National Library of Energy BETA

Sample records for residential buildings consumption

  1. Building and occupant characteristics as determinants of residential energy consumption

    SciTech Connect (OSTI)

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  2. Residential Building Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building...

  3. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption ...

  4. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  5. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  6. Better Buildings Residential Network | Department of Energy

    Energy Savers [EERE]

    Residential Buildings Better Buildings Residential Network Better Buildings Residential Network Better Buildings Residential Network Explore Latest Peer Exchange Call Summaries ...

  7. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per

  8. Residential Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2009 10:18 AM http:www.eia.govconsumptioncommercialdataarchivecbecspba99residential.html If you are having any technical problems with this site, please contact the EIA...

  9. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA,

  10. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    20 Site Consumption Primary Consumption Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 5% 28% 8% 56% | 8% 31% 56% 34.2 1981 5% 26% 7% 59% | 7% 29% 59% 31.9 1982 5% 26% 5% 61% | 6% 28% 61% 30.2 1983 4% 25% 5% 62% | 6% 27% 62% 30.1 1984 5% 26% 4% 61% | 6% 27% 61% 31.1 1985 5% 25% 4% 63% | 6% 26% 63% 30.9 1986 5% 24% 5% 63% | 6% 26% 63% 32.2 1987 5% 25% 4% 63% | 6% 26% 63% 32.9 1988 5% 24% 5% 63% | 6% 26% 63% 34.2 1989 5% 24% 5% 63% | 7% 25%

  11. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square ... Source: Energy Information Administration, Office of Energy Markets and End ...

  12. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  13. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  14. Residential Buildings Historical Publications reports, data and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  15. Residential Buildings Historical Publications reports, data and...

    Gasoline and Diesel Fuel Update (EIA)

    2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End ...

  16. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  17. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  18. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  19. Residential Buildings Historical Publications reports, data and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per ... Notes: * Because of rounding, data may not sum to totals. Source: Energy Information ...

  20. Residential Buildings Historical Publications reports, data and...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas, 1980 Average Natural Gas Residential Buildings Consumption Expenditures per ... Source: Energy Information Administration, Office of Energy Markets and End Use, Forms ...

  1. Residential Buildings Historical Publications reports, data and...

    Gasoline and Diesel Fuel Update (EIA)

    0 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per per per per Total Total Floorspace per Square per Household per Square per Household ...

  2. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 Type (1) Single-Family: 55.4 106.6 39.4 80.5% Detached 55.0 108.4 39.8 73.9% Attached 60.5 89.3 36.1 6.6% Multi-Family: 78.3 64.1 29.7 14.9% 2 to 4 units 94.3 85.0 35.2 6.3% 5 or more units 69.8 54.4 26.7 8.6% Mobile Homes 74.6 70.4 28.5 4.6% All Housing Types 58.7 95.0 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average

  3. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    2 Year Built (1) Prior to 1950 74.5 114.9 46.8 24% 1950 to 1969 66.0 96.6 38.1 23% 1970 to 1979 59.4 83.4 33.5 15% 1980 to 1989 51.9 81.4 32.3 14% 1990 to 1999 48.2 94.4 33.7 16% 2000 to 2005 44.7 94.7 34.3 8% Average 58.7 95.0 40.0 Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was

  4. Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    Residential Sector Energy Consumption March 2012 1.2.9 Implicit Price Deflators (2005 = 1.00) Year Year Year 1980 0.48 1990 0.72 2000 0.89 1981 0.52 1991 0.75 2001 0.91 1982 0.55 1992 0.77 2002 0.92 1983 0.58 1993 0.78 2003 0.94 1984 0.60 1994 0.80 2004 0.97 1985 0.62 1995 0.82 2005 1.00 1986 0.63 1996 0.83 2006 1.03 1987 0.65 1997 0.85 2007 1.06 1988 0.67 1998 0.86 2008 1.09 1989 0.70 1999 0.87 2009 1.10 2010 1.11 Source(s): EIA, Annual Energy Review 2010, August 2011, Appendix D, p. 353.

  5. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    8 2009 Annual Natural Gas Consumption per Appliance by Census Division Census Division New England Middle Atlantic East North Central West North Central South Atlantic East South Central West South Central Mountain Pacific United States Average Total Source(s): 515,657 208,173 43,648 42,723 90,171 American Gas Association, Residential Natural Gas Market Survey, Jan. 2011, Table 10-1. 61,928 23,005 5,238 5,135 10,270 44,675 20,232 3,286 3,286 29,064 33,891 24,648 3,595 3,081 5,135 58,334 26,702

  6. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    9 Northeast Midwest South West National Space Heating 70.3 56.6 20.4 23.8 38.7 Space Cooling 3.6 5.6 13.9 4.0 7.9 Water Heating 21.1 20.4 15.8 21.2 19.0 Refrigerator 5.4 7.0 6.6 5.7 6.3 Other Appliances & Lighting 23.0 25.9 25.0 24.1 24.7 Total (1) 79.9 77.4 95.0 Note(s): Source(s): 2005 Delivered Energy End-Uses for an Average Household, by Region (Million Btu per Household) 122.2 113.5 1) Due to rounding, sums do not add up to totals. EIA, 2005 Residential Energy Consumption Survey, Oct.

  7. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    5 Load (quads) and Percent of Total Load Component Heating Cooling Roof -0.65 12% 0.16 14% Walls -1.00 19% 0.11 10% Foundation -0.76 15% -0.07 - Infiltration -1.47 28% 0.19 16% Windows (conduction) -1.34 26% 0.01 1% Windows (solar gain) 0.43 - 0.37 32% Internal Gains 0.79 - 0.31 27% Net Load -3.99 100% 1.08 100% Note(s): Source(s): Aggregate Residential Building Component Loads as of 1998 (1) 1) "Load" represents the thermal energy losses/gains that when combined will be offset by a

  8. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 Delivered Energy Consumption Intensities of Public Multi-Family Buildings, by Fuel and Region (Thousand Btu/SF) Region Electricity Natural Gas Fuel Oil Total Northeast 27.7 45.9 39.9 71.5 Midwest 22.5 49.9 N.A. 70.3 South 53.5 27.9 N.A. 65.9 West 22.0 25.3 N.A. 46.2 National Average 33.0 43.4 68.3

  9. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    2 Delivered Energy Consumption Intensities of Public Multi-Family Buildings, by Fuel and Region (Million Btu/Household) Region Electricity Natural Gas Fuel Oil Total Northeast 21.2 34.9 36.2 54.7 Midwest 16.6 36.6 N.A. 51.8 South 39.4 20.0 N.A. 48.5 West 16.6 19.3 N.A. 34.8 National Average 24.6 32.2 51.0

  10. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WV2" "Date","West Virginia Natural Gas Residential Consumption ...

  11. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior

    SciTech Connect (OSTI)

    Kavousian, A; Rajagopal, R; Fischer, M

    2013-06-15

    We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of daily maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. (C) 2013 Elsevier Ltd. All rights reserved.

  12. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    9 Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 24% 41% 19% 3% | 30% 49% 3% 20.22 1981 23% 42% 19% 3% | 30% 49% 3% 19.74 1982 26% 39% 18% 3% | 32% 45% 3% 18.36 1983 26% 39% 17% 3% | 32% 46% 3% 17.20 1984 25% 40% 17% 3% | 31% 47% 3% 18.38 1985 25% 40% 18% 3% | 32% 46% 3% 17.70 1986 26% 40% 16% 3% | 32% 46% 3% 16.59 1987 25% 41% 17% 3% | 31% 47% 3% 17.63 1988 26% 42% 15% 3% | 31% 47% 3% 18.44 1989 25% 41% 16% 3% | 30% 47% 3% 19.56 1990 23%

  13. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary report and ...

  14. Benefits of Better Buildings Residential Network Reporting |...

    Energy Savers [EERE]

    Benefits of Better Buildings Residential Network Reporting Benefits of Better Buildings Residential Network Reporting Better Buildings Residential Network All-Member Peer Exchange ...

  15. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Residential Water Use by Source (Million Gallons per Day) Year 1980 3,400 1985 3,320 1990 3,390 1995 3,390 2000 (3) (3) 3,590 2005 3,830 Note(s): Source(s): 29,430 25,600 1) Public supply water use: water withdrawn by public and private water suppliers that furnish water to at least 25 people or have a minimum of 15 connections. 2) Self-supply water use: Water withdrawn from a groundwater or surface-water source by a user rather than being obtained from a public supply. 3) USGS did not provide

  16. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    6 Residential Water Billing Rate Structures for Community Water Systems Rate Structure Uniform Rates Declining Block Rate Increasing Block Rate Peak Period or Seasonal Rate Separate Flat Fee Annual Connection Fee Combined Flat Fee Other Rate Structures Note(s): Source(s): 3.0% 9.0% 1) Systems serving more than 10,000 users provide service to 82% of the population served by community water systems. Columns do not sum to 100% because some systems use more than one rate structure. 2) Uniform rates

  17. Better Buildings Residential | Department of Energy

    Office of Environmental Management (EM)

    Better Buildings Residential Better Buildings Residential Solution Center Shares Energy Efficiency Program Strategies Solution Center Shares Energy Efficiency Program Strategies ...

  18. Residential Buildings Integration Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Integration Program Residential Buildings Integration Program ... More Documents & Publications Home Performance with ENERGY STAR -- 10 Years of Continued ...

  19. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    2 1999 Single-Family Home Daily Water Consumption by End Use (Gallons per Capita) (1) Fixture/End Use Toilet 18.5 18.3% Clothes Washer 15 14.9% Shower 11.6 11.5% Faucet 10.9 10.8% Other Domestic 1.6 1.6% Bath 1.2 1.2% Dishwasher 1 1.0% Leaks 9.5 9.4% Outdoor Use (2) 31.7 31.4% Total (2) 101 100% Note(s): Source(s): Average gallons Total Use per capita per day Percent 1) Based analysis of 1,188 single-family homes at 12 study locations. 2) Total Water use derived from USGS. Outdoor use is the

  20. ,"New Mexico Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:54:36 AM" "Back to Contents","Data 1: New Mexico Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NM2" "Date","New Mexico Natural Gas Residential Consumption (MMcf)" ...

  1. ,"North Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:54:32 AM" "Back to Contents","Data 1: North Dakota Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ND2" "Date","North Dakota Natural Gas Residential Consumption ...

  2. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    0 Region (1) Northeast 73.5 122.2 47.7 24% New England 77.0 129.4 55.3 7% Middle Atlantic 72.2 119.7 45.3 17% Midwest 58.9 113.5 46.0 28% East North Central 61.1 117.7 47.3 20% West North Central 54.0 104.1 42.9 8% South 51.5 79.8 31.6 31% South Atlantic 47.4 76.1 30.4 16% East South Central 56.6 87.3 36.1 6% West South Central 56.6 82.4 31.4 9% West 56.6 77.4 28.1 18% Mountain 54.4 89.8 33.7 6% Pacific 58.0 71.8 25.7 11% U.S. Average 58.7 94.9 37.0 100% Note(s): Source(s): 1) Energy consumption

  3. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    4 Primary Energy Consumption Total Per Household 1980 79.6 N.A. 123.5 15.72 197.4 1981 82.8 N.A. 114.2 15.23 184.0 1982 83.7 N.A. 114.6 15.48 184.9 1983 84.6 N.A. 110.6 15.38 181.9 1984 86.3 N.A. 113.9 15.90 184.2 1985 87.9 N.A. 111.7 16.02 182.3 1986 89.1 N.A. 108.4 15.94 178.8 1987 90.5 N.A. 108.2 16.21 179.1 1988 92.0 N.A. 112.7 17.12 186.0 1989 93.5 N.A. 113.7 17.76 190.0 1990 94.2 N.A. 102.7 16.92 179.5 1991 95.3 N.A. 104.6 17.38 182.4 1992 96.4 N.A. 104.7 17.31 179.6 1993 97.7 N.A. 107.5

  4. DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  5. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a row of homes in the distance. The NREL Residential Buildings group is an innovative, multidisciplinary team focused on accelerating the adoption of cost-effective energy...

  6. Better Buildings Residential Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RESIDENTIAL Better Buildings is a U.S. Department of Energy (DOE) initiative designed to accelerate energy savings through leadership, innovation, partnerships, and demonstrated ...

  7. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  8. Better Buildings Residential Program Solution Center Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration from the U.S. Department of Energy. Solution Center Demo (2.8 MB) More Documents & Publications Building Science Solutions … Faster and Better Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center

  9. Building America Webinar: National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview ...

  10. Better Buildings Residential Program Solution Center Demonstration...

    Energy Savers [EERE]

    Residential Program Solution Center Demonstration Better Buildings Residential Program ... Residential Program Solution Center Demonstration from the U.S. Department of Energy. ...

  11. Better Buildings Residential Network Orientation Webinar Call...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Residential Network (Residential Network) Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices to increase the ...

  12. ,"North Carolina Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:54:31 AM" "Back to Contents","Data 1: North Carolina Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NC2" "Date","North Carolina Natural Gas Residential ...

  13. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. Themore » mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.« less

  14. Energy Preview: Residential Transportation Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    t 7 Energy Preview: Residential Transportation Energy Consumption Survey, Preliminary Estimates, 1991 (See Page 1) This publication and other Energy Information Administration...

  15. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). ...

  16. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As a part of the Residential Energy Consumption Survey (RECS), trained interviewers measure the square footage of each housing unit. RECS square footage data allow comparison of ...

  17. ,"New Hampshire Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Residential Consumption (MMcf)",1,"Monthly","62016" ,"Release ...

  18. Housing characteristics, 1987: Residential Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1989-05-26

    This report is the first of a series of reports based on data from the 1987 RECS. The 1987 RECS is the seventh in the series of national surveys of households and their energy suppliers. These surveys provide baseline information on how households in the United States use energy. A cross section of housing types such as single-family detached homes, townhouses, large and small apartment buildings, condominiums, and mobile homes were included in the survey. Data from the RECS and a companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are available to the public in published reports such as this one and on public use tapes. 10 figs., 69 tabs.

  19. Residential Building Industry Consulting Services | Open Energy...

    Open Energy Info (EERE)

    Residential Building Industry Consulting Services Jump to: navigation, search Name: Residential Building Industry Consulting Services Place: New York, NY Information About...

  20. Better Buildings Residential Network Membership Form | Department...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy's Better Buildings Residential Network. BBRN Membership Form (138.55 KB) More Documents & Publications Better Buildings Residential Network Orientation Fact Sheet: ...

  1. Better Buildings Residential Network Program Sustainability Peer...

    Broader source: Energy.gov (indexed) [DOE]

    11, 2014 Better Buildings Residential Network Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices to increase the ...

  2. Better Buildings Residential Network Case Study: Partnerships...

    Energy Savers [EERE]

    Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of Energy's Office of Energy ...

  3. Better Buildings Residential Network Orientation Webinar | Department...

    Energy Savers [EERE]

    September 11, 2014. Call Slides and Discussion Summary (2.44 MB) More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network ...

  4. Residential Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Integration Residential Buildings Integration Zero Energy Ready Home Zero Energy Ready Home Zero Energy Ready Homes are so efficient that a renewable energy ...

  5. Better Buildings Residential Network Orientation Webinar, Call...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BBNP Grantee Sectors 9 BBNP Accomplishments 10 Better Buildings Residential Network Better Buildings Residential Network: Connects energy efficiency programs and partners to ...

  6. Better Buildings Residential Network Orientation Webinar | Department...

    Energy Savers [EERE]

    May 14, 2015. Call Slides and Discussion Summary (2.01 MB) More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential ...

  7. Better Buildings Residential Network Orientation | Department...

    Energy Savers [EERE]

    Orientation Better Buildings Residential Network Orientation Better Buildings Residential Network (BBRN) Orientation Call Slides and Summary, March 27, 2014. Call Slides and ...

  8. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Network Better Buildings Residential Network Explore Peer ... programs can implement and leverage to quickly show energy and utility dollar savings. ...

  9. Better Buildings Residential Program Solution Center Demonstration...

    Office of Environmental Management (EM)

    Webinar Better Buildings Residential Program Solution Center Demonstration Webinar Demonstration webinar slides for Better Buildings Residential Program Solution Center, November 19, ...

  10. Better Buildings Residential Network (BBRN) Orientation Call...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 11 Better Buildings Residential Network (BBRN) Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices to increase the ...

  11. Better Buildings Residential Network Social Media Toolkit

    Broader source: Energy.gov (indexed) [DOE]

    Social Media Toolkit BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn 1 T his Better Buildings Residential Network toolkit can be used to help ...

  12. Residential Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Program Existing Homes HUD The residential program is grounded on technology and research. ... * Quantitative (reporting) * Qualitative (account management, peer exchange ...

  13. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update (EIA)

    slightly from 10.58 quads in 1978 to 10.55 quads in 2005 as reported by the most recent consumption and expenditures data from the Residential Energy Consumption Survey (RECS). ...

  14. Fact Sheet: Better Buildings Residential Network

    Broader source: Energy.gov [DOE]

    Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient.

  15. Better Buildings Residential Network Orientation Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, May 14, 2015.

  16. Residential Buildings Integration Program Logic Model

    Broader source: Energy.gov (indexed) [DOE]

    The Residential Integration Program accelerates energy improvements in existing and new residential buildings by reducing technical and market barriers to spur investment and ...

  17. Energy Intensity Indicators: Residential Source Energy Consumption

    Broader source: Energy.gov [DOE]

    Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4...

  18. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    According to results from EIA's 2009 Residential Energy Consumption Survey (RECS), the stock of homes built in the 1970s and 1980s averages less than 1,800 square feet (Fig. 1). ...

  19. Residential Buildings Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the...

  20. Partner With DOE and Residential Buildings | Department of Energy

    Energy Savers [EERE]

    Residential Buildings Partner With DOE and Residential Buildings Partner With DOE and Residential Buildings The U.S. Department of Energy (DOE) partners with a variety of ...

  1. Better Buildings Residential Network Reporting and Benefits FAQ

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  2. Better Buildings Residential Network Reporting and Benefits Template

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  3. Presentation: Better Buildings Residential Program Solution Center...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy's Better Buildings Neighborhood Program, April 2014. Solution Center Overview...

  4. Residential Building Analysis Tools & Support | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Analysis Tools & Support Residential Building Analysis Tools & Support Lead Performer: National Renewable Energy Laboratory (NREL) - Golden, CO Project Term: Current - ...

  5. Membership Criteria: Better Buildings Residential Network | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Membership Criteria: Better Buildings Residential Network of the U.S. Department of Energy. Membership Criteria (126.27 KB) More Documents & Publications Better Buildings ...

  6. Residential Buildings Integration Program Overview - 2015 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Program Overview - 2014 BTO Peer Review Residential Buildings Integration Program Overview - 2016 BTO Peer Review NREL: Building America Total Quality Management - 2015

  7. Residential and commercial buildings data book: Third edition

    SciTech Connect (OSTI)

    Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

    1988-02-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

  8. Residential Building Energy Analysis

    Energy Science and Technology Software Center (OSTI)

    1990-09-01

    PEAR (Program for Energy Analysis of Residences) provides an easy-to-use and accurate method of estimating the energy and cost savings associated with various energy conservation measures in site-built single-family homes. Measures such as ceiling, wall, and floor insulation; different window type and glazing layers; infiltration levels; and equipment efficiency can be considered. PEAR also allows the user to consider the effects of roof and wall color, movable night insulation on the windows, reflective and heatmore » absorbing glass, an attached sunspace, and use of a night temperature setback. Regression techniques permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to 880 U.S. locations determined by climate parameters. Based on annual energy savings, user-specified costs of conservation measures, fuel, lifetime of measure, loan period, and fuel escalation and interest rates, PEAR calculates two economic indicators; the Simple Payback Period (SPP) and the Savings-to-Investment Ratio (SIR). Energy and cost savings of different sets of conservation measures can be compared in a single run. The program can be used both as a research tool by energy policy analysts and as a method for nontechnical energy calculation by architects, home builders, home owners, and others in the building industry.« less

  9. Residential Lighting End-Use Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Publications » Market Studies » Residential Lighting End-Use Consumption Residential Lighting End-Use Consumption The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3)

  10. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect (OSTI)

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  11. Health Care Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  12. Air Barriers for Residential and Commercial Buildings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Barriers for Residential and Commercial Buildings Air Barriers for Residential and Commercial Buildings Emerging Technologies Project for the 2013 Building Technologies ...

  13. Better Buildings Summit Residential Sessions Engage Energy Pros...

    Energy Savers [EERE]

    Better Buildings Summit Residential Sessions Engage Energy Pros Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking ...

  14. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends ...

  15. Benefits of Better Buildings Residential Network Reporting

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network All-Member Peer Exchange Call: Member Reporting and Benefits, Call Slides and Discussion Summary, May 22, 2014.

  16. Better Buildings Residential Program Solution Center Demonstration...

    Office of Environmental Management (EM)

    The Better Buildings Residential Program Solution Center is a robust online collection of ... Neighborhood Program partners, Home Performance with ENERGY STAR Sponsors, and others. ...

  17. Building America Residential Energy Efficiency Technical Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary report and ...

  18. Building America Residential Energy Efficiency Stakeholders Meeting...

    Energy Savers [EERE]

    Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report and presentations ...

  19. Fact Sheet: Better Buildings Residential Network | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. BBRN Fact Sheet (428.79 KB) More Documents & Publications ...

  20. Residential Buildings Integration Program Overview - 2016 BTO...

    Energy Savers [EERE]

    Residential Buildings Integration Program Overview - 2016 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2016 Peer Review provided an ...

  1. National Residential Efficiency Measures Database - Building...

    Energy Savers [EERE]

    National Residential Efficiency Measures Database - Building America Top Innovation ... Image of a man insulating the ceiling of a home. Robust cost data for energy-efficiency ...

  2. Residential Buildings Integration Program Overview - 2014 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 BTO Peer Review Residential Buildings Integration Program Overview - 2014 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2014 Peer ...

  3. Better Buildings Residential Network Membership Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network. BBRN Membership Form (138.55 KB) More Documents & Publications Better Buildings Residential Network Orientation Fact Sheet: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network

  4. Better Buildings Residential Program Solution Center Demonstration Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Webinar Better Buildings Residential Program Solution Center Demonstration Webinar Demonstration webinar slides for Better Buildings Residential Program Solution Center, November 19, 2014. Solution Center Demonstration Webinar Slides (3.8 MB) More Documents & Publications Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Better Buildings Residential Program Solution Center

  5. Membership Criteria: Better Buildings Residential Network | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network of the U.S. Department of Energy. Membership Criteria (126.27 KB) More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Reporting and Benefits FAQ How Can the Network Meet Your Needs?

  6. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires

    0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 81.6 65.3 142.5 38 17 30.3 11 625 0.29 500 178 Census Region and Division

  7. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division

  8. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.7 66.0 142.2 36 16 28.0 10 708 0.33 558 204 Census Region and Division

  9. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division

  10. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division

  11. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and

  12. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division

  13. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 9.4 9.2 19.6 41 19 40.2 16 607 0.29 598 231 Census Region and

  14. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.7 44.8 106.3 109 46 84.2 32 609 0.26 472 181 Census Region

  15. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 58.7 46.0 111.9 115 47 89.9 34 696 0.29 546 206 Census Region

  16. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires Natural Gas, 1997 Average Natural Gas Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 61.9 51.3 106.1 103 50 85.3 32 698 0.34

  17. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 66.9 53.8 137.2 90 35 72.4 27 873 0.34 702 265 Census Region

  18. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications (EIA)

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  19. Residential and commercial buildings data book. Second edition

    SciTech Connect (OSTI)

    Crumb, L.W.; Bohn, A.A.

    1986-09-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

  20. NREL Residential Buildings Group Partners - Datasets - OpenEI...

    Open Energy Info (EERE)

    NREL Residential Buildings Group Partners This spreadsheet contains a list of all the companies with which NREL's Residential Buildings Group has formed a partnership. The two...

  1. Residential Building Audits and Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation covers local, regional, and national efforts to promote energy efficiency in residential buildings, programmatic elements of residential building audit and ...

  2. Residential Buildings Leader Speaks at Congressional Expo on...

    Energy Savers [EERE]

    Residential Buildings Leader Speaks at Congressional Expo on Zero Energy Ready Homes Residential Buildings Leader Speaks at Congressional Expo on Zero Energy Ready Homes August 9, ...

  3. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Better Buildings Residential Network Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices to increase the ...

  4. Better Buildings Residential Network: Lessons Learned: Peer Exchange...

    Energy Savers [EERE]

    Buildings Residential Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls, from the U.S. Department of Energy. ...

  5. Better Buildings Residential Network Case Study: Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Learn more at betterbuildings.energy.govbbrn BETTER BUILDINGS RESIDENTIAL NETWORK Better Buildings Residential Network case studies feature members to fulfill our mission to share ...

  6. Fact Sheet - Better Buildings Residential | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Better Buildings is a U.S. Department of Energy (DOE) initiative designed to accelerate ... Under this initiative, Better Buildings Residential works with residential efficiency ...

  7. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - 13% 4 Better Buildings Residential Network Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices to increase the ...

  8. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 8 Clean Energy Finance Guide for Residential and Commercial Building Improvements - ...

  9. Summary of Gaps and Barriers for Implementing Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies ...

  10. Energy Department Announces $5 Million for Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy Efficiency Research ...

  11. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean ...

  12. Building America Residential Buildings Energy Efficiency Meeting: July 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary report and presentations for the Building America Energy Efficiency meeting in July 2011, held in Denver, Colorado. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies (822.69 KB) More Documents & Publications Summary of Gaps and Barriers for Implementing

  13. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Usage The 1997 Residential Energy Consumption Survey (RECS) collected household energy data for the four most populated States: California, Florida, New York, and Texas. ...

  14. Table 17. Total Delivered Residential Energy Consumption, Projected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  15. "Table 17. Total Delivered Residential Energy Consumption, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2...

  16. Office Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Type of Office Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per Million Btu All Office Buildings 1,089 1,475 90.5 16.32...

  17. Property:Building/FloorAreaResidential | Open Energy Information

    Open Energy Info (EERE)

    BuildingFloorAreaResidential Jump to: navigation, search This is a property of type Number. Floor area for Residential Pages using the property "BuildingFloorAreaResidential"...

  18. BetterBuildings for Michigan: Residential Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BetterBuildings for Michigan: Residential Program BetterBuildings for Michigan: Residential Program Fact sheet for BetterBuildings for Michigan's Residential Program, as posted on the website of the U.S. Department of Energy's Better Buildings Neighborhood Program BetterBuildings for Michigan: Residential Program Fact Sheet (42.09 KB) More Documents & Publications BetterBuildings for Michigan Residential Case Study Spotlight on Michigan: Sweeping the State for Ultimate Success

  19. Guam- Solar-Ready Residential Building Requirement

    Broader source: Energy.gov [DOE]

    The Guam Energy Code, which became effective in October of 2000, requires that piping stub outs be provided for water heaters installed in low-rise residential buildings to enable the future inst...

  20. Trends in U.S. Residential Natural Gas Consumption

    Reports and Publications (EIA)

    2010-01-01

    This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census division (1998 through 2009).

  1. Better Buildings Residential Network Orientation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orientation Better Buildings Residential Network Orientation Better Buildings Residential Network (BBRN) Orientation Call Slides and Summary, March 27, 2014. Call Slides and Summary (2.69 MB) More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network Orientation Webinar How Can the Network Meet Your Needs?

  2. SERC Photovoltaics for Residential Buildings Webinar Transcript |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Photovoltaics for Residential Buildings Webinar Transcript SERC Photovoltaics for Residential Buildings Webinar Transcript A presentation sponsored by the U.S. Department of Energy about using solar photovoltaics (PV) systems to provide electricity for homes. 20110125_pv_webinar.pdf (109.9 KB) More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Solar Webinar Text Version TAP Webcast Transcript July-29, 2009

  3. Discover the New Better Buildings Residential Program Solution Center

    Broader source: Energy.gov [DOE]

    A transcript of "Discover the New Better Buildings Residential Program Solution Center," Better Buildings Neighborhood Program Webcast, June 19, 2014.

  4. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  5. Better Buildings Residential Network Peer Exchange Call: Nothing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nothing But Networking for Residential Network Members Call Slides and Discussion Summary March 12, 2015 Welcome and Agenda Review Better Buildings Residential Network ...

  6. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  7. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Gasoline and Diesel Fuel Update (EIA)

    The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at least ... Data collection for the 2012 Commercial Buildings Energy Consumption Survey (CBECS) took ...

  8. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update (EIA)

    Projections - U.S. Energy Information Administration (EIA) 2012 CBECS Preliminary Results What is a commercial building? The CBECS includes buildings greater than 1,000 square feet that devote more than half of their floorspace to activity that is neither residential, manufacturing, industrial, nor agricultural. When will energy consumption estimates be available? Energy consumption and expenditures data will be available beginning in spring 2015. CBECS data collection is currently in its

  9. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census

  10. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.4 181.2 43 18 34.0 13 1,061 0.45 840 321 Census Region

  11. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.4 11.6 29.7 131 51 99.0 36 1,053 0.41 795 287 Census

  12. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 14.6 11.0 28.9 116 44 87.9 32 1,032 0.39 781 283 Census

  13. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.5 12.2 30.0 98 40 77.1 27 829 0.34 650 231 Census

  14. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.5 13.8 32.0 91 39 71.9 27 697 0.30 550 203 Census

  15. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.4 14.0 33.3 87 37 70.3 27 513 0.22 414 156 Census

  16. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 90 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 16.3 13.5 33.2 77 31 63.9 23 609 0.25 506 181 Census

  17. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.8 11.6 29.8 92 36 77.5 28 604 0.23 506 186 Census

  18. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.2 11.0 23.2 97 46 81.1 31 694 0.33 578 224 Census

  19. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires Fuel Oil/Kerosene, 2001 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 11.2 9.4 26.0 80 29 67.1 26 723 0.26

  20. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.3 7.2 12.2 44 26 42.8 15 389 0.23 382 133 Census Region and Division

  1. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.3 7.2 11.7 40 25 39.6 14 383 0.23 376 132 Census Region and Division

  2. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.8 7.7 12.0 41 26 40.1 15 406 0.26 398 146 Census Region and Division

  3. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.7 7.6 12.3 41 26 41.1 15 369 0.23 366 131 Census Region and Division

  4. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 8.2 0.5 13.9 542 20 34.1 12 6,063 0.23 381 134 Census Region and

  5. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 8.1 7.9 14.9 48 25 46.8 17 481 0.26 470 170 Census Region and Division

  6. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average LPG Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 8.1 8.0 13.9 45 26 44.6 17 508 0.29 500 192 Census Region and

  7. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 53.4 41.5 92.8 127 57 98.7 35 578 0.26 450 159 Census Region and

  8. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 54.2 41.0 91.8 116 52 87.6 32 658 0.29 498 183 Census Region and

  9. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 55.4 41.3 93.2 121 53 89.9 33 722 0.32 537 198 Census Region and

  10. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.3 42.5 99.4 114 49 84.3 33 615 0.26 456 176 Census Region and

  11. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (millionBtu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.1 66.1 144.2 141 64 111.7 40 1,256 0.58 998 356

  12. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.8 66.1 142.2 130 60 102.3 37 1,309 0.61 1,033 377

  13. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 86.3 67.5 144.4 134 63 104.7 39 1,437 0.67 1,123 417

  14. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 90.5 70.4 156.8 130 58 100.8 39 1,388 0.62 1,080 416

  15. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450

  16. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.5 181.2 131 55 103.6 40 1,620 0.68 1,282 491

  17. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space(2) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 101.5 83.2 168.8 123 61 101.0 39 1,633 0.80

  18. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 107.0 85.2 211.3 116 47 92.2 36 1,875 0.76 1,493

  19. About the Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Better Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Better Buildings Residential programs and partners have invested more than $3 billion from federal funding and local resources to build more energy-efficient communities across the United States. The U.S.

  20. Building America Webinar: National Residential Efficiency Measures Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unveiled | Department of Energy National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview of this database of residential building retrofit measures and associated estimated costs, and progress to date. webinar_residential_efficiencydb_20110118.wmv (45.17 MB) More Documents & Publications National Residential Efficiency Measures Database Webinar Slides Building America

  1. Building America Research Teams: Spotlight on Alliance for Residential Building Innovation (ARBI) and Building America Research Alliance (BARA)

    Broader source: Energy.gov [DOE]

    This article profiles the Building America teams, Alliance for Residential Building Innovation (ARBI) and Building America Research Alliance (BARA).

  2. Better Buildings Residential Network Orientation Webinar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy September 11, 2014. Call Slides and Discussion Summary (2.44 MB) More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Orientation Webinar

  3. Data: Better Buildings Residential Network Members

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network members come from all sectors of the energy efficiency industry to leverage one another's experiences and expertise in an effort to accelerate the pace of energy upgrades in existing homes. Members include state and local governments, nonprofit organizations, utilities, financial institutions, and private-sector companies involved in energy efficiency programs in their locality.

  4. Buildings Technology Office Residential Buildings Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Summaries Building America, ARIES: High Performance Factory Built Housing Presenter: Jordan Dentz, ARIESThe Levy Partnership Project Goal Provide factory homebuilders with high ...

  5. Better Buildings Summit Residential Sessions Engage Energy Pros |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Better Buildings Summit Residential Sessions Engage Energy Pros Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking place May 27 to 29, 2015, will be the first to engage the residential sector with targeted sessions for home performance professionals. Join us in Washington, D.C., to network with other Better Buildings Residential Network members and discuss a vision for the coming year, including how to overcome

  6. Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls, from the U.S. Department of Energy.

  7. Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  8. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update (EIA)

    EIA is releasing new benchmark estimates for home energy use for the year 2009 that include detailed data for 16 States, 12 more than in past EIA residential energy surveys. EIA ...

  9. BetterBuildings for Michigan Residential Case Study

    Broader source: Energy.gov [DOE]

    Residential case study from BetterBuilding for Michigan, as posted on the website of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  10. Better Buildings Residential Network Peer Exchange Call: Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25, 2013 Better Buildings Residential Network Peer Exchange Call: Commercial and Multi-family Building Benchmarking and Disclosure Call Slides Agenda * Call Logistics and ...

  11. Summary of Gaps and Barriers for Implementing Residential Building Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Strategies | Department of Energy Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado,

  12. Manufacturing Energy Consumption Survey (MECS) - Residential...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. ...

  13. Commercial Buildings Energy Consumption and Expenditures 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil, and district heat consumption and expenditures for commercial buildings by building characteristics. Previous Page Arrow Separater Bar File Last Modified: January 29,...

  14. Residential Building Integration Program: An Overview of RBI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Integration Program An Overview of RBI David Lee, Program Manager David.Lee@ee.doe.gov 2 RBI Program Overview - Agenda 1. Introduction to RBI  Context within the BTO Ecosystem  Potential Opportunities of Residential Building Energy Efficiency 2. Program Overview  Building America Research-to-Market Plan  Better Buildings Residential Program Overview 3. Historical Budget Information 4. RBI Program Logic Model 5. Program Goals Overview 3 Introduction to RBI Residential

  15. Residential Buildings Integration Program Overview - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 BTO Peer Review Residential Buildings Integration Program Overview - 2014 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. View the presentation Residential Buildings Integration Program Overview - 2014 BTO

  16. Residential Buildings Integration Program Overview - 2015 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5 BTO Peer Review Residential Buildings Integration Program Overview - 2015 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2015 Peer Review provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. VIEW THE PRESENTATION Residential Buildings Integration Program Overview - 2015 BTO

  17. Residential Buildings Integration Program Overview - 2016 BTO Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Residential Buildings Integration Program Overview - 2016 BTO Peer Review Residential Buildings Integration Program Overview - 2016 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. 2016 BTO Peer Review

  18. DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents comprising a Household Transportation Panel and is reported separately. * Wood used for heating. Although wood consumption data...

  19. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update (EIA)

    How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: ... ESS gathers data on how much electricity, natural gas, fuel oil, and propane were ...

  20. Better Buildings Residential Network Multifamily & Low-Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Solution Center Better Buildings Residential Network Group ... Oct. 9, 3 PM ET: Data & Evaluation: Making Evaluations Work ... Green Lease Library: http:www.greenleaselibrary.com 37 ...

  1. Remote Duct Sealing in Residential and Commercial Buildings:...

    Broader source: Energy.gov (indexed) [DOE]

    Remote Duct Sealing in Residential and Commercial Buildings: "Saving Money, Saving Energy and Improving Performance" Lawrence Berkeley National Laboratory Presented by Dr. Mark ...

  2. About the Better Buildings Residential Network | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that ...

  3. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are ...

  4. Remote Duct Sealing in Residential and Commercial Buildings ...

    Broader source: Energy.gov (indexed) [DOE]

    Remote Duct Sealing in Residential and Commercial Buildings: "Saving Money, Saving Energy and Improving Performance," Lawrence Berkeley National Laboratory, presented by Dr. Mark ...

  5. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are ...

  6. City of Frisco- Residential and Commercial Green Building Requirements

    Broader source: Energy.gov [DOE]

    In October 2013, existing green building codes were repealed and the 2012 International Residential Code with amendments was adopted. Among the amendments were energy efficiency requirements appr...

  7. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Relationship of CBECS Coverage to EIA Supply Surveys The primary purpose of the CBECS is to collect accurate statistics of energy consumption by individual buildings. EIA also collects data on total energy supply (sales). For the information on sales totals, a different reporting system is used for each fuel and the boundaries between the different sectors (e.g., residential, commercial, industrial) are drawn differently for each fuel. Background EIA sales

  8. Residential Energy Consumption Survey (RECS) - Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption &

  9. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Members Residential Resources Download the Social Media Toolkit. New ... Successful Quality Assurance and Quality Control Programs (101) January 28, 2016 Einstein ...

  10. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Appendix A How the Survey Was Conducted Introduction The Commercial Buildings Energy Consumption Survey (CBECS) is conducted by the Energy Information Administration (EIA) on a...

  11. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Energy Information Adminstration Office of Energy Markets and End Use U.S....

  12. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    in this report were based on monthly billing records submitted by the buildings' energy suppliers. The section, "Annual Consumption and Expenditures" provide a detailed...

  13. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  14. Building America Residential Energy Efficiency Research Planning Meeting:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2011 | Department of Energy Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On this page, you may link to the summary report and presentations for the Building America Research Planning meeting in October 2011, held in Washington, D.C. Residential Energy Efficiency Planning Meeting Summary Report (634.05 KB) More Documents & Publications Residential Energy Efficiency Research Planning Meeting Summary

  15. Building America Residential Energy Efficiency Technical Update Meeting:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2011 | Department of Energy Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary report and presentations for the Building America Technical Update meeting in August 2011, held in Denver, Colorado. 2011 Residential Energy Efficiency Technical Update Meeting (1.25 MB) More Documents & Publications 2011 Residential Energy Efficiency Technical Update Meeting Summary Report:

  16. Building America Webinar: BEopt Optimization Tool and National Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Measures Database | Department of Energy BEopt Optimization Tool and National Residential Efficiency Measures Database Building America Webinar: BEopt Optimization Tool and National Residential Efficiency Measures Database This presentation was delivered as part of the U.S. Department of Energy webinar, Building America Research Tools, on March 18, 2015. BEopt Optimization Tool and National Residential Efficiency Measures Database (1.73 MB) More Documents & Publications DOE

  17. Buildings Residential Network: Lessons Learned: Peer Exchange Calls, Number 7

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn T he Better Buildings Residential Network hosts a series of Peer Exchange Calls that connect energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Following are lessons learned shared by Residential Network members during Peer Exchange Calls held in Winter 2016 that prove seeing is believing when it comes to helping

  18. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) What's new in our home energy use? RECS 2009 - Release date: March 28, 2011 First results from EIA's 2009 Residential Energy Consumption Survey (RECS) The 2009 RECS collected home energy characteristics data from over 12,000 U.S. households. This report highlights findings from the survey, with details presented in the Household Energy Characteristics tables. How we use energy in our homes has changed substantially over the past three decades.

  19. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration (EIA) ‹ Consumption & Efficiency Residential Energy Consumption Survey (RECS) Glossary › FAQS › Overview Data 2009 2005 2001 1997 1993 Previous Analysis & Projections RECS Terminology A B C D E F G H I J K L M N O P Q R S T U V W XYZ A Account Classification: The method in which suppliers of electricity, natural gas, or fuel oil classify and bill their customers. Commonly used account classifications are "Commercial," "Industrial,"

  20. Lifestyle Factors in U.S. Residential Electricity Consumption

    SciTech Connect (OSTI)

    Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

    2012-03-30

    A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

  1. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Total U.S. Homes (millions) U.S. Average 1) Average home sizes include both heated and unheated floor space, including garages. EIA, 2005 Residential Energy Consumption Survey, ...

  2. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Note(s): Source(s): 1) Total Square footage includes attic, garage, and basement square footage. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. Share of Average Home ...

  3. User-needs study for the 1993 residential energy consumption survey

    SciTech Connect (OSTI)

    Not Available

    1993-09-24

    During 1992, the Energy Information Administration (EIA) conducted a user-needs study for the 1993 Residential Energy Consumption Survey (RECS). Every 3 years, the RECS collects information on energy consumption and expenditures for various classes of households and residential buildings. The RECS is the only source of such information within EIA, and one of only a few sources of such information anywhere. EIA sent letters to more than 750 persons, received responses from 56, and held 15 meetings with users. Written responses were also solicited by notices published in the April 14, 1992 Federal Register and in several energy-related publications. To ensure that the 1993 RECS meets current information needs, EIA made a specific effort to get input from policy makers and persons needing data for forecasting efforts. These particular needs relate mainly to development of the National Energy Modeling System and new energy legislation being considered at the time of the user needs survey.

  4. Analysis of changes in residential energy consumption, 1973-1980

    SciTech Connect (OSTI)

    King, M.J.; Belzer, D.B.; Callaway, J.M.; Adams, R.C.

    1982-09-01

    The progress of energy conservation in the residential sector since the 1973 to 1974 Arab oil embargo is assessed. To accomplish this goal, the reduction in residential energy use per household since 1973 is disaggregated into six possible factors. The factors considered were: (1) building shell efficiencies, (2) geographic distribution of households, (3) appliance efficiency, (4) size of dwelling units, (5) fuel switching, and (6) consumer attitudes. The most important factor identified was improved building shell efficiency, although the impact of appliance efficiency is growing rapidly. Due to data limitations, PNL was not able to quantify the effects of two factors (size of dwelling units and fuel switching) within the framework of this study. The total amount of the energy reduction explained ranged from 18 to 46% over the years 1974 to 1980.

  5. Better Buildings Residential Network Case Study: Partnerships | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. BBRN Case Study: Partnerships (191.37 KB) More Documents & Publications Better Buildings Network View | February 2015 Complementary Energy and Health Strategies Voluntary Initiative: Partnering to Enhance Program Capacity

  6. Better Buildings Residential Program Solution Center Demonstration Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcript | Department of Energy Webinar Transcript Better Buildings Residential Program Solution Center Demonstration Webinar Transcript The Better Buildings Residential Program Solution Center is a robust online collection of nearly 1,000 examples, strategies, and resources from Better Buildings Neighborhood Program partners, Home Performance with ENERGY STAR® Sponsors, and others. This webinar presented on November 19, 2014 gives more information on the Solution Center. Solution Center

  7. Lighting in Residential and Commercial Buildings (1993 and 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    of different kinds of lighting equipment with data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), building floorspace can be described in three different...

  8. Building America Puts Residential Research Results To Work; Building America Research That Works (Fact Sheet)

    SciTech Connect (OSTI)

    2009-01-18

    Residential buildings use more than 20% of the energy consumed annually in the United States. To help reduce that energy use, the Department of Energy (DOE) and its Building America partners conduct research to develop advanced building energy systems tha

  9. Building America Residential Energy Efficiency Research Planning...

    Broader source: Energy.gov (indexed) [DOE]

    Research Planning meeting in October 2011, held in Washington, D.C. Residential Energy Efficiency Planning Meeting Summary Report (634.05 KB) More Documents & Publications ...

  10. Better Buildings Residential Network Program Sustainability Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Series Mastermind Call: Connecting the Dots Between the Real Estate Market and Residential Energy Efficiency Featuring Host: Rich Dooley, Arlington County, VA Call Slides and ...

  11. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborating with Utilities on Residential Energy Efficiency June 12, 2014 Call Slides and Discussion Summary Agenda Call Logistics and Introductions BBRN and Peer ...

  12. An analysis of residential energy consumption in a temperate climate

    SciTech Connect (OSTI)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  13. Sample design for the residential energy consumption survey

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  14. Residential energy consumption survey: consumption and expenditures, April 1982-March 1983. Part 1, national data

    SciTech Connect (OSTI)

    Thompson, W.

    1984-11-01

    This report presents data on the US consumption and expenditures for residential use of natural gas, electricity, fuel oil or kerosene, and liquefied petroleum gas (LPG) from April 1982 through March 1983. Data on the consumption of wood for this period are also presented. The consumption and expenditures data are based on actual household bills, obtained, with the permission of the household. from the companies supplying energy to the household. Data on wood consumption are based on respondent recall of the amount of wood burned during the winter and are subject to memory errors and other reporting errors described in the report. These data come from the 1982 Residential Energy Consumption Survey (RECS), the fifth in a series of comparable surveys beginning in 1978. The 1982 survey is the first survey to include, as part of its sample, a portion of the same households interviewed in the 1980 survey. A separate report is planned to report these longitudinal data. This summary gives the highlights of a comparison of the findings for the 5 years of RECS data. The data cover all types of housing units in the 50 states and the District of Columbia including single-family units, apartments, and mobile homes. For households with indirect energy costs, such as costs that are included in the rent or paid by third parties, the sonsumption and expenditures data are estimated and included in the figures reported here. The average household consumption of natural gas, electricity, fuel oil or kerosene, and LPG dropped in 1982 from the previous year, hitting a 5-year low since the first Residential Energy Consumption Survey (RECS) was conducted in 1978. The average consumption was 103 (+-3) million Btu per household in 1982, down from 114 (+-) million Btu in 1981. The weather was the main contributing factor. 8 figures, 46 tables.

  15. Building America Residential Energy Efficiency Stakeholders Meeting: March

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report and presentations for the Building America Stakeholders meeting in March 2011, held in Atlanta, Georgia. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting (721.4 KB) More Documents & Publications Summary of Needs and Opportunities from the 2011

  16. Clean Energy Finance Guide for Residential and Commercial Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvements - Chapter 8 | Department of Energy Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 8 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 8 This chapter discusses clean energy lending from the financial institution perspective. Chapter 8 (139.4 KB) More Documents & Publications Clean Energy Lending From the Financial Institution Perspective (Chapter 8 of the Clean Energy Finance Guide, 3rd

  17. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  18. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption & Efficiency Commercial Buildings Energy Consumption Survey (CBECS) Glossary FAQS Overview Data 2012 2003 1999 1995 1992 Previous Analysis & Projections ...

  19. Residential Buildings Historical Publications reports, data and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... * Because of rounding, data may not sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-457 A-G of the 1980 Residential Energy

  20. Building America Partnership for Improved Residential Construction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shown here are the two identical, side-by-side test homes that comprise FSEC's Flexible Residential Test Facility. Photo courtesy of Florida Solar Energy Center. In addition to ...

  1. Impact of conservation measures on Pacific Northwest residential energy consumption. Final report

    SciTech Connect (OSTI)

    Moe, R.J.; Owzarski, S.L.; Streit, L.P.

    1983-04-01

    The objective of this study was to estimate the relationship between residential space conditioning energy use and building conservation programs in the Pacific Northwest. The study was divided into two primary tasks. In the first, the thermal relationship between space conditioning energy consumption under controlled conditions and the physical characteristics of the residence was estimated. In this task, behavioral characteristics such as occupant schedules and thermostat settings were controlled in order to isolate the physical relationships. In the second task, work from the first task was used to calculate the thermal efficiency of a residence's shell. Thermal efficiency was defined as the ability of a shell to prevent escapement of heat generated within a building. The relationship between actual space conditioning energy consumption and the shell thermal efficiency was then estimated. Separate thermal equations for mobile homes, single-family residences, and multi-family residences are presented. Estimates of the relationship between winter electricity consumption for heating and the building's thermal shell efficiency are presented for each of the three building categories.

  2. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    SciTech Connect (OSTI)

    Starke, Michael R; Onar, Omer C; DeVault, Robert C

    2011-09-01

    based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems

  3. Energy Efficiency Trends in Residential and Commercial Buildings – August 2010

    Broader source: Energy.gov [DOE]

    Overview of building trends and energy use in commercial and residential buildings, including environmental impacts of buildings and trends in select product specification and market insights.

  4. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book [EERE]

    6.9% 5 or more units 2.1% 13.0% 15.0% Mobile Homes 5.1% 1.1% 6.2% Total 70.3% 29.6% 100% Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC3-1 and HC4

  5. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book [EERE]

    3.4% 3.3% 3.1% 1.8% 0.6% 15.0% United States 19.9% 22.5% 17.0% 16.7% 15.6% 8.3% 100% Source(s): All Vintages EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC10

  6. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 1,499 24% 1,500 to 1,999 16% 2,000 to 2,499 9% 2,500 to 2,999 7% 3,000 or more 11% Total 100% Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC1-3.

  7. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Electricity Consumption Natural Gas Consumption Wood and Solar Energy Consumption Fuel Oil and District Heat Consumption Energy Consumption in...

  8. Presentation: Better Buildings Residential Program Solution Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy's Better Buildings Neighborhood Program, April 2014. Solution Center Overview and Tour (5.23

  9. Presentation: Better Buildings Residential Program Solution Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy, Better Buildings Neighborhood Program. Solution Center Overview and Tour (3.78

  10. Energy consumption series: Lighting in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1992-03-11

    Lighting represents a substantial fraction of commercial electricity consumption. A wide range of initiatives in the Department of Energy`s (DOE) National Energy Strategy have focused on commercial lighting as a potential source of energy conservation. This report provides a statistical profile of commercial lighting, to examine the potential for lighting energy conservation in commercial buildings. The principal conclusion from this analysis is that energy use for lighting could be reduced by as much as a factor of four using currently available technology. The analysis is based primarily on the Energy Information Administration`s (EIA) 1986 Commercial Buildings Energy Consumption Survey (CBECS). The more recent 1989 survey had less detail on lighting, for budget reasons. While changes have occurred in the commercial building stock since 1986, the relationships identified by this analysis are expected to remain generally valid. In addition, the analytic approach developed here can be applied to the data that will be collected in the 1992 CBECS.

  11. Development of thermal performance criteria for residential passive solar buildings

    SciTech Connect (OSTI)

    Sabatiuk, P.A.; Cassel, D.E.; McCabe, M.; Scarbrough, C.

    1980-01-01

    In support of the development of thermal performance criteria for residential passive solar buildings, thermal design characteristics and anticipated performance for 266 projects in the HUD Passive Residential Design Competition and the HUD Cycle 5 Demonstration Program were analyzed. These passive residences are located in all regions of the United States requiring space heating, and they represent a variety of passive solar system types including direct gain, indirect gain, and solarium (isolated gain) systems. The results of this statistical analysis are being used to develop proposed minimum acceptable levels of thermal performance for passive solar buildings for the residential performance criteria. A number of performance measures were examined, including net solar contribution, solar fraction, and auxiliary energy use. These and other design and climate-related parameters were statistically correlated using the DATAPLOT computer program and standard statistical analysis techniques.

  12. Air Barriers for Residential and Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... steel studs Unpainted drywall Perimeter frame R-7.5 XPS rigid foam insulation w ... T: temperature Exterior sheathing 7 | Building Technologies Office eere.energy.gov ...

  13. Better Buildings Residential Network Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn more at betterbuildings.energy.govbbrn MARKETING AND OUTREACH The Better Buildings ... Following is a sample of marketing and outreach lessons learned shared by members during ...

  14. Building America Top Innovations 2012: National Residential Efficiency Measures Database

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes the DOE-sponsored National Residential Efficiency Measures Database, which contains performance characteristics and cost estimates for nearly 3,000 energy retrofit measures. To date, it is used in four prominent DOE software packages to help optimize energy-efficiency recommendations.

  15. National Residential Efficiency Measures Database- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes the DOE-sponsored National Residential Efficiency Measures Database, which contains performance characteristics and cost estimates for nearly 3,000 energy retrofit measures. To date, it is used in four prominent DOE software packages to help optimize energy-efficiency recommendations.

  16. Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables

    Reports and Publications (EIA)

    2008-01-01

    The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

  17. Analysis of institutional mechanisms affecting residential and commercial buildings retrofit

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

  18. Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings

    SciTech Connect (OSTI)

    Polly, B.; Kruis, N.; Roberts, D.

    2011-07-01

    This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

  19. Sneak Peek into the Better Buildings Residential Program Solution Center Webinar

    Broader source: Energy.gov [DOE]

    Sneak Peek into the Better Buildings Residential Program Solution Center Webinar, from the U.S. Department of Energy's Better Buildings Neighborhood Program.

  20. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the

  1. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other

  2. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Expenditures Consumption and Energy Intensities for Major Energy Sources Throughout the 1980's, energy consumption in residential buildings was greater than...

  3. Analyzing the Impact of Residential Building Attributes, Demographic and Behavioral Factors on Natural Gas Usage

    SciTech Connect (OSTI)

    Livingston, Olga V.; Cort, Katherine A.

    2011-03-03

    This analysis examines the relationship between energy demand and residential building attributes, demographic characteristics, and behavioral variables using the U.S. Department of Energys Residential Energy Consumption Survey 2005 microdata. This study investigates the applicability of the smooth backfitting estimator to statistical analysis of residential energy consumption via nonparametric regression. The methodology utilized in the study extends nonparametric additive regression via local linear smooth backfitting to categorical variables. The conventional methods used for analyzing residential energy consumption are econometric modeling and engineering simulations. This study suggests an econometric approach that can be utilized in combination with simulation results. A common weakness of previously used econometric models is a very high likelihood that any suggested parametric relationships will be misspecified. Nonparametric modeling does not have this drawback. Its flexibility allows for uncovering more complex relationships between energy use and the explanatory variables than can possibly be achieved by parametric models. Traditionally, building simulation models overestimated the effects of energy efficiency measures when compared to actual "as-built" observed savings. While focusing on technical efficiency, they do not account for behavioral or market effects. The magnitude of behavioral or market effects may have a substantial influence on the final energy savings resulting from implementation of various energy conservation measures and programs. Moreover, variability in behavioral aspects and user characteristics appears to have a significant impact on total energy consumption. Inaccurate estimates of energy consumption and potential savings also impact investment decisions. The existing modeling literature, whether it relies on parametric specifications or engineering simulation, does not accommodate inclusion of a behavioral component. This study

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings...

  7. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    SciTech Connect (OSTI)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  8. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Featured Speakers Andy Meyer, Residential Program Manager, Efficiency ... Efficiency Maine (Network Member) Andy Meyer, Residential Program Manager Efficiency ...

  9. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    0 2005 Energy End-Use Expenditures for an Average Household, by Region ($2010) Northeast Midwest South West National Space Heating 1,050 721 371 352 575 Air-Conditioning 199 175 456 262 311 Water Heating 373 294 313 318 320 Refrigerators 194 145 146 154 157 Other Appliances and Lighting 827 665 715 716 725 Total (1) 2,554 1,975 1,970 1,655 2,003 Note(s): 1) Due to rounding, end-uses do not sum to totals. Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-15; EIA,

  10. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was

  11. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the

  12. Buildings Energy Data Book: 2.4 Residential Environmental Data

    Buildings Energy Data Book [EERE]

    2 2005 End-Use Carbon Dioxide Emissions Splits for an Average Household, by Region (Pounds of CO2) Northeast Midwest South West National Space Heating Space Cooling Water Heating Refrigerator Other Appliances & Lighting Total Source(s): EIA, A Look at Residential Energy Consumption in 2005, Jul. 2008, Tables CE(2-5)-(9-12)c; EIA, Assumptions to the AEO 2011, July 2011, Table 2, p. 12 for coefficients; EIA, AEO 2012 Early Release, Jan. 2012, Tables 2 and 18. 8,673 10,421 10,722 9,219 9,945

  13. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2001 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing characteristics Consumption & expenditures Microdata Methodology Housing Characteristics Tables + EXPAND ...

  14. 2009 Residential Energy Consumption Survey Form EIA-457C (2009...

    U.S. Energy Information Administration (EIA) Indexed Site

    building at HUBUILDADDRESS. PRELOAD HH UNIT NUMBER: RAUNIT PRELOAD RA CASE ID: ... Expiring Month DD, 20YY 2 PRELOAD HH BUILDING ADDRESS: HUBUILDADDRESS PRELOAD ...

  15. Buildings Energy Data Book: 2.4 Residential Environmental Data

    Buildings Energy Data Book [EERE]

    1 Carbon Dioxide Emissions for U.S. Residential Buildings, by Year (Million Metric Tons) (1) Residential U.S. Site Res.% Res.% Fossil Electricity Total Total of Total U.S. of Total Global 1980 385 525 909 4723 19% 4.9% 1981 361 518 878 4601 19% 4.8% 1982 359 511 870 4357 20% 4.8% 1983 340 525 865 4332 20% 4.7% 1984 349 535 883 4561 19% 4.6% 1985 351 549 901 4559 20% 4.6% 1986 343 551 894 4564 20% 4.5% 1987 346 574 920 4714 20% 4.5% 1988 367 603 970 4939 20% 4.6% 1989 374 606 980 4983 20% 4.6%

  16. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing characteristics Consumption & expenditures Microdata Methodology Housing characteristics tables + EXPAND ALL ...

  17. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing characteristics Consumption & expenditures Microdata Housing Characteristics Tables + EXPAND ALL Floorspace - ...

  18. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

  19. Energy Savings Potential and RD&D Opportunities for Residential Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Systems | Department of Energy Residential Building HVAC Systems Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical

  20. Buildings Energy Data Book: 2.4 Residential Environmental Data

    Buildings Energy Data Book [EERE]

    7 2009 Methane Emissions for U.S. Residential Buildings Energy Production, by Fuel Type Fuel Type Petroleum 1.0 Natural Gas 38.8 Coal 0.0 Wood 2.6 Electricity (2) 51.6 Total 94.0 Note(s): Source(s): MMT CO2 Equivalent (1) 1) Sources of emissions include oil and gas production, processing, and distribution; coal mining; and utility and site combustion. Carbon Dioxide equivalent units are calculated by converting methane emissions to carbon dioxide emissions (methane's global warming potential is

  1. Table 2.11 Commercial Buildings Electricity Consumption by End...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office ...

  2. Trends in Commercial Buildings--Energy Sources Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    ** estimates adjusted to match the 1995 CBECS definition of target population Energy Information Administration Commercial Buildings Energy Consumption Survey Table 2....

  3. ,"New Jersey Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  4. ,"New Mexico Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  5. ,"New York Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  6. ,"North Carolina Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. ,"North Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  8. ,"Rhode Island Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  9. ,"South Carolina Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  10. ,"South Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  11. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  12. Radon in multi-story residential buildings. Final report

    SciTech Connect (OSTI)

    Mardis, H.M.; MacWaters, J.; Oswald, J.

    1991-12-01

    In September 1989, HUD signed an Interagency Agreement with the Environmental Protection Agency (EPA) requesting EPA to measure radon levels and distribution patterns in several multi-story residential buildings. This study was conducted in two phases. The Phase 1 included walk-through investigations of each of the four test buildings. These preliminary investigations were focused on identifying site-specific characteristics that might influence radon entry and distribution. The results of these investigations were used to design and implement short-term screening measurements (diffusion barrier charcoal canisters) of each building's radon potential. Phase 2 consisted of long-term radon measurements with alpha track detectors (approximately 6 months) and investigations of the characteristics of each building. These measurements were made to address the possibility that long-term radon levels might be higher on upper floors than indicated by the short-term basement and ground-level screening tests. The report describes the investigations that were conducted, the data that were gathered for each building, and general observations and discussions about patterns of radon distribution in these specific buildings.

  13. Lessons Learned & the Better Buildings Residential Program Solution Center- Text-Alternative Version

    Broader source: Energy.gov [DOE]

    This is the text-alternative version of the "Lessons Learned & the Better Buildings Residential Program Solution Center" webinar held March 24,2016.

  14. Lessons Learned and the Better Buildings Residential Program Solution Center- Text-Alternative Version

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is the text-alternative version of the "Lessons Learned & the Better Buildings Residential Program Solution Center" webinar held March 24,2016.

  15. Simplified method for calculating heating and cooling energy in residential buildings

    SciTech Connect (OSTI)

    Sonderegger, R.C.; Garnier, J.Y.

    1981-10-01

    A microcomputer-based program, Computerized, Instrumented, Residential Audit (CIRA), for determining economically optimal mixes of energy-saving measures in existing residential buildings was developed which requires extensive calculation of heating and cooling energy consumptions. In this paper, a simplified method of calculation that satisfies the requirements of speed and memory imposed by the type of microcomputer on which CIRA runs is presented. The method is based on monthly calculations of degree days and degree nights for both heating and cooling seasons. The base temperatures used in calculating the degree days and degree nights are derived from thermostat settings, solar and internal gains, sky radiation losses, and the thermal characteristics of the building envelope. Thermostat setbacks are handled by using the concept of effective thermal mass of the house. Performance variations of HVAC equipment with changes of part load and ambient conditions are taken into account using correlation curves based on experimental data. Degree days and nights for different base temperatures are evaluated by using a climate-specific empirical correlation with monthly average daily and nightly temperatures. Predictions obtained by this method and by DOE-2.1 are compared for the so-called Hastings ranch house for seven different climates in the United States. Heating and cooling energy consumptions predicted by CIRA lie generally within +- 10% of DOE-2.1 predictions.

  16. Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

  17. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301) October 15, 2015 Call Slides and Discussion Summary Call Participants: Residential Network Members ...

  18. A Method for Modeling Household Occupant Behavior to Simulate Residential Energy Consumption

    SciTech Connect (OSTI)

    Johnson, Brandon J; Starke, Michael R; Abdelaziz, Omar; Jackson, Roderick K; Tolbert, Leon M

    2014-01-01

    This paper presents a statistical method for modeling the behavior of household occupants to estimate residential energy consumption. Using data gathered by the U.S. Census Bureau in the American Time Use Survey (ATUS), actions carried out by survey respondents are categorized into ten distinct activities. These activities are defined to correspond to the major energy consuming loads commonly found within the residential sector. Next, time varying minute resolution Markov chain based statistical models of different occupant types are developed. Using these behavioral models, individual occupants are simulated to show how an occupant interacts with the major residential energy consuming loads throughout the day. From these simulations, the minimum number of occupants, and consequently the minimum number of multiple occupant households, needing to be simulated to produce a statistically accurate representation of aggregate residential behavior can be determined. Finally, future work will involve the use of these occupant models along side residential load models to produce a high-resolution energy consumption profile and estimate the potential for demand response from residential loads.

  19. Energy and air quality implications of passive stack ventilation in residential buildings

    SciTech Connect (OSTI)

    Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

    2011-01-01

    Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

  20. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Building Type Definitions In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace. A building assigned to a particular principal activity category may be used for other activities in a

  1. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) All Reports & Publications Search By: Go Pick a date range: From: To: Go graph of electricity sales by sector, as explained in the article text Total U.S. electricity sales projected to grow slowly as electricity intensity declines June 15, 2016 Industrial and electric power sectors drive projected growth in U.S. natural gas use May 26, 2016 Declining energy prices lower the cost of living May 3, 2016 All 70 related articles › Residential

  2. Better Buildings Residential Network Workforce/Business Partners Peer Exchange Call: Strategies for Building Contractor Interest in Program Participation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2, 2013 Better Buildings Residential Network Workforce/Business Partners Peer Exchange Call: Strategies for Building Contractor Interest in Program Participation Call Slides and Summary Agenda * Call Logistics and Introductions * Introducing the Better Buildings Residential Network * Future Call Topics * Discussion:  What strategies or approaches has your program used to build contractor interest in program participation? * What has worked well? What has not worked well?  Have you used

  3. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    Buildings Delivered Total Residential Commercial 2029 38% 38% | 76% 24% 0% 100% | 14.62 2030 38% 38% | 76% 24% 0% 100% | 14.75 2031 38% 38% | 76% 23% 0% 100% | 14.87 2032 38% 38% | ...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity Consumption and Conditional Energy Intensity, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using Electricity (million square...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  8. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  9. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  10. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  11. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of Buildings Using Electricity...

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using...

  16. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  17. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Fuel Oil Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings Using Fuel Oil...

  1. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update (EIA)

    Projections - U.S. Energy Information Administration (EIA) All Reports & Publications Search By: Go Pick a date range: From: To: Go Commercial Buildings Available formats Commercial Buildings Energy Consumption Survey 2012 - Detailed Tables Released: May 17, 2016 The 2012 CBECS consumption and expenditures detailed tables are comprised of Tables C1-C38, which cover overall electricity, natural gas, fuel oil and district heat consumption, and tables E1-E11, which disaggregate the same

  2. Existing Homes Retrofit Case Study: Consortium for Advanced Residential Buildings (CARB), Washington, D.C.

    SciTech Connect (OSTI)

    2009-09-01

    This is a Building America fact sheet describing Consortium for Advanced Residential Buildiings (CARB) whole building retrofit process to renovate a 145-year-old home in Washington, D.C.

  3. Energy Efficiency Trends in Residential and Commercial Buildings - August 2010

    SciTech Connect (OSTI)

    none,

    2010-08-01

    This report overviews trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption. It begins with an executive summary of the key findings found in the body of the report, so some of the data and charts are replicated in this section. Its intent is to provide in a concise place key data points and conclusions. The remainder of the report provides a specific profile of the construction industry and patterns of energy use followed by sections providing product and market insights and information on policy efforts, such as taxes and regulations, which are intended to influence building energy use. Information on voluntary programs is also offered.

  4. Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily Residential Buildings Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested: 2011-2012 Applicable Climate Zone(s): Cold humid continental PERFORMANCE DATA Cost of

  5. The Residential Building Characteristics On-Site Inspection: summary Report

    SciTech Connect (OSTI)

    Weakley, S.A.; Darwin, R.F.; Howe, T.L.

    1990-06-01

    The Residential Building Characteristics On-Site Inspection (RI) was sponsored by the Bonneville Power Administration (BPA), and implemented by Energy Counselors, Inc., of Beaverton, Oregon. The purpose of the inspection was to collect detailed information on the structural characteristics and capital equipment of residences participating in BPA's End-Use Load and Conservation Assessment Program (ELCAP). ELCAP is a long-term program to collect information on the structural characteristics of residences in the Pacific Northwest as well as the attitudinal, behavioral, and demographic characteristics of the residences' occupants. Combined with other data collection efforts, the information obtained by the RI will be used to assess and evaluate energy use and conservation within the region's residential sector. This report documents the design of the inspection instruments (forms), the implementation of the inspection, and some of the results from the data base. The number of residences inspected was 416 or 93% of the potential sample of 447 residences. 1 ref., 2 figs., 38 tabs.

  6. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 3 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing characteristics Consumption & expenditures Microdata Methodology Housing Characteristics Tables Topical Sections Entire Section All Detailed Tables PDF Tables: HC1 Household Characteristics, Million U.S. Households Presents data relating to location, type, ownership, age, size, construction, and householder demographic and income characteristics. PDF Tables: HC2 Space Heating, Million

  7. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Appendix I Related EIA Publications on Energy Consumption For information about how to obtain these publi- cations, see the inside cover of this report. Please note that the...

  8. Buildings Energy Data Book: 2.4 Residential Environmental Data

    Buildings Energy Data Book [EERE]

    3 2010 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Space Heating (4) 185.5 38.8 18.7 2.2 59.7 0.7 77.6 323.5 26.3% Space Cooling 0.0 210.2 210.2 17.1% Water Heating 68.7 7.1 4.6 11.7 90.4 170.8 13.9% Lighting 126.0 126.0 10.2% Electronics (5) 96.5 96.5 7.8% Refrigeration (6) 80.7 80.7 6.6% Wet Cleaning (7) 2.9 57.8 60.8 4.9% Cooking 11.4 1.9

  9. Buildings Energy Data Book: 2.4 Residential Environmental Data

    Buildings Energy Data Book [EERE]

    4 2015 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Space Heating (4) 180.5 34.9 16.6 1.8 53.3 0.6 66.6 301.0 27.4% Space Cooling 0.0 161.1 161.1 14.7% Water Heating 69.6 5.1 3.1 8.2 75.3 153.1 13.9% Lighting 83.7 83.7 7.6% Refrigeration (5) 71.7 71.7 6.5% Electronics (6) 52.0 52.0 4.7% Wet Cleaning (7) 3.2 51.6 54.7 5.0% Cooking 11.5 1.8 1.8

  10. Buildings Energy Data Book: 2.4 Residential Environmental Data

    Buildings Energy Data Book [EERE]

    5 2025 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Space Heating (4) 173.9 27.9 15.2 1.6 44.7 0.6 73.2 292.3 25.1% Space Cooling 0.0 177.2 177.2 15.2% Water Heating 70.2 3.5 2.5 6.0 83.7 159.9 13.8% Lighting 74.1 74.1 6.4% Refrigeration (5) 75.8 75.8 6.5% Electronics (6) 58.7 58.7 5.1% Wet Cleaning (7) 3.3 47.9 51.2 4.4% Cooking 11.7 1.6 1.6

  11. Proposed residential building standards: draft environmental impact report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The Warren-Alquist Act of 1974 requires the California Energy Commission to adopt and periodically update energy-conservation standards for new residential buildings. The Act also requires the CEC to adopt performance standards for new buildings. With increased energy costs, the CEC staff proposed to update the current energy-conservation standards and they are a hybrid of performance and prescriptive requirements. The proposed standards do not cover hotels, motels, or buildings over 3 stories high. The purpose of an environmental impact report (EIR) is to provide public agencies and the public in general with detailed information about the effects a proposed project is likely to have on the environment, to list ways in which the significant effects of such a project might be minimized, and to indicate alternatives to the project. The contents of this Draft EIR includes: a project description; a description of the environmental setting, impacts, and mitigation measures; a discussion of alternatives; and an indication of growth-inducing impacts. The Draft EIR discusses both environmental and socio-economic impacts of the proposed standards compared to both the current standards and the pre-1975 practices. (MCW)

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  13. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  14. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    2 Buildings Share of U.S. Petroleum Consumption (Million Barrels per Day) Buildings Residential Commercial Total Industry Transportation Total 1980 2.62 2.01 l 4.63 10.55 19.01 34.19 1981 2.26 1.73 l 3.98 9.13 18.81 31.93 1982 1.96 1.49 l 3.45 8.35 18.42 30.23 1983 1.87 1.61 l 3.48 7.97 18.60 30.05 1984 1.95 1.60 l 3.55 8.48 19.02 31.05 1985 1.92 1.40 l 3.32 8.13 19.47 30.92 1986 2.03 1.60 l 3.62 8.39 20.18 32.20 1987 2.04 1.51 l 3.54 8.50 20.82 32.86 1988 2.20 1.57 l 3.77 8.88 21.57 34.22 1989

  15. Building America Case Study: High Performance Ducts in Hot-Dry...

    Office of Scientific and Technical Information (OSTI)

    Office (EE-5B) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Residential; Residential Buildings;...

  16. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    with the national average of 81 thousand Btu per square foot), while buildings using solar energy or passive solar features used the major energy sources more intensively...

  17. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    the sponsor the government, utility or sponsored in-house. Energy Management and Control System Heating or cooling system monitored or controlled by a computerized building...

  18. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies 2010 Residential Buildings Energy Efficiency Meeting Denver, Colorado - July 20 - 22, 2010 August 2010 Prepared by the National Renewable Energy Laboratory For the U.S. Department of Energy Building Technologies Program NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their

  19. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    1 Energy Policy Act of 2005, Provisions Affecting Energy Consumption in Federal Buildings Source(s): Energy Management Requirements - Amended reduction goals set by the National Energy Conservation Policy Act, and requires increasing percentage reductions in energy consumption through FY 2015, with a final energy consumption reduction goal of 20 percent savings in FY 2015, as compared to the baseline energy consumption of Federal buildings in FY 2003. (These goals were superseded by Section 431

  20. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates

    SciTech Connect (OSTI)

    Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

    2012-12-01

    The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

  1. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to

  2. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  3. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Audience Segmentation and Analysis Strategies for Targeted Marketing (301) September 24, 2015 Call Slides and Discussion Summary Call Participants Residential Network Members ...

  4. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Are there other questions related to smart home technology in the residential energy efficiency sector? Closing Poll and Upcoming Call Schedule 3 Poll 1: ...

  5. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons from State Energy Efficiency Alliances Call Slides and Discussion Summary April 23, 2015 Agenda Call Logistics and Introductions Opening Polls Residential ...

  6. Inspiring and Building the Next Generation of Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    ... to all students interested in entering into the residential construction industry. Zero energy ready homes designs were presented to all builders and buyers, at all price points. ...

  7. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Call Slides and Discussion Summary Call Participants Residential Network Members District of Columbia Sustainable Energy Utility Efficiency Nova Scotia Elevate Energy ...

  8. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Historic Expenditures for Residential Proerties by Property Type: Quarterly 2003-2007 (New structural purposes) for 1995-2007; and EIA, Annual Energy Review 2010, Oct. 2011, ...

  9. Better Buildings Residential Network Peer Exchange Call Series...

    Broader source: Energy.gov (indexed) [DOE]

    2 Call Participants: Residential Network Members 3 City & County of Denver, Colorado Columbia Water and Light Efficiency Maine Energy Efficiency Specialists, ...

  10. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intersection of Health and Residential Energy Efficiency (201) March 3, 2016 Call Slides and Discussion Summary Call Attendee Locations 2 Call Attendees: Network Members 3 * ACEEE ...

  11. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into Energy Savings Calculations Call Slides and Discussion Summary February 26, 2015 Agenda Call Logistics and Introductions Opening Poll Residential Network and ...

  12. Buildings Energy Data Book: 2.5 Residential Construction and...

    Buildings Energy Data Book [EERE]

    Stick-Built Modular PanelizedPrecut DOC, Manufacturing, Mining and Construction Statistics, New Residential Construction: Type of Construction Method of New Single-Family Houses ...

  13. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trends in Real Estate and Energy Efficiency Call Slides and Discussion Summary January 22, 2015 Agenda Call Logistics and Introductions Opening Poll Residential Network ...

  14. Building America Research Teams: Spotlight on Alliance for Residential...

    Energy Savers [EERE]

    optimization, ARBI applies advanced modeling and analysis techniques to identify optimal, cost-effective strategies to achieve large-scale reduction of residential energy use. ...

  15. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fostering Behavior Change in the Energy Efficiency Market Call Slides and Discussion Summary March 26, 2015 Agenda Call Logistics and Opening Poll Residential Network and ...

  16. Buildings Energy Data Book: 2.5 Residential Construction and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Total Units) Total DOC, Manufacturing, Mining and Construction Statistics: New Residential Construction: New Privately Owned Housing Units Completed, 2010; and DOC, ...

  17. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy Assessments - The Good, the Bad, and the Ugly (301) August 13, 2015 Call Slides and Discussion Summary Agenda Call Logistics Opening Polls Residential ...

  18. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition December 3, 2015 Call Slides and Discussion Summary Call Participant Locations 2 Call ...

  19. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Call Attendee Locations 2 Call Participants: Residential Network Members 3 American Council for an Energy- Efficient Economy (ACEEE) Boulder County, Colorado ...

  20. Buildings Residential Network Peer Exchange Call Series: Capitalizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10, 2015 Call Attendee Locations 2 Call Participants: Residential Network Members American Council for an Energy- Efficient Economy (ACEEE) Arlington County Austin ...

  1. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Speakers Lauren Brois, Assistant Director of Residential Programs, Energize NY John-Ryan Lockman, Energy Programs Manager, Energy Smart Colorado Madeline ...

  2. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Water Nexus and What It Can Do For Your Residential Program (301) January 21, 2016 ... Kansas City Civic Works Columbia Water & Light Duke Carbon Offsets Initiative ...

  3. Better Buildings Residential Network Financing and Revenue Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Exchange Call: Revenues from Employee Benefit Programs Call Slides and Summary ... norm and to create both the demand and the financing for employee residential upgrades." ...

  4. City of Portland- Streamlined Building Permits for Residential Solar Systems

    Broader source: Energy.gov [DOE]

    The City of Portland's Bureau of Development Services (BDS) developed a streamlined permitting process for residential solar energy system installations. The City of Portland has staff at the...

  5. Buildings Energy Data Book: 2.4 Residential Environmental Data

    Buildings Energy Data Book [EERE]

    6 2035 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (4) 169.7 22.8 14.1 1.5 38.3 0.5 76.7 285.3 23.1% Water Heating 67.2 2.6 2.1 4.7 84.8 156.7 12.7% Space Cooling 0.0 194.5 194.5 15.7% Electronics (5) 68.1 68.1 5.5% Refrigeration (6) 81.5 81.5 6.6% Lighting 74.3 74.3 6.0% Wet Cleaning (7) 3.5 50.0 53.4 4.3% Cooking 12.2 1.5 1.5 23.2 37.0 3.0%

  6. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    U.S. Residential and Commercial Buildings Total Primary Energy Consumption (Quadrillion Btu and Percent of Total) Electricity Growth Rate Natural Gas Petroleum (1) Coal Renewable(2) Sales Losses Total TOTAL (2) 2010-Year 1980 7.42 28.2% 3.04 11.5% 0.15 0.6% 0.87 3.3% 4.35 10.47 14.82 56.4% 26.29 100% - 1981 7.11 27.5% 2.63 10.2% 0.17 0.6% 0.89 3.5% 4.50 10.54 15.03 58.2% 25.84 100% - 1982 7.32 27.8% 2.45 9.3% 0.19 0.7% 0.99 3.8% 4.57 10.80 15.37 58.4% 26.31 100% - 1983 6.93 26.4% 2.50 9.5% 0.19

  7. Building-Integrated Photovoltaics (BIPV) in the Residential Section: An Analysis of Installed Rooftop Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 17, 2012, in Denver, CO, discusses building-integrated photovoltaics (BIPV) in the residential section and includes an analysis of installed rooftop prices.

  8. Building America Expert Meeting: Summary for Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment

    Broader source: Energy.gov [DOE]

    The Building Science Consortium held an Expert Meeting on Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment on April 26,l 2010 on the NIST campus in Gaithersburg, Maryland.

  9. Energy Department Announces $5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships

    Broader source: Energy.gov [DOE]

    The Energy Department today announced a $5 million investment to develop and demonstrate new residential energy efficiency solutions, and that will support building energy efficiency research at universities and colleges.

  10. Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls, Number 5

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn T he Better Buildings Residential Network hosts a series of Peer Exchange Calls that connect energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Following are lessons learned shared by members during Peer Exchange Calls held during Summer 2015, demonstrating that "timing is everything" when it comes to

  11. Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls, Number 6

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn T he Better Buildings Residential Network hosts a series of Peer Exchange Calls that connect energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Following are lessons learned shared by members during Peer Exchange Calls held during Fall 2015. Follow the links below to view full summaries of each call, and visit the

  12. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    3 Energy Independence and Security Act of 2007, Provisions Affecting Energy Consumption in Federal Buildings Source(s): Standard Relating to Solar Hot Water - Requires new Federal buildings, or Federal buildings undergoing major renovations, to meet at least 30 percent of hot water demand through the use of solar hot water heaters, if cost-effective. [Section 523] Federally-Procured Appliances with Standby Power - Requires all Federal agencies to procure appliances with standby power consumption

  13. Residential Energy Efficiency Stakeholder Meeting - Spring 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Building America Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The ...

  14. Building America Top Innovations 2014 Profile: ASHRAE Standard...

    Energy Savers [EERE]

    consumption. BUILDING AMERICA TOP INNOVATIONS 2014 PROFILE Building America research and support were instrumental in developing and gaining adoption of ASHRAE 62.2, a residential ...

  15. City of Houston- Residential and Commercial Green Building Requirements

    Broader source: Energy.gov [DOE]

    In 2014, the City Council of Houston passed Ordinance No. 2014-5, requiring new residential construction to exceed the energy efficiency requirements under the 2009 International Energy Conservat...

  16. Improving U.S. Residential Buildings- DOEs Approach

    Broader source: Energy.gov [DOE]

    Provides an overview of DOE's strategy and efforts to improve residential energy efficiency across the U.S., presented by Dr. Kathleen Hogan, U.S. Department of Energy, July 10, 2012.

  17. City of Cleveland- Residential Property Tax Abatement for Green Buildings

    Broader source: Energy.gov [DOE]

    The City of Cleveland, in cooperation with the Cuyahoga County Auditor's Office, provides a 10 to 15 year 100% tax abatement for increases in assessed real estate value for eligible residential...

  18. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    Survey and DOC in the Survey of Expenditures for Residential Improvements and Repairs. ... 2009, Table A-2, p. 30; and EIA, Annual Energy Review 2010, October 2011, Appendix D, p. ...

  19. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Single-Family Residential Renovations, by Project and Vintage Pre-1946 1946-60 1961-73 1974-80 1981-98 1999 or later Kitchen Remodeled 60% 57% 54% 60% 44% 8% Bathroom Remodeled ...

  20. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... What is the size of individual loans to homeowners? FIs need to understand that most lending in the residential sector for energy efficiency projects involves small loans that are ...

  1. An analysis of residential energy consumption in a temperate climate. Volume 2

    SciTech Connect (OSTI)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  2. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 Buildings Share of U.S. Petroleum Consumption (Percent) U.S. Petroleum Site Consumption Primary Consumption Total Buildings Industry Electric Gen. Transportation Buildings Industry Transportation (quads) 1980 9% 28% 8% 56% | 14% 31% 56% 34.2 1981 8% 26% 7% 59% | 12% 29% 59% 31.9 1982 8% 26% 5% 61% | 11% 28% 61% 30.2 1983 8% 25% 5% 62% | 12% 27% 62% 30.1 1984 9% 26% 4% 61% | 11% 27% 61% 31.1 1985 8% 25% 4% 63% | 11% 26% 63% 30.9 1986 8% 24% 5% 63% | 11% 26% 63% 32.2 1987 8% 25% 4% 63% | 11% 26%

  3. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Total Use of Water by Buildings (Million Gallons per Day) (1) Year 1985 1990 1995 2000 (2) 2005 (3) Note(s): Source(s): 1) Includes water from the public supply and self-supplied sources (e.g., wells) for residential and commercial sectors. 2) USGS did not estimate water use in the commercial and residential sectors for 2000. Estimates are based on available data and 1995 splits between domestic and commercial use. 3) USGS did not estimate commercial sector use for 2005. Estimated based on

  4. User-needs study for the 1992 Commercial Buildings Energy Consumption Survey. [Energy Consumption Series

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Commercial Buildings Energy Consumption Survey (CBECS) that is conducted by the Energy Information Administration (EIA) is the primary source of energy data for commercial buildings in the United States. The survey began in 1979 and has subsequently been conducted in 1983, 1986, and 1989. The next survey will cover energy consumption during the year 1992. The building characteristic data will be collected between August 1992 and early December 1992. Requests for energy consumption data are mailed to the energy suppliers in January 1993, with data due by March 1993. Before each survey is sent into the field, the data users' needs are thoroughly assessed. The purpose of this report is to document the findings of that user-needs assessment for the 1992 survey.

  5. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  6. Building Energy Codes: Residential Energy Code Field Study — 2016 BTO Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Building Energy Codes Program: Residential Energy Code Field Study. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  7. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  8. Building America Expert Meeting: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  9. Analysis of Installed Measures and Energy Savings for Single-Family Residential Better Buildings Projects

    SciTech Connect (OSTI)

    Heaney, M.; Polly, B.

    2015-04-30

    This report presents an analysis of data for residential single-family projects reported by 37 organizations that were awarded federal financial assistance (cooperative agreements or grants) by the U.S. Department of Energy’s Better Buildings Neighborhood Program.1 The report characterizes the energy-efficiency measures installed for single-family residential projects and analyzes energy savings and savings prediction accuracy for measures installed in a subset of those projects.

  10. Energy consumption series: Lighting in commercial buildings. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1992-03-11

    Lighting represents a substantial fraction of commercial electricity consumption. A wide range of initiatives in the Department of Energy's (DOE) National Energy Strategy have focused on commercial lighting as a potential source of energy conservation. This report provides a statistical profile of commercial lighting, to examine the potential for lighting energy conservation in commercial buildings. The principal conclusion from this analysis is that energy use for lighting could be reduced by as much as a factor of four using currently available technology. The analysis is based primarily on the Energy Information Administration's (EIA) 1986 Commercial Buildings Energy Consumption Survey (CBECS). The more recent 1989 survey had less detail on lighting, for budget reasons. While changes have occurred in the commercial building stock since 1986, the relationships identified by this analysis are expected to remain generally valid. In addition, the analytic approach developed here can be applied to the data that will be collected in the 1992 CBECS.

  11. Discover the New Better Buildings Residential Program Solution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A transcript of "Discover the New Better Buildings ... Webinar on Building Design & Passive Solar Transcript February 13, 2013 Webinar: Preliminary Process and Market ...

  12. Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document details the Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in an OIRA Comparison Document.

  13. Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings

    Broader source: Energy.gov [DOE]

    Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking.

  14. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper

  15. Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption

    Buildings Energy Data Book [EERE]

    1 FY 2007 Federal Primary Energy Consumption (Quadrillion Btu) Buildings and Facilities 0.88 Vehicles/Equipment 0.69 (mostly jet fuel and diesel) Total Federal Government Consumption 1.57 Source(s): DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-1, p. 90 for total consumption and Table A-7, p. 95 for vehicle and equipment operations

  16. Buildings Energy Data Book: 2.5 Residential Construction and...

    Buildings Energy Data Book [EERE]

    2 2010 Five Largest Residential Homebuilders Homebuilder PulteGroup 5.3% D.R. Horton 5.9% NVR 3.1% Lennar Corporation 3.4% KB Home 2.3% Top Five Total 19.9% Habitat for Humanity ...

  17. Buildings Energy Data Book: 2.5 Residential Construction and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Put in Place 2002-2011; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. ... 247.4 14,639 208.4 8,890 238.0 10,063 334.6 12,423 Residential GDP 166.0 6,461 213.5 7,579

  18. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy

  19. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    SciTech Connect (OSTI)

    Mendon, Vrushali V.; Taylor, Zachary T.

    2014-09-10

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype building models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.

  20. EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  1. Better Buildings Residential Network Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Benchmarking Residential Program Progress with Examples Current State of Affairs  Each program makes independent decisions on how to collect, transfer, store and analyze program data.  Regulatory and organizational oversight also specify what data to track and measure.  The intended purpose is achieved  Aggregating program results within a state, region or nation is difficult because of different:  Definitions  Data collection and transfer efforts  Program costs

  2. Commercial Buildings Energy Consumption Survey (CBECS) - How Was Energy

    Gasoline and Diesel Fuel Update (EIA)

    Usage Information Collected in the 2012 CBECS? Energy Usage Information Collected in the 2012 CBECS? CBECS 2012 - Release date: March 18, 2016 The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at least four years, beginning with development of the sample frame and survey questionnaire and ending with release of data to the public. This set of three methodology documents provides details about each of the three major stages of the 2012 CBECS survey process. * How

  3. Residential Energy Efficiency Messaging

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Messaging, call slides and discussion summary, April 9, 2015.

  4. Apply: Funding Opportunity - Building America Industry Partnerships...

    Office of Environmental Management (EM)

    units (quads) consumed by residential buildings in 2012. Space heating and cooling account for the largest portion of home energy consumption, more than water heating, ...

  5. Tax Incentives for Residential Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings On this page you'll find information about incentives for: purchasing and installing energy efficient ... Database of State Incentives for Renewables & Efficiency ...

  6. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CODES AND INCENTIVES 31 Chapter Six VOLUNTARY PROGRAMS AND LOCAL AND STATE POLICIES FOR GREEN AND ENERGY-EFFICIENT BUILDINGS 38 Chapter Seven RESOURCES FOR MORE INFORMATION 50...

  7. City of Austin - Residential and Commercial Green Building Requirement...

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics Wind (All) Biomass Geothermal Heat Pumps Daylighting Comprehensive MeasuresWhole Building Wind (Small)...

  8. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... But how does that work in the real world? Building overarching memes around our desired outcomes. Writing supporting features with stories embedded. Writing supporting features ...

  9. Better Buildings Residential Financing Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... including interior and exterior measures, utilizing sealants, caulks, insulating foams, gaskets, weather-stripping, mastics, and other building materials in accordance with ...

  10. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    chart program outcomes Normalized metrics useful for comparing year-to-year and for peer benchmarking Peer Group Benchmarking Examples from the Better Buildings ...

  11. EA-1463: 10 CFR 433: Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings and 10 CFR 435: Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The EA examines the potential environmental impacts of the Final Rule on building habitability and the outdoor environment. To identify the potential environmental impacts that may result from implementing the Final Rule for new Federal commercial and residential buildings, DOE compared the Final Rule with the “no-action alternative” of using the current Federal standards – 10 CFR Part 434 and 10 CFR Part 435 Subpart C (referred to as the “no-action alternative”).

  12. Improving the Accuracy of Software-Based Energy Analysis for Residential Buildings (Presentation)

    SciTech Connect (OSTI)

    Polly, B.

    2011-09-01

    This presentation describes the basic components of software-based energy analysis for residential buildings, explores the concepts of 'error' and 'accuracy' when analysis predictions are compared to measured data, and explains how NREL is working to continuously improve the accuracy of energy analysis methods.

  13. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  14. Better Buildings Residential Network: Using Loan Performance Data to Inform Program Implementation

    Broader source: Energy.gov [DOE]

    Please join the Better Buildings Residential Network for the Financing & Revenue/Data & Evaluation co-series peer exchange call: “Using Loan Performance Data to Inform Program Implementation.” What is the relationship, if any, between loan performance and completed energy efficiency measures? How are home affordability, loan default rates, and decreasing energy costs related?

  15. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 Cost of a Generic Quad Used in the Residential Sector ($2010 Billion) (1) Residential 1980 10.45 1981 11.20 1982 11.58 1983 11.85 1984 11.65 1985 11.43 1986 10.90 1987 10.55 1988 10.18 1989 9.98 1990 10.12 1991 9.94 1992 9.78 1993 9.77 1994 9.78 1995 9.44 1996 9.44 1997 9.59 1998 9.23 1999 8.97 2000 9.57 2001 10.24 2002 9.33 2003 10.00 2004 10.32 2005 11.10 2006 11.60 2007 11.61 2008 12.29 2009 11.65 2010 9.98 2011 9.99 2012 9.87 2013 9.77 2014 9.76 2015 9.88 2016 9.85 2017 9.83 2018 9.86 2019

  16. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015

  17. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) CBECS Terminology NOTE: This glossary is specific to the 1999, 2003 and 2012Commercial Buildings Energy Consumption Surveys (CBECS). CBECS glossaries for prior years can be found in the appendices of past CBECS reports. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Account Classification: The method in which suppliers of electricity, natural gas, or fuel oil classify and bill their customers. Commonly used account classifications are

  18. Residential Energy Efficiency Messaging | Department of Energy

    Energy Savers [EERE]

    Messaging Residential Energy Efficiency Messaging Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Messaging, call slides and ...

  19. Collaborating With Utilities on Residential Energy Efficiency...

    Office of Environmental Management (EM)

    Collaborating With Utilities on Residential Energy Efficiency Collaborating With Utilities on Residential Energy Efficiency Better Buildings Residential Network Program ...

  20. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  1. Background to the development process, Automated Residential Energy Standard (ARES) in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 3

    SciTech Connect (OSTI)

    1989-09-01

    This report documents the development and testing of a set of recommendations generated to serve as a primary basis for the Congressionally-mandated residential standard. This report treats only the residential building recommendations.

  2. Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain

    SciTech Connect (OSTI)

    Radhi, Hassan; Sharples, Stephen

    2013-01-15

    On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle

  3. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    Residential Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Avg. 1980 36.40 8.35 16.77 17.64 1981 38.50 8.88 18.35 19.09 1982 40.15 10.08 17.28 19.98 1983 40.43 11.30 16.08 21.00 1984 38.80 11.02 15.61 20.20 1985 38.92 10.68 14.61 20.10 1986 38.24 9.98 11.88 19.38 1987 37.29 9.22 11.23 18.73 1988 36.22 8.80 10.83 18.02 1989 35.67 8.71 11.96 17.93 1990 35.19 8.63 13.27 18.64 1991 34.88 8.38 12.49 18.31 1992 34.79 8.28 11.23 17.76 1993

  4. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02

  5. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other

  6. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7)

  7. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7)

  8. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7)

  9. Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major Sources 2

  10. Steam Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2012-08-01

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam; system balancing.

  11. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Explore Survey Data from the Energy Information Administration Follow the links below to two easy-to-use query tools, developed exclusively for this website. With these tools you can explore results from the Commercial Buildings Energy Consumption Survey (CBECS) and the Residential Energy Consumption Survey (RECS). Commercial Buildings Energy Index Use this custom query tool to analyze micro data from CBECS 2003. Residential Buildings Energy Index Use this custom Microsoft Excel pivot table to

  12. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book [EERE]

    7 Characteristics of a Typical Single-Family Home (1) Year Built | Building Equipment Fuel Age (5) Occupants 3 | Space Heating Natural Gas 12 Floorspace | Water Heating Natural Gas 8 Heated Floorspace (SF) 1,934 | Space Cooling 8 Cooled Floorspace (SF) 1,495 | Garage 2-Car | Stories 1 | Appliances Size Age (5) Foundation Concrete Slab | Refrigerator 19 Cubic Feet 8 Total Rooms (2) 6 | Clothes Dryer Bedrooms 3 | Clothes Washer Other Rooms 3 | Range/Oven Full Bathroom 2 | Microwave Oven Half

  13. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect (OSTI)

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  14. Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings B. Polly, N. Kruis, and D. Roberts July 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

  15. Research & Development Needs for Building-Integrated Solar Technologie...

    Broader source: Energy.gov (indexed) [DOE]

    of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to ...

  16. Buildings and Energy in the 80's -- Overview

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Residential and Commercial Primary Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980...

  17. Buildings and Energy in the 80's -- Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Residential and Commercial Primary Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980...

  18. CBECS - Buildings and Energy in the 1980's - Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Residential and Commercial Primary Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980...

  19. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  20. Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

  1. Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption

    Buildings Energy Data Book [EERE]

    3 Federal Building Delivered Energy Consumption Intensities, by Year (1) Year Year FY 1985 123.0 FY 1997 111.9 FY 1986 131.3 FY 1998 107.7 FY 1987 136.9 FY 1999 106.7 FY 1988 136.3 FY 2000 104.8 FY 1989 132.6 FY 2001 105.9 FY 1990 128.6 FY 2002 104.6 FY 1991 122.9 FY 2003 105.2 FY 1992 125.5 FY 2004 104.9 FY 1993 122.3 FY 2005 98.2 FY 1994 120.2 FY 2006 (2) 113.9 FY 1995 117.3 FY 2007 (3) 112.9 FY 1996 115.0 FY 2015 (4) 89.5 Note(s): Source(s): Consumption per Gross Consumption per Gross Square

  2. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    2 Executive Order 13423, Provisions Affecting Energy Consumption in Federal Buildings Source(s): -- Requires Federal agencies to improve energy efficiency and reduce greenhouse gas emissions by either 3 percent annual reductions through FY 2015, or by 30 percent by 2015, as compared to FY 2003. -- Requires Federal agencies to obtain at least half of required renewable energy from new renewable sources. Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation

  3. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book [EERE]

    1 Total Number of Households and Buildings, Floorspace, and Household Size, by Year 1980 80 N.A. 227 2.9 1981 83 N.A. 229 2.8 1982 84 N.A. 232 2.8 1983 85 N.A. 234 2.8 1984 86 N.A. 236 2.7 1985 88 N.A. 238 2.7 1986 89 N.A. 240 2.7 1987 91 N.A. 242 2.7 1988 92 N.A. 244 2.7 1989 93 N.A. 247 2.6 1990 94 N.A. 250 2.6 1991 95 N.A. 253 2.7 1992 96 N.A. 257 2.7 1993 98 N.A. 260 2.7 1994 99 N.A. 263 2.7 1995 100 N.A. 266 2.7 1996 101 N.A. 269 2.7 1997 102 N.A. 273 2.7 1998 104 N.A. 276 2.7 1999 105 N.A.

  4. Trends in Commercial Buildings--Trends in Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Part 1. Energy Consumption Data Tables Total Energy Intensity Intensity by Energy Source Background: Site and Primary Energy Trends in Energy Consumption and Energy Sources Part...

  5. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    0 2003 Commercial Primary Energy Consumption Intensities, by Principal Building Type Consumption Percent of Total | Consumption Percent of Total Building Type (thousand Btu/SF) Consumption | Building Type (thousand Btu/SF) Consumption Health Care 345.9 8% | Education 159.0 11% Inpatient 438.8 6% | Service 151.6 4% Outpatient 205.9 2% | Food Service 522.4 6% Food Sales 535.5 5% | Religious Worship 77.0 2% Lodging 193.1 7% | Public Order and Safety 221.1 2% Office 211.7 19% | Warehouse and Storage

  6. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    0 Buildings Share of U.S. Natural Gas Consumption (Percent) Total Buildings Industry Electric Gen. Transportation Buildings Industry Transportation 1980 37% 41% 19% 3% | 48% 49% 3% 20.22 1981 36% 42% 19% 3% | 48% 49% 3% 19.74 1982 40% 39% 18% 3% | 51% 45% 3% 18.36 1983 40% 39% 17% 3% | 51% 46% 3% 17.20 1984 39% 40% 17% 3% | 50% 47% 3% 18.38 1985 39% 40% 18% 3% | 51% 46% 3% 17.70 1986 41% 40% 16% 3% | 51% 46% 3% 16.59 1987 39% 41% 17% 3% | 50% 47% 3% 17.63 1988 40% 42% 15% 3% | 50% 47% 3% 18.44

  7. 1999 Commercial Buildings Energy Consumption Survey Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by

  8. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    Residential Commercial 34.3% 26.7% 33.6% 27.8% 34.2% 29.7% 34.6% 30.2% 34.6% 30.3% 35.0% ... EIA, State Energy Consumption Database, June 2011 for 1980-2009; and EIA, Annual Energy ...

  9. Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption

    Buildings Energy Data Book [EERE]

    2 FY 2007 Federal Building Energy Use Shares, by Fuel Type and Agency Site Primary | Primary | FY 2007 Fuel Type Percent Percent | Agency Percent | (10^15 Btu) Electricity 49.4% 77.3% | DOD 53.8% | Total Delivered Natural Gas 33.5% 14.9% | USPS 9.8% | Energy Consumption = 0.39 Fuel Oil 7.3% 3.3% | DOE 8.2% | Total Primary Coal 5.2% 2.3% | VA 6.4% | Energy Consumption = 0.88 Other 4.9% 2.2% | GSA 5.1% | Total 100% 100% | Other 16.8% | Total 100% Note(s): Source(s): See Table 2.3.1 for floorspace.

  10. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy

  11. Survey Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  12. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a

  13. Energy conservation standards for new federal residential buildings: A decision analysis study using relative value discounting

    SciTech Connect (OSTI)

    Harvey, C. . Coll. of Business Administration); Merkhofer, M.M.; Hamm, G.L. )

    1990-07-02

    This report presents a reassessment of the proposed standard for energy conservation in new federal residential buildings. The analysis uses the data presented in the report, Economic Analysis: In Support of Interim Energy Conservation Standards for New Federal Residential Buildings (June 1988)-to be referred to as the EASIECS report. The reassessment differs from that report in several respects. In modeling factual information, it uses more recent forecasts of future energy prices and it uses data from the Bureau of the Census in order to estimate the distribution of lifetimes of residential buildings rather than assuming a hypothetical 25-year lifetime. In modeling social preferences decision analysis techniques are used in order to examine issues of public values that often are not included in traditional cost-benefit analyses. The present report concludes that the public would benefit from the proposed standard. Several issues of public values regarding energy use are illustrated with methods to include them in a formal analysis of a proposed energy policy. The first issue places a value on costs and benefits that will occur in the future as an irreversible consequence of current policy choices. This report discusses an alternative method, called relative value discounting which permits flexible discounting of future events-and the possibility of placing greater values on future events. The second issue places a value on the indirect benefits of energy savings so that benefits accrue to everyone rather than only to the person who saves the energy. This report includes non-zero estimates of the indirect benefits. The third issue is how the costs and benefits discussed in a public policy evaluation should be compared. In summary, selection of individual projects with larger benefit to cost ratios leads to a portfolio of projects with the maximum benefit to cost difference. 30 refs., 6 figs., 16 tabs. (JF)

  14. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Buildings Sector Water Consumption March 2012 8.1.2 Average Energy Intensity of Public Water Supplies by Location (kWh per Million Gallons) Location United States (2) 627 437 1,363 United States (3) 65 (6) 1,649 Northern California Indoor 111 1,272 1,911 Northern California Outdoor 111 1,272 0 Southern California Indoor (5) 111 1,272 1,911 Southern California Outdoor 111 1,272 0 Iowa (6) 380 1,570 Massachusetts (6) (6) 1,750 Wisconsin Class AB (4) - - Wisconsin Class C (4) - - Wisconsin Class

  15. EA-2020: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AD56)

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

  16. EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AC61)

    Broader source: Energy.gov [DOE]

    This EA was to evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings. DOE has canceled this EA and is replacing it with EA-2020.

  17. Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy

  18. Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Hydronic System Performance in Residential Applications Ithaca, New York PROJECT INFORMATION Project Name: Condensing Boiler Optimization Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, www.ithacanhs.org; Appropriate Designs, www.hydronicpros.com; HTP, www.htproducts.com; Peerless, www.peerlessboilers.com; Grundfos, us.grundfos.com; Bell & Gossett, www.bell-gossett.com; Emerson Swan, www.emersonswan.com. Consortium for Advanced Residential Buildings,

  19. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey (CBECS) About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, including their energy-related building characteristics and energy usage data (consumption and expenditures). Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential,

  20. Optional Residential Program Benchmarking

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014.

  1. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle ... Target MarketAudience: Residential gas water heating Key Partners: GE CRADA partner SRA ...

  2. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  3. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Florida Solar Energy Center; IBACOS; National Renewable Energy Laboratory

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  4. Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  5. Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  6. Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  7. Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  8. Final Technical Report. Sault Tribe Building Efficiency Audits of Tribally-Owned Governmental Buildings and Residential Tribal Housing

    SciTech Connect (OSTI)

    Holt, Jeffrey W.

    2015-03-27

    The Tribe is working to reduce energy consumption and expense in Tribally-owned governmental buildings and low income housing sites. In 2009, the Tribe applied to the U. S. Department of Energy for funding to conduct energy audits of Tribally-owned governmental buildings. Findings from the energy audits would define the extent and types of energy efficiency improvements needed, establish a basis for energy priorities, strategies and action plans, and provide a benchmark for measuring improvements from energy efficiency implementations. In 2010, the DOE awarded a grant in the amount of $95,238 to the Tribe to fund the energy audits of nine governmental buildings and to pay for travel expenses associated with attendance and participation at the DOE annual program reviews. In 2011, the Tribe applied for and was awarded a DOE grant in the amount of $75,509 to conduct energy audits of the remaining 30 Tribally-owned governmental buildings. Repeating mobilization steps performed during the first DOE energy audits grant, the Tribe initiated the second round of governmental building energy audits by completing energy auditor procurement. The selected energy auditor successfully passed DOE debarment and Sault Tribe background clearances. The energy audits contract was awarded to U. P. Engineers and Architects, Inc. of Sault Ste. Marie, Michigan. The Tribe continued mobilizing for the energy audits by providing the energy auditor with one year of electric, gas and water utility invoice copies per building, as well as supplemental building information, such as operating hours. The Tribe also contacted building occupants to coordinate scheduling for the on-site energy audit inspections and arranged for facilities management personnel to guide the energy auditor through the buildings and answer questions regarding building systems.

  9. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 2003 Commercial Delivered Energy Consumption Intensities, by Ownership of Unit (1) Ownership Nongovernment Owned 85.1 72% Owner-Occupied 87.3 35% Nonowner-Occupied 88.4 36% Government Owned 105.3 28% 100% Note(s): Source(s): Consumption (thousand Btu/SF) 1) Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, June 2006,

  10. Assessment of Impacts from Adopting the 2009 International Energy Conservation Code for Residential Buildings in Michigan

    SciTech Connect (OSTI)

    Lucas, Robert G.

    2009-10-18

    Energy and economic analysis comparing the current Michigan residential energy efficiency code to the 2009 IECC.

  11. Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

    SciTech Connect (OSTI)

    Akbari, Hashem

    2003-01-14

    Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

  12. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Most Popular Tables PDFXLS 1.1.1 U.S. Residential and Commercial Buildings Total Primary Energy Consumption PDFXLS 3.1.4 2010 Commercial Energy End-Use Splits, by Fuel Type PDFXLS 1.1.3 Buildings Share of U.S. Primary Energy Consumption PDFXLS 3.1.1 Commercial Primary Energy Consumption, by Year and Fuel Type PDFXLS 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type PDFXLS 3.1.5 2015 Commercial Energy End-Use Splits, by Fuel Type PDFXLS 3.2.1 Total Commercial Floorspace and

  13. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 Buildings Share of U.S. Primary Energy Consumption (Percent) Total Consumption Total Industry Transportation Total (quads) 1980(1) 20.1% 13.5% | 33.7% 41.1% 25.2% 100% | 78.1 1981 20.0% 13.9% | 33.9% 40.4% 25.6% 100% | 76.1 1982 21.2% 14.8% | 36.0% 37.9% 26.1% 100% | 73.1 1983 21.1% 15.0% | 36.1% 37.7% 26.3% 100% | 72.9 1984 20.8% 14.9% | 35.7% 38.7% 25.7% 100% | 76.6 1985 21.0% 15.0% | 35.9% 37.8% 26.3% 100% | 76.5 1986 20.8% 15.1% | 35.9% 37.0% 27.1% 100% | 76.6 1987 20.5% 15.1% | 35.6%

  14. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Estimation of Energy End-use Consumption CBECS 2012 - Release date: March 18, 2016 2012 CBECS The energy end-use consumption tables for the 2012 CBECS (Detailed Tables E1-E 11) provide estimates of the amount of electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, computing (including servers), office equipment, and other uses. Although details vary

  15. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  16. Select Results from the Energy Assessor Experiment in the 2012 Commercial Buildings Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    Select Results from the Energy Assessor Experiment in the 2012 Commercial Buildings Energy Consumption Survey December 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Select Results from the Energy Assessor Experiment in the 2012 Commercial Buildings Energy Consumption Survey i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the

  17. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect (OSTI)

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  18. Building America Technology Solutions for New and Existing Homes: Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet)

    Broader source: Energy.gov [DOE]

    The Partnership for Advanced Residential Retrofit (PARR), a U.S. Department of Energy Building America team, conducted a study to identify best practices, costs, and savings associated with balancing steam distribution systems through increased main line air venting, radiator vent replacement, and boiler control system upgrades.

  19. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  20. Trends in Commercial Buildings--Trends in Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    the use of the four major sources and other energy sources (e.g., district chilled water, solar, wood). Energy consumed in commercial buildings is a significant fraction of that...

  1. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Survey Background and Technical Information Survey Background The commercial sector encompasses a vast range of building types-service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as certain buildings that would not be considered "commercial" in a traditional economic sense, such as public and private schools, correctional institutions, and religious and fraternal organizations. Excluded

  2. National Residential Efficiency Measures Database Webinar Slides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies ...

  3. Shark Tank: Residential Energy Efficiency Edition

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition, call slides and discussion summary.

  4. Evolutionary Tuning of Building Models to Monthly Electrical Consumption

    SciTech Connect (OSTI)

    Garrett, Aaron; New, Joshua Ryan; Chandler, Theodore

    2013-01-01

    Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

  5. Shark Tank: Residential Energy Efficiency Edition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Edition Shark Tank: Residential Energy Efficiency Edition Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition, call ...

  6. Residential Energy Efficiency Customer Service Best Practices...

    Energy Savers [EERE]

    Customer Service Best Practices Residential Energy Efficiency Customer Service Best Practices Better Buildings Residential Network Peer Exchange Call Series: Residential Energy ...

  7. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    2 U.S. Buildings Site Renewable Energy Consumption (Quadrillion Btu) (1) Growth Rate Wood (2) Solar Thermal (3) Solar PV (3) GSHP (4) Total 2010-Year 1980 0.867 0.000 N.A. 0.000 0.867 - 1981 0.894 0.000 N.A. 0.000 0.894 - 1982 0.993 0.000 N.A. 0.000 0.993 - 1983 0.992 0.000 N.A. 0.000 0.992 - 1984 1.002 0.000 N.A. 0.000 1.002 - 1985 1.034 0.000 N.A. 0.000 1.034 - 1986 0.947 0.000 N.A. 0.000 0.947 - 1987 0.882 0.000 N.A. 0.000 0.882 - 1988 0.942 0.000 N.A. 0.000 0.942 - 1989 1.018 0.052 N.A.

  8. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  9. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    8 Commercial Delivered Energy Consumption Intensities, by Vintage Consumption per Year Constructed Square Foot (thousand Btu/SF) Prior to 1960 84.4 23% 1960 to 1969 91.5 12% 1970 to 1979 97.0 18% 1980 to 1989 100.0 19% 1990 to 1999 90.3 19% 2000 to 2003 81.6 8% Average 91.0 Source(s): EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table C1a

  10. Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.; Henderson, L.

    1998-05-01

    Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

  11. Development of PCM wallboard for heating and cooling of residential buildings

    SciTech Connect (OSTI)

    Salyer, I.O.; Sircar, A.K.

    1989-03-01

    The goals of this project were to find, test, and develop an effective phase change material (PCM) for heating and cooling of residential buildings. Specifications for the PCM included thermal storage of at least 30 cal/gm, congruent melting and freezing, at 25{degrees}C, nontoxic, noncorrosive, nonhygroscopic, low-cost, and commercially available in quantity. The PCM must be able to be incorporated into ordinary building materials (plasterboard, concrete, floor tile) by processes adaptable to commercial manufacture. The goals of the original program have been substantially achieved by identifying a series of linear crystalline alkyl hydrocarbon PCM that are commercially available from petroleum refining (lower cost, lower {open_quotes}purity{close_quotes}), and from polymerization of ethylene (higher cost, higher {open_quotes}purity{close_quotes}). Four alternate processes have been developed whereby these PCM can be incorporated into plasterboard and concrete building materials. Two of the processes have been successfully demonstrated in the laboratories of the two largest U.S. manufacturers of plasterboard, and collaborative development leading toward commercialization is still ongoing. Problem areas remaining to be resolved include: establishing unequivocably the economic viability of the system, developing environmentally acceptable fire retarding procedures, scale up of the manufacturing processes and evaluating effects of long-term thermocycling. We are scaling up the immersion process to include imbibing and testing 4-ft x 8-ft plasterboard panels. Successful completion is expected to encourage a plasterboard manufacturer to commercialize the technology. Five U.S. patents have been issuedand U.S. and foreign patents are pending. One foreign license has been negotiated. Spin-offs of the technology likely to be commercialized soon in the U.S. include tableware, hot and cold medical wraps, and wraps to prevent the overnight freezing of citrus tree trunks.

  12. User-needs study for the 1992 Commercial Buildings Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Commercial Buildings Energy Consumption Survey (CBECS) that is conducted by the Energy Information Administration (EIA) is the primary source of energy data for commercial buildings in the United States. The survey began in 1979 and has subsequently been conducted in 1983, 1986, and 1989. The next survey will cover energy consumption during the year 1992. The building characteristic data will be collected between August 1992 and early December 1992. Requests for energy consumption data are mailed to the energy suppliers in January 1993, with data due by March 1993. Before each survey is sent into the field, the data users` needs are thoroughly assessed. The purpose of this report is to document the findings of that user-needs assessment for the 1992 survey.

  13. DOE/EIA-0318/1 Nonresidential Buildings Energy Consumption Survey:

    U.S. Energy Information Administration (EIA) Indexed Site

    318/1 Nonresidential Buildings Energy Consumption Survey: 1979 Consumption and Expenditures D! Part I: Natural Gas and Electricity March 1983 Energy Information Administration Washington, D.C. 1111? This publication is available from the Superintendent of Documents, U.S. Government Printing Office |GPO). Make check or money order payable to the Superintendent of Documents. You may send your order to the U.S. Government Printing Office or the National Energy Information Center. GPO prices are

  14. Buildings Energy Data Book: 7.3 Efficiency Standards for Residential...

    Buildings Energy Data Book [EERE]

    1 Efficiency Standards for Residential Central Air Conditioners and Heat Pumps (1) Type ... prior to January 23, 2010. 3) Seasonal Energy Efficiency Ratio. 4) Heating Seasonal ...

  15. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect (OSTI)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  16. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect (OSTI)

    and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  17. Nonresidential-building energy-consumption survey, 1979. Final report, Part II and Part III

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    The Utility Survey component of the Nonresidential Building Energy Consumption Survey was designed to provide data on the quantity and costs of energy consumed during 1979 by each building represented in the Building Survey data. To this end, 13,386 consumption and cost reporting forms were mailed to 1509 companies/organizations/agencies who supplied some type of energy to the 6222 buildings represented in the data from the earlier Building Survey. Part II, Section 2 discusses the step-by-step process of building the computer and manual files that were needed in order to conduct the Utility Survey. How the files were actually used in order to implement, control, and manage the Utility Survey was also discussed. Section 3 discusses the reporting forms and the accompanying instructional material used to collect data from the energy suppliers and Section 4 discusses the various operations for implementing the data collection task. The proessing of the data is described in Section 5 and the method of keeping the data confidential is described in Section 6. Part III, Section 7 presents several analyses of the costs associated with the Interim Nonresidential Building Energy Consumption Survey. Tables included reflect costs incurred through April 25, 1981. Administrative correspondence, record sheets, and explanatory notes are included in appendices. (MCW)

  18. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    SciTech Connect (OSTI)

    González Pericot, N.; Villoria Sáez, P.; Del Río Merino, M.; Liébana Carrasco, O.

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  19. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.82p. Total and Average Primaary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1982 Total Average RSE Row Fac- tors Expenditures...

  20. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.90p. Total and Average Primary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1990 Total Average RSE Row Fac- tors Expenditures...