency Loan Program South Alabama Electric Cooperative - Residential Energy Efficiency Loan Program Eligibility...

397

Central Alabama Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility...

398

Cookeville Electric Department - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cookeville Electric Department - Residential Energy Efficiency Rebate Program Cookeville Electric Department - Residential Energy Efficiency Rebate Program Eligibility Commercial...

399

Lane Electric Cooperative - Residential and Commercial Weatherization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Commercial Weatherization Grant Program Lane Electric Cooperative - Residential and Commercial Weatherization Grant Program Eligibility Commercial Low-Income Residential...

400

Lane Electric Cooperative - Residential Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Rebate Program Lane Electric Cooperative - Residential Efficiency Rebate Program Eligibility Residential Savings For Appliances & Electronics Home Weatherization...

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Austin Energy - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Austin Energy - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home Weatherization Commercial Weatherization Heating & Cooling...

402

Meeting Residential Ventilation Standards Through Dynamic Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems Title Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation...

403

Maximizing Information from Residential Measurements of Volatile...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Information from Residential Measurements of Volatile Organic Compounds Title Maximizing Information from Residential Measurements of Volatile Organic Compounds...

404

American Municipal Power (Public Electric Utilities) - Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency...

405

Southern Pine Electric Power Association - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program <...

406

Energy Smart - Residential Energy Efficiency Rebate Program ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart - Residential Energy Efficiency Rebate Program (20 Municipalities) Energy Smart - Residential Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility...

407

Ozark Border Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ozark Border Electric Cooperative - Residential Energy Efficiency Rebate Program Ozark Border Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility...

408

Central New Mexico Electric Cooperative - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Mexico Electric Cooperative - Residential Energy Efficiency Rebate Program Central New Mexico Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility...

409

Practical Diagnostics for Evaluating Residential Commissioning Metrics  

SciTech Connect

In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24 practical diagnostics range from a few hundred dollars to many thousands of dollars. The higher costs are associated with infrared thermography and state-of-the-art automated diagnostic systems. Most tests can be performed in one hour or less, using equipment priced toward the lower end of the cost spectrum.

Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

2002-06-11T23:59:59.000Z

410

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network (OSTI)

Controlling summer attic heat gain is important to reducing air conditioning energy use in homes in hot-humid climates. Both heat transfer through ceilings and t attic duct systems can make up a large part of peak cooling demand, Attic ventilation has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance.

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

411

HVAC Fans and Dampers Maintenance Guide  

Science Conference Proceedings (OSTI)

Heating, ventilation, and air conditioning (HVAC) systems serve an important function in nuclear power plants because these systems are responsible for maintaining many environmental conditions throughout the facility. Failure of these components can induce undesirable radiological conditions and stressful working conditions, and can compromise the life of qualified equipment. Some HVAC fan and damper failures are preventable by monitoring operating parameters and performing recommended maintenance activ...

1999-08-26T23:59:59.000Z

412

Nonlinear fan instability of electromagnetic waves  

Science Conference Proceedings (OSTI)

This paper studies the linear and nonlinear stages of the fan instability, considering electromagnetic waves of the whistler frequency range interacting resonantly with energetic electron fluxes in magnetized plasmas. The main attention is paid to determine the wave-particle interaction processes that can lead to the excitation of intense electromagnetic waves by nonequilibrium particle distributions involving suprathermal tails, and to explain under what conditions and through what mechanisms they can occur, develop, and saturate. This paper presents and discusses two main processes: (i) the linear fan instability and (ii) the nonlinear process of dynamical resonance merging, which can significantly amplify the energy carried by linearly destabilized waves after they saturate due to particle trapping. This study consists of (i) determining analytically and numerically, for parameters typical of space and laboratory plasmas, the linear growth rates of whistlers excited by suprathermal particle fluxes through the fan instability, as well as the corresponding thresholds and the physical conditions at which the instability can appear, (ii) building a theoretical self-consistent 3D model and a related numerical code for describing the nonlinear evolution of the wave-particle system, and (iii) performing numerical simulations to reveal and characterize the nonlinear amplification process at work, its conditions of development, and its consequences, notably in terms of electromagnetic wave radiation. The simulations show that when the waves have reached sufficient energy levels owing to the linear fan instability, they saturate by trapping particles and due to the complex dynamics of these particles in the electromagnetic fields, the resonant velocities' domains of the waves overlap and merge, meanwhile a strong increase of the wave energy occurs.

Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau Cedex (France) and University Paris Sud, 91405 Orsay Cedex (France); Volokitin, A. [Space Research Institute (IKI), 117997, 84/32 Profsoyuznaya Str., Moscow (Russian Federation)

2010-10-15T23:59:59.000Z

413

Mass and fans in attached sunspaces  

DOE Green Energy (OSTI)

The effect of thermal storage mass on the performance of an attached sunspace is investigated for a particular design in Boston. Mass in the sunspace and in the adjoining building are compared. Performance is evaluated in terms of temperature conditions in the sunspace and delivery of useful solar heat to the adjoining building. The dependence of the results on the manner of heat delivery is studied. Both natural convection and fan-forced air flow are included.

Jones, R.W.; McFarland, R.D.; Lazarus, G.S.

1982-01-01T23:59:59.000Z

414

Use of fan rig data for the understanding and prediction of fan broadband noise and noise changes due to a variable area nozzle.  

E-Print Network (OSTI)

??This thesis presents the results of the research component of this EngD, entitled Use of fan rig data for the understanding and prediction of fan… (more)

Deane, Eugene Pio

2009-01-01T23:59:59.000Z

415

History of Residential Grounding  

Science Conference Proceedings (OSTI)

This report describes the development of residential electrical service grounding practices in the United States. The report focuses on the history of the National Electrical Code (NEC), which prescribes standards for wiring practices in residences, including grounding of the building electrical service.

2002-09-19T23:59:59.000Z

416

Photovoltaics for residential applications  

DOE Green Energy (OSTI)

Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

Not Available

1984-02-01T23:59:59.000Z

417

Pulse combustion: Commercial, industrial, and residential applications. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the evolution of pulse combustion, the types of pulse combustion burners and their applications, and selected fuels utilized. Topics include fuel combustion efficiency, energy conversion and utilization technologies, modeling of chemical kinetics, and dynamics and thermal characteristics of pulse combustors. Pulse combustion systems for water heaters, gas furnaces, industrial and residential boilers, commercial cooking equipment, and space heating devices are presented. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-10-01T23:59:59.000Z

418

An Aerodynamic Design Technique For Optimizing Fan Blade Spacing  

E-Print Network (OSTI)

INTRODUCTION Aerodynamic shape optimization involves designing the most efficient shapes of bodies that move through fluids. An optimization algorithm perturbs the shape of an airfoil until it finds the shape which best exhibits a given design objective. For an inverse design technique, this objective is a prescribed aerodynamic distribution, usually the surface pressure distribution. Liebeck pressure distributions [1], for example, have been demonstrated to generate airfoils with high lift to drag ratios. When designing fans, consideration must be given not only to the shape of the fan blades, but also to the distance separating the fan blades. This spacing is defined by the pitch/chord ratio t/l, where the pitch, t, is the distance between fan blades, and the chord, l, is the length of each fan blade. In this work, an inverse algorithm is developed, then used to design fan blade shapes and to find the optimal blade spacing.

T. Rogalsky; R.W. Derksen; Rt N; Rt N; S. Kocabiyik

1999-01-01T23:59:59.000Z

419

Development of In-Situ Fan Curve Measurement with One Airflow Measurement  

E-Print Network (OSTI)

Fan airflow is the key parameter for air volume tracking control in variable air volume systems. One of the airflow measurement methods is to determine airflow using the fan speed, fan head, and fan curve. Both fan speed and fan head can be measured accurately. Therefore, the accuracy of the fan airflow depends on the accuracy of the fan curve. An experimental method has been developed to determine the in-situ fan curve with only one airflow measurement. This paper presents the theoretical background, experimental procedures, and verification results.

Liu, G.; Joo, I. S.; Song, L.; Liu, M.

2003-01-01T23:59:59.000Z

420

Effect of baselevel change on floodplain and fan sediment storage and ephemeral tributary channel morphology, Navarro River, California  

E-Print Network (OSTI)

CHANGE ON FLOODPLAIN AND FAN SEDIMENT STORAGE AND EPHEMERALaffects floodplain and fan sediment storage and smalllowered baselevel on floodplain and fan sediment storage and

Florsheim, Joan L; Mount, Jeffrey F.; Rutten, Luke T.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems: Final Report to Bonneville Power Administration  

E-Print Network (OSTI)

Using Mechanical Ventilation Exhaust Fans Air-to-Air Heatexpected from exhaust fan A-I Infiltration contribution toIndoor Air Quality -- Exhaust Fan Mitigation" Final Report

Grimsrud, David T.

2009-01-01T23:59:59.000Z

422

Stratigraphic evolution and characteristics of lobes : a high-resolution study of Fan 3, Tanqua Karoo, South Africa.  

E-Print Network (OSTI)

??Fan 3 is one of four basin-floor fans that form part of the Tanqua Karoo Fan Complex in South Africa. It can be subdivided into… (more)

Neethling, J. M.

2009-01-01T23:59:59.000Z

423

Residential energy consumption survey: housing characteristics 1984  

SciTech Connect

Data collected in the 1984 Residential Energy Consumption Survey (RECS), the sixth national survey of households and their fuel suppliers, provides baseline information on how households use energy. Households living in all types of housing units - single-family homes (including townhouses), apartments, and mobile homes - were chosen to participate. Data from the surveys are available to the public. The housing characteristics this report describes include fuels and the uses they are put to in the home; appliances; square footage of floorspace; heating (and cooling) equipment; thermal characteristics of housing structures; conservation features and measures taken; the consumption of wood; temperatures indoors; and regional weather. These data are tabulated in sets, first showing counts of households and then showing percentages. Results showed: Fewer households are changing their main heating fuel. More households are air conditioned than before. Some 50% of air-conditioned homes now use central systems. The three appliances considered essential are the refrigerator, the range, and the television set. At least 98% of US homes have at least one television set; but automatic dishwashers are still not prevalent. Few households use the budget plans tht are available from their utility companies to ease the payment burden of seasonal surges in fuel bills. The most common type of heating equipment in the United States is the natural-gas forced-air furnace. About 40% ofthose furnaces are at least 15 years old. The oldest water heaters are those that use fuel oil. The most common conservation feature in 1984 is ceiling or attic insulation - 80% of homes report having this item. Relatively few households claimed tax credits in 1984 for energy-conservation improvements.

Not Available

1986-10-08T23:59:59.000Z

424

Active control of fan noise and vortex shedding.  

E-Print Network (OSTI)

??[Truncated abstract] The subject of fan noise generating mechanisms and its control has been studied intensively over the past few decades as a result of… (more)

Wong, Yee-Jun

2004-01-01T23:59:59.000Z

425

Optimization of Active Noise Control for Small Axial Cooling Fans.  

E-Print Network (OSTI)

??Previous work has shown that active noise control is a feasible solution to attenuate tonal noise radiated by small axial cooling fans, such as those… (more)

Monson, Brian B 1979-

2006-01-01T23:59:59.000Z

426

Supply Fan Control for Constant Air Volume Air Handling Units  

E-Print Network (OSTI)

Since terminal boxes do not have a modulation damper in constant volume (CV) air handling unit (AHU) systems, zone reheat coils have to be modulated to maintain the space temperature with constant supply airflow. This conventional control sequence causes a significant amount of reheat and constant fan power under partial load conditions. Variable Frequency Drives (VFDs) can be installed on these constant air volume systems. The fan speed can be modulated based on the maximum zone load. This paper present the procedure to control the supply fan speed and analyzes the thermal performance and major fan energy and thermal energy savings without expensive VAV retrofit through the actual system operation.

Cho, Y.; Wang, G.; Liu, M.

2007-01-01T23:59:59.000Z

427

Water-side Economizer for Non-Fan Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

changes to the commercial provisions of the 2012 IECC: Water-side Economizer for Non-Fan Cooling Systems R Hart Pacific Northwest National Laboratory January 2013 Proposal...

428

Atmos Energy - Residential Natural Gas and Weatherization Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program Eligibility Residential...

429

CenterPoint Energy (Gas) - Residential Efficiency Rebates (Oklahoma...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Efficiency Rebates (Oklahoma) CenterPoint Energy (Gas) - Residential Efficiency Rebates (Oklahoma) Eligibility Residential Savings For Heating & Cooling Commercial...

430

Central Georgia EMC - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Central Georgia EMC - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home Weatherization Commercial...

431

MidAmerican Energy (Electric) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Residential Energy Efficiency Rebate Programs MidAmerican Energy (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings...

432

Residential and Commercial Buildings Sector  

U.S. Energy Information Administration (EIA)

Also assume that the fan, both before and after project implementa-tion, was rated at 3 thousand cubic feet per minute (MCFM). The estimation was completed as follows:

433

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

434

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

435

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

436

Residential Energy Audits  

E-Print Network (OSTI)

A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where the RCS program is considered very successful; however, the majority of utilities have found that the costs far exceed the benefits. Typically, the response rates are low (less than 1% per year for Texas utilities), the audits primarily reach upper income persons, and consumers only implement the low-cost recommendations. The Texas PUC is on record as being opposed to the RCS as well as the Commercial and Apartment Conservation Service (CACS) and now requires Energy Efficiency Plans with detailed cost and savings information on utility end user programs.

Brown, W.

1985-01-01T23:59:59.000Z

437

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network (OSTI)

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000°F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified to recover this heat and convert it to power. The system will then reduce the amount of purchased power by approximately 25% without any additional use of fuel. The cost of this power is virtually unchanged over the life of the project because of the use of capital to displace fuel consumed from the purchased power source.

O'Brien, T.

2008-01-01T23:59:59.000Z

438

OG&E - Residential Energy Efficiency Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OG&E - Residential Energy Efficiency Program OG&E - Residential Energy Efficiency Program Eligibility Low-Income Residential Residential Savings For Heating & Cooling Commercial...

439

Residential Programmable Communicating Thermostats  

Science Conference Proceedings (OSTI)

Residential programmable communicating thermostats (PCTs) enable demand response and offer a convenient energy management option for the consumer. PCTs allow customers to program and control temperature set-points remotely, primarily through the Internet. Additionally, some of these thermostats can be remotely controlled by utilities or third parties to curtail heating and cooling loads during periods of peak electricity demand. This Technology Brief, prepared for the Energy Efficiency Initiative, presen...

2007-12-05T23:59:59.000Z

440

Detailed residential electric determination  

DOE Green Energy (OSTI)

Data on residential loads has been collected from four residences in real time. The data, measured at 5-second intervals for 53 days of continuous operation, were statistically characterized. An algorithm was developed and incorporated into the modeling code SOLCEL. Performance simulations with SOLCEL using these data as well as previous data collected over longer time intervals indicate that no significant errors in system value are introduced through the use of long-term average data.

Not Available

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Residential Energy Display Devices  

Science Conference Proceedings (OSTI)

Residential energy display devices provide direct feedback to consumers about their electricity use and cost, direct feedback that potentially can help customers manage electricity consumption. EPRI tested five different stand-alone display devices in its Energy Efficiency and Demand Response Living Laboratory to assess whether devices functioned according to manufacturer specifications. In addition to providing results of these tests, this Technology Brief describes how display devices operate, summariz...

2008-06-20T23:59:59.000Z

442

Cooling Tower Fan Motor Power Optimization Study  

Science Conference Proceedings (OSTI)

Cooling towers are in use at more than 200 major electric generating plants in the United States, representing approximately 800 units and a total of more than 210,000 MW. The auxiliary power consumed by cooling tower fan motors can significantly reduce the net power output of steam-cycle power plants. Cooling tower specifications are established by the economic and operational requirements of maximum unit load and the most demanding environmental conditions expected in the tower’s locale. Since power pl...

2011-11-16T23:59:59.000Z

443

Minneapolis residential energy consumption. Final report  

SciTech Connect

This report deals with residential energy consumption in single - family, townhouse, low - rise, and high - rise structures in Minnapolis, Minn., with the year 1957 chosen as a typical weather year for the area. Design and structural features considered important in defining the residences were structural parameters (construction details, dimensions, and materials), energy consumption parameters (heating and cooling equipment, types of fuels and energy used, and appliances and their energy consumption levels), and lifestyle parameters (thermostat set points, relative humidity set points, type and number of appliances, daily profile of appliance use, and use of ventilation fans). Annual heating and cooling loads and resultant energy requirements were calculated using a time - response computer program. This program included subroutines for determining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The heating load was significantly higher than the cooling load for single - family and townhouse residences, as would be expected for the cold Minneapolis climate. Due to increased internal heat generation, low - rise and high - rise cooling and heating loads were similar in magnitude. Energy - conserving modifications involving both structural and comfort control system changes resulted in the following: single - family residences consumed 47 percent, townhouse residences consumed 52 percent, low - rise residences consumed 53 percent, and high - rise residences consumed 34 percent of the primary energy required by the characteristic residence. Supporting data, layouts of the residences, and references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-11-01T23:59:59.000Z

444

Turlock Irrigation District - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clothes Washers: 35 Sun Screens: 1.00square foot Whole House Fans: 75 Solar Attic Fan: 100 Radiant Barrier: 0.10square foot Shade Tree: 20 each (3 max) Turlock...

445

Combustion Air Preheat on Steam Cracker Furnaces  

E-Print Network (OSTI)

Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several aspects of the technology employed have been patented in the U.S. and elsewhere. This paper discusses the use of process heat and gas turbine exhaust for air preheat to provide plant fuel savings of about 8% over and above a modern, fuel efficient alternative furnace without air preheat.

Kenney, W. F.

1983-01-01T23:59:59.000Z

446

Segmented ceramic liner for induction furnaces  

DOE Patents (OSTI)

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

447

CX-010697: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Notice of Proposed Rulemaking for New Energy Conservation Standards for Residential Furnace Fans CX(s) Applied: B5.1 Date: 06/03/2013 Location(s): CX: none Offices(s): Golden Field Office

448

Standard Methods of Characterizing Performance of Fan Filter Units, Version 3.0  

E-Print Network (OSTI)

power input to operate the FFU at certain airflow conditions, including fan motor, controller, and transformerpower supply to the fan motor, speed control and display device, transformer,power demand shall include fan motor, speed control and display device, transformer,

Xu, Tengfang

2007-01-01T23:59:59.000Z

449

An Innovative Method for Dynamic Characterization of Fan Filter Unit Operation.  

E-Print Network (OSTI)

power for fan motor, controller, and accessories such as transformerpower demand shall include fan motor, speed control and display device, transformer,power demand shall include the fan, frequency drive motor, speed control device, transformer

Xu, Tengfang

2006-01-01T23:59:59.000Z

450

An Innovative Method for Dynamic Characterization of Fan Filter Unit Operation.  

E-Print Network (OSTI)

that is affected by fan-wheel design, air-path and size,by- 4-ft) fan filter units with various design, operation,differential – the design and control schemes of fan filter

Xu, Tengfang

2006-01-01T23:59:59.000Z

451

Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries  

E-Print Network (OSTI)

Energy Performance of Fan-Filter Units, Version 1.3 (2005).Energy Performance of Fan-Filter Units, Version 2.0 (2006).Evaluation of Fan-filter Units’ Aerodynamic and Energy

Xu, Tengfang

2008-01-01T23:59:59.000Z

452

Toward green systems for cleanrooms: Energy efficient fan-filter units  

E-Print Network (OSTI)

M. and F. Tsau. 2002. Fan-Filter Unit (FFU) Test Procedures.Laboratory Methods of Testing Fans for Rating, Air MovementTest Procedure For Fan-Filter Units (not published). [6] Xu,

Jeng, Ming-Shan; Xu, Tengfang; Lan, Chao-Ho

2004-01-01T23:59:59.000Z

453

Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries  

E-Print Network (OSTI)

Energy Performance of Fan-Filter Units, Version 1.3 (2005).Energy Performance of Fan-Filter Units, Version 2.0 (2006).Laboratory Evaluation of Fan-filter Units’ Aerodynamic and

Xu, Tengfang

2008-01-01T23:59:59.000Z

454

Laboratory evaluation of fan/filter units' aerodynamic and energy performance  

E-Print Network (OSTI)

Jeng, M.S. , F. Tsau. 2002. Fan-Filter Unit (FFU) TestLaboratory Methods of Testing Fans for Rating, Air MovementTest Procedure For Fan-Filter Units (not published). Xu,

Xu, Tengfang; Jeng, Ming-Shan

2004-01-01T23:59:59.000Z

455

Standard Methods of Characterizing Performance of Fan Filter Units, Version 3.0  

E-Print Network (OSTI)

Efficient Filtration: Fan-filter Units. Final Report,Xu. 2007. “The Development of Fan Filter Unit with Flow Rate2007. “Performance of Large Fan Filter Units for Cleanroom

Xu, Tengfang

2007-01-01T23:59:59.000Z

456

“Starring” Madhuri as Durga: The Madhuri Dixit Temple and Performative Fan-Bhakti of Pappu Sardar  

E-Print Network (OSTI)

Devotion and Defiance in Fan Activity. ” In Ravi Vasudevan,Temple and Performative Fan-Bhakti of Pappu Sardar / 415Temple and Performative Fan-Bhakti of Pappu Sardar Shalini

Kakar, Shalini

2009-01-01T23:59:59.000Z

457

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

458

Design of a tube bank waste heat reclaimer for residential heating systems  

SciTech Connect

Forced convection tube bank heat reclaimers are analyzed in detail for residential natural gas and oil-fired furnaces that are controlled by natural draft. Optimum reclaimer designs are obtained based on improved system efficiency, and considerations regarding manufacturing costs. Each reclaimer meets safety restrictions regarding allowable system pressure losses and minimum chimney gas temperatures. Reclaimer size and overall weight are also considered. Computer-generated solutions aid in determining heat recovery as a function of furnace fuel, furnace efficiency, ambient temperature, flue pipe size, and chimney height. The analysis considers a range of furnace efficiencies from 50 to 80%, and ambient temperatures from 0 to 60/sup 0/F, which are values considered typical for most domestic combustion heating equipment. Flue pipe sizes range from 4 to 6 inches in diameter and are 2 to 4 feet long. Chimney sizes range from 5 to 7 inches in equivalent diameter and include draft heights from 15 to 35 feet. The piping sizes correspond to furnace input capacities ranging from 50,000 to 170,000 Btu/h. For many domestic heating systems, the potential exists to recover the lost heat by as much as 30%, and to reduce fuel costs by as much as 15% by installing a flue pipe heat reclaimer.

Gretsinger, K.M.; Elias, T.I.

1987-01-01T23:59:59.000Z

459

Fan System Effects: How Fan Ductwork Design Impacts Overall System Efficiency and What the Approach Should be for Optimization  

E-Print Network (OSTI)

"In order to establish the aerodynamic performance characteristics of a custom fan or even a line of fans, the accepted practice of the industry is to carry out testing on a scale model in a laboratory to develop its fan performance curve. Then by applying affinity laws in conjunction with very specific rules that address scaling issues, the performance characteristics of geometrically similar fans can be predicted. These affinity laws (frequently referred to as fan laws) also allow the performance of fans operating at different speeds or handling gases at different density values to be accurately predicted. However, it is often found that even fans with well defined and pedigreed performance curves are unable to meet their performance expectations once they are installed on the systems for which they have been sold. This is primarily due to the adverse aerodynamic impact of the inlet or outlet connections on the performance capacity of the fan and thus on the overall system efficiency. The general term for design conditions at inlets or outlets of fans that cause deficient aerodynamic performance is ‘system effects’. The characteristics of fan system effects are that they reduce fan capacity and are both velocity and geometry dependent. On the inlet side of a fan, this generally characterizes itself by a flow pattern that is highly non?uniform. On the discharge side, the high and low velocity flow streams leaving the fan may simply be prevented from redeveloping a uniform flow profile and normal static pressure conversion before encountering a disturbance. The term can also apply to system elements such as silencers, elbows and transitions. For these components, the actual pressure drop across them may be significantly higher than their calculated or rated values if the velocity profile of the entering flow is skewed or non?uniform. For either case (fan connection or system component), the result is that additional power will be required to address the flow rate required by the system. In many instances, system designers are simply unfamiliar with the importance of understanding system effects as it pertains to new fan selections and the attendant power requirements. At a minimum, a reasonable approach for new fan projects should be to establish the theoretical system effect of connection designs by using a recognized document such as Air Movement and Control Association Publication 201. The objective should be to first minimize their impact through appropriate connection design modifications in conjunction with potential fan inlet and outlet re?orientation. Once the system effects are minimized, the residual value should be applied to the fan performance specification in order to ensure that the fan is selected for the required aerodynamic capacity. For system components, an approach that has proved to be of significant value is to predict the flow pattern using computation fluid dynamics (CFD) modelling tools and in this process, the design can be tweaked until the designer finds the overall pressure drops of a system are minimized to the greatest practical extent. Similarly, CFD can be used to predict the flow profile at a fan inlet to ensure that it is as uniform as practically possible. This paper reviews the concept of system effects from the perspective of fan power requirements and provides a methodology for approaching system design from the perspective of optimizing fan energy use while achieving the required system capacity."

Martin, V.

2009-05-01T23:59:59.000Z

460

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Ducts Total Electricity Consumption (kWh/year) ity ni x FrDucts Total Electricity Consumption (kWh/year) nt a ni x Fryear. Furnace blowers account for about 80% of the total furnace electricity consumption

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Grate Furnace Combustion: A Submodel for the Solid Fuel Layer  

Science Conference Proceedings (OSTI)

The reduction of NOx-formation in biomass fired grate furnaces requires the development of numerical models. To represent the variety in scales and physical processes playing a role in the conversion, newly developed ... Keywords: Grate furnace, biomass, reverse combustion

H. A. Kuijk; R. J. Bastiaans; J. A. Oijen; L. P. Goey

2007-05-01T23:59:59.000Z

462

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network (OSTI)

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond, S.M. (Raymond A.) Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

463

Fan-speed-aware scheduling of data intensive jobs  

Science Conference Proceedings (OSTI)

As server processor power densities increase, the cost of air cooling also grows resulting from higher fan speeds. Our measurements show that vibrations induced by fans in high-end servers and its rack neighbors cause a dramatic drop in hard disk bandwidth, ... Keywords: cooling, disk i/o, energy, thermal, vibration

Christine S. Chan; Yanqin Jin; Yen-Kuan Wu; Kenny Gross; Kalyan Vaidyanathan; Tajana `imuni Rosing

2012-07-01T23:59:59.000Z

464

Choosing the right boiler air fans at Weston 4  

SciTech Connect

When it came to choosing the three 'big' boiler air fans - forced draft, induced draft and primary air, the decision revolved around efficiency. The decision making process for fan selection for the Western 4 supercritical coal-fired plant is described in this article. 3 photos.

Spring, N.

2009-04-15T23:59:59.000Z

465

Control system for heat exchangers fans in a refrigeration system  

Science Conference Proceedings (OSTI)

The paper presents a method for controlling evaporator and condenser fans in a refrigeration system. The refrigeration system includes a refrigerant circuit defined by a compressor, a condenser, a throttling device, and an evaporator. The system includes ... Keywords: controlling, fan, refrigeration system, variable frequency drive unit

Cristian Iosifescu; Valeriu Damian; C?lin Ciufudean

2010-05-01T23:59:59.000Z

466

Design and Specification Guidelines for Large Draft Fans and Systems  

Science Conference Proceedings (OSTI)

Design shortcomings in draft fans and related air-gas systems can cause fan failure and costly outages of large fossil fuel power plants. These guidelines will help engineers and manufacturers achieve a better understanding of the design features needed to minimize such failures.

1983-12-01T23:59:59.000Z

467

Condition Monitoring of Fans With Rolling Element Bearings  

Science Conference Proceedings (OSTI)

Data on high-frequency vibration caused by the impacts of bearing pits and spalls can help utilities schedule equipment maintenance. One data collection technique, developed through long-term monitoring of combustion air axial fans at the Pennsylvania Electric Company Homer City station, helps plant personnel anticipate failures of draft fan antifriction bearings by several months.

1988-03-22T23:59:59.000Z

468

Fan Foundation Systems--Analysis and Design Guidelines  

Science Conference Proceedings (OSTI)

Dynamic analysis is the most effective tool for determining the root causes of excessive fan vibration. This study demonstrated the importance of using such analysis in conjunction with a "total systems" approach that considers how the properties of all major fan system components, including foundation, piles, and soil conditions, contribute to vibration.

1986-08-19T23:59:59.000Z

469

Geothermal Energy Market Study on the Atlantic Coastal Plain. Geothermal Energy Market penetration: development of a model for the residential sector  

SciTech Connect

A model has been developed that examines the feasibility of using geothermal technology in heating residential structures. Specific account is taken of the small contribution of new housing to the total stock in any given year and of the durability of houses and their furnaces. Both aspects constrain the penetration of geothermal energy into the residential market. After a discussion of other market penetration paradigms, a simple model of market penetration is developed that is based on the premise that homeowners will not abandon an existing furnace until its economic life is over. Next, behavioral parameters are discussed and the model is extended from 20 to 40 years. Finally, methods are discussed for collecting the needed data to determine market penetration, and ideas are proposed of ways to induce homeowners to give up economically viable furnaces to allow the firm providing the energy to reduce costs.

Goodman, A.C.

1979-09-01T23:59:59.000Z

470

Furnace Efficiency – Energy and Throughput - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Furnace Efficiency – Energy and Throughput. Sponsorship, The Minerals ...

471

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997  

U.S. Energy Information Administration (EIA)

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997. OVERVIEW: MOST POPULOUS STATES ... Homes with air-conditioning: 95%... with a central air-conditioning system: 83%

472

Residential ventilation standards scoping study  

E-Print Network (OSTI)

of new residences. The Hawaii Model Energy Code (HMEC) is aHawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Residential Energy Code

McKone, Thomas E.; Sherman, Max H.

2003-01-01T23:59:59.000Z

473

Natural Gas Residential Choice Programs  

U.S. Energy Information Administration (EIA)

Status of Natural Gas Residential Choice Programs by State as of December 2008 (Click on a State or its abbreviation for more information about that ...

474

2001 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey ... Office of Management and Budget, Washington, DC 20503. Form EIA-457A (2001) Form Approval: OMB No. 1905-0092 ...

475

Residential Price - Local Distribution Companies  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per ...

476

The information furnace: consolidated home control  

Science Conference Proceedings (OSTI)

?The Information Furnace is a basement-installed PC-type device that integrates existing consumer home-control, infotainment, security and communication technologies to transparently provide accessible and value-added services. A modern home contains ... Keywords: Automation, Consumer electronics, Home-control, Multi-modal interfaces

Diomidis D. Spinellis

2003-05-01T23:59:59.000Z

477

Feedback Applications in Active Noise Control for Small Axial Cooling Fans.  

E-Print Network (OSTI)

??Feedback active noise control (ANC) has been applied as a means of attenuating broadband noise from a small axial cooling fan. Such fans are used… (more)

Green, Matthew J 1978-

2006-01-01T23:59:59.000Z

478

The effect of fan and heat sink design on heat removal from microprocessor chips.  

E-Print Network (OSTI)

??Air flow and heat removal characteristics for fan/heat sink designs used to cool Pentium class processors were analyzed. Five designs were tested for fan speed,… (more)

Baltrip, Kedra G

2012-01-01T23:59:59.000Z

479

Aerodynamic Experiments on a Ducted Fan in Hover and Edgewise Flight.  

E-Print Network (OSTI)

??Ducted fans and ducted rotors have been integrated into a wide range of aerospace vehicles, including manned and unmanned systems. Ducted fans offer many potential… (more)

Myers, Leighton

2009-01-01T23:59:59.000Z

480

Exact solutions to combinatorial optimizations and the traveling baseball fan problem.  

E-Print Network (OSTI)

?? The traveling baseball fan problem is an extension of the classic traveling salesman problem, in which a sports fan wishes to travel to the… (more)

Terrell, Neal D.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential furnace fans" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Il fenomeno dei fan nel mercato della musica. Analisi netnografica dei seguaci italiani di Bruce Springsteen.  

E-Print Network (OSTI)

??Lo studio ha ad oggetto la comunità dei fan italiani di Bruce Springsteen. Dopo aver analizzato la letteratura e descritto il fenomeno dei fan e… (more)

Gallo, Sara

2007-01-01T23:59:59.000Z

482

Method for fabricating fan-fold shielded electrical leads  

DOE Patents (OSTI)

Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

Rohatgi, Rajeev R. (Mountain View, CA); Cowan, Thomas E. (Livermore, CA)

1994-01-01T23:59:59.000Z

483

Method for fabricating fan-fold shielded electrical leads  

DOE Patents (OSTI)

Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

Rohatgi, R.R.; Cowan, T.E.

1994-12-27T23:59:59.000Z

484

Field Demonstration of the Thermostone III Electric Thermal Storage Furnace  

Science Conference Proceedings (OSTI)

Heat storage furnaces use low-cost, off-peak electricity to satisfy all of a customer's heating needs. This field demonstration showed that prototype heat storage furnaces maintained comfort under diverse climate conditions, usage patterns, and lengths of off-peak periods. In addition, these furnaces effectively shifted the load to off-peak hours.

1992-04-01T23:59:59.000Z

485

Review: The Dragon & The Elephant: Agricultural and Rural Reforms in China and India edited by Ashok Gulati and Shenggen Fan  

E-Print Network (OSTI)

Ashok Gulati and Shenggen Fan (Eds. ) Reviewed by VarinderIndia Gulati, Ashok and Fan, Shenggen (Eds. ). The Dragon &

Jain, Varinder

2008-01-01T23:59:59.000Z

486

Evaluation of evolving residential electricity tariffs  

E-Print Network (OSTI)

evolving residential electricity tariffs Judy Lai, Nicholasevolving residential electricity tariffs Judy Lai – Seniortariffs and explanation of baseline Until the middle of 2001, PG&E employed a two-tiered pricing structure for residential electricity

Lai, Judy

2011-01-01T23:59:59.000Z

487

Property For Homeowners- Residential  

E-Print Network (OSTI)

Targets improvements on certain types of property that will save energy when compared to the property which they replaced. • Provides for a uniform credit of 30 percent of the cost of qualifying improvements. • Cap for all tax years is now $1,500, three times the prior legislation provided. • Temporarily can rely on existing manufacturer certifications or appropriate Energy Star labels for purchasing qualified products. For Homeowners- Expanded Energy Efficient Property Tax Credit for Residences • Residential energy efficient property credit has expanded to include more alternate energy equipment.

Tom Sheaffer; Stakeholder Liaison; New Clean Renewable Energy Bonds

2009-01-01T23:59:59.000Z

488

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

489

Modeling study of ventilation, IAQ and energy impacts of residential mechanical ventilation  

SciTech Connect

This paper reports on a simulation study of indoor air quality, ventilation and energy impacts of several mechanical ventilation approaches in a single-family residential building. The study focused on a fictitious two-story house in Spokane, Washington and employed the multizone airflow and contaminant dispersal model CONTAM. The model of the house included a number of factors related to airflow including exhaust fan and forced-air system operation, duct leakage and weather effects, as well as factors related to contaminant dispersal including adsorption/desorption of water vapor and volatile organic compounds, surface losses of particles and nitrogen dioxide, outdoor contaminant concentrations, and occupant activities. The contaminants studied include carbon monoxide, carbon dioxide, nitrogen dioxide, water vapor, fine and coarse particles, and volatile organic compounds. One-year simulations were performed for four different ventilation approaches: a base case of envelope infiltration only, passive inlet vents in combination with exhaust fan operation, an outdoor intake duct connected to the forced-air system return balanced by exhaust fan operation, and a continuously-operated exhaust fan. Results discussed include whole building air change rates, air distribution within the house, heating and cooling loads, contaminants concentrations, and occupant exposure to contaminants.

Persily, A.K.

1998-05-01T23:59:59.000Z

490

Model Code for the Control of Residential HVAC Distribution System Leakage and HVAC-Induced Building Leakage  

E-Print Network (OSTI)

Modifications to local and state codes are seen as an appropriate strategy for the prevention of residential air distribution system leakage and its impacts. A model code element has been developed to assist this strategy. Recent field studies of Florida residences by Cummings, Tooley and Moyer have revealed a mean leakage of 11 percent for the air distribution systems of central, fan-force heating and air conditioning systems. Such leakage may cause an estimated 20 percent increase in energy consumption for air conditioning, as well as a 50 percent increase in peak cooling load and an 80 percent increase in peak heating load. In addition, building air leakage may be expected to be several times greater when duct leakage is present or when avenues of air egress from closeable rooms are absent. The model duct construction element presented here contains all of the standards, definitions and code language needed to replace the current duct construction element of the local or state code. The content of this paper was used as a principal source for language adopted for the 1991 Florida Energy Efficiency Code For Building Construction. Addressed are the most appropriate standards required for the closure and sealing of metal duct, rigid fibrous glass duct, and nonmetallic flexible duct. Also addressed are (1) detailed requirements for the sealing of mechanical closets when they function as plenum chambers, (2) detailed requirements for the sealing of enclosed support platforms or air handlers and furnaces when they function as return duct, (3) detailed requirements for the sealing of uninhabitable cavities of the building structure, when they function as duct, and (4) detailed requirements for the egress of air from enclosed rooms which receive supply air. Where necessary, commentary is provided to explain the options available for implementing the model code provision as well as its ramifications. All provisions of this model code are compatible with the requirements, standards and guidelines contained in related documents published by the following organizations: the Southern Building Code Congress International, Inc., the Sheet Metal and Air Conditioning Contractors National Association, the American Society of Heating, Refrigerating and Air conditioning Engineers, Underwriters Laboratories, Inc., the Air Conditioning Contractors Of America, the Thermal Insulation Manufacturers Association, the National Fire Protection Association, and the Gypsum Association.

Wemhoff, P.

1990-01-01T23:59:59.000Z

491

The Fan Observatory Bench Optical Spectrograph (FOBOS)  

E-Print Network (OSTI)

The Fan Observatory Bench Optical Spectrograph (FOBOS) is intended for single-object optical spectroscopy at moderate resolution (R~1500-3000) using a fiber-fed, bench-mounted design to maintain stability. Whenever possible, the instrument uses off-the-shelf components to maintain a modest cost. FOBOS supports Galactic astronomy projects that require consistently well-measured (~5 km/sec) radial velocities for large numbers of broadly distributed and relatively bright (Vdesign was optimized for use in the range 470-670 nm. Test data indicate that the instrument is stable and capable of measuring radial velocities with precision better than 3 km/sec at a resolution of R~1500 with minimal calibration overhead.

Jeffrey D. Crane; Steven R. Majewski; Richard J. Patterson; Michael F. Skrutskie; Elena Y. Adams; Peter M. Frinchaboy

2005-02-23T23:59:59.000Z

492

Submitting Organization Hongyou Fan Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

 2007 R&D 100 Award Entry Form  Submitting Organization Hongyou Fan Sandia National Laboratories Advanced Materials Laboratory 1001 University Boulevard SE Albuquerque, NM 87106, USA 505-272-7128 (phone) 505-272-7336 (fax) hfan@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate represen- tation of this product. Submitter's signature_______________________________ Earl Stromberg Lockheed Martin Aeronautics Mail Zone 2893 PO Box 748 Fort Worth, TX 76101, USA 817-763-7376 (phone) 817-762-6911 (fax) Earl.W.Stromberg@lmco.com Self-Assembling Process for Fabricating Tailored Thin Films This simple, economical nanotechnology coating process enables the development of nanoparticle thin films

493

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

494

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

495

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

496

Energy Efficiency Report: Chapter 3: Residential Sector  

U.S. Energy Information Administration (EIA)

3. The Residential Sector Introduction. More than 90 million single-family, multifamily, and mobile home households encompass the residential sector.

497

CONTAM Libraries - Appendix C2: Miscellaneous Residential ...  

Science Conference Proceedings (OSTI)

... item, C2. CPEN_RAV, Residential, HVAC ceiling penetration, typical value, ELA4, 5 cm 2 /item, C2. CPEN_RMN, Residential, ...

498

Peak Electricity Impacts of Residential Water Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak Electricity Impacts of Residential Water Use Title Peak Electricity Impacts of Residential Water Use Publication Type Report LBNL Report Number LBNL-5736E Year of Publication...

499

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Eligibility Low-Income...

500

Performance Criteria for Residential Zero Energy Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Criteria for Residential Zero Energy Windows Title Performance Criteria for Residential Zero Energy Windows Publication Type Conference Paper LBNL Report Number...