Sample records for residential distributed generation

  1. Electronic copy available at: http://ssrn.com/abstract=2014738 Published: J. M. Pearce, "Expanding Photovoltaic Penetration with Residential Distributed Generation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Photovoltaic Penetration with Residential Distributed Generation from Hybrid Solar Photovoltaic + Combined Heat.08.012 Expanding Photovoltaic Penetration with Residential Distributed Generation from Hybrid Solar Photovoltaic and power (CHP) systems has provided the opportunity for inhouse power backup of residentialscale

  2. Distributed Control of Residential Energy Systems using a Market Maker

    E-Print Network [OSTI]

    Knobloch,Jürgen

    , in particular reverse power flow during daytime periods of peak generation coupled with low residential load distribution networks and shave peak demand without large-scale capital costs for feeder replacement.weller}@newcastle.edu.au) Abstract: The recent rapid uptake of residential solar photovoltaic (PV) installations provides many

  3. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    credit for different air distribution methods can be given.Measured Air Distribution Effectiveness for Residential4 Distribution metric

  4. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Energy Savers [EERE]

    Paper NRELCP-550-47685 August 2010 Tool for Generating Realistic Residential Hot Water Event Schedules Preprint Bob Hendron and Jay Burch National Renewable Energy...

  5. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers SubfoldersU.S. RefiningDistributed EnergyUntapped

  6. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01T23:59:59.000Z

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  7. Distributed and Decentralized Control of Residential Energy Systems Incorporating Battery Storage

    E-Print Network [OSTI]

    Knobloch,Jürgen

    is increasingly being considered by utilities seeking to reinforce distribution networks and shave peak demand consists of solar PV generation, battery storage and an inelastic energy load. Each RES is connected--The recent rapid uptake of residential solar photo- voltaic (PV) installations provides many challenges

  8. Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    E-Print Network [OSTI]

    Giannakis, Georgios

    method for determining the active- and reactive-power set points for PV inverters in residential systems and ensuring voltage regulation. Binary PV-inverter selection variables and nonlinear power-flow relations--Distribution networks, inverter control, optimal power flow (OPF), photovoltaic (PV) systems, sparsity, voltage

  9. New Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Residential Subdivisions (New York)

    Broader source: Energy.gov [DOE]

    Any proposed construction of electricity-related facilities in residential subdivisions, including distribution and service lines and appurtenant facilities, is subject to these regulations, which...

  10. Field Test of Room-to-Room Distribution of Outside Air with Two Residential Ventilation Systems

    SciTech Connect (OSTI)

    Hendron, R.; Anderson, R.; Barley, D.; Rudd, A.; Townsend, A.; Hancock, E.

    2008-08-01T23:59:59.000Z

    Uniform distribution of outside air is one way to ensure that residential dilution ventilation systems will provide a known amount of fresh air to all rooms.

  11. CONSULTANT REPORT DISTRIBUTED GENERATION

    E-Print Network [OSTI]

    an independent cost analysis to interconnect and integrate increased penetration levels of renewable distributed costs. The Energy Commission considers this study a first step toward the 2012 Integrated Energy Policy Generation Integration Cost Study: Analytical Framework. California Energy Commission. CEC2002013007. i

  12. Renewable Energy: Distributed Generation Policies and Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Policies & Programs Renewable Energy: Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation...

  13. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01T23:59:59.000Z

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  14. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Office of Environmental Management (EM)

    Residential Hot Water Event Schedules: Preprint Presented at SimBuild 2010; New York, New York; August 1519, 2010 47685.pdf More Documents & Publications Model Simulating...

  15. Distributed Generation in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

  16. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11T23:59:59.000Z

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  17. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01T23:59:59.000Z

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  18. DISTRIBUTED GENERATION AND COGENERATION POLICY

    E-Print Network [OSTI]

    Director EFFICIENCY, RENEWABLES & DEMAND ANALYSIS DIVISION B.B. Blevins Executive Director DISCLAIMER capacity targets. KEYWORDS Distributed generation, cogeneration, photovoltaics, wind, biomass, combined

  19. Distributed Generation Operational Reliability, Executive Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2004 This report summarizes the results of the project, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database,"...

  20. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    SciTech Connect (OSTI)

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01T23:59:59.000Z

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  1. Modeling and Simulation of the EV Charging in a Residential Distribution Power Grid

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    in GridLAB-D (an open-source software tool used to model, simulate, and analyze power distribution systems Vehicle, Electric Vehicle Supply Equipment, GridLAB-D, Residential Distribution Power Grid I. INTRODUCTION with Electric Vehicle Supply Equipment (EVSE) and EVs. The scope of this paper is to model the EV

  2. Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona

    E-Print Network [OSTI]

    service. The reliability of electrical power is important because many other infrastructures are directly of the electric power distribution infrastructure. There are many studies on the vulnerability of infrastructuresEnvironmental determinants of unscheduled residential outages in the electrical power distribution

  3. ENERGY SAVINGS POTENTIALS IN RESIDENTIAL AND SMALL COMMERCIAL THERMAL DISTRIBUTION SYSTEMS - AN UPDATE

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    2003-10-31T23:59:59.000Z

    This is an update of a report (Andrews and Modera 1991) that quantified the amounts of energy that could be saved through better thermal distribution systems in residential and small commercial buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling from the space-conditioning equipment to the conditioned space. This update involves no basic change in methodology relative to the 1991 report, but rather a review of the additional information available in 2003 on the energy-use patterns in residential and small commercial buildings.

  4. A first-generation prototype dynamic residential window

    SciTech Connect (OSTI)

    Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

    2004-10-26T23:59:59.000Z

    We present the concept for a ''smart'' highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available ''off-the-shelf'' components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The unit's predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

  5. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30T23:59:59.000Z

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  6. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01T23:59:59.000Z

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  7. NREL: Technology Deployment - Distributed Generation Interconnection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV...

  8. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09T23:59:59.000Z

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  9. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets

    E-Print Network [OSTI]

    Rastler, D. M.

    1997-01-01T23:59:59.000Z

    Wires Manage Wires defer capital Optimize Energy Services Not Utility Business Not Utility Business New Business Opportunities DISTRIBUTED GENERATION Distributed generation includes small gas turbines, micro-turbines, fuel cells, storage... Residential Single Family Multi Family 1-10 kW 15- 50 kW Ultra micro-turbines Stirling Engines Fuel Cells PEMFC SOFC PV BatterylUPS Remote Loads 5 kW - 1,000 kW IC engines Off Grid Diesel Engine Micro turbine Stirling Engines Distribution...

  10. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    integration of energy efficiency, distributed generation, renewable energy resources and energy storage technologies, both locally and globally, to maximize the value of the...

  11. Distributed Generation Operational Reliability and Availability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability and Availability Database, Final Report, January 2004 Distributed Generation Operational Reliability and Availability Database, Final Report, January 2004 This final...

  12. A reliability assessment methodology for distribution systems with distributed generation

    E-Print Network [OSTI]

    Duttagupta, Suchismita Sujaya

    2006-08-16T23:59:59.000Z

    Reliability assessment is of primary importance in designing and planning distribution systems that operate in an economic manner with minimal interruption of customer loads. With the advances in renewable energy sources, Distributed Generation (DG...

  13. Worst Case Scenario for Large Distribution Networks with Distributed Generation

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Worst Case Scenario for Large Distribution Networks with Distributed Generation M. A. Mahmud) in distri- bution network has significant effects on voltage profile for both customers and distribution on variation of the voltage and the amount of DG that can be connected to the distribution networks. This paper

  14. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

    2012-01-01T23:59:59.000Z

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  15. Microgrids: distributed on-site generation

    E-Print Network [OSTI]

    Watson, Andrew

    : Diversity of the load profile as a function of microgrid size; Feasibility of accurate control of bothMicrogrids: distributed on-site generation Suleiman Abu-Sharkh, Rachel Li, Tom Markvart, Neil Ross for Climate Change Research Technical Report 22 #12;1 Microgrids: distributed on-site generation Tyndall

  16. Report on Distributed Generation Penetration Study

    SciTech Connect (OSTI)

    Miller, N.; Ye, Z.

    2003-08-01T23:59:59.000Z

    This report documents part of a multiyear research program dedicated to the development of requirements to support the definition, design, and demonstration of a distributed generation-electric power system interconnection interface concept. The report focuses on the dynamic behavior of power systems when a significant portion of the total energy resource is distributed generation. It also focuses on the near-term reality that the majority of new DG relies on rotating synchronous generators for energy conversion.

  17. Nonlinear DSTATCOM controller design for distribution network with distributed generation to enhance voltage stability

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Nonlinear DSTATCOM controller design for distribution network with distributed generation Accepted 19 June 2013 Keywords: Distributed generation Distribution network DSATACOM Partial feedback connected to a distribution network with distributed generation (DG) to regulate the line voltage

  18. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    LBNL-54447. Distributed Generation Dispatch OptimizationA Business Case for On-Site Generation: The BD Biosciencesrelated work. Distributed Generation Dispatch Optimization

  19. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01T23:59:59.000Z

    option on natural gas generation, which increases in valueL ABORATORY Distributed Generation Investment by a MicrogridORMMES06 Distributed Generation Investment by a Microgrid

  20. Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel

    E-Print Network [OSTI]

    Diamond, Richard

    energy efficiency in public housing as part of a utility's Demand Side Management (DSM) Program of the supply ventilation register for each corridor. The building is exposed on all sides to the windAir Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C

  1. A First-Generation Prototype Dynamic Residential Window Christian Kohler, Howdy Goudey, and Dariush Arasteh

    E-Print Network [OSTI]

    October 26, 2004 Abstract We present the concept for a "smart" highly efficient dynamic window in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys technology have significantly reduced window-related energy use and peak demand in residential buildings

  2. Abatement of Air Pollution: Distributed Generators (Connecticut)

    Broader source: Energy.gov [DOE]

    For the purpose of these regulations, a distributed generator is defined as any equipment that converts primary fuel, including fossil fuel and renewable fuel, into electricity or electricity and...

  3. Distributed generation - the fuel processing example

    SciTech Connect (OSTI)

    Victor, R.A. [Praxair, Inc., Tonawanda, NY (United States); Farris, P.J.; Maston, V. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31T23:59:59.000Z

    The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

  4. Voltage Management of Networks with Distributed Generation.

    E-Print Network [OSTI]

    O'Donnell, James

    2008-01-01T23:59:59.000Z

    At present there is much debate about the impacts and benefits of increasing the amount of generation connected to the low voltage areas of the electricity distribution network. The UK government is under political ...

  5. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    E-Print Network [OSTI]

    Traynor, G.W.

    2011-01-01T23:59:59.000Z

    distributions from residential natural gas appliances. CH 4ng/J) distribution from residential natural gas appliances.from Residential Natural Gas Appliances: A Literature Review

  6. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Miyamoto, Yusuke (Kandenko, Ibaraki, Japan); Nakashima, Eichi (Kandenko, Ibaraki, Japan); Lave, Matthew

    2011-11-01T23:59:59.000Z

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  7. The Potential Benefits of Distributed Generation and the Rate...

    Broader source: Energy.gov (indexed) [DOE]

    The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related...

  8. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    utility experience with RTP tariffs is described in 3. Distributed GenerationUtilities Commission, Division of Ratepayer Advocates have also provided support on related work. Distributed Generation

  9. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets,...

  10. Distributed generation capabilities of the national energy modeling system

    E-Print Network [OSTI]

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01T23:59:59.000Z

    Gas Turbine Commercial Microturbine Commercial ConventionalTurbine Commercial Microturbine Residential PV ResidentialGas Turbine Commercial Microturbine Commercial Conventional

  11. Distributed generation capabilities of the national energy modeling system

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01T23:59:59.000Z

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

  12. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    time of use United States Postal Service v Distributed Generation Dispatch Optimization Under Various Electricity Tariffs

  13. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    utility electricity and natural gas purchases, amortized capital and maintenance costs for distributed generation (

  14. Avoiding Distribution System Upgrade Costs Using Distributed Generation

    SciTech Connect (OSTI)

    Schienbein, Lawrence A.; Balducci, Patrick J.; Nguyen, Tony B.; Brown, Daryl R.; DeSteese, John G.; Speer, Gregory A.

    2004-01-20T23:59:59.000Z

    PNNL, in cooperation with three utilities, developed a database and methodology to analyze and characterize the avoided costs of Distributed Generation (DG) deployment as an alternative to traditional distribution system investment. After applying a number of screening criteria to the initial set of 307 cases, eighteen were selected for detailed analysis. Alternative DG investment scenarios were developed for these cases to permit capital, operation, maintenance, and fuel costs to be identified and incorporated into the analysis. The customer-owned backup power generator option was also investigated. The results of the analysis of the 18 cases show that none yielded cost savings under the alternative DG scenarios. However, the DG alternative systems were configured using very restrictive assumptions concerning reliability, peak rating, engine types and acceptable fuel. In particular it was assumed that the DG alternative in each case must meet the reliability required of conventional distribution systems (99.91% reliability). The analysis was further constrained by a requirement that each substation meet the demands placed upon it by a one in three weather occurrence. To determine if, by relaxing these requirements, the DG alternative might be more viable, one project was re-examined. The 99.91% reliability factor was still assumed for normal operating conditions but redundancy required to maintain reliability was relaxed for the relatively few hours every three years where extreme weather caused load to exceed present substation capacity. This resulted in the deferment of capital investment until later years and reduced the number of engines required for the project. The cost of both the conventional and DG alternative also dropped because the centralized power generation, variable O&M, and DG fuels costs were calculated based on present load requirements in combination with long-term forecasts of load growth, as opposed to load requirements plus a buffer based on predictions of extraordinary weather conditions. Application of the relaxed set of assumptions reduced the total cost of the DG alternative by roughly 57 percent from $7.0 million to $3.0 million. The reduction, however, did not change the overall result of the analysis, as the cost of the conventional distribution system upgrade alternative remained lower at $1.7 million. This paper also explores the feasibility of using a system of backup generators to defer investment in distribution system infrastructure. Rather than expanding substation capacity at substations experiencing slow load growth rates, PNNL considered a scenario where diesel generators were installed on location at customers participating in a program designed to offer additional power security and reliability to the customer and connection to the grid. The backup generators, in turn, could be used to meet peak demand for a limited number of hours each year, thus deferring distribution system investment. Data from an existing program at one of the three participating utilities was used to quantify the costs associated with the backup generator scenario. The results of the customer owned backup power generator analysis showed that in all cases the nominal cost of the DG scenario is more than the nominal cost of the base-case conventional distribution system upgrade scenario. However, in two of the cases the total present value costs of the alternative backup generator scenarios were between 15 and 22% less than those for the conventional scenarios. Overall, the results of the study offer considerable encouragement that the use of DG systems can defer conventional distribution system upgrades under the right conditions and when the DG configurations are intelligently designed. Using existing customer-owned DG to defer distribution system upgrades appears to be an immediate commercially-viable opportunity.

  15. A Distributed Generation Control Architecture for Islanded AC Microgrids

    E-Print Network [OSTI]

    Dominguez-Garcia, Alejandro

    1 A Distributed Generation Control Architecture for Islanded AC Microgrids Stanton T. Cady, Student architecture for generation control in islanded microgrids, and illustrate the performance Member, IEEE Abstract In this paper, we propose a distributed architecture for generation control

  16. Physical Effects of Distributed PV Generation on California's Distribution System

    E-Print Network [OSTI]

    Cohen, Michael A

    2015-01-01T23:59:59.000Z

    Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...

  17. Distributed Generation: Challenges and Opportunities, 7. edition

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysis of DG interconnection and net metering rules.

  18. Centralized and Distributed Generated Power Systems -A Comparison Approach

    E-Print Network [OSTI]

    White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future ElectricCentralized and Distributed Generated Power Systems - A Comparison Approach Future Grid Initiative Energy System #12;Centralized and Distributed Generated Power Systems - A Comparison Approach Prepared

  19. City of San Marcos- Distributed Generation Rebate Program (Texas)

    Broader source: Energy.gov [DOE]

    The City of San Marcos offers a Distributed Generation Rebate Program for the installation of grid-tied renewable energy systems. The Distributed Generation Rebate Program is offered on a first...

  20. Distributed multicast tree generation with dynamic group membership Frank Adelsteina

    E-Print Network [OSTI]

    Richard III, Golden G.

    Distributed multicast tree generation with dynamic group membership Frank Adelsteina , Golden G. Another distinguishing character- istic for tree generation algorithms is centralized versus distributed, efficient network utilization becomes a growing concern. Multicast transmission may use network bandwidth

  1. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29T23:59:59.000Z

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  2. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    utility tari?s, the electricity price may be revised only Investment and Upgrade in Distributed Generation

  3. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30T23:59:59.000Z

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Departments stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: Installation of a 100 kW wind turbine. Installation of a 300 kW battery storage system. Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: 100 kW new technology waste heat generation unit. Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  4. Automatically Generating Symbolic Prefetches for Distributed Transactional Memories

    E-Print Network [OSTI]

    Boyer, Edmond

    Automatically Generating Symbolic Prefetches for Distributed Transactional Memories Alokika Dash and Brian Demsky University of California, Irvine Abstract. Developing efficient distributed applications for distributed applications. We propose a new approach to prefetching, symbolic prefetching, that can prefetch

  5. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

  6. New generation of software? Modeling of energy demands for residential ventilation with HTML interface

    SciTech Connect (OSTI)

    Forowicz, T.

    1997-06-01T23:59:59.000Z

    The paper presents an interactive on-line package for calculation of energy and cost demands for residential infiltration and ventilation, with input and output data entry through a web browser. This is a unique tool. It represents a new kind of approach to developing software employing user (client) and server (package provider) computers. The main program, servicing {open_quotes}intelligent{close_quotes} CGI (Common Gateway Interface) calls, resides on the server and dynamically handles the whole package performance and the procedure of calculations. The {open_quotes}computing engine{close_quotes} consists of two parts: RESVENT - the previously existing program for ventilation calculations and ECONOMICS - for heating and cooling system energy and cost calculations. The user interface is designed in such a way, that it allows simultaneous access by many users from all over the world.

  7. Distributed Generation Potential of the U.S. Commercial Sector

    E-Print Network [OSTI]

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    residential and commercial sector installations, for a total of 9 GW. Clearly, commercial DG with CHP

  8. SOFC combined cycle systems for distributed generation

    SciTech Connect (OSTI)

    Brown, R.A.

    1997-05-01T23:59:59.000Z

    The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

  9. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2006-06-16T23:59:59.000Z

    Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

  10. sttesuhcassa RESIDENTIAL

    E-Print Network [OSTI]

    Schweik, Charles M.

    University Apartments To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm RESIDENTIAL AREA Lorden Field ATHLETIC FIELDS To Telecom, UMass Outreach & UMass Extension at 101 University Drive NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center

  11. sttesuhcassa RESIDENTIAL

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Gordon To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm & Intermediate ORCHARD HILL DR. Track & Field ACO SDT KKG SK ADP IGU ZBT BUTTERFIELDTERRACE DZ SOUTHWEST RESIDENTIAL AREA NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center Textbook

  12. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  13. Distributed thermal energy storage in the residential sector: commercialization-readiness assessment and implementation strategy

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    The readiness of each of three candidate TES systems for near-term commercialization was examined. It was concluded that of these, TES for residential space and hot-water heating are technically and economically ready for commercialization. TES systems are unlikely to be more attractive than standard-heat-pump systems in all areas of the country; however, in many regions, particularly in the northeast and north central states, TES appears to be more attractive. In the not-too-distant future, use of TES with heat pumps may prove to be the best system nationwide. For the third system, TES for residential space cooling, it was found that those units that are presently technically viable would be too costly except in a few parts of the country; more development will be required before these systems could be commercialized on a national scale. TES systems that might be used in commercial buildings (e.g., stores and office buildings) were not examined. Environmental, market and economic, and institutional-readiness studies are presented. Market penetration and benefit analysis are summarized. Barriers to commercialization are identified along with strategies for overcoming the barriers. Schedules and resource requirements are discussed. Summaries of the study techniques and additional information are given in the appendices. (MCW)

  14. June 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Documents for Power Generation And Distribution Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 118 > Electric power high-voltage transmission lines:...

  15. A Valuation-Based Framework for Considering Distributed Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tools to inform further discussions. Keywords-tariff design, ratemaking, distributed generation, photovoltaic, solar valuation, value of solar, cost-benefit analysis I....

  16. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    L, editor. 11 th Annual Real Options Conference, Berkeley,from its utility. Using the real options approach, we find aDistributed Generation; Real Options; Optimal Investment;

  17. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01T23:59:59.000Z

    utility. Using the real options approach, we find naturalDistributed Generation; Real Options; Optimal Investment. 1.based microgrid via the real options approach to determine

  18. Poland - Economic and Financial Benefits of Distributed Generation...

    Open Energy Info (EERE)

    of Distributed Generation Small-Scale, Gas-Fired CHP AgencyCompany Organization Argonne National Laboratory Sector Energy Topics Background analysis Website http:...

  19. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    Only Load Electricity Generation By Fuel in the U.S.electricity generation from most sources, except oil, is growing to meet the growing demand and that fossil fuels

  20. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Sy Ali; Bob Moritz

    2001-09-01T23:59:59.000Z

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  1. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those resources. References Retrieved from "http:...

  2. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Guillas, Serge

    decision as the opportunity cost of exercising the investment option increases as well. In this paper, weInvestment and Upgrade in Distributed Generation under Uncertainty Afzal Siddiqui Karl Maribu 13 for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via

  3. Distributed Medium Access Control for Next Generation CDMA Wireless Networks

    E-Print Network [OSTI]

    Zhuang, Weihua

    Distributed Medium Access Control for Next Generation CDMA Wireless Networks Hai Jiang, Princeton wireless networks are expected to have a simple infrastructure with distributed control. In this article, we consider a generic distributed network model for future wireless multi- media communications

  4. A reliability assessment methodology for distribution systems with distributed generation

    E-Print Network [OSTI]

    Duttagupta, Suchismita Sujaya

    2006-08-16T23:59:59.000Z

    Reliability assessment is of primary importance in designing and planning distribution systems that operate in an economic manner with minimal interruption of customer loads. With the advances in renewable energy sources, ...

  5. Operation of Distributed Generation Under Stochastic Prices

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris

    2005-11-30T23:59:59.000Z

    We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

  6. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Sulc, Petr; Backhaus, Scott; Chertkov, Michael

    2010-01-01T23:59:59.000Z

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

  7. Residential Mail Procedures Residential Mail Services

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Residential Mail Procedures Residential Mail Services 23 Owens Hall Blacksburg, VA 24061 Phone.mailservices.vt.edu #12;Residential Mail Procedures Table of Contents General information.................................................................................8 #12;Residential Mail Procedures The following procedures have been establishes by the University

  8. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    purchase abs. cooling offset electric supply (kW) hourTariffs electric supply (kW) abs. cooling offset purchasecooling offset Distributed Generation Dispatch Optimization Under Various Electricity Tariffs electric supply (

  9. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    ment of uncertainty via real options increases the value of2007) and the 2007 Real Options Conference in Berkeley, CA,distributed generation, real options JEL Codes: D81, Q40

  10. Advanced Distributed Generation LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington,Admire,CA 94105Advanced Distributed

  11. Distributed Generation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Energy Information At1986)Distributed

  12. Local Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

    2010-01-01T23:59:59.000Z

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

  13. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  14. Generating generalized distributions from dynamical simulation

    E-Print Network [OSTI]

    Barth, Eric J.; Laird, Brian Bostian; Leimkuhler, Benedict J.

    2003-03-18T23:59:59.000Z

    virtual momentum related to the actual momentum of the system by p5sp.3 The equations of motion generated by the Nose Hamiltonian @Eq. ~1!# are dq dt 5M 21p/s2, ~2! dp dt 52V~q!, ~3! ds dt 5 p Q , ~4! dp dt 5 pTM21p s3 2gkBT/s . ~5! The Nose method... regulates the temperature of the sys- tem through a dynamical time transformation given by dt/dt5s , where t is the Nose ~virtual! time and t is real time. The remarkable property of Nose dynamics is that mi- crocanonical sampling of the extended phase...

  15. The harmonic impact of electric vehicle battery chargers on residential power distribution

    SciTech Connect (OSTI)

    Wang, Y.; O`Connell, R.M. [Univ. of Missouri, Columbia, MO (United States). Dept. of Electrical Engineering; Brownfield, G. [Ameren Services, St. Louis, MO (United States)

    1999-11-01T23:59:59.000Z

    Electric vehicles (EV), which are powered by battery-driven electric motors, are becoming an ecologically attractive alternative to gasoline driven vehicles. One drawback to them is that the associated battery chargers are power electronic circuits which, because of their non-linear nature, can produce deleterious harmonic effects on the electric utility distribution system. To investigate the harmonic effects of widespread use of EV battery chargers, three different commercially available EV battery chargers are modeled using the injection current method to represent their current waveforms for simulation in a SPICE model of a particular distribution system.

  16. Insertion of Distributed Generation into Rural Feeders , R. MORENO+

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    -generating technologies with new technologies that pollute less. Therefore, the use of renewable energies in the worldwide of renewable energy distributed generators (DG) to radial feeders is assessed. Often, the long distance between, however, are not usually designed to receive energy at the consumer end. This problem intensifies

  17. Introduction to Network Analysis 21 Generating Functions and Degree Distributions

    E-Print Network [OSTI]

    Safro, Ilya

    Introduction to Network Analysis 21 Generating Functions and Degree Distributions we add zero term because of infinity #12;Introduction to Network Analysis 22 Number of second neighbors of a vertex Probability of having k second neighbors given m first neighbors degree distribution Prob excess degrees of m

  18. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

  19. Voltage Control of Distribution Networks with Distributed Generation using Reactive Power

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Voltage Control of Distribution Networks with Distributed Generation using Reactive Power to control voltage of distribution networks with DG using reactive power compensation approach. In this paper profile within the specified limits, it is essential to regulate the reactive power of the compensators

  20. Efficiency and Air Quality Implications of Distributed Generation and Combined Heat

    E-Print Network [OSTI]

    Efficiency and Air Quality Implications of Distributed Generation and Combined Heat and Power potentially increase exposure to air pollutants. When distributed generation is efficiently deployed to determine accurately the efficiencies and emissions of various applications of distributed generation

  1. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

    2010-08-04T23:59:59.000Z

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

  2. Cascade Failures from Distributed Generation in Power Grids

    E-Print Network [OSTI]

    Scala, Antonio; Scoglio, Caterina

    2012-01-01T23:59:59.000Z

    Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustness of several IEEE power grid test networks with up to 2000 buses. We find that increasing the penetration of erratic sources causes the grid to fail with a sharp transition. We compare such results with the case of failures caused by the natural increasing power demand.

  3. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19T23:59:59.000Z

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  4. A planning scheme for penetrating embedded generation in power distribution grids

    E-Print Network [OSTI]

    Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Penetrating Embedded Generation, or Distributed Generation (DG), in power distribution grids presents great benefits and substantial positive social impacts to utilities, system operators and electricity consumers. Existing ...

  5. Ris Energy Report 4 Distributed generation 1 What is distributed generation?

    E-Print Network [OSTI]

    generation (DG) refers to an emerging evolu- tion of the electric power generation systems, in which all of the Euro- pean Union (CEU) as an essential part of the develop- ment of the European power system the use of modelling in these contexts, including: strategic planning and policymaking detailed system

  6. Generate Uniform Transverse Distributed Electron Beam along a Beam Line

    E-Print Network [OSTI]

    Jiao, Y

    2015-01-01T23:59:59.000Z

    It has been reported that transverse distribution shaping can help to further enhance the energy extraction efficiency in a terawatt, tapered X-ray free-electron laser. Thus, methods of creating and keeping almost uniform transverse distributed (UTD) beam within undulators are required. This study shows that a UTD electron beam can be generated within evenly distributed drift sections where undulators can be placed, by means of octupoles and particular optics. A concrete design is presented, and numerical simulations are done to verify the proposed method.

  7. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01T23:59:59.000Z

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  8. Introduction to Network Analysis 15 Generating Functions and Degree Distributions

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    Introduction to Network Analysis 15 Generating Functions and Degree Distributions #12;Introduction to Network Analysis 16 Polylogarithm drawn values add to a specific sum #12;Introduction to Network Analysis-loops, multi-edges #12;Introduction to Network Analysis 18 Configuration Model Conclusion: expected number

  9. Parton distributions and event generators Stefano Carrazza, Stefano Forte

    E-Print Network [OSTI]

    Heller, Barbara

    Parton distributions and event generators Stefano Carrazza, Stefano Forte Dipartimento di Fisica ingredient in achieving all of these goals is the integration of parton distri- butions within Monte Carlo, and data collected in an experimental fiducial region. Whereas next-to-leading (NLO) order Monte Carlo

  10. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31T23:59:59.000Z

    This report serves as a Final Report under the Energy Storage and Distribution Energy Generation Project carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nations grid. TECs research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.

  11. Guidelines for residential commissioning

    E-Print Network [OSTI]

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-01T23:59:59.000Z

    Potential Benefits of Commissioning California Homes.Delp. 2000. Residential Commissioning: A Review of Relatedfor Evaluating Residential Commissioning Metrics Lawrence

  12. Design of a Norm-Bounded LQG Controller for Power Distribution Networks with Distributed Generation

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    . Therefore, control of modern electric power systems becomes more and more challenging as the present trends control is essential. Moreover, induction motor loads account for a large portion of domestic loadsDesign of a Norm-Bounded LQG Controller for Power Distribution Networks with Distributed Generation

  13. RANDOM VARIATE GENERATION FOR THE DIGAMMA AND TRIGAMMA DISTRIBUTIONS Luc Devroye

    E-Print Network [OSTI]

    Devroye, Luc

    RANDOM VARIATE GENERATION FOR THE DIGAMMA AND TRIGAMMA DISTRIBUTIONS Luc Devroye School of Computer these distributions and selected generalized hypergeometric distributions. The generators can also be used for the discrete stable distribution, the Yule distribution, Mizutani's distribution and the Waring distribution

  14. The 1992 Pacific Northwest Residential Energy Survey : Phase 1 (PNWRES92-I) : Book 6 : Selected Crosstabulations for Publicly-Owned Generating Utilities.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. End-Use Research Section; Applied Management & Planning Group (Firm)

    1993-06-01T23:59:59.000Z

    This book constitutes a portion of the primary documentation for the 1992 Pacific Northwest Residential Energy Survey, Phase I. The complete 33-volume set of primary documentation provides information needed by energy analysts and interpreters with respect to planning, execution, data collection, and data management of the PNWRES92-I process. Thirty of these volumes are devoted to different ``views`` of the data themselves, with each view having a special purpose or interest as its focus. Analyses and interpretations of these data will be the subjects of forthcoming publications. Conducted during the late summer and fall months of 1992, PNWRES92-I had the over-arching goal of satisfying basic requirements for a variety of information about the stock of residential units in Bonneville`s service region. Surveys with a similar goal were conducted in 1979 and 1983. This volume is comprised of selected crosstabulations for publicly-owned generating utilities in Eastern Washington, Western Washington, and Western Oregon. ``Selected crosstabulations`` refers to a set of nine survey items of wide interest (Dwelling Type, Ownership Type, Year-of-Construction, Dwelling Size, Primary Space-Heating Fuel, Primary Water-Heating Fuel, Household Income for 1991, Utility Type, and Space-Heating Fuels: Systems and Equipment) that were crosstabulated among themselves.

  15. Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007

    SciTech Connect (OSTI)

    Davis, M. W.; Broadwater, R.; Hambrick, J.

    2007-07-01T23:59:59.000Z

    This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

  16. Laboratories for the 21st Century Best Practices: Onsite Distributed Generation Systems For Laboratories

    Broader source: Energy.gov [DOE]

    Guide describes general information on implementing onsite distributed generation systems in laboratory environments.

  17. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets

    E-Print Network [OSTI]

    Rastler, D. M.

    Wires Manage Wires defer capital Optimize Energy Services Not Utility Business Not Utility Business New Business Opportunities DISTRIBUTED GENERATION Distributed generation includes small gas turbines, micro-turbines, fuel cells, storage...UTILITYIINDUSTRY PARTNERSHIPS INVOLVING DISTRIBUTED GENERATION TECHNOLOGIES IN EVOLVING ELECTRICITY MARKETS Daniel M. Rastler Manager, Fuel Cells and Distributed Generation Electric Power Research Institute Palo Alto, California ABSTRACT...

  18. Distributed Generation Investment by a Microgrid UnderUncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris

    2006-06-16T23:59:59.000Z

    This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.

  19. Distributed Generation Investment by a Microgrid under Uncertainty

    SciTech Connect (OSTI)

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    2008-08-11T23:59:59.000Z

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

  20. Reliability Improvement Programs in Steam Distribution and Power Generation Systems

    E-Print Network [OSTI]

    Petto, S.

    RELIABILITY IIIPROVEfWlT PROGRAMS IN STEAM DISTRIBUTION AND POVER GENERATION SYSTEItS Steve Petto Tech/Serv Corporation Blue Bell, PA Abstract This paper will present alternatives to costly corrective maintenance of the steam trap... In the reliability and efficiency of the system. Recent studies have shownt hat more than 40% of all In stalled steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems In condensate return...

  1. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect (OSTI)

    Anthony Terrinoni; Sean Gifford

    2008-06-30T23:59:59.000Z

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  2. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08T23:59:59.000Z

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  3. Residential Services Headlease residents

    E-Print Network [OSTI]

    Sussex, University of

    Residential Services Headlease residents handbook 2013-2014 #12;Map of Brighton inside front cover packs Rent 5 Residential Advisor (RA) network 6 Senior residential advisors Residential Student Support Contents Contents Brighton 1 #12;Welcome Congratulations on securing your place at Sussex. Residential

  4. Assessment of Distributed Generation Potential in JapaneseBuildings

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

    2005-05-25T23:59:59.000Z

    To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

  5. The Value of Distributed Generation under Different TariffStructures

    SciTech Connect (OSTI)

    Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

    2006-05-31T23:59:59.000Z

    Distributed generation (DG) may play a key role in a modern energy system because it can improve energy efficiency. Reductions in the energy bill, and therefore DG attractiveness, depend on the electricity tariff structure; a system created before widespread adoption of distributed generation. Tariffs have been designed to recover costs equitably amongst customers with similar consumption patterns. Recently, electric utilities began to question the equity of this electricity pricing structure for standby service. In particular, the utilities do not feel that DG customers are paying their fair share of transmission and distribution costs - traditionally recovered through a volumetric($/kWh) mechanism - under existing tariff structures. In response, new tariff structures with higher fixed costs for DG have been implemented in New York and in California. This work analyzes the effects of different electricity tariff structures on DG adoption. First, the effects of the new standby tariffs in New York are analyzed in different regions. Next generalized tariffs are constructed, and the sensitivity to varying levels of the volumetric and the demand ($/kW, i.e. maximum rate) charge component are analyzed on New York's standard and standby tariff as well as California's standby tariff. As expected, DG profitability is reduced with standby tariffs, but often marginally. The new standby structures tend to promote smaller base load systems. The amount of time-of-day variability of volumetric pricing seems to have little effect on DG economics.

  6. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    Faress Rahman; Nguyen Minh

    2004-01-04T23:59:59.000Z

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  7. 1 Control Challenges of Fuel Cell-Driven Distributed Generation

    E-Print Network [OSTI]

    Valery Knyazkin; Lennart Sder; Claudio Canizares

    Abstract This paper discusses the load following capability of fuel cell-driven power plants. A linear model of a Solid Oxide Fuel Cell power plant is obtained and utilized for the design of robust controllers which enhance tracking response of the plant and reject disturbances originating from the distribution grid. Two robust controllers are synthesized applying the H? mixed-sensitivity optimization and their performance is validated by means of nonlinear time-domain simulations. The obtained results indicate that the disturbances can be successfully attenuated; however, the tracking response cannot be significantly improved without a modification of the design of the fuel cell power plant. The paper is concluded by a brief discussion on the physical limitations on the fuel cell output power ramp and possible solutions are outlined. Index Terms Distributed generation, Solid Oxide Fuel Cells, robust control, H ? controller design, disturbance rejection.

  8. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect (OSTI)

    Hadley, SW

    2005-06-16T23:59:59.000Z

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30T23:59:59.000Z

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  10. Distributed Generation Study/Emerling Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm < Distributed Generation Study

  11. Distributed Generation Study/Floyd Bennett | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm < Distributed Generation

  12. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

    2013-01-01T23:59:59.000Z

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  13. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

  14. The Effect of Distributed Energy Resource Competition with Central Generation

    SciTech Connect (OSTI)

    Hadley, SW

    2003-12-10T23:59:59.000Z

    Distributed Energy Resource (DER) has been touted as a clean and efficient way to generate electricity at end-use sites, potentially allowing the exhaust heat to be put to good use as well. However, despite its environmental acceptability compared to many other types of generation, it has faced some disapproval because it may displace other, cleaner generation technologies. The end result could be more pollution than if the DER were not deployed. On the other hand, the DER may be competing against older power plants. If the DER is built then these other plants may be retired sooner, reducing their emissions. Or it may be that DER does not directly compete against either new or old plant capacity at the decision-maker level, and increased DER simply reduces the amount of time various plants operate. The key factor is what gets displaced if DER is added. For every kWh made by DER a kWh (or more with losses) of other production is not made. If enough DER is created, some power plants will get retired or not get built so not only their production but their capacity is displaced. Various characteristics of the power system in a region will influence how DER impacts the operation of the grid. The growth in demand in the region may influence whether new plants are postponed or old plants retired. The generation mix, including the fuel types, efficiencies, and emission characteristics of the plants in the region will factor into the overall competition. And public policies such as ease of new construction, emissions regulations, and fuel availability will also come into consideration.

  15. IMPACT OF FUEL CELL BASED HYBRID DISTRIBUTED GENERATION IN AN ELECTRICAL DISTRIBUTION

    E-Print Network [OSTI]

    unknown authors

    Recent developments in distributed generation technologies have enabled new options for supplying electrical energy in remote and off-grid areas. The importance of fuel cells has increased during the past decade due to the extensive use of fossil fuels for electrical power has resulted in many negative consequences. Fuel cells are now closer to commercialization than past and they have the ability to fulfill all of the global power needs while meeting the economic and environmental expectations..The objective of this paper is to study the economic performance and operation of a fuel cell distributed generation and to provide an assessment of the economic issues associated in electrical network. In this study, with HOMER (Hybrid Optimization Model for Electric Renewables) software, NRELs micro power optimization model performed a range of equipment options over varying constraints and sensitivities to optimize small power distribution systems. Its flexibility makes it useful in the evaluation of design issues in the planning and early decision-making phase of rural electrification projects. This study concludes that fuel cell systems appear competitive today if is connected with proposed hybrid DG in an AC distribution grid. The overall energy management strategy for coordinating the power flows among the different energy sources is presented with cost-effective approach.

  16. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01T23:59:59.000Z

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    Nguyen Minh

    2002-03-31T23:59:59.000Z

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  18. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Unknown

    2002-03-01T23:59:59.000Z

    This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

  19. Investment and Upgrade in Distributed Generation under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Maribu, Karl

    2008-08-18T23:59:59.000Z

    The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplatingthe installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

  20. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10T23:59:59.000Z

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  1. Residential Learning University Housing

    E-Print Network [OSTI]

    Rusu, Adrian

    Residential Learning & University Housing Handbook 2008 - 2009 A Guide for Residential Living on the Campus of Rowan University #12;Welcome to Residential Learning & University Housing! The primary purpose of the Office of Residential Life & University Housing is to assist and support students in the pursuit

  2. RESIDENTIAL COLLEGES NORTHWESTERN

    E-Print Network [OSTI]

    Apkarian, A. Vania

    c RESIDENTIAL COLLEGES NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

  3. Residential Colleges NORTHWESTERN

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Residential Colleges NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

  4. Steam System Balancing and Tuning for Multifamily Residential...

    Energy Savers [EERE]

    for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested:...

  5. Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California

    E-Print Network [OSTI]

    Dabdub, Donald

    Keywords: Distributed generation Central generation Air quality modeling Reactivity a b s t r a c by the widespread installation of many stationary power generators close to the point of electricity use within from which electricity must be transmitted to end users. However, increasing electricity demand

  6. Comparing Residential Furnace Blowers for

    E-Print Network [OSTI]

    of air conditioner performance, standby power, as well as igniter and combustion air blower power results in 10% lower air conditioner efficiency. For heating, the advantage of the BPM blower was to assess the performance of residential furnace blowers for both heating, cooling and air distribution

  7. New Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Certain Visually Significant Resources Outside Residential Subdivisions (New York)

    Broader source: Energy.gov [DOE]

    Any proposed construction of distribution lines, service lines, and appurtenant facilities to electric utilities located near scenic areas of statewide significance, including Adirondack park...

  8. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    Cost of Natural Gas Generation, p Figure 6. Normalised NetCost of Natural Gas Generation, p Figure 7. Wait InvestCost of Natural Gas Generation (US$/kWh e ), C Figure 8.

  9. Air Quality Impact of Distributed Generation of Electricity

    E-Print Network [OSTI]

    Jing, Qiguo

    2011-01-01T23:59:59.000Z

    of the near source air quality impact of distributedDabdub, D. , 2003. Urban Air quality impacts of distributedDabdub, D. , 2004. Urban Air quality impacts of distributed

  10. Method and apparatus for anti-islanding protection of distributed generations

    DOE Patents [OSTI]

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21T23:59:59.000Z

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  11. HYBRID CONTROL OF DISTRIBUTED GENERATORS CONNECTED TO WEAK RURAL NETWORKS TO MITIGATE VOLTAGE VARIATION

    E-Print Network [OSTI]

    Harrison, Gareth

    thermal power plants will increase the total and proportion of capacity of Distributed Generation (DG@iee.org; Robin.Wallace@ed.ac.uk ABSTRACT Distributed generators are normally operated in automatic power factor-constrained bi- directional power flow may cause unacceptable voltage fluctuations that would cause generator

  12. Automated di/dt Stressmark Generation for Microprocessor Power Distribution Networks

    E-Print Network [OSTI]

    John, Lizy Kurian

    Automated di/dt Stressmark Generation for Microprocessor Power Distribution Networks Youngtaek Kim for automated di/dt stressmark generation to test maximum voltage droop in a microprocessor power distribution and typical benchmarks in experiments covering three micro-processor architectures and five power distribution

  13. Fuel cell power plants in a distributed generator application

    SciTech Connect (OSTI)

    Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31T23:59:59.000Z

    ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

  14. Abstract--This paper proposes a distributed generator (DG) placement methodology based on newly defined term reactive

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    . Index Terms--Distributed generator (DG), reactive power loadability, solar, voltage regulation, wind generator. I. INTRODUCTION istributed generation based on renewable energy sources offers a promising

  15. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15T23:59:59.000Z

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and not only by PV during sunny on-peak hours.

  16. Methodology The electricity generation and distribution network in the Western United States is

    E-Print Network [OSTI]

    Hall, Sharon J.

    Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

  17. Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads

    E-Print Network [OSTI]

    Zeineldin, H. H.

    Distribution systems are experiencing increasing penetration of distributed generation (DG). One attractive option is to use the available DG capacity during utility outages by forming planned micro-grids. Load sharing ...

  18. Dynamic equivalencing of distribution network with embedded generation

    E-Print Network [OSTI]

    Feng, Xiaodan Selina

    2012-06-25T23:59:59.000Z

    Renewable energy generation will play an important role in solving the climate change problem. With renewable electricity generation increasing, there will be some significant changes in electric power systems, ...

  19. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  20. Residential Energy Audits

    E-Print Network [OSTI]

    Brown, W.

    1985-01-01T23:59:59.000Z

    A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

  1. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01T23:59:59.000Z

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  2. Presentation: Better Buildings Residential Program Solution Center...

    Office of Environmental Management (EM)

    Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

  3. Collaborating With Utilities on Residential Energy Efficiency...

    Office of Environmental Management (EM)

    on Residential Energy Efficiency Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Collaborating With Utilities on Residential Energy...

  4. Better Buildings Residential Program Solution Center Demonstration...

    Energy Savers [EERE]

    Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution...

  5. Membership Criteria: Better Buildings Residential Network | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network...

  6. Smoothing the Eects of Renewable Generation on the Distribution Grid

    E-Print Network [OSTI]

    Naud, Paul S.

    2014-01-01T23:59:59.000Z

    to Grid by Paul Naud Renewable electrical power sourcessystem based on various renewable energy resources. InCRUZ Smoothing the Effects of Renewable Generation on the

  7. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01T23:59:59.000Z

    electricity markets , PhD thesis, University of California, Berkeley, CA, USA,USA, 1994. Joskow PL, Productivity growth and technical change in the generation of electricity,

  8. Future of Distributed Generation and IEEE 1547 (Presentation...

    Office of Scientific and Technical Information (OSTI)

    new boundary issues and requirements, islanding issues, and how it impacts distributed wind. times redirected to final destination ShortURL Code Published Current state Most...

  9. Future of Distributed Generation and IEEE 1547 (Presentation)

    SciTech Connect (OSTI)

    Preus, R.

    2014-06-01T23:59:59.000Z

    This presentation discusses the background on IEEE 1547, including its purpose, changes, new boundary issues and requirements, islanding issues, and how it impacts distributed wind.

  10. Housing and Residential Life

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

  11. AREA COORDINATOR RESIDENTIAL EDUCATION

    E-Print Network [OSTI]

    Bordenstein, Seth

    AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

  12. PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION

    E-Print Network [OSTI]

    PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION MANUAL (ACM) APPROVAL METHOD for the 2013 2012 CEC400201200715DAY #12;201308 Residential ACM Approval Manual 2-2 1. Overview Minimum Modeling Capabilities 1. Overview This Manual explains the requirements for approval of residential Alternative

  13. Residential Wood Residential wood combustion (RWC) is

    E-Print Network [OSTI]

    Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

  14. Control and Analysis of Droop and Reverse Droop Controllers for Distributed Generations

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Control and Analysis of Droop and Reverse Droop Controllers for Distributed Generations Dan Wu1 University, P. R. China ftang_nego@126.com Abstract--This paper addresses control and analysis of droop and reverse droop control for distributed generations (DG). The droop control is well known applied

  15. Self-triggered Communication Enabled Control of Distributed Generation in Microgrids

    E-Print Network [OSTI]

    Mazumder, Sudip K.

    1 Self-triggered Communication Enabled Control of Distributed Generation in Microgrids Muhammad. I. INTRODUCTION Effective integration of multiple distributed generation (DG) units in microgrids. Conventionally the secondary control in a microgrid is based on a centralized control structure using periodic

  16. 1170 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 2, MAY 2013 Independent Distributed Generation Planning

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    -scale electric generation facilities to participate in distributed generation (DG) with few requirements on power-purchase1170 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 2, MAY 2013 Independent Distributed is maximized via procuring power from DGs and the market at a minimum expense. On the other hand, each DG unit

  17. Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units With larger portion of growing electricity demand which is being fed through distributed generation (DG power system. Being able to operate in both grid-connected and islanded mode, a microgrid manages

  18. Reactive power management of distribution networks with wind generation for improving voltage stability

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    -loadability Reactive power margin Wind turbine a b s t r a c t This paper proposes static and dynamic VAR planningReactive power management of distribution networks with wind generation for improving voltage February 2013 Available online Keywords: Composite load Distributed generation D-STATCOM Q

  19. OPTIMAL DISTRIBUTED POWER GENERATION UNDER NETWORK LOAD CONSTRAINTS,

    E-Print Network [OSTI]

    Frank, Jason

    of novel components for decentral power generation (solar panels, small wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel, small wind turbine or central-producers. Decentralized Power Generation (DPG) refers to an electric power source such as solar, wind or combined heat

  20. Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation

    E-Print Network [OSTI]

    Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

    2005-01-01T23:59:59.000Z

    2: L A City, DWP Valley Generating 1: Hunters Point 2: PG &E Co, Hunters Point Power 1: SDG & E Co/Kearny Mesa GT 2:Angeles ST(4) BF(2) Hunters Point San Francisco NG, Diesel

  1. March 2015 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Methods for Power Distribution Systems: Final Report Tom McDermott (2010) 67 Frequency Control Concerns in the North American Electric Power System Kirby, B.J. (2003) 64 A...

  2. Smoothing the Eects of Renewable Generation on the Distribution Grid

    E-Print Network [OSTI]

    Naud, Paul S.

    2014-01-01T23:59:59.000Z

    Fortunately, inverter data from a customer with a PV systemsystem, in series with a PV array and ahead of the inverter,PV is fed into an inverter to feed energy into the distribution system.

  3. Random Boolean networks with number of parents generated by certain probability distributions

    E-Print Network [OSTI]

    Matache, Dora

    Random Boolean networks with number of parents generated by certain probability distributions Ray A following a Power Law distribution. Others have examined how highly connected networks use a Popularity network where the number of parents are obtained using a Power Law distribution and are connected based

  4. DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual.

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    1 Appendix A DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual. Residential Life Program Listing #12;2 MISSOURI S&T RESIDENTIAL LIFE DEPARTMENT Staff Resource Manual 2010--2012 Department of Residential Life Mission: To create educational environments emphasizing learning and development. Service

  5. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01T23:59:59.000Z

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  6. Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui

    E-Print Network [OSTI]

    Guillas, Serge

    , CA 94720-8163, USA, c_marnay@lbl.gov ABSTRACT. This paper examines a California-based microgrid-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold

  7. Optimal distributed power generation under network load constraints

    E-Print Network [OSTI]

    Utrecht, Universiteit

    wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel, mainly because of the development of novel components for decentral power generation (solar panels, small (DPG) refers to an electric power source such as solar, wind or combined heat power (CHP) connected

  8. Distributed Power Generation: Requirements and Recommendations for an ICT Architecture

    E-Print Network [OSTI]

    Appelrath, Hans-Jrgen

    . In the future of energy markets, the distributed energy production through wind and hydroelectric power plants. Some of these are sustainable (wind and hydroelectric power plants, solar cells), some are controllable, one has to distinguish between two in principle different products: consumption power and balance

  9. Study and Development of Anti-Islanding Control for Synchronous Machine-Based Distributed Generators: November 2001--March 2004

    SciTech Connect (OSTI)

    Ye, Z.

    2006-03-01T23:59:59.000Z

    This report summarizes the study and development of new active anti-islanding control schemes for synchronous machine-based distributed generators, including engine generators and gas turbines.

  10. Irregular access to the power distribution network in Brazil's residential sector: a delinquent payment problem, or the quest for a right beyond the law?

    SciTech Connect (OSTI)

    da Silva, Neilton Fidelis; Rosa, Luiz Pinguelli

    2008-08-15T23:59:59.000Z

    Clandestine residential consumers should not be rubber-stamped as criminals. Siphoning off electricity does not constitute an illegal action, but is rather the only alternative open to marginalized layers of society who rate electricity in their homes as a right to which they should have access. (author)

  11. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    SciTech Connect (OSTI)

    Cui, Xiaohui [ORNL] [ORNL; Liu, Cheng [ORNL] [ORNL; Kim, Hoe Kyoung [ORNL] [ORNL; Kao, Shih-Chieh [ORNL] [ORNL; Tuttle, Mark A [ORNL] [ORNL; Bhaduri, Budhendra L [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

  12. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect (OSTI)

    Jones, Nic [Solar San Antonio, TX (United States); Norris, Ben [Clean Power Research, Napa, CA (United States); Meyer, Lisa [City of San Antonio, TX (United States)

    2013-02-14T23:59:59.000Z

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  13. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30T23:59:59.000Z

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  14. RESIDENTIAL SERVICES STUDENT CHARTER Introduction

    E-Print Network [OSTI]

    Oakley, Jeremy

    RESIDENTIAL SERVICES STUDENT CHARTER Introduction This Charter sets out the standards of provision. Residential Services are committed to encouraging diversity and inclusiveness within University residences via the Residential Services Annual Report and the internet. Consultation This Charter was developed

  15. Investigation of anti-islanding schemes for utility interconnection of distributed fuel cell powered generations

    E-Print Network [OSTI]

    Jeraputra, Chuttchaval

    2006-04-12T23:59:59.000Z

    The rapid emergence of distributed fuel cell powered generations (DFPGs) operating in parallel with utility has brought a number of technical concerns as more DFPGs are connected to utility grid. One of the most challenging ...

  16. Applying epoch-era analysis for homeowner selection of distributed generation power systems

    E-Print Network [OSTI]

    Pia, Alexander L

    2014-01-01T23:59:59.000Z

    The current shift from centralized energy generation to a more distributed model has opened a number of choices for homeowners to provide their own power. While there are a number of systems to purchase, there are no tools ...

  17. Distributed generation and demand side management : applications to transmission system operation

    E-Print Network [OSTI]

    Hayes, Barry Patrick

    2013-07-01T23:59:59.000Z

    Electricity networks are undergoing a period of rapid change and transformation, with increased penetration levels of renewable-based distributed generation, and new influences on electricity end-use patterns from ...

  18. High Penetration Solar Distributed Generation Study on Oahu | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy CompletingPresentedGeneration FY13

  19. Distributed Generation System Characteristics and Costs in the Buildings Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : bDistributed

  20. Distributed Generation Study/Harbec Plastics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm < Distributed

  1. Distributed Generation Study/Hudson Valley Community College | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm < DistributedInformation

  2. Velocity distribution measurements in atomic beams generated using laser induced back-ablation

    E-Print Network [OSTI]

    Denning, A; Lee, S; Ammonson, M; Bergeson, S D

    2008-01-01T23:59:59.000Z

    We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.

  3. Essays on residential desegregation

    E-Print Network [OSTI]

    Wong, Maisy

    2008-01-01T23:59:59.000Z

    Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

  4. Residential Solar Rights

    Broader source: Energy.gov [DOE]

    In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar...

  5. Citizens Gas- Residential Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Citizens Gas of Indiana offers rebates to its residential customers for the installation of several types of efficient natural gas appliances. Rebates are generally available for residential homes...

  6. Fault Current Issues for Market Driven Power Systems with Distributed Generation

    E-Print Network [OSTI]

    are required for the selection of interruption devices, protective relays, and their coordination. Systems must Terms--Distributed / dispersed generation, power distri- bution, power system protection, fault in siting conventional generation but, for whatever reason, protection engineers as well as transmission

  7. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

  8. A forward microphysical model to predict the size-distribution parameters of laboratory generated (mimic)

    E-Print Network [OSTI]

    Oxford, University of

    A forward microphysical model to predict the size- distribution parameters of laboratory generated Interactions ­ Condensational Growth and Coagulation, Submitted for Indian Aerosol Science and Technology Microphysical Model for the UTLS (FAMMUS) is applied to predict the size-distribution parameters of laboratory

  9. A New Approach to Mitigate the Impact of Distributed Generation on the Overcurrent Protection Scheme of Radial Distribution Feeders

    E-Print Network [OSTI]

    Funmilayo, Hamed

    2010-01-14T23:59:59.000Z

    ........................................................5 2.3. Overcurrent Protection Coordination Rules ....................................................10 2.4. Distributed Generation (DG) in Radial Feeders ..............................................15 2.5. Radial Feeder with DG.............................................................................29 3.3. System Protection............................................................................................31 3.4. Interconnection Protection...............................................................................35 3.5. DG Unit...

  10. Background to the development process, Automated Residential Energy Standard (ARES) in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 3

    SciTech Connect (OSTI)

    NONE

    1989-09-01T23:59:59.000Z

    This report documents the development and testing of a set of recommendations generated to serve as a primary basis for the Congressionally-mandated residential standard. This report treats only the residential building recommendations.

  11. Onsite Backup Generation and Interruption Insurance for Electricity Distribution Author(s): Joseph A. Doucet and Shmuel S. Oren

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Onsite Backup Generation and Interruption Insurance for Electricity Distribution Author(s): Joseph customerownedonsitebackupdecisionswillpre-emptthe utility'splan to mitigatecompensationpaymentsbyprovidingonsitebackup generation access to The Energy Journal. http://www.jstor.org #12;Onsite Backup Generation and Interruption

  12. Residential Energy Efficiency Customer Service Best Practices...

    Energy Savers [EERE]

    Residential Energy Efficiency Customer Service Best Practices Residential Energy Efficiency Customer Service Best Practices Better Buildings Residential Network Peer Exchange Call...

  13. Landholders, Residential Land Conversion, and Market Signals

    E-Print Network [OSTI]

    Margulis, Harry L.

    2006-01-01T23:59:59.000Z

    465 Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

  14. Fact Sheet: Better Buildings Residential Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn What Is the Residential Network? The Better Buildings Residential Network connects...

  15. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    Report on Applicability of Residential Ventilation StandardsCharacterization of Residential New Construction PracticesJ - Load Calculation for Residential Winter and Summer Air

  16. Key factors affecting voltage oscillations of distribution networks with distributed generation and induction motor loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    of distributed energy sources such as, combined heat and power (CHP), wind, solar, and fuel cells, are expected and IT, The University of New South Wales, Canberra, ACT 2600, Australia b Future Grid Research Centre, The University of Melbourne, Parkville, VIC 3010, Australia c Griffith School of Engineering, Griffith University

  17. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at customer sites to address peak load. 2 Using these resources could reduce required installed capacity and would increase the operating reserve margins for the network,...

  18. Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Residential New Construction Program includesthree service tiersthat can be achieved by completing various energy efficiency measures. The tiers are: Energy Code Plus (Bronze), VermontENER...

  19. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31T23:59:59.000Z

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  20. Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study

    E-Print Network [OSTI]

    Li, Baochun

    Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study Zhi Zhou1 Fangming Liu of fuel cell energy in cloud computing, yet it is unclear what and how much benefit it may bring. This paper, for the first time, attempts to quantitatively examine the benefits brought by fuel cell

  1. Published in IET Generation, Transmission & Distribution Received on 8th July 2013

    E-Print Network [OSTI]

    Fu, Yong

    , in a practical power system, the transmission topology can change as a result of maintenance and network network topology in an electric power system. The modelling is accomplished in a coordinatedPublished in IET Generation, Transmission & Distribution Received on 8th July 2013 Revised on 31st

  2. Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    of strategic trading in restructured wholesale power markets with congestion managed by locational marginal when coupled with increased price-sensitivity of demand as realized through demand response, demand dispatch, and/or price-sensitive demand bidding. Index Terms--Distributed power generation, multiagent sys

  3. Published in IET Generation, Transmission & Distribution Received on 5th October 2012

    E-Print Network [OSTI]

    Qu, Zhihua

    , and the system reliability is improved. The simulation results verify the effectiveness of the proposed secondary networks reduce the system reliability. More reliable and sparse communication networks can be accommodated of multiple photovoltaic generators in a power distribution system [16]. Networked multi-agent systems have

  4. Operation and Control of Distribution Systems with high level integration of Renewable Generation units

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    models Probabilistic methodologies are being applied to power system analysis since 70' [9] becauseOperation and Control of Distribution Systems with high level integration of Renewable Generation. Diagonal 649 Pavell A, 08028 Barcelona, Spain Summary Traditional power systems have a hierarchical

  5. Abstract--Distributed generation (DG) has brought great attention from the power community, especially

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Catlica de Chile)

    generation and DFACTS (distribution network Flexible AC Transmission System). In these researches, especially when it is associated with renewable energy sources, as a sustainable energy alternative. Some DG applications, especially on high penetration levels, may have adverse impact on the transmission

  6. National Residential Efficiency Measures Database Webinar Slides...

    Energy Savers [EERE]

    National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies...

  7. Conference Agenda: Residential Energy Efficiency Solutions 2012...

    Energy Savers [EERE]

    Conference Agenda: Residential Energy Efficiency Solutions 2012 Conference Agenda: Residential Energy Efficiency Solutions 2012 Presents conference agenda including a general...

  8. Competitive Bidding Process for Electric Distribution Companies Procurement of Default and Back-up Electric Generation Services (Connecticut)

    Broader source: Energy.gov [DOE]

    Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

  9. Bryant Residential Tutorship BRYANT RESIDENTIAL TUTORSHIP REGULATIONS FOR 2013

    E-Print Network [OSTI]

    Waikato, University of

    Bryant Residential Tutorship 1 BRYANT RESIDENTIAL TUTORSHIP REGULATIONS FOR 2013 BACKGROUND The D. V. Bryant Trust established Bryant Hall on land leased from the University of Waikato in 1971, Bryant Hall has provided a supportive residential environment for first-year students and has also

  10. RESIDENTIAL PROGRAM FOR LANGUAGE LEARNING

    E-Print Network [OSTI]

    Loudon, Catherine

    RESIDENTIAL PROGRAM FOR LANGUAGE LEARNING Live on-campus in 2014-15 and participate in a unique as part of a residential community in Arroyo Vista! Open to all undergraduate students with 2-3 years

  11. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  12. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Vehicle for Residential PV Installations: Opportunities andfor Financing Residential PV Systems Mark Bolinger, Lawrencefor residential photovoltaic (PV) systems. Though financing

  13. Questions Asked during the Financing Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

  14. STATE OF CALIFORNIA RESIDENTIAL LIGHTING

    E-Print Network [OSTI]

    STATE OF CALIFORNIA RESIDENTIAL LIGHTING CEC-CF-6R-LTG-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-LTG-01 Residential Lighting (Page 1 of 6) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 1. Kitchen Lighting Does project

  15. Residential & Business Services Director's Office

    E-Print Network [OSTI]

    Brierley, Andrew

    Residential & Business Services Director's Office Butts Wynd, North Street, St Andrews, Fife, KY16 by students for students are an integral part of student life and intrinsic to the student residential the residential environment. However, experience tells us that events require careful planning and organisation

  16. Permanent Home Number: Residential Number

    E-Print Network [OSTI]

    Viglas, Anastasios

    Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

  17. Building Technologies Residential Survey

    SciTech Connect (OSTI)

    Secrest, Thomas J.

    2005-11-07T23:59:59.000Z

    Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

  18. Abstract--Recently, there is an increasing interest in using distributed generators (DGs) not only to inject power into the

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 1 Abstract--Recently, there is an increasing interest in using distributed generators (DGs, it is well-known that the Distributed Generators (DGs) often consist of a prime mover connected through-frame control method for voltage unbalance compensation in an islanded microgrid is proposed. This method

  19. Soil water and particle size distribution influence laboratory-generated PM10 Nicholaus M. Madden a,*, Randal J. Southard a

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Soil water and particle size distribution influence laboratory-generated PM10 Nicholaus M. Madden a Soil particle size distribution Soil water content a b s t r a c t Management of soils to reduce earlier work of predicting tillage-generated dust emissions based on soil properties. We focus

  20. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    SciTech Connect (OSTI)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11T23:59:59.000Z

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  1. Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design for experimentation. Stirling engines can have broad significance and technological advantages for distributed

  2. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01T23:59:59.000Z

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  3. High SEER Residential AC

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Brodrick, James

    2012-07-31T23:59:59.000Z

    This article discusses the new offerings of residential air conditioning systems with very high Seasonal Energy Efficiency Ratio (SEER) ratings, the two regional areas dictating operations standards ("hot, humid" and "hot, dry"), and the potential energy savings these new systems can provide. The article concludes with a brief review of current market potential.

  4. Meeting Residential Ventilation Standards

    E-Print Network [OSTI]

    ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning EngineersLBNL 4591E Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide

  5. STORM WATER Residential

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

  6. Photovoltaics for residential applications

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

  7. Agriculture Residential College

    E-Print Network [OSTI]

    Architecture Students Design Build Solar Pavilion in Old South Baton Rouge Louisiana Sustainable BuildingAgriculture Residential College LSU Sustainability Denise Newell LSU Planning, Design-year institutions Denise S. Newell, PE LEED AP Sustainability Manager scribner@lsu.edu Contact Info "If you had

  8. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, A.; Hoeschele, M.

    2014-12-01T23:59:59.000Z

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  9. Residential Furnace Blower Performance

    E-Print Network [OSTI]

    conditioner performance1 , standby power, as well as igniter and combustion air blower power. Energy savings for a typical three-and-a-half ton air conditioner with typical California ducts are 45 kWh. Peak demand combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test

  10. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect (OSTI)

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01T23:59:59.000Z

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  11. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

    2012-01-01T23:59:59.000Z

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  12. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J. [Dpartement de Physique et Regroupement Qubcois sur les Matriaux de Pointe (RQMP), Universit de Montral, C.P. 6128, Succursale Centre-Ville, Montral, Qubec H3C 3J7 (Canada); Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S., E-mail: amoruso@na.infn.it [Dipartimento di Fisica, Universit degli Studi di Napoli Federico II and CNR-SPIN, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy)

    2014-06-28T23:59:59.000Z

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ?50 fs, 800?nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (?90%) of small nanoparticles, and a residual part (?10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  13. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    SciTech Connect (OSTI)

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01T23:59:59.000Z

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  14. PowerChoice Residential Customer Response to TOU Rates

    E-Print Network [OSTI]

    Peters, Jane S.

    2010-01-01T23:59:59.000Z

    Savings from Residential Energy Demand Feedback Devices. residential energy consumption, load shifting, consumption feedback

  15. Decoding the `Nature Encoded' Messages for Distributed Energy Generation Control in Microgrid

    E-Print Network [OSTI]

    Gong, Shuping; Lai, Lifeng; Qiu, Robert C

    2010-01-01T23:59:59.000Z

    The communication for the control of distributed energy generation (DEG) in microgrid is discussed. Due to the requirement of realtime transmission, weak or no explicit channel coding is used for the message of system state. To protect the reliability of the uncoded or weakly encoded messages, the system dynamics are considered as a `nature encoding' similar to convolution code, due to its redundancy in time. For systems with or without explicit channel coding, two decoding procedures based on Kalman filtering and Pearl's Belief Propagation, in a similar manner to Turbo processing in traditional data communication systems, are proposed. Numerical simulations have demonstrated the validity of the schemes, using a linear model of electric generator dynamic system.

  16. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

  17. Lehigh University Office of Residential Services

    E-Print Network [OSTI]

    Napier, Terrence

    Lehigh University Office of Residential Services Resident Check-Out Form Students are expected and furniture of all personal property. Residential Services is not responsible for any personal items left and residential administration staff for billing purposes. Signature

  18. RESIDENTIAL BURGLARY DATE: November 25, 2014

    E-Print Network [OSTI]

    Rose, Michael R.

    RESIDENTIAL BURGLARY DATE: November 25, 2014 INCIDENT / LOCATION: Residential Burglary in Vista Del 22, 2014, at approximately 11:07 pm, the UCI Police Department received a report of a residential

  19. http://warren.ucsd.edu 1 Residential

    E-Print Network [OSTI]

    Tsien, Roger Y.

    http://warren.ucsd.edu 1 Warren Resources Residential Life Student Conduct University Resources Off and Employment 10 Section II: Residential Life Introduction 11 Residential Life Policies 13 Section III: Student

  20. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01T23:59:59.000Z

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  1. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31T23:59:59.000Z

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  2. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31T23:59:59.000Z

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  3. Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection

    E-Print Network [OSTI]

    Bing Qi; Pavel Lougovski; Raphael Pooser; Warren Grice; Miljko Bobrek

    2015-03-02T23:59:59.000Z

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and also limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme which enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25 km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad^2), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent (MDI) CV-QKD where independent light sources are employed by different users.

  4. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating systems or...

  5. NYSEG (Gas)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as...

  6. Unitil- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air...

  7. Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Efficiency Vermont provides financial incentives for its residential customers to install energy efficient equipment in their homes. Eligible Energy Star equipment includes dehumidifiers (seasonal...

  8. Efficient Residential Water Heaters Webinar

    Broader source: Energy.gov [DOE]

    A webinar by Jerone Gagliano, director of Energy Engineering Performance Systems Development, about residential water heating technology and how to choose the right water heater.

  9. Flint Energies- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Flint Energies has partnered with Robins Federal Credit Union to offer affordable financing options to residential customers who wish to upgrade the energy efficiency of homes and residential...

  10. Building America Residential Energy Efficiency Technical Update...

    Energy Savers [EERE]

    Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

  11. Building America Residential Energy Efficiency Research Planning...

    Energy Savers [EERE]

    Building America Residential Energy Efficiency Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On...

  12. Covered Product Category: Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioners Covered Product Category: Residential Central Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for residential...

  13. Building America Residential Buildings Energy Efficiency Meeting...

    Energy Savers [EERE]

    Building America Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link...

  14. Entergy Mississippi- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  15. Solar Now! Residential Brochure | Department of Energy

    Energy Savers [EERE]

    Information Resources Solar Now Residential Brochure Solar Now Residential Brochure Four Oregon organizations have teamed up to help Oregon homeowners learn about and install...

  16. Guide for Benchmarking Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. Guide for Benchmarking Residential Energy Efficiency Program...

  17. Sharyland Utilities- Residential Standard Offer Program

    Broader source: Energy.gov [DOE]

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  18. Evaluation of evolving residential electricity tariffs

    E-Print Network [OSTI]

    Lai, Judy

    2011-01-01T23:59:59.000Z

    residential electricity tariffs Judy Lai, Nicholas DeForest,residential electricity tariffs Judy Lai Senior Researchfrom the current 5-tiered tariff to time variable pricing,

  19. Residential Energy Efficiency Research Planning Meeting Summary...

    Energy Savers [EERE]

    Residential Energy Efficiency Research Planning Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings...

  20. Tacoma Power- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Tacoma Power helps residential customers increase the energy efficiency of homes through the utility's residential weatherization program. Weatherization upgrades to windows are eligible for an...

  1. Better Buildings Residential Network Case Study: Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S....

  2. Better Buildings Residential Network Membership Form | Department...

    Energy Savers [EERE]

    Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network Recommended...

  3. Residential Energy Efficiency Customer Service Best Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call January 22, 2015...

  4. SRP- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. Rebates and discounts are...

  5. Residential Exchange History Fact Sheet - June 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    history of BPA's Residential Exchange Program June 2007 F rom its start, the Residential Exchange Program (REP) has been a source of nearly continuous controversy. Its roots go...

  6. Development of an efficient, low cost, small-scale natural gas fuel reformer for residential scale electric power generation. Final report for the period October 1, 1998 - December 31, 1999

    SciTech Connect (OSTI)

    Kreutz, Thomas G.; Ogden, Joan M.

    2000-07-01T23:59:59.000Z

    In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., single family, residential, multi-dwelling, neighborhood).

  7. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01T23:59:59.000Z

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  8. Abstract--This paper presents the consequences and operating limitations of installing distributed generation (DG) to electric

    E-Print Network [OSTI]

    are required for the selection of interruption devices, protective relays, and their coordination. Systems must Terms--Distributed / dispersed generation, power distri- bution, power system protection, fault in siting conventional generation but, for whatever reason, protection engineers as well as transmission

  9. Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of distributed generation systems

    E-Print Network [OSTI]

    heat and power Fuel cells Building energy a b s t r a c t The distributed generation (DG) of combined Wisconsin, retrofitted with solid-oxide fuel cells (SOFCs) and a hot water storage tank. The simpler model of renewable or non- renewable sources of power generation (e.g., photovoltaic (PV) cells, fuel cells

  10. Abstract--The capacity of distributed generation (DG) is set to increase significantly with much of the plant connecting to

    E-Print Network [OSTI]

    Harrison, Gareth

    limiting network capability in absorbing new DG. Finally, it demonstrates the use of optimal power flow market. Index Terms-- distributed generation, optimal power flow, power distribution. I. INTRODUCTION O in England and Wales (18% in Scotland) is derived from renewable resources. With existing large hydro

  11. Panel on Microgrids Systems International Conference on System of Systems Engineering, April 16-18, 2007 San Antonio Abstract--Application of individual distributed generators can

    E-Print Network [OSTI]

    are included. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, power vs-18, 2007 San Antonio Abstract--Application of individual distributed generators can cause as many problems as it may solve. A better way to realize the emerging potential of distributed generation is to take

  12. The distribution of Voronoi cells generated by Southern California earthquake epicenters

    E-Print Network [OSTI]

    Schoenberg, Frederic P; Barr, Christopher; Jungju Seo

    2007-01-01T23:59:59.000Z

    Continuous Univariate Distributions. 2nd ed. Wiley, Newfor the tapered Pareto distribution. Journal of AppliedWoods, J. (2003) On the distribution of wild?re sizes. Envi-

  13. Study of the longitudinal distribution of power generated in a random distributed feedback Raman fibre laser with unidirectional pumping

    SciTech Connect (OSTI)

    Churkin, D V; El-Taher, A E; Vatnik, I D; Babin, Sergei A

    2012-09-30T23:59:59.000Z

    The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. (optical fibres, lasers and amplifiers. properties and applications)

  14. STATE OF CALIFORNIA RESIDENTIAL ADDITIONS

    E-Print Network [OSTI]

    STATE OF CALIFORNIA RESIDENTIAL ADDITIONS CEC- CF-1R ADD (Revised 03/10) CALIFORNIA ENERGY COMMISSION Prescriptive Certificate of Compliance: CF-1R ADD Residential Additions (Page 1 of 8) Site Address Orientation: N, E, S, W or Degrees ________ Conditioned Floor Area of Addition (CFA): New Addition Size: Less

  15. Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration

    E-Print Network [OSTI]

    Turitsyn, Konstantin; Backhaus, Scott; Chertkov, Michael

    2009-01-01T23:59:59.000Z

    We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any com...

  16. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    SciTech Connect (OSTI)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Bolte, N. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Marsili, P. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Roche, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Wessel, F. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2010-10-15T23:59:59.000Z

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  17. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26T23:59:59.000Z

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  18. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  19. ASHRAE and residential ventilation

    SciTech Connect (OSTI)

    Sherman, Max H.

    2003-10-01T23:59:59.000Z

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

  20. Better Buildings Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014 Building

  1. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil pricepropane price05, 2014 Residential

  2. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01T23:59:59.000Z

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  3. Diagnostic probes for particle and molecule distributions in laser-generated plumes

    SciTech Connect (OSTI)

    Kimbrell, S.M.

    1990-10-17T23:59:59.000Z

    Laser microprobe analysis (LMA) offers good spatial and depth resolution for solid sampling of virtually any material. Coupled with numerous optical spectroscopic and mass spectrometric detection methods, LMA is a powerful analytical tool. Yet, fundamental understanding of the interaction between the laser and the sample surface leading to the formation of the high temperature plasma (plume) is far from complete. To better understand the process of plume formation, an imaging method based on acousto-optic laser beam deflection has been coupled with light scattering methods and absorption methods to record temporal and spatial maps of the particle and molecule distributions in the plume with good resolution. Because particles can make up a major fraction of the vaporized material under certain operating conditions, they can reflect a large loss of atomic signal for elemental analysis, even when using auxiliary excitation to further vaporized the particles. Characterization of the particle size distributions in plumes should provide insight into the vaporization process and information necessary for studies of efficient particle transfer. Light scattering methods for particle size analysis based on the Mie Theory are used to determine the size of particles in single laser-generated plumes. The methods used, polarization ratio method and dissymmetry ratio method, provide good estimates of particle size with good spatial and temporal resolution for this highly transient system. Large particles, on the order of 0.02-0.2{mu}m in radius, were observed arising directly from the sample surface and from condensation.

  4. Generation of potential/surface density pairs in flat disks Power law distributions

    E-Print Network [OSTI]

    J. -M. Hure; D. Pelat; A. Pierens

    2007-06-25T23:59:59.000Z

    We report a simple method to generate potential/surface density pairs in flat axially symmetric finite size disks. Potential/surface density pairs consist of a ``homogeneous'' pair (a closed form expression) corresponding to a uniform disk, and a ``residual'' pair. This residual component is converted into an infinite series of integrals over the radial extent of the disk. For a certain class of surface density distributions (like power laws of the radius), this series is fully analytical. The extraction of the homogeneous pair is equivalent to a convergence acceleration technique, in a matematical sense. In the case of power law distributions, the convergence rate of the residual series is shown to be cubic inside the source. As a consequence, very accurate potential values are obtained by low order truncation of the series. At zero order, relative errors on potential values do not exceed a few percent typically, and scale with the order N of truncation as 1/N**3. This method is superior to the classical multipole expansion whose very slow convergence is often critical for most practical applications.

  5. Energy Optimization (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Optimization Programs, administered by WECC, provides residential electric incentives for the following Michigan utilities:

  6. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect (OSTI)

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31T23:59:59.000Z

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and play back of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of playing back at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authoritys Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the grid visibility question. The generator parameter identification method fills an important and practical need of the industry. The energy function based transient stability monitoring opens up new ways to protect the power grid, better manage disturbances, confine their impact and in general improve the reliability and security of the system. Finally, as a by-product of the proposed research project, the developed system is able to play back disturbances by a click of a mouse. The importance of this by-product is evident by considering the tremendous effort exerted after the August 2003 blackout to piece together all the disturbance recordings, align them and recreate the sequence of events. This project has moved the state of art from fault recording by individual devices to system wide disturbance recording with play back capability.

  7. Achieving real transparency : optimizing building energy ratings and disclosure in the U.S. residential sector

    E-Print Network [OSTI]

    Nadkarni, Nikhil S. (Nikhil Sunil)

    2012-01-01T23:59:59.000Z

    Residential energy efficiency in the U.S. has the potential to generate significant energy, carbon, and financial savings. Nonetheless, the market of home energy upgrades remains fragmented, and the number of homes being ...

  8. IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic

    E-Print Network [OSTI]

    Giannakis, Georgios

    IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic Inverters Under of existing low- voltage distribution systems with high photovoltaic (PV) gen- eration have focused on the possibility of inverters providing ancillary services such as active power curtailment and reactive power

  9. About the Better Buildings Residential Network | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and partners to share...

  10. What Explains Manhattan's Declining Share of Residential Construction?

    E-Print Network [OSTI]

    DAVIDOFF, THOMAS

    2007-01-01T23:59:59.000Z

    Share of Residential Construction? Thomas Davido? ? June 20,market. Residential construction in Manhattan has fallento total US residential construction over the last 45 years.

  11. Residential Forced Air System Cabinet Leakage and Blower Performance

    E-Print Network [OSTI]

    Walker, Iain S.

    2010-01-01T23:59:59.000Z

    CA. CEC(2008b). ResidentialAlternativeCalculationStandardforAirHandlersinResidentialSpaceConditioningofStandardsOptionsforResidentialAirHandlerFans.

  12. Guide to Benchmarking Residential Program Progress Webcast Slides...

    Energy Savers [EERE]

    Guide to Benchmarking Residential Program Progress Webcast Slides Guide to Benchmarking Residential Program Progress Webcast Slides Slides from "Guide to Benchmarking Residential...

  13. Financing Non-Residential Photovoltaic Projects: Options and Implications

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    of panel titled Financing Residential and Small CommercialL ABORATORY Financing Non-Residential Photovoltaic Projects:1 2. Policy Support for Non-Residential PV

  14. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

  15. Residential implementation of critical-peak pricing of electricity

    E-Print Network [OSTI]

    Herter, Karen

    2006-01-01T23:59:59.000Z

    L.R. Modeling alternative residential peak-load electricitydemand response to residential critical peak pricing (CPP)analysis of California residential customer response to

  16. Modeling diffusion of electrical appliances in the residential sector

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01T23:59:59.000Z

    Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

  17. Index for the Evaluation of Distributed Generation Impacts on Distribution System Luis F. Ochoa (1,2)

    E-Print Network [OSTI]

    Harrison, Gareth

    decisions that lead to the best management of the system, regarding both technical and economical aspects. Various studies have demonstrated that integration of DG in distribution networks may create technical in voltage control processes, diminish or increase losses, etc. In fact, all our knowledge about distribution

  18. Making the most of residential photovoltaic systems

    SciTech Connect (OSTI)

    Moon, S.; Parker, D.; Hayter, S.

    1999-10-18T23:59:59.000Z

    Making the Most of Residential Photovoltaic Systems, was recently produced by NREL Communications and Public Affairs. It showcases a demonstration project in Florida that produced some remarkable results by incorporating both energy efficiency and photovoltaic systems into newly built housing. The brochure points up the benefits of making wise personal choices about energy use, and how large-scale use of advanced energy technologies can benefit the nation. This is one of a series of brochures that presents stimulating information about photovoltaics, with a goal of helping to push this technology into the power-generation mix in different utilities, communities, and states.

  19. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  20. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation

    SciTech Connect (OSTI)

    Daye, Tony [Green Power Labs

    2013-09-30T23:59:59.000Z

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  1. INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE

    E-Print Network [OSTI]

    Schipper, L.

    2013-01-01T23:59:59.000Z

    and Analysis of Swedish Residential Energy Use Data 1960-80.1980. International Residential Energy Use and ConservationInternational Comparison of Residential Energy ! Js~. Report

  2. Jasper County REMC- Residential Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential customers for the purchase and installation of energy...

  3. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15T23:59:59.000Z

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively use

  4. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01T23:59:59.000Z

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  5. A Multi-State Model for the Reliability Assessment of a Distributed Generation System via Universal Generating Function

    E-Print Network [OSTI]

    Boyer, Edmond

    , Milan, Italy, Dipartimento di Energia Enrico.zio@polimi.it Abstract The current and future developments renewable technology (e.g. wind or solar, etc.) whose behavior is described by a binary state, working assessment, multi-state modeling, universal generating function #12;2 Notations Solar irradiance Total number

  6. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin [Idesta Quantum Electronics, LLC

    2014-03-31T23:59:59.000Z

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  7. CONSULTANT REPORT 2009 CALIFORNIA RESIDENTIAL

    E-Print Network [OSTI]

    . Data collection was completed in early 2010. The study yielded energy consumption estimates for 27 statistical methods to combine survey data, household energy consumption data and weather information Commission, conditional demand analysis, CDA, unit energy consumption, UEC, residential, appliance

  8. Residential Solar Water Heating Rebates

    Broader source: Energy.gov [DOE]

    New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

  9. Residential Solar Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    New York enacted legislation in July 2005 exempting the sale and installation of residential solar-energy systems from the state's sales and compensating use taxes. The exemption was extended to...

  10. Residential Freezers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    v1.7.xlsx More Documents & Publications Residential Freezers (Appendix B) Refrigerator-Freezer Appendix A1 Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011)...

  11. Portland's Residential Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also...

  12. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01T23:59:59.000Z

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

  13. Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the

    E-Print Network [OSTI]

    Sandiford, Mike

    Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed, the depression in wholesale prices has significant value. c 5 GW of solar generation would have saved $1.8 billion in the market over two years. c The depression of wholesale prices offsets the cost of support

  14. FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.

    SciTech Connect (OSTI)

    RICH, LAUREN

    2013-09-30T23:59:59.000Z

    A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

  15. PROGRESS IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY PERSPECTIVE -

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01T23:59:59.000Z

    Conference, "New Energy Conservation Technologies", Berlin,IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRYIN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY

  16. Better Buildings Residential Network Reporting and Benefits Template

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  17. Better Buildings Residential Network Reporting and Benefits FAQ

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  18. Measured Air Distribution Effectiveness for Residential

    E-Print Network [OSTI]

    Ventilation Systems Max H. Sherman and Iain S. Walker Environmental Energy Technologies Division May 2008.................................................................................. 9 Ventilation Systems

  19. Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system

    E-Print Network [OSTI]

    1986-01-01T23:59:59.000Z

    Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system

  20. Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

  1. Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions

    E-Print Network [OSTI]

    Wang, Jin

    Distributions Jin Wang Department of Mathematics and Computer Science Valdosta State University Valdosta, GA 31698-0040 January 28, 2000 Abstract The mixture of normal distributions provides a useful extension of the normal distribution for modeling of daily changes in market variables with fatter-than-normal tails

  2. Rate of convergence of the short cycle distribution in random regular graphs generated by pegging

    E-Print Network [OSTI]

    Wormald, Nick

    of the random network (degree distribution, connectivity, diameter, etc.) vary when p is assigned different values. However, the Erdos-Renyi model cannot produce scale-free networks [2], whose degree distribution, the stationary distribution is uniform. Thus, for this simplified version of the SWAN network, the limiting

  3. THE GALACTIC SPATIAL DISTRIBUTION OF OB ASSOCIATIONS AND THEIR SURROUNDING SUPERNOVA-GENERATED SUPERBUBBLES

    SciTech Connect (OSTI)

    Higdon, J. C. [W. M. Keck Science Center, Claremont Colleges, Claremont, CA 91711-5916 (United States); Lingenfelter, R. E., E-mail: jhigdon@kecksci.claremont.edu, E-mail: rlingenfelter@ucsd.edu [Center for Astrophysics and Space Sciences, University of California San Diego, La Jolla, CA 92093 (United States)

    2013-10-01T23:59:59.000Z

    The Galactic spatial distribution of OB associations and their surrounding superbubbles (SBs) reflect the distribution of a wide range of important processes in our Galaxy. In particular, it can provide a three-dimensional measure not only of the major source distribution of Galactic cosmic rays, but also the Galactic star formation distribution, the Lyman continuum ionizing radiation distribution, the core-collapse supernova distribution, the neutron star and stellar black hole production distribution, and the principal source distribution of freshly synthesized elements. Thus, we construct a three-dimensional spatial model of the massive-star distribution based primarily on the emission of the H II envelopes that surround the giant SBs and are maintained by the ionizing radiation of the embedded O stars. The Galactic longitudinal distribution of the 205 ?m N II radiation, emitted by these H II envelopes, is used to infer the spatial distribution of SBs. We find that the Galactic SB distribution is dominated by the contribution of massive-star clusters residing in the spiral arms.

  4. 2008 Residential2008 Residential Energy Plan ReviewEnergy Plan Reviewe gy la eviewe gy la eview

    E-Print Network [OSTI]

    2008 Residential2008 Residential Energy Plan ReviewEnergy Plan Reviewe gy la eviewe gy la eview #12;2008 Residential Energy Plan2008 Residential Energy Plan Review ChecklistReview Checklist Simplification ChecklistsOther Available Checklists 2005 and 2008 Residential Energy Documentation2005 and 2008 Residential

  5. Similar effects of residential and non-residential vegetation on bird diversity in suburban neighbourhoods

    E-Print Network [OSTI]

    Dawson, Jeff W.

    Similar effects of residential and non-residential vegetation on bird diversity in suburban the Queen in Right of Canada 2013 Abstract Estimating the relative importance of vegetation on residential land (gardens, yards, and street-trees) and vegetation on non-residential land (parks and other large

  6. Wave Impact Study on a Residential Building Wave Impact Study on a Residential Building

    E-Print Network [OSTI]

    Cox, Dan

    Wave Impact Study on a Residential Building Paper: Wave Impact Study on a Residential Building John residential light- frame wood buildings and wave and surge loading be- cause often little is left residential structures and wave loading. To do this, one-sixth scale residen- tial building models typical

  7. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  8. Low-rise Residential New Construction Program

    Broader source: Energy.gov [DOE]

    NYSERDAs Low-rise Residential New Construction Programs are designed to encourage more industry involvement in the building of single-family homes and low-rise residential units that are more...

  9. CC: Security, Residential Life Evacuation Assistance Form

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    CC: Security, Residential Life Evacuation Assistance Form Voluntary Self-Identification If you have will be kept confidential and used only by Environmental Health and Safety, Residential Life (if applicable

  10. Department of Residential Life University of Missouri

    E-Print Network [OSTI]

    Taylor, Jerry

    Department of Residential Life University of Missouri may 11 >> halls close, 5 p.m. summer to June 1). Sign up forms are available at 0780 Defoe-Graham in the Residential Life Administration Office

  11. BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE PROCEDURES FOR THE USE OF HOLIDAY DECORATIONS by the Office of Residential Life. In these instances, candles and incense may never be left unattended and any

  12. Residential Properties 5100 South Dorchester Avenue

    E-Print Network [OSTI]

    He, Chuan

    Residential Properties 5100 South Dorchester Avenue Chicago, Illinois 60615 T 773.753-2200 F 733 for specific answers to: residential@uchicago.edu. Thank you, in advance, for your patience during this process

  13. BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE PROCEDURES FOR THE USE OF HOLIDAY DECORATIONS in a location established by the Office of Residential Life. In these instances, candles and incense may never

  14. Charlotte Green Supply Chain: Residential Retrofitting | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Charlotte Green Supply Chain: Residential Retrofitting Charlotte Green Supply Chain: Residential Retrofitting July 30, 2010 - 10:50am Addthis Joshua DeLung What does this mean for...

  15. Piedmont Natural Gas- Residential Equipment Efficiency Program

    Broader source: Energy.gov [DOE]

    Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

  16. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01T23:59:59.000Z

    for Intelligent Energy Management in Residential Buildingsfor Intelligent Energy Management in Residential Buildingsthat can provide autonomous energy management to residential

  17. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01T23:59:59.000Z

    Comparative Evaluation of Ventilation Systems. ASHRAEChimneys for Residential Ventilation. AIVC 25 Conference.1995. Controlled Ventilation Options for Builders. Energy

  18. Presentation: Better Buildings Residential Program Solution Center...

    Energy Savers [EERE]

    bbrpscdemopresentation061814.pdf More Documents & Publications Better Buildings Residential Program Solution Center Demonstration Webinar Presentation: Better Buildings...

  19. Residential Clothes Dryers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    dryerappendixdv1.1.xlsx More Documents & Publications Illuminated Exit Signs Beverage Vending Machines Residential Clothes Dryer (Appendix D2...

  20. Estimating the Market Penetration of Residential Cool Storage Technology Using Economic Cost Modeling

    E-Print Network [OSTI]

    Weijo, R. O.; and Brown, D. R.

    1988-01-01T23:59:59.000Z

    use, which occur on hot summer days for summer peaking utilities. Cool storage technology, developed for both commercial and residential applications, is one solution to meeting peak power needs. Demand for this technology is derived from... utilities' hesitancy to pay the extremely high-capacity costs (per kW) required to generate electricity for use at peak periods. This technology does not save energy--it merely shifts its use to a time when residential, commercial, and industrial demand...

  1. Procedures and Standards for Residential Ventilation System

    E-Print Network [OSTI]

    1 Procedures and Standards for Residential Ventilation System Commissioning: An Annotated and by the California Energy Commission under Pier Contract 500-08-061. Key terms: residential, ventilation.C. and C.P. Wray. 2013. Procedures and Standards for Residential Ventilation System Commissioning

  2. Humidity Implications for Meeting Residential Ventilation Requirements

    E-Print Network [OSTI]

    1 LBNL-62182 Humidity Implications for Meeting Residential Ventilation Requirements Iain S. Walker for Meeting Residential Ventilation Requirements ABSTRACT In 2003 ASHRAE approved the nation's first residential ventilation standard, ASHRAE Standard 62.2. Because meeting this standard can significantly change

  3. Children in Residential Care: A wicked problem?

    E-Print Network [OSTI]

    #12;Children in Residential Care: A wicked problem? Mary McKenna Flinders Law School 29 Nov 11 Mary in residential care · At what level of the system should changes occur? · Numbers in residential care in SA-discovery of child abuse in 1970s · Legislation & policy changes · Reporting and investigation · Types of abuse #12

  4. Graduate Hall Director Office of Residential Programs

    E-Print Network [OSTI]

    Hone, James

    Page 1 Graduate Hall Director Office of Residential Programs Housing Guidelines #12;Page 2 Graduate Hall Director for Residential Programs Guidelines for Residence This document is intended for the Office of Residential Programs Graduate Hall Directors (GHDs) who obtain housing on campus as part

  5. Siena College Office of Residential Life

    E-Print Network [OSTI]

    Siena College Office of Residential Life New Student Housing Application Instructions #12;Welcome students who are admitted as "Residential" students. Commuters DO NOT need to complete the application for "Residential Life (My Housing)" is under the "Personal Information" Tab #12;Within the "Personal Information

  6. Residential Life Luggage Program Summer 2014

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Residential Life Luggage Program Summer 2014 International and out-of-state students who should be addressed as follows: Residential Life Luggage Program Physical Plant/CDS University. · Residential Life will not be held responsible for items lost or damaged in handling. We advise against sending

  7. CC: Security, Residential Life Evacuation Assistance Form

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    CC: Security, Residential Life Evacuation Assistance Form Voluntary Self-Identification If you have will be kept confidential and used only by Environmental Health and Safety, Residential Life (if applicable:_______________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ #12;CC: Security, Residential Life If this is a temporary request, please provide a date when

  8. Characterizing Residential Broadband Networks Marcel Dischinger

    E-Print Network [OSTI]

    Saroiu, Stefan

    Characterizing Residential Broadband Networks Marcel Dischinger MPI for Software Systems mdischin and rapidly growing proportion of users connect to the Internet via residential broadband networks such as Dig- ital Subscriber Lines (DSL) and cable. Residential networks are often the bottleneck in the last mile

  9. Illinois Institute of Technology Housing & Residential Services

    E-Print Network [OSTI]

    Heller, Barbara

    Illinois Institute of Technology Housing & Residential Services Student Guide to 20102011 Room and Board Contract Cancellation The Housing & Residential Services 20102011 Room and Board, if applicable, within two business days by email. Upon MoveOut, Housing & Residential Services will update

  10. living and learning Department of Residential Life

    E-Print Network [OSTI]

    Missouri-Columbia, University of

    living and learning Accessible housing at Mizzou Department of Residential Life University is important to us. The Department of Residential Life at MU is committed to providing and improving accessible spaces for students with disabilities. Residential Life will help provide appropriate housing

  11. WARREN RESIDENTIAL LIFE RESIDENT ASSISTANT POSITION DESCRIPTION

    E-Print Network [OSTI]

    Russell, Lynn

    WARREN RESIDENTIAL LIFE RESIDENT ASSISTANT POSITION DESCRIPTION The position of Resident Assistant for students living within the Warren College residential community. Resident Assistant's (RA's) are principle members of the Warren Residential Life staff. In accordance with the University of California's Personnel

  12. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    None

    2012-02-11T23:59:59.000Z

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframesincentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  13. Distributed Generation versus Centralised Supply: a Social Cost-Benefit Analysis

    E-Print Network [OSTI]

    Gulli, Francesco

    2004-06-16T23:59:59.000Z

    Generation versus Centralised Supply: a Social Cost-Benefit Analysis Francesco Gull* Istituto di Economia e Politica dellEnergia e dellAmbiente (Iefe). Universit Bocconi, Milano July 2003 1. Introduction #1; The restructuring and privatisation...

  14. RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*

    E-Print Network [OSTI]

    RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS* Max Sherman Nance Matson Energy Performance Berkeley, California The role of ventilation in the housing stock is to provide fresh air and to dilute to provide this ventilation service, either directly for moving the air or indirectly for conditioning

  15. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06T23:59:59.000Z

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  16. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14T23:59:59.000Z

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  17. Investigation of anti-islanding schemes for utility interconnection of distributed fuel cell powered generations

    E-Print Network [OSTI]

    Jeraputra, Chuttchaval

    2006-04-12T23:59:59.000Z

    perspectives, some of the apparent advantages include distribution and transmission capacity relief, load peak shaving, deferral of high cost transmission and distribution (T&D) system upgrades, etc. Utility customers also gain benefits from efficient use... power variation ? P and load real power PLoad (see (1.5)) as, 1 LoadP PV ?? (1.8) From (1.8), the real power variation ? P must be set at least ? 0.20 (per-unit) so that a change in the voltage at inverter (DFPG) terminal is out of the threshold (0...

  18. Residential Services Area Missing Students living in University Managed Accommodation

    E-Print Network [OSTI]

    Sussex, University of

    Residential Services Area Missing Students living in University Managed Accommodation 1.0 Where then report to the Building Manager or to the Residential Student Support Team or the Residential Services issues Residential Student Support Manager or the Residential Services Manager should be contacted

  19. A Study of Distributed Generation System Characteristics and Protective Load Control Strategy

    E-Print Network [OSTI]

    Chen, Zhe

    different type of WTs are integrated into a DGS, the DGS presents different properties. Therefore Turbines (WT) have attracted significant attentions. A DGS with renewable sources such as WTs and solar panels is distinct from a conventional power system. The renewable generation units make a DGS

  20. Practical stability assessment of distributed synchronous generators under variations in the system equilibrium conditions

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    synchro- nous generators driven by steam turbines have been connected to the system using a byproduct of Brazil, this sector of the national industry had already considerable experience in the usage of steam turbines, which have been extensively employed within its internal production [13]. As a result, several

  1. Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters

    E-Print Network [OSTI]

    Lindner, Douglas K.

    . Quan Keenan of Lockheed Martin Control Systems, Johnson City, New York, in providing the models control actuator systems. The aircraft power distribution system plays a central role in the development tolerant, autonomously controlled electrical power system to deliver high quality power from the sources

  2. Impact of Renewable Distributed Generation on Power Systems M. Begovi, A. Pregelj, A. Rohatgi D. Novosel

    E-Print Network [OSTI]

    , improve the voltage profile across the feeder, may reduce the loading level of branches and substation the effect of DG penetration on the actual load demand and voltage profile of the distribution feeder. However, DG systems inherently provide some benefits to the utility. They may level the load curve

  3. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?

  4. Unnatural landscapes in ecology: Generating the spatial distribution of brine spills

    SciTech Connect (OSTI)

    Jager, Yetta [ORNL; Efroymson, Rebecca Ann [ORNL; Sublette, K. [University of Tulsa; Ashwood, Tom L [ORNL

    2005-01-01T23:59:59.000Z

    Quantitative tools are needed to evaluate the ecological effects of increasing petroleum production. In this article, we describe two stochastic models for simulating the spatial distribution of brine spills on a landscape. One model uses general assumptions about the spatial arrangement of spills and their sizes; the second model distributes spills by siting rectangular well complexes and conditioning spill probabilities on the configuration of pipes. We present maps of landscapes with spills produced by the two methods and compare the ability of the models to reproduce a specified spill area. A strength of the models presented here is their ability to extrapolate from the existing landscape to simulate landscapes with a higher (or lower) density of oil wells.

  5. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01T23:59:59.000Z

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  6. Residential gas-fired sorption heat Test and technology evaluation

    E-Print Network [OSTI]

    Residential gas-fired sorption heat pumps Test and technology evaluation Energiforskningsprogram EFP05 Journal nr: 33031-0054 December 2008 #12;Residential gas-fired sorption heat pumps Test.............................................................................................................................................5 1 Residential gas-fired thermally driven heat pumps

  7. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    of Residential Source Heat Pump Gas Furnace HeatingResidential Heating Equipment (1) Database Year Minimum Type Code Fuel Effective (2) Efficiency (3) Heat Pumpheating technology of choice for almost 40% of the residential sector. Heat pumps

  8. EK101 Engineering Light Project: Evaluate Residential Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Project: Evaluate Residential Lighting Compare technical and economic characteristics of three sources of residential light. Two teams of four complete the same project Engineering Light Project: Evaluate Residential Lighting Project Assignment: Evaluate current options

  9. Residential Landscapes Synthesis of the Literature and Preliminary Survey Results

    E-Print Network [OSTI]

    Hall, Sharon J.

    Residential Landscapes Synthesis of the Literature and Preliminary Survey Results Elizabeth M. Cook comprehensive understanding of residential landscapes in urban ecosystems. · Highlight the social, ecological and integrated socio- ecological themes and current findings about residential landscapes. · Identify gaps

  10. PowerChoice Residential Customer Response to TOU Rates

    E-Print Network [OSTI]

    Peters, Jane S.

    2010-01-01T23:59:59.000Z

    Dennis J. 1985. The Residential Electricity Time-of-Use1989. Self-Selection in Residential Electricity Time-of-UseAnalysis of California Residential Critical Peak Pricing of

  11. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    J.E. 1986. The LBL Residential Energy Model. LawrenceInc. MEANS. 1992. Residential Cost Data: 11th Annual EditionInstitute. 1989. Residential End-Use Energy Consumption: A

  12. RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY

    E-Print Network [OSTI]

    Levinson, David M.

    RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY UC Davis-Caltrans Air control measure. #12;RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY.......................................................... 3 2.2 The Role of Residential Location Choice

  13. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    38 3.2.1. SDG&E Residential Electric Rates and TheirFootprint of Single-Family Residential New Construction.Solar photovoltaic financing: residential sector deployment,

  14. Office for Residential Life & Housing Services University of Rochester

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    Office for Residential Life & Housing Services University of Rochester RESIDENT ADVISOR POSITION DESCRIPTION Resident Advisors help build healthy and inclusive residential communities that complement and extend classroom learning. RAs are expected to create intellectually active residential environments

  15. High efficiency battery converter with SiC devices for residential PV Cam Pham, Remus Teodorescu, Tamas Kerekes and Laszlo Mathe

    E-Print Network [OSTI]

    Teodorescu, Remus

    High efficiency battery converter with SiC devices for residential PV systems Cam Pham, Remus, where the generated energy price is relatively high. Smart PV systems with internal battery storage launched a financial support program for residential PV systems with battery storage [2]. Furthermore

  16. Developing and Implementing the Foundation for a Renewable Energy-Based "Distribution Generation Micro-grid": A California Energy Commission Public Interest Energy Research Co-Funded Program

    E-Print Network [OSTI]

    Lilly, P.; Sebold, F. D.; Carpenter, M.; Kitto, W.

    2002-01-01T23:59:59.000Z

    The California Energy Commission has been implementing its Public Interest Energy Research (PIER) and Renewable Energy Programs since early 1998. In the last two years, the demand for renewable distributed generation systems has increased rapidly...

  17. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15T23:59:59.000Z

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  18. Online Marketplace for Residential Measures

    E-Print Network [OSTI]

    Ashe,J.; MBA; BEP

    2014-01-01T23:59:59.000Z

    We change the way people use energy Online Marketplace for Residential Measures 2014 Program Year ESL-KT-14-11-09 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Delivery Channels/Options ? Online Marketplace/ Drop... Ship Method 2 Copyright 2014 CLEAResult. All rights reserved. ESL-KT-14-11-09 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Advantages of Online Marketplace ? Target a different/convenience shopper to complement...

  19. About Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM Loan Program GoverningWINDPOWERAboutResidential

  20. Statistical Review of UK Residential Sector Electrical Loads

    E-Print Network [OSTI]

    Tsagarakis, G; Kiprakis, A E

    2013-01-01T23:59:59.000Z

    This paper presents a comprehensive statistical review of data obtained from a wide range of literature on the most widely used electrical appliances in the UK residential load sector. It focuses on individual appliances and begins by consideration of the electrical operations performed by the load. This approach allows for the loads to be categorised based on the electrical characteristics, and also provides information on the reactive power characteristics of the load, which is often neglected from standard consumption statistics. This data is particularly important for power system analysis. In addition to this, device ownership statistics and probability distribution functions of power demand are presented for the main residential loads. Although the data presented is primarily intended as a resource for the development of load profiles for power system analysis, it contains a large volume of information which provides a useful database for the wider research community.

  1. Infiltration in ASHRAE's Residential Ventilation Standards

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    of theeffectivenaturalventilationratewithweatherto Residential Ventilation Requirements. LBNL57236. and M.H. Sherman "Ventilation Behavior and Household

  2. EWEB- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Eugene Water and Electric Board (EWEB) provides cash incentives to help residential customers increase the energy efficiency of homes through several different rebate programs. Rebates are provided...

  3. Entergy New Orleans- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy New Orleans has designed an incentive program to help residential customers understand and make energy efficiency improvements in eligible homes. Incentives are geared towards both...

  4. Florida Keys Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Florida Keys Electric Cooperative offers residential members rebates for installing energy efficient measures. To qualify for rebates, members must first call FKEC and make an appointment for a...

  5. Better Buildings Residential Network | Department of Energy

    Energy Savers [EERE]

    Call summaries See the partnerships case study Read the February issue of the Better Buildings Network View Upcoming Peer Exchange Calls* Residential Energy Efficiency...

  6. Building America Residential Energy Efficiency Stakeholders Meeting...

    Energy Savers [EERE]

    Energy Efficiency Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report...

  7. Idaho Falls Power- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an...

  8. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

  9. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

  10. Ameren Illinois (Gas)- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

  11. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Program Sustainability Peer Exchange Call: Operating as a Prime Contractor Call Slides and Discussion Summary Agenda - Operating as a Prime Contractor * Call...

  12. Residential Buildings Integration Program Overview - 2014 BTO...

    Broader source: Energy.gov (indexed) [DOE]

    provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing...

  13. Residential Buildings Integration Program Overview - 2015 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Overview - 2015 BTO Peer Review Residential Buildings Integration Program Overview - 2015 BTO Peer Review Presenter: David Lee, U.S. Department of...

  14. Pacific Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Pacific Power offers incentives for residential customers to improve the energy efficiency of homes through the Home Energy Savings Program. Rebates are provided for various Energy Star rated...

  15. Pacific Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Pacific Power offers the Home Energy Savings Program for their residential California customers to improve the efficiency of their homes. Incentives are also available for contractors and newly...

  16. Consumers Energy (Electric)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Consumers Energy residential electric customers are eligible to apply for a variety of rebates on energy efficient equipment. Customers must install equipment in the Consumers Energy service area...

  17. Duke Energy- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Smart $aver program offers incentives for residential customers to increase the energy efficiency of homes. Incentives are provided for qualifying heating and cooling equipment installation or...

  18. Farmers RECC- Residential Insulation Rebate Program

    Broader source: Energy.gov [DOE]

    The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

  19. First Energy Ohio- Residential Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Ohio subsidiaries of FirstEnergy (Ohio Edison, The Illuminating Company, Toledo Edison) offer rebates for the installation of certain energy efficiency improvements for residential and small...

  20. CPS Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

  1. Does Mixing Make Residential Ventilation More Effective?

    E-Print Network [OSTI]

    Sherman, Max

    2011-01-01T23:59:59.000Z

    Mechanical Ventilation Systems. Int. J. Ventilation, 6(4),Residential Mechanical Ventilation Systems. ASHRAE HVAC&Rfor Extension of Ventilation System Tracer Gas Testing.

  2. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecolibrium3 (Duluth, MN) EnergyFit Nevada Gtech Strategies (Pittsburgh, PA) Midwest Energy Efficiency Alliance (MEEA) 3 Better Buildings Residential Network ...

  3. Columbia Water & Light- Residential HVAC Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) provides residential customers with rebates on energy efficient HVAC equipment. Customers should submit the mechanical permit from a Protective Inspection, a copy...

  4. Presentation: Better Buildings Residential Program Solution Center

    Energy Savers [EERE]

    Solution Center Overview Purpose: No More Starting from Scratch 5 Help residential energy efficiency programs minimize trial and error to achieve success. Help programs and...

  5. El Paso Electric Company- Residential Solutions Program

    Broader source: Energy.gov [DOE]

    '''The El Paso Electric Residential Solutions Program funding has been expended in Texas for 2012. New funding will be available January 1, 2013. '''

  6. (Electric and Gas) Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Energize CT offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing energy...

  7. Black Hills Power- Residential Customer Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

  8. Entergy Arkansas- Residential Energy Efficiency Program (Arkansas)

    Broader source: Energy.gov [DOE]

    Entergy Arkansas offers the Home Energy Solutions Program to help residential customers understand and make energy efficiency improvements in participating homes. Customers can call a toll-free...

  9. Austin Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy offers incentives to its residential customers to encourage the use of energy efficient equipment and measures. Rebates are available for qualified HVAC equipment, water heating...

  10. Xcel Energy (Gas)- Residential Conservation Programs

    Broader source: Energy.gov [DOE]

    Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...

  11. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management Program (FEMP) sets federal efficiency...

  12. Charlottesville Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for...

  13. Consumers Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Consumers Energy residential electric customers are eligible to apply for a variety of rebates on energy efficient equipment. Customers must install equipment in the Consumers Energy service area...

  14. Performance Criteria for Residential Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

    2006-01-01T23:59:59.000Z

    and Marc LaFrance. 2006. Zero Energy Windows. ProceedingsFuture Advanced Windows for Zero-Energy Homes. ASHRAEfor Residential Zero Energy Windows Dariush Arasteh, Howdy

  15. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

  16. Chelan County PUD- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

  17. Better Buildings Residential Program Solution Center Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    The Better Buildings Residential Program Solution Center is a robust online collection of nearly 1,000 examples, strategies, and resources from Better Buildings Neighborhood...

  18. Better Buildings Residential Network Orientation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Summary More Documents & Publications How Can the Network Meet Your Needs? Better Buildings Residential Program - 2014 BTO Peer Review Outreach to Multifamily Landlords and Tenants...

  19. Better Buildings Residential Program Solution Center Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration webinar slides for Better Buildings Residential Program Solution Center, November 19, 2014. Solution Center Demonstration Webinar Slides More Documents & Publications...

  20. Fact Sheet: Better Buildings Residential Network | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. doebbrnfactsheet.pdf More Documents & Publications Fact Sheet...

  1. Optional Residential Program Benchmarking | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. Call Slides and Discussion Summary...

  2. Better Buildings Residential Network Membership Form

    Energy Savers [EERE]

    Membership Form BETTER BUILDINGS RESIDENTIAL NETWORK Type of Organization (Check all that apply) ConsultantAdvisor Manufacturer ContractorTrade ally Nonprofit organization...

  3. Empire District Electric- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

  4. IID Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Imperial Irrigation District Energy offers incentives to residential customers to encourage energy efficiency. This incentive takes the form of rebates offered for qualifying energy efficient...

  5. MassSAVE (Electric)- Residential Retrofit Programs

    Broader source: Energy.gov [DOE]

    MassSAVE organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities include Columbia Gas of...

  6. MassSAVE (Gas)- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    MassSAVE, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities...

  7. Sawnee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes....

  8. OTEC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Oregon Trail Electric Cooperative (OTEC) assists residential members in reducing electric consumption by providing rebates for energy efficient equipment. Rebates are for appliances, heat pumps,...

  9. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    Measures on Residential Air Conditioner Loads. Proc. ACEEEDeterminants of Central Air Conditioner Duty Cycles. Proc.at the number of air conditioners that might actually

  10. East Central Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and appliances. To qualify for the rebate...

  11. Abstract-Distributed energy resources (DER) are quickly making their way to industry primarily as backup generation.

    E-Print Network [OSTI]

    Tolbert, Leon M.

    generation includes microturbine generators, internal combustion engines (ICEs), and fuel cells. Frequently

  12. ASSOCIATED RESIDENTIAL COMMUNITY HOUSING (ARCH) PROGRAM UC San Diego's Associated Residential Community Housing (ARCH) is committed to supporting the academic

    E-Print Network [OSTI]

    California at San Diego, University of

    ASSOCIATED RESIDENTIAL COMMUNITY HOUSING (ARCH) PROGRAM I. MISSION UC San Diego's Associated Residential Community Housing (ARCH) is committed to supporting the academic mission of the university, Associated Residential Community Housing (ARCH) offers campus housing to graduate and professional students

  13. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean...

  14. Preliminary/Sample Residential EE Loan Term Sheet and Underwriting...

    Broader source: Energy.gov (indexed) [DOE]

    sheet for single family residential energy efficiency loans. Author: Energy Efficiency Finance Corp. PreliminarySample Residential Energy Efficiency Loan Term Sheet & Underwriting...

  15. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    2007. Review of residential ventilation technologies. HVAC&Rof intermittent ventilation for providing acceptable indoorResidential Integrated Ventilation Controller. Energy

  16. On The Valuation of Infiltration towards Meeting Residential Ventilation Needs

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    Related to Residential Ventilation Requirements. LBNLP.N. and M.H. Sherman "Ventilation Behavior and HouseholdReview of Residential Ventilation Technologies, LBNL 57730.

  17. Better Buildings Summit Residential Sessions Engage Energy Pros...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Summit Residential Sessions Engage Energy Pros Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking...

  18. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    1 Advanced Controls and Sustainable Systems for Residential Ventilation William J.N. Turner & Iain..................................................................................................................... 8 Residential Ventilation Standards..........................................................................................9 Passive and Hybrid Ventilation

  19. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    Test Procedures for Water Heaters; Kitchen Ranges, Ovens,Use of Residential Water Heaters. Lawrence Berkeley NationalEnergy Use of Residential Water Heaters. Lawrence Berkeley

  20. Summary of Gaps and Barriers for Implementing Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies...

  1. Duke Energy (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Smart $aver program offers incentives for residential customers to increase residential energy efficiency. Incentives are provided for qualifying heating and cooling equipment installation and...

  2. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Environmental Management (EM)

    Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends...

  3. Residential Energy Consumption Survey Results: Total Energy Consumptio...

    Open Energy Info (EERE)

    Residential Energy Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) The Residential Energy Consumption Survey (RECS) is a national survey...

  4. Regional Variation in Residential Heat Pump Water Heater Performance...

    Energy Savers [EERE]

    Regional Variation in Residential Heat Pump Water Heater Performance in the United States Regional Variation in Residential Heat Pump Water Heater Performance in the United States...

  5. 2014-04-11 Issuance: Test Procedures for Residential Clothes...

    Energy Savers [EERE]

    4-11 Issuance: Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking 2014-04-11 Issuance: Test Procedures for Residential Clothes Washers; Notice of...

  6. awaiting residential aged: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of human... Willis, Gary 2011-12-16 14 Meeting Residential Ventilation Standards Energy Storage, Conversion and Utilization Websites Summary: LBNL 4591E Meeting Residential...

  7. 2011 Residential Energy Efficiency Technical Update Meeting Summary...

    Energy Savers [EERE]

    2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011 2011 Residential Energy Efficiency Technical Update Meeting Summary...

  8. El Paso Electric Company- Residential Efficiency Program (New Mexico)

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

  9. Laclede Gas Company- Residential High Efficiency Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

  10. Clean Energy Finance Guide for Residential and Commercial Building...

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 8 Clean Energy Finance Guide for Residential and Commercial Building Improvements -...

  11. Clean Energy Finance Guide for Residential and Commercial Building...

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 7 Clean Energy Finance Guide for Residential and Commercial Building Improvements -...

  12. Residential Windows and Window Coverings: A Detailed View of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior Residential Windows and Window Coverings: A Detailed View of the Installed Base...

  13. WESLEYAN UNIVERSITY OFFICES OF PHYSICAL PLANT & RESIDENTIAL LIFE

    E-Print Network [OSTI]

    Royer, Dana

    WESLEYAN UNIVERSITY OFFICES OF PHYSICAL PLANT & RESIDENTIAL LIFE MURAL REQUEST FORM ***SMALL SCALE SIGNATURE: DATE: APPROVED BY: **Area Coordinator: DATE: Associate Director of Residential Life: DATE

  14. Sustainable Energy Resources for Consumers Webinar on Residential...

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript Sustainable Energy Resources for Consumers Webinar on Residential...

  15. Activity Stream - NREL EFM DATA: Disaggregated Residential Load...

    Open Energy Info (EERE)

    EFM DATA: Disaggregated Residential Load Cost Data 22 days ago harvest created the dataset NREL EFM DATA: Disaggregated Residential Load Cost Data 1 month ago harvest created...

  16. Cape Light Compact- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cape Light Compact (CLC) offers a variety of financial incentives to customers for purchasing energy efficient residential equipment. Residential customers can take advantage of incentives on...

  17. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    quality problems. Traditionally residential ventilation wasquality problems such as moisture. Residential ventilationventilation air is only one way of tackling the R H problem

  18. Colorado Springs Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

  19. Financing Residential Energy Efficiency with Carbon Offsets Transcript...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets Transcript This document contains the transcript for the...

  20. New Energy Efficiency Standards for Residential Clothes Washers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial clothes washers February 2010 - Small electric motors March 2010 - Residential water heaters, direct heating equipment and pool heaters April 2011 - Residential clothes...

  1. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and...

  2. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    SciTech Connect (OSTI)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru [Troitsk Institute for Innovaiton and Fusion Research (Russian Federation); Krauz, V. I., E-mail: krauz_vi@nrcki.ru; Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V. [National Research Centre Kurchatov Institute (Russian Federation)

    2014-11-15T23:59:59.000Z

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  3. Does Mixing Make Residential Ventilation More Effective?

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain

    2010-08-16T23:59:59.000Z

    Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. The total ventilation rate is the most important factor in determining the exposure of occupants to given sources, but the zone- specific distribution of exhaust and supply air, and the mixing of ventilation air can have significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage through the building envelope, air distribution systems and the location of sources and occupants. This paper reports recent results of investigations to determine the impact that air mixing has on exposures of residential occupants to prototypical contaminants of concern. Evaluations of existing field measurements and simulations reported in the literature are combined with new analyses to provide an integrated overview of the topic. The results show that for extreme cases additional mixing can be a significant factor but for typical homes looking at average exposures mixing is not helpful and can even make exposures worse.

  4. Your Resource Guide to WVU's Residential

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    are mandatory, so please continue to check back for updates and to explore additional events as they are added throughout the summer. welcomeweek.wvu.edu Residential Education Programming Opportunities Volleypalooza Scarehouse Rich's Fright Farm (Haunted House) Kennywood Fright Night Residential Education Octoberfest

  5. Tips For Residential Heating Oil Tank Owners

    E-Print Network [OSTI]

    Maroncelli, Mark

    · · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat

  6. SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE

    E-Print Network [OSTI]

    1 LBNL-47622 SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE Walker, I., Siegel, J ..................................................... 9 #12;3 ABSTRACT In many parts of North America residential HVAC systems are installed outside of the simulations is that they are dynamic - which accounts for cyclic losses from the HVAC system and the effect

  7. Development and Testing of a 6-Cylinder HCCI Engine for Distributed Generation

    SciTech Connect (OSTI)

    Flowers, D L; Martinez-Frias, J; Espinosa-Loza, F; Killingsworth, N; Aceves, S M; Dibble, R; Kristic, M; Bining, A

    2005-07-12T23:59:59.000Z

    This paper describes the technical approach for converting a Caterpillar 3406 natural gas spark ignited engine into HCCI mode. The paper describes all stages of the process, starting with a preliminary analysis that determined that the engine can be operated by preheating the intake air with a heat exchanger that recovers energy from the exhaust gases. This heat exchanger plays a dual role, since it is also used for starting the engine. For start-up, the heat exchanger is preheated with a natural gas burner. The engine is therefore started in HCCI mode, avoiding the need to handle the potentially difficult transition from SI or diesel mode to HCCI. The fueling system was modified by replacing the natural gas carburetor with a liquid petroleum gas (LPG) carburetor. This modification sets an upper limit for the equivalence ratio at {phi} {approx} 0.4, which is ideal for HCCI operation and guarantees that the engine will not fail due to knock. Equivalence ratio can be reduced below 0.4 for low load operation with an electronic control valve. Intake boosting has been a challenge, as commercially available turbochargers are not a good match for the engine, due to the low HCCI exhaust temperature. Commercial introduction of HCCI engines for stationary power will therefore require the development of turbochargers designed specifically for this mode of operation. Considering that no appropriate off-the-shelf turbocharger for HCCI engines exists at this time, we are investigating mechanical supercharging options, which will deliver the required boost pressure (3 bar absolute intake) at the expense of some reduction in the output power and efficiency. An appropriate turbocharger can later be installed for improved performance when it becomes available or when a custom turbocharger is developed. The engine is now running in HCCI mode and producing power in an essentially naturally aspirated mode. Current work focuses on developing an automatic controller for obtaining consistent combustion in the 6 cylinders. The engine will then be tested for 1000 hours to demonstrate durability. This paper presents intermediate progress towards development of an HCCI engine for stationary power generation and next steps towards achieving the project goals.

  8. DISTRIBUTION COEFICIENTS (KD) GENERATED FROM A CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Almond, P.; Kaplan, D.

    2011-04-25T23:59:59.000Z

    Core samples originating from Vault 4, Cell E of the Saltstone Disposal Facility (SDF) were collected in September of 2008 (Hansen and Crawford 2009, Smith 2008) and sent to SRNL to measure chemical and physical properties of the material including visual uniformity, mineralogy, microstructure, density, porosity, distribution coefficients (K{sub d}), and chemical composition. Some data from these experiments have been reported (Cozzi and Duncan 2010). In this study, leaching experiments were conducted with a single core sample under conditions that are representative of saltstone performance. In separate experiments, reducing and oxidizing environments were targeted to obtain solubility and Kd values from the measurable species identified in the solid and aqueous leachate. This study was designed to provide insight into how readily species immobilized in saltstone will leach from the saltstone under oxidizing conditions simulating the edge of a saltstone monolith and under reducing conditions, targeting conditions within the saltstone monolith. Core samples were taken from saltstone poured in December of 2007 giving a cure time of nine months in the cell and a total of thirty months before leaching experiments began in June 2010. The saltstone from Vault 4, Cell E is comprised of blast furnace slag, class F fly ash, portland cement, and Deliquification, Dissolution, and Adjustment (DDA) Batch 2 salt solution. The salt solution was previously analyzed from a sample of Tank 50 salt solution and characterized in the 4QCY07 Waste Acceptance Criteria (WAC) report (Zeigler and Bibler 2009). Subsequent to Tank 50 analysis, additional solution was added to the tank solution from the Effluent Treatment Project as well as from inleakage from Tank 50 pump bearings (Cozzi and Duncan 2010). Core samples were taken from three locations and at three depths at each location using a two-inch diameter concrete coring bit (1-1, 1-2, 1-3; 2-1, 2-2, 2-3; 3-1, 3-2, 3-3) (Hansen and Crawford 2009). Leaching experiments were conducted with a section of core sample 3-2. All cores from location 3 were drilled without using water. Core sample 3-2 was drilled from approximately six inches to a depth of approximately 13 inches. Approximately six inches of the core was removed but it broke into two pieces during removal from the bit. At the time of drilling, core material appeared olive green in color (Smith 2008). The fact that the samples were cored as olive green and were received after storage with a gray outer layer is indicative that some oxidation had occurred prior to leaching studies.

  9. Chapter 17: Residential Behavior Protocol

    SciTech Connect (OSTI)

    Stewart, J.; Todd, A.

    2015-01-01T23:59:59.000Z

    Residential behavior-based (BB) programs use strategies grounded in the behavioral social sciences to influence household energy use. Strategies may include providing households with real-time or delayed feedback about their energy use; supplying energy-efficiency education and tips; rewarding households for reducing their energy use; comparing households to their peers; and establishing games, tournaments, and competitions. BB programs often target multiple energy end uses and encourage energy savings, demand savings, or both. Savings from BB programs are usually a small percentage of energy use, typically less than 5%.

  10. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical andWhat Is aResidential Capabilities

  11. Analysis of Residential Demand Response and Double-Auction Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

    2011-10-10T23:59:59.000Z

    Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

  12. Investigation of residential central air conditioning load shapes in NEMS

    SciTech Connect (OSTI)

    Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

    2002-05-01T23:59:59.000Z

    This memo explains what Berkeley Lab has learned about how the residential central air-conditioning (CAC) end use is represented in the National Energy Modeling System (NEMS). NEMS is an energy model maintained by the Energy Information Administration (EIA) that is routinely used in analysis of energy efficiency standards for residential appliances. As part of analyzing utility and environmental impacts related to the federal rulemaking for residential CAC, lower-than-expected peak utility results prompted Berkeley Lab to investigate the input load shapes that characterize the peaky CAC end use and the submodule that treats load demand response. Investigations enabled a through understanding of the methodology by which hourly load profiles are input to the model and how the model is structured to respond to peak demand. Notably, it was discovered that NEMS was using an October-peaking load shape to represent residential space cooling, which suppressed peak effects to levels lower than expected. An apparent scaling down of the annual load within the load-demand submodule was found, another significant suppressor of the peak impacts. EIA promptly responded to Berkeley Lab's discoveries by updating numerous load shapes for the AEO2002 version of NEMS; EIA is still studying the scaling issue. As a result of this work, it was concluded that Berkeley Lab's customary end-use decrement approach was the most defensible way for Berkeley Lab to perform the recent CAC utility impact analysis. This approach was applied in conjunction with the updated AEO2002 load shapes to perform last year's published rulemaking analysis. Berkeley Lab experimented with several alternative approaches, including modifying the CAC efficiency level, but determined that these did not sufficiently improve the robustness of the method or results to warrant their implementation. Work in this area will continue in preparation for upcoming rulemakings for the other peak coincident end uses, commercial air conditioning and distribution transformers.

  13. Energy Efficiency & On-Bill Financing for Samll Business & Residential

    Office of Energy Efficiency and Renewable Energy (EERE)

    Details on Connecticut Energy Efficiency Fund and its benefits to small businesses and residential customers.

  14. An energy standard for residential buildings in south China

    E-Print Network [OSTI]

    Huang, Yu Joe; Lang, Siwei; Hogan, John; Lin, Haiyan

    2003-01-01T23:59:59.000Z

    Code for Residential Buildings, Third International Conference on Indoor Air Quality, Ventilation and Energy Conservation

  15. DAYLIGHTING METRICS FOR RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    unknown authors

    It is now widely accepted that the standard method for daylighting evaluation- the daylight factor- is due for replacement with metrics founded on absolute values for luminous quantities predicted over the course of a full year using sun and sky conditions derived from standardised climate files. The move to more realistic measures of daylighting introduces significant levels of additional complexity in both the simulation of the luminous quantities and the reduction of the simulation data to readily intelligible metrics. The simulation component, at least for buildings with standard glazing materials, is reasonably well understood. There is no consensus however on the composition of the metrics, and their formulation is an ongoing area of active research. Additionally, non-domestic and residential buildings present very different evaluation scenarios and it is not yet clear if a single metric would be applicable to both. This study uses a domestic dwelling as the setting to investigate and explore the applicability of daylighting metrics for residential buildings. In addition to daylighting provision for task and disclosing the potential for reducing electric lighting usage, we also investigate the formulation of metrics for non-visual effects such as entrainment of the circadian system.

  16. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01T23:59:59.000Z

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  17. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Office of Environmental Management (EM)

    Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector - Fact Sheet, 2013 Residential Multi-Function Gas Heat Pump: Efficient...

  18. Quantifying the Effect of the Principal-Agent Problem on US Residential Energy Use

    E-Print Network [OSTI]

    Murtishaw, Scott; Sathaye, Jayant

    2006-01-01T23:59:59.000Z

    of the Residential Water Heater Market in the Northwest. Residential Water Heaters. http://www.eere.energy.gov/for Residential Water Heaters, Final Letter. http://

  19. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    average residential electricity consumption by end-use inaverage residential electricity consumption by end-use inU.S. residential electricity consumption for 2010 for 32

  20. Water and Waste Water Tariffs for New Residential Construction in California

    E-Print Network [OSTI]

    Fisher, Diane; Lutz, James

    2006-01-01T23:59:59.000Z

    for New Residential Construction in California D.C. FisherTariffs for New Residential Construction in California 1.in new residential construction in California. These