Powered by Deep Web Technologies
Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

2

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

3

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

4

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

5

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

6

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

7

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

8

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

9

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

10

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

11

An energy standard for residential buildings in south China  

E-Print Network (OSTI)

Abstract: residential, buildings, energy standard, energyspiraling demand for building energy use, China’s Ministryand implementing building energy standards, starting with a

Huang, Yu Joe; Lang, Siwei; Hogan, John; Lin, Haiyan

2003-01-01T23:59:59.000Z

12

Residential Building Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

13

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

14

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

15

Building Technologies Residential Survey  

SciTech Connect

Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

Secrest, Thomas J.

2005-11-07T23:59:59.000Z

16

Membership Criteria: Better Buildings Residential network  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn Better Buildings Residential Network (BBRN) members must be supportive of residential...

17

Better Buildings Partners: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Network The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the...

18

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

19

NREL: Buildings Research - Residential Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

20

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Better Buildings Neighborhood Program: Getting Started  

NLE Websites -- All DOE Office Websites (Extended Search)

Started on Twitter Bookmark Better Buildings Neighborhood Program: Getting Started on Google Bookmark Better Buildings Neighborhood Program: Getting Started on Delicious Rank...

22

Residential Code Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Code Development Subscribe to updates To receive news and updates about code development activities subscribe to the BECP Mailing List. The model residential building...

23

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

24

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

3 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

25

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

26

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

1 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

27

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

3 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

28

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

90 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

29

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

1 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

30

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

31

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

32

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

33

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

34

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

0 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

35

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

36

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

37

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

38

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

39

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

2 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

40

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

2 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

42

Building Technologies Office: Residential Energy Efficiency Stakeholde...  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Building America Residential Research Better Buildings Alliance Solid-State Lighting Events DOE Challenge Home Zero Net-Energy-Ready Home Training September 23, 2013 EEBA...

43

Building Technologies Office: Residential Energy Efficiency Stakeholde...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Building Technologies Office: Residential Energy Efficiency Stakeholder's Meeting - Spring 2011 on Facebook Tweet about Building Technologies Office:...

44

Building Technologies Office: Residential Energy Efficiency Technical...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Building Technologies Office: Residential Energy Efficiency Technical Update Meeting - Summer 2011 on Facebook Tweet about Building Technologies Office:...

45

Building Technologies Office: Residential Dishwashers, Dehumidifiers, and  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting to someone by E-mail Share Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Facebook Tweet about Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Twitter Bookmark Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Google Bookmark Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR

46

Better Buildings Neighborhood Program: Residential Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 to someone by E-mail Share Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Facebook Tweet about Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Twitter Bookmark Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Google Bookmark Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Delicious

47

Guam - Solar-Ready Residential Building Requirement | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar-Ready Residential Building Requirement Guam - Solar-Ready Residential Building Requirement < Back Eligibility Construction Residential Savings Category Heating & Cooling...

48

City of Cleveland - Residential Property Tax Abatement for Green Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Cleveland - Residential Property Tax Abatement for Green City of Cleveland - Residential Property Tax Abatement for Green Buildings City of Cleveland - Residential Property Tax Abatement for Green Buildings < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 01/01/2010 State Ohio Program Type Property Tax Incentive Rebate Amount 100% for 10-15 years Provider City of Cleveland Department of Community Development The City of Cleveland, in cooperation with the Cuyahoga County Auditor's Office, provides a 100% tax abatement for residential properties built to

49

Residential Building Stockg Assessment (RBSA)for  

E-Print Network (OSTI)

9/4/2013 1 Residential Building Stockg Assessment (RBSA)for Multi-Family Housing Tom Eckman Objectives Characterize Residential Sector Building Stock ­ Single Family (Four-plex and below) l if il ( i Pacific Northwest Residential Energy Survey (PNWRES92)Survey (PNWRES92) NEEA Survey of Baseline

50

Green Residential Building Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on a wait list, and will be notified if additional funding becomes available.''''' The Green Residential Building Program, administered by the New York State Energy Research and...

51

Building Technologies Office: Residential Energy Efficiency Stakeholde...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stakeholder's Meeting - Spring 2011 The U.S. Department of Energy (DOE) Building America program held the Residential Energy Efficiency Stakeholder's Meeting in Atlanta, Georgia,...

52

Building Technologies Office: Residential Energy Efficiency Technical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Update Meeting - Summer 2011 The U.S. Department of Energy (DOE) Building America program held the Residential Energy Efficiency Technical Update Meeting in Denver,...

53

Air Barriers for Residential and Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

54

Air Barriers for Residential and Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

55

Alabama State Certification of Residential Building Codes | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Name: Adams Initials: TL Affiliation: Alabama Department of Economic and Community Affairs Focus: Adoption Building Type: Residential Code Referenced: 2009 IECC 2009 IRC...

56

Residential Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Building Renovations Residential Building Renovations Residential Building Renovations October 16, 2013 - 4:57pm Addthis Renewable Energy Options Residential Building Renovations Photovoltaics Daylighting Solar Water Heating Geothermal Heat Pumps (GHP) Biomass Heating In some circumstances, Federal agencies may face construction or renovation of residential units, whether single-family, multi-family, barracks, or prisons. Based on typical domestic energy needs, solar water heating and photovoltaic systems are both options, depending on the cost of offset utilities. These systems can be centralized for multi-family housing to improve system economics. Daylighting can reduce energy costs and increase livability of units. Geothermal heat pumps (GHP) are a particularly cost-effective option in

57

Building Technologies Office: Building America Residential Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

research results to the market. Learn more about the research planning process. Read the Residential Energy Efficiency Research Planning Meeting Summary Report and view the...

58

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

59

Fact Sheet: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Sheet Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn What Is the Residential Network? The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the number of American homes that are energy efficient. Since 2010, the U.S. Department of Energy (DOE), local Better Buildings Neighborhood Program partners, and Home Performance with ENERGY STAR ® Sponsors have leveraged over $1 billion in federal funding and local resources to build more energy-efficient communities. DOE is now expanding this network of residential energy efficiency programs and partners to new members. Who Should Join? Network membership is open to all organizations that are committed to accelerating the pace of energy

60

U.S. Residential Buildings Weather-Adjusted Primary Consumption  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8c Glossary U.S. Residential Buildings ...

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Building Technologies Office: Residential Energy Efficiency Stakeholder  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Stakeholder Meeting - Spring 2012 Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most current innovation projects in the residential buildings sector. This meeting provided an opportunity for researchers and industry stakeholders to showcase and discuss the latest in cutting-edge, energy-efficient residential building technologies and practices. The meeting also included working sessions from each Standing Technical Committee (STC), which outlined work that will best assist in overcoming technical challenges and delivering Building America research results to the market. Learn more about the STCs and the research planning process.

62

Membership Criteria: Better Buildings Residential network  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn Better Buildings Residential Network (BBRN) members must be supportive of residential energy efficiency and the mission of the BBRN. Members are expected to be legally incorporated organizations or institutions, rather than individuals, actively engaged in the field of existing residential building energy efficiency with an ability to impact the market. Members should have the ability and capacity to carry out the requirements for membership (i.e., reporting the annual number of upgrades in their sphere of influence, and associated benefits), and actively engage as a member. Members must actively engage in significant work supporting, studying, researching, reporting, and/or

63

An energy standard for residential buildings in south China  

SciTech Connect

To curb the spiraling demand for building energy use, China's Ministry of Construction has worked at developing and implementing building energy standards, starting with a standard for heated residential buildings in the Cold regions in 1986, followed by a standard for residential buildings in the Hot Summer Cold Winter Region in central China in 2001. In July 2001, a similar effort was started to develop a standard for residential buildings in the Hot Summer Warm Winter Region, comprising of the entirety or large portions of Guangdong, Guangxi, Hainan and Fujian. The target for the standard is to improve the thermal efficiency of buildings by 50 percent compared to current construction, which are typically uninsulated and have single-pane windows. Because of the importance of controlling window solar gain, the standard developed tables specifying the required window thermal transmittance and shading coefficient for differing window-to-wall ratios. The intent of such trade-off table is to permit flexibility in the location and size of windows, as long as their thermal performances meet the requirements of the standard. For further flexibility, the standard provides three methods of compliance: (1) a simple set of prescriptive requirements, (2) a simplified performance calculation, and (3) a detailed computer-based performance calculation using a Custom Budget approach.

Huang, Yu Joe; Lang, Siwei; Hogan, John; Lin, Haiyan

2003-07-01T23:59:59.000Z

64

Improving the Energy Efficiency of Residential Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Improving the Energy Efficiency of Residential Buildings Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the energy efficiency of both new and existing homes. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the residential building sector by at least 50%. Research and Development Conduct research that focuses on engineering solutions to design, test, and

65

Evaluating Residential Buildings for Statewide Compliance | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings for Statewide Compliance Residential Buildings for Statewide Compliance The materials for this course may be used for in-person training courses, and are intended to provide the tools and specific training necessary to evaluate residential compliance with the 2009 International Energy Conservation Code (IECC). The course also provides useful training in general residential field inspection for energy code compliance. The recommended background for taking this course is significant experience and/or certification on the IECC in a plan review or inspection capacity. Presenters: Course materials originally published by the DOE Building Energy Codes Program, July 16, 2010. Course Type: Training Materials Video In-person Downloads: Presentation Slides Presentation Slides Presentation Slides and Windows Media Videos

66

Better Buildings Residential Program Solution Center Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Danielle Sass Byrnett Better Buildings Residential Building Technologies Office Program Solution Center Demonstration Outline * Goals, History, Content Sources * Tour: Organization - Program Components - Handbooks * Tour: Navigation Options * Tour: Examples * Next Steps * Questions & Feedback 2 eere.energy.gov Overview 3 eere.energy.gov Purpose: Support Residential Energy Efficiency Upgrade Programs & Partners * Provide an easily accessed repository for key lessons, resources, and knowledge collected from the experience of past programs. * Help programs and their partners plan, implement, manage, and evaluate better * Help stakeholders leapfrog past missteps en route to a larger and more successful industry. 4 eere.energy.gov Intended Audiences

67

Better Buildings Partners: Better Buildings Residential Network...  

NLE Websites -- All DOE Office Websites (Extended Search)

work they are doing to advance energy efficiency. AFC First Alabama Energy Doctors Austin Energy BC Hydro Boulder County, Colorado Building Sustainable Solutions, LLC California...

68

Better Buildings Neighborhood Program: What's Working in Residential Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

What's Working What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 to someone by E-mail Share Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Facebook Tweet about Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Twitter Bookmark Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Google Bookmark Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Delicious Rank Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Digg

69

Design for Energy Efficiency in Residential Buildings  

E-Print Network (OSTI)

This paper presents the thermal design and heating design of an energy saving residential building in Beijing where the owners lived until 2004. Results show the advantages and disadvantages of a household-based heating mode by natural gas. Based on the quantity of natural gas by field tests in 2005, we conclude that thermal design influences heating design calculations.

Song, M.; Zhang, Y.; Yang, G.

2006-01-01T23:59:59.000Z

70

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Lighting: Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Residential and Commercial Requirements TOPIC BRIEF 1 Lighting: Residential and Commercial Requirements Residential Lighting Requirements The 2009 International Energy...

71

Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

Not Available

2009-09-01T23:59:59.000Z

72

Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

2009-09-01T23:59:59.000Z

73

Steven Winter Associates (Consortium for Advanced Residential Buildings) |  

Open Energy Info (EERE)

Winter Associates (Consortium for Advanced Residential Buildings) Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name Steven Winter Associates (Consortium for Advanced Residential Buildings) Place Norwalk, CT Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Steven Winter Associates (Consortium for Advanced Residential Buildings) is a company located in Norwalk, CT. References Retrieved from "http://en.openei.org/w/index.php?title=Steven_Winter_Associates_(Consortium_for_Advanced_Residential_Buildings)&oldid=379243" Categories: Clean Energy Organizations

74

Residential Building Industry Consulting Services | Open Energy Information  

Open Energy Info (EERE)

Residential Building Industry Consulting Services Residential Building Industry Consulting Services Jump to: navigation, search Name Residential Building Industry Consulting Services Place New York, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Residential Building Industry Consulting Services is a company located in New York, NY. References Retrieved from "http://en.openei.org/w/index.php?title=Residential_Building_Industry_Consulting_Services&oldid=381757" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages

75

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

Residential Energy Consumption Survey, Human and Socialof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

76

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

77

Measuring Airflows at Registers in Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Airflows at Registers in Residential Buildings Measuring Airflows at Registers in Residential Buildings Speaker(s): Cyril Guillot Date: August 29, 2002 - 12:00pm Location: Bldg. 90 Measuring airflows at registers is a central issue in all HVAC (Heating Ventilation and Air Conditioning) studies. It is a basic measurement that is required in many Cooling/Heating systems tests and in air conditioner performance diagnostics. These measurements can, for instance, be used to determine if individual rooms receive adequate airflow in terms of comfort, to estimate total air handler flow and supply/return imbalances, and to assess duct air leakage. First, I calibrated the Minneapolis Duct Blasters, useful in the most accurate flow hood we have, then I worked on an existing project: measuring airflows with laundry baskets. Finally, I

78

Impact of improved building thermal efficiency on residential energy demand  

SciTech Connect

The impact of improved building shell thermal efficiency on residential energy demand is explored in a theoretical framework. The important economic literature on estimating the price elasticity of residential energy demand is reviewed. The specification of the residential energy demand model is presented. The data used are described. The empirical estimation of the residential energy demand model is described. (MHR)

Adams, R.C.; Rockwood, A.D.

1983-04-01T23:59:59.000Z

79

Partner With DOE and Residential Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Partner With DOE and Residential Buildings Residential Buildings » Partner With DOE and Residential Buildings Partner With DOE and Residential Buildings The U.S. Department of Energy (DOE) partners with a variety of organizations to improve the energy efficiency of residential buildings. Home builders, governments, researchers, and universities have several opportunities to work with the Building Technologies Office and other DOE projects. Home Builders Home builders who want to be recognized for building high performance homes can find out what it takes to participate in DOE's Challenge Home and sign up today. DOE Challenge Homes are verified by a qualified third-party and are at least 40%-50% more energy efficient than a typical new home. State or Local Governments, Utilities, and Other Organizations

80

Design and thermal modeling of a residential building  

E-Print Network (OSTI)

Recent trends of green energy upgrade in commercial buildings show promise for application to residential houses as well, where there are potential energy-saving benefits of retrofitting the residential heating system from ...

Yeh, Alice Su-Chin

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Property:Building/StartPeriod | Open Energy Information  

Open Energy Info (EERE)

StartPeriod StartPeriod Jump to: navigation, search This is a property of type Date. Start of the period (first day o the month) Pages using the property "Building/StartPeriod" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1 January 2004 + Sweden Building 05K0002 + 1 January 2004 + Sweden Building 05K0003 + 1 January 2004 + Sweden Building 05K0004 + 1 January 2004 + Sweden Building 05K0005 + 1 October 2004 + Sweden Building 05K0006 + 1 October 2004 + Sweden Building 05K0007 + 1 October 2004 + Sweden Building 05K0008 + 1 October 2004 + Sweden Building 05K0009 + 1 October 2004 + Sweden Building 05K0010 + 1 October 2004 + Sweden Building 05K0011 + 1 October 2004 + Sweden Building 05K0012 + 1 January 2004 + Sweden Building 05K0013 + 1 October 2004 +

82

City of Portland - Streamlined Building Permits for Residential...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon City of Portland - Streamlined Building Permits for Residential Solar Systems (Oregon) SolarWind Permitting Standards...

83

City of Portland - Streamlined Building Permits for Residential...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon City of Portland - Streamlined Building Permits for Residential Solar Systems (Oregon) This is the approved revision of...

84

Colorado State Certification of Commercial and Residential Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

State Certification of Commercial and Residential Building Energy Codes The State of Colorado provides the following information to certify compliance with Title III of the Energy...

85

City of Portland - Streamlined Building Permits for Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating Program Information Oregon Program Type Green Building Incentive The City of Portland's...

86

Is a building with multiple occupancies considered residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Is a building with multiple occupancies considered residential or commercial? The IECC...

87

City of Frisco - Residential and Commercial Green Building Codes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Frisco - Residential and Commercial Green Building Codes City of Frisco - Residential and Commercial Green Building Codes City of Frisco - Residential and Commercial Green Building Codes < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Insulation Program Info State Texas Program Type Building Energy Code Provider Frisco Department of Planning and Development '''''Note: In the spring on 2012, the city of Frisco was working to update the residential requirements. No official city council action had been taken at the time this summary was updated. Check program web site for current status of updates.''''' The city of Frisco administers a green building program with separate rules

88

Ozone Reductions Using Residential Building Envelopes  

SciTech Connect

Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

Walker, Iain S.; Sherman, Max; Nazaroff, William W.

2009-02-01T23:59:59.000Z

89

City of Austin - Commercial and Residential Green Building Requirements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City of Austin - Commercial and Residential Green Building Requirements City of Austin - Commercial and Residential Green Building Requirements < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating Water Heating Wind Program Info State Texas Program Type Building Energy Code Provider Austin Energy '''''Note: The requirements listed below are current only up to the date of last review (see the top of this page). The City of Austin may also make additional requirements depending on the circumstances of a given project.

90

Get started | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

strides toward our energy conservation goals. Nelly Gomez, Vons Credit Union, 1 winner, bankfinancial institution category, 2012 ENERGY STAR National Building Competition...

91

Retrofit of Existing Residential Building: a Case Study  

E-Print Network (OSTI)

There are about 42 billion square meters of existing buildings in China. The energy efficiency of existing buildings directly relates to the energy consumption of the building sector. The retrofit of existing residential building began in the 1990s in Heilongjiang. The Sino-Canada demonstration project and Sino-France demonstration project of retrofitting existing residential buildings were carried out in 1997 and 2004, respectively. The retrofit method and energy conservation potential of the envelope and heating system of northern existing buildings are analyzed in this paper, combining the experiences of retrofitting existing residential buildings in Heilongjiang. The software was compiled to aid the design of the envelope retrofit in Heilongjiang and to analyze the working situation in existing residential building heating systems. The imbalance of the indoor temperature and the quantity of heating loss from opening the window in different retrofit projects are presented. The emphasis on energy efficiency retrofit of the envelope of existing residential buildings should be placed on the wall in northern region. It is possible to reduce about 50 percent of energy consumption of buildings by insulating the wall. The external insulation is suitable for retrofitting existing buildings, and the moisture transfer should be considered at the same time. To insure actual reduction in energy consumption, the heating system should be retrofitted when the envelope is insulated.

Zhao, L.; Xu, W.; Li, L.; Gao, G.

2006-01-01T23:59:59.000Z

92

Connecticut State Certification of Commercial and Residential Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecticut State Certification of Commercial and Residential Building Connecticut State Certification of Commercial and Residential Building Energy Codes The purpose of this letter is to document that the State of Connecticut has met its stautory requirement with regard to adoption of energy codes that meet or exceed the 2009 International Energy Conservation Code for residential buildings and ASHRAE Standard 90.1-2007 for commercial buildings. Publication Date: Tuesday, July 16, 2013 CT Certification of Building Energy Codes.pdf Document Details Last Name: Cassidy Initials: JV Affiliation: Connecticut Department of Administrative Services, Division of Construction Services Prepared by: prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program Focus: Adoption Building Type:

93

Building Technologies Program: Tax Incentives for Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Tax Incentives for Residential Buildings On this page you'll find information about the tax deductions available for purchasing and installing energy-efficient products and constructing new energy-efficient homes. The American Recovery and Reinvestment Act of 2009 offers tax credits for residential energy efficiency measures and renewable energy systems. Many of these credits were originally introduced in the Energy Policy Act of 2005 (EPACT) and amended in the Emergency Economic Stabilization Act of 2008 (P.L. 110-343). Energy Efficiency Tax Credits for Existing Homes Homeowners are eligible for a tax credit of 30% of the cost for improvements to windows, roofing, insulation, and heating and cooling equipment. These improvements must be placed in service from January 1, 2009 through December 31, 2010 and there is a limit of $1,500 for all products. Improvements made in 2008 are not eligible for a tax credit. See the ENERGY STAR® Web site for a detailed listing of eligible improvements.

94

Better Buildings Residential Program Solution Center Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

* Tour: Navigation Options * Tour: Examples * Next Steps * Questions & Feedback 2 eere.energy.gov Overview 3 eere.energy.gov Purpose: Support Residential Energy Efficiency...

95

Energy Use and Indoor Thermal Environment of Residential Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use and Indoor Thermal Environment of Residential Buildings in China Speaker(s): Hiroshi Yoshino Date: December 16, 2003 - 12:00pm Location: 90-3122 The first part of this...

96

Green Residential Building Program (New York) | Open Energy Informatio...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Green Residential Building Program (New York) This is the approved revision of this page, as well as being...

97

DOE Buildings Performance Database, sample Residential data | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database, sample Residential data Buildings Performance Database, sample Residential data Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV The Buildings Performance Database will have an API that allows access to the statistics about the data without exposing private information about individual buildings. The data available in this sample is limited due to the nature of the original datasets; the Buildings Performance database combines data from multiple sources to improve overall robustness. Data fields stored in the database can be seen in the BPD taxonomy: http://www1.eere.energy.gov/buildings/buildingsperformance/taxonomy.html

98

New Jersey SmartStart Buildings - Pay for Performance Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey SmartStart Buildings - Pay for Performance Program New Jersey SmartStart Buildings - Pay for Performance Program New Jersey SmartStart Buildings - Pay for Performance Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Varies for each program milestone $1 M per utility account (gas and electric) per year $2 M per project $4 M per entity per year Program Info State New Jersey Program Type State Rebate Program Rebate Amount $/kWh, $/therm, and $/sq. ft. incentives, vary based on expected energy

99

Tax Incentives for Residential Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Tax Incentives for Residential Buildings On this page you'll find information about the tax deductions available for purchasing and installing energy-efficient products and constructing new energy-efficient homes. The American Recovery and Reinvestment Act of 2009 offers tax credits for residential energy efficiency measures and renewable energy systems. Many of these credits were originally introduced in the Energy Policy Act of 2005 (EPACT) and amended in the Emergency Economic Stabilization Act of 2008 (P.L. 110-343). Energy Efficiency Tax Credits for Existing Homes Homeowners are eligible for a tax credit of 30% of the cost for improvements to windows, roofing, insulation, and heating and cooling equipment. These improvements must be placed in service from January 1,

100

Building America Puts Residential Research Results to Work  

DOE Green Energy (OSTI)

Residential buildings use more than 20% of the energy consumed annually in the United States. To help reduce that energy use, the Department of Energy (DOE) and its Building America partners conduct research to develop advanced building energy systems that make homes and communities much more energy-efficient. DOE and its partners design, build, and evaluate attractive, comfortable homes that increase performance with little or no increase in construction costs.

Not Available

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries  

E-Print Network (OSTI)

Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

Smith, Jonathan Y. (Jonathan York), 1979-

2004-01-01T23:59:59.000Z

102

Assess your starting point | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Assess your starting point Assess your starting point Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Read the ENERGY STAR Guidelines for Energy Management Get buy-in from leadership and staff Make a commitment Assess your starting point Use Portfolio Manager Save energy Find financing Earn recognition Communicate your success

103

Regulations establishing energy-conservation standards for new residential buildings  

SciTech Connect

The text of the California Administrative Code, Title 24, Part 6, Article 1 is presented. The energy conservation standards described apply to all new hotels, motels, apartment houses, lodging houses, dwellings, and other residential buildings which are heated or mechanically cooled. Standards for the building envelope, climate control systems and equipment, and water heating are included. (MCW)

Not Available

1980-02-01T23:59:59.000Z

104

Residential Code Methodology | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Site Map...

105

Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)  

Science Conference Proceedings (OSTI)

Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

2011-09-01T23:59:59.000Z

106

City of Portland - Streamlined Building Permits for Residential Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Oregon Program Type Green Building Incentive Provider City of Portland The City of Portland's Bureau of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process, solar contractors can submit the project plans and permit application online for residential installations. In order to file the online application, the contractor must first be trained. The City of Portland has staff at the permitting desk trained as solar experts to assist solar contractors who need help filing their permits in person. This process has a turnaround time of approximately 2-3 business days for building permits.

107

NREL Partnerships with External Organizations (Residential Buildings Group)  

Open Energy Info (EERE)

Partnerships with External Organizations (Residential Buildings Group) Partnerships with External Organizations (Residential Buildings Group) Dataset Summary Description This spreadsheet contains a list of all the companies with which NREL's Residential Buildings Group has formed a partnership. The two types of partnership included in this spreadsheet are: Incubator and Test & Evaluation. This list was generated in April 2011. Source NREL Date Released April 07th, 2011 (3 years ago) Date Updated Unknown Keywords incubator NREL partnerships Test & Evaluation Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon members_and_partners_-_nrel_resbldgs_04072011.xlsx (xlsx, 29.8 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below

108

Summary of Components of the "Best of the Region" Standard for New Non-Residential Buildings  

E-Print Network (OSTI)

Summary of Components of the "Best of the Region" Standard for New Non-Residential Buildings................................................................................................................. 1 2. Non-Residential .......................................................................................................... 1 2.1. Non-Residential Lighting

109

Residential and commercial buildings data book. Second edition  

SciTech Connect

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

Crumb, L.W.; Bohn, A.A.

1986-09-01T23:59:59.000Z

110

Building Technologies Office: National Residential Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

at all levels. The data from the efficiency measures database is used in the Building Energy Optimization (BEopt) software. Benefits The National Retrofit Measures Database...

111

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most  

E-Print Network (OSTI)

A new database of residential building measures and estimated costs helps the U.S. building at the National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures with using various measures to improve the efficiency of residential buildings. This database offers

112

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Picture of a light bulb At Home and At Work: What Types of Lights Are We Using? Two national EIA surveys report that . . . Of residential households, 98 percent use incandescent, 42 percent use fluorescent. Of commercial buildings, 59 percent use incandescent, 92 percent use fluorescent. At a glance, we might conclude that substantial energy savings could occur in both the residential and commercial sectors if they replaced their incandescent lights with fluorescent lights, given that fluorescent lights consume approximately 75-85 percent less electricity than incandescent lights. In the residential sector, this is true. However, in the commercial sector, where approximately 92 percent of the buildings already use fluorescent lights, increasing energy savings will require upgrading existing lights and lighting systems. To maximize energy savings, analysis must also consider the hours the lights are used and the amount of floorspace lit by that lighting type. Figures 1 and 2 show the types of lights used by the percent of households and by the percent of floorspace lit for the residential and the commercial sectors, respectively.

113

Enhancing Residential Building Operation through its Envelope  

E-Print Network (OSTI)

In this study heat loss is evaluated with the modeling software of Iranian Construction Engineering Organization, for both with and without insulation in the building. Of course the evaluation is in accordance with the laws of this organization, which support environmental and constructional matters. Also the amounts of energy consumption for these two states are compared and a substantial economy of energy consumption is presented. Eventually, results represent that 32% in heat load and 25% in cooling load of the building can be economized. And also most energy loss is related to the windows and the roof of the building.

Vazifeshenas, Y.; Sajjadi, H.

2010-01-01T23:59:59.000Z

114

DOE Buildings Performance Database, sample Residential data ...  

Open Energy Info (EERE)

18px" classApple-style-span>The Buildings Performance Database will have an API that allows access to the statistics about the data without exposing private...

115

Analysis of institutional mechanisms affecting residential and commercial buildings retrofit  

SciTech Connect

Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

1980-09-01T23:59:59.000Z

116

Impacts of the 2009 IECC for Residential Buildings at State Level...  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING ENERGY CODES PROGRAM Impacts of the 2009 IECC for Residential Buildings at State Level September 2009 Prepared by Pacific Northwest National Laboratory for the U.S....

117

Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings  

SciTech Connect

This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

Polly, B.; Kruis, N.; Roberts, D.

2011-07-01T23:59:59.000Z

118

Impacts of the 2009 IECC for Residential Buildings at State Level  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING ENERGY CODES PROGRAM Impacts of the 2009 IECC for Residential Buildings at State Level September 2009 Prepared by Pacific Northwest National Laboratory for the U.S....

119

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Residential Building Component Loads as of 1998 (1) 1) "Load" represents the thermal energy lossesgains that when combined will be offset by a building's heatingcooling system...

120

Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings  

SciTech Connect

This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

Polly, B.; Kruis, N.; Roberts, D.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermal Performance Analysis of a High-Mass Residential Building  

DOE Green Energy (OSTI)

Minimizing energy consumption in residential buildings using passive solar strategies almost always calls for the efficient use of massive building materials combined with solar gain control and adequate insulation. Using computerized simulation tools to understand the interactions among all the elements facilitates designing low-energy houses. Finally, the design team must feel confident that these tools are providing realistic results. The design team for the residential building described in this paper relied on computerized design tools to determine building envelope features that would maximize the energy performance [1]. Orientation, overhang dimensions, insulation amounts, window characteristics and other strategies were analyzed to optimize performance in the Pueblo, Colorado, climate. After construction, the actual performance of the house was monitored using both short-term and long-term monitoring approaches to verify the simulation results and document performance. Calibrated computer simulations showed that this house consumes 56% less energy than would a similar theoretical house constructed to meet the minimum residential energy code requirements. This paper discusses this high-mass house and compares the expected energy performance, based on the computer simulations, versus actual energy performance.

Smith, M.W.; Torcellini, P.A., Hayter, S.J.; Judkoff, R.

2001-01-30T23:59:59.000Z

122

Sustainability Assessment of Residential Building Energy System in Belgrade  

E-Print Network (OSTI)

As a metropolitan city, Belgrade is a dwelling place for about 25% of total citizen number of Republic of Serbia, and at the same time regional cultural, educational, scientific and business center with its own energy production. Belgrade represents a significant consumer of final energy to support the living standard of the occupants. Energy production is based on domestic coal and imported fossil fuels such as oil and natural gas resulting in a high impact to the environment by emission of harmful substances. Multi-criteria method is a basic tool for the sustainability assessment in metropolitan cities. The design of potential options is the first step in the evaluation of buildings. The selection of a number of residential buildings is based on geographic position and type of heating. This paper presents the sustainable assessment of energy system for residential building sector in Belgrade. In order to present the energy system options for residential building sector, three sets of energy indicators: economical, social and environmental are taken into consideration.

Vucicevic, B.; Bakic, V.; Jovanovic, M.; Turanjanin, V.

2010-01-01T23:59:59.000Z

123

Impacts of the 2009 IECC for Residential Buildings at State Level - Minnesota  

NLE Websites -- All DOE Office Websites (Extended Search)

Minnesota Minnesota September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MINNESOTA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MINNESOTA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Minnesota Summary The energy efficiency requirements in the Minnesota building code are based on the 2006 International Residential Code (IRC) with relatively extensive modifications. The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the 2006 IRC. The most notable

124

Residential Use of Building Integrated Photo Voltaics  

E-Print Network (OSTI)

Building Integrated Photo Voltaics (BIPVs) are devices which are manufactured to replace building components exposed to sufficient sunlight to generate energy. Photo Voltaic Roof tiles are Building Integrated components which can be used instead of traditional roofing materials. The following thesis is focused on comparing traditional, cheaper asphalt roof tiles with Photo Voltaic (PV) roofing tiles in terms of energy cost savings during their respective Net Present Values. The method used for achieving this is computer simulation made possible by software named "Solar Advisory Model" (SAM), developed by National Renewable Energy Laboratories (NREL), to simulate energy output and resultant energy costs saved. The simulations have been run on a prototype example of a model of a dwelling unit's roof area. The simulations have been repeated for 35 cities all over the U.S.A. for 5 different climatic zones on the same prototype example of the dwelling unit. Similarly, the roof area being laid with an array of PV roof tiles has been estimated for coverage by traditional asphalt roof shingles by using data from the RS Means construction costs data. The estimated costs associated with the asphalt roof area have been adjusted to a different set of 35 locations from the 5 climatic zones by using the location factor from RS Means. A statistical analysis was done to analyze the data, net present value of roofing materials being the dependent variable versus climatic zones and roofing material as the independent variables. The statistical model also included CDD (Cooling Degree Days) and HDD (Heating Degree Days) as co-variates. The results indicate that NPV (Net Present Value) of BIPV roof is significantly different from that of asphalt roof. Another statistical analysis was done to determine the effect of climatic zones on energy savings due to the use of BIPV roofing. Energy savings (in US$) was used as a dependent variable, and climatic zone as the independent variable. HDD AND CDD were also included in this model as co-variates. The results of this test indicate that both climatic zone and HDD have an effect on total energy savings.

Balabadhrapatruni, Aswini

2011-05-01T23:59:59.000Z

125

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy efficiency of residential buildings. This database: * Provides information in a standardized format. * Improves the technical consistency and accuracy of the results of software programs. * Enables experts and stakeholders to view the retrofit information and provide comments to improve data

126

New Jersey SmartStart Buildings - New Construction and Retrofits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » New Jersey SmartStart Buildings - New Construction and Retrofits New Jersey SmartStart Buildings - New Construction and Retrofits < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate General: incentives may be limited to $500,000 per utility account per year. Custom Measures: limited to lesser of $0.16/kWh or $1.60/therm saved annually; 50% of total costs; or buydown to a 1-year payback period Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund)

127

Analytical study of residential building with reflecting roofs  

SciTech Connect

This report presents an analysis of the effect of roof solar reflectance on the annual heating (cooling) loads, peak heating (cooling) loads, and roof temperatures of the residential buildings. The annual heating (cooling) loads, peak heating (cooling) loads, and exterior roof temperatures for a small compact ranch house are computed using the Thermal Analysis Research Program (TARP). The residential models, with minor modifications in the thermal envelope for different locations, are subjected to hourly weather data for one year compiled in the Weather Year for Energy Calculation (WYEC) for in the following locations: Birmingham, Alabama; Bismarck, North Dakota; Miami, Florida; Phoenix, Arizona; Portland, Maine; and, Washington, D.C. Building loads have been determined for a full factorial experimental design that varies the following parameters of the residential model: solar reflectance of the roof, ceiling thermal resistance, attic ventilation, and attic mass framing area. The computed results for annual heating (cooling) loads and peak heating (cooling) loads are illustrated graphically, both globally for all cities and locally for each geographic location. The effect of peak parameter is ranked (highest to lowest) for effect on annual heating and cooling loads, and peak heating and cooling loads. A parametric study plots the building loads as a function of roof solar reflectance for different levels of ceiling thermal resistances and for each geographic location.

Zarr, R.R.

1998-10-01T23:59:59.000Z

128

Impacts of the 2009 IECC for Residential Buildings at State Level - Delaware  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN DELAWARE BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN DELAWARE Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Delaware Summary Delaware recently adopted the 2009 International Energy Conservation Code (IECC). The code becomes effective July 1, 2010. Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above-

129

Impacts of the 2009 IECC for Residential Buildings at State Level - New Hampshire  

NLE Websites -- All DOE Office Websites (Extended Search)

Hampshire Hampshire September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW HAMPSHIRE BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW HAMPSHIRE Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in New Hampshire Summary New Hampshire has adopted the 2009 International Energy Conservation Code (IECC). The code becomes effective October 1, 2009. Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above-

130

Buildings Energy Data Book: 2.6 Residential Home Improvement  

Buildings Energy Data Book (EERE)

1 1 Value of Residential Building Improvements and Repairs, by Sector ($2010 Billion) (1) Total 1980 72.2 35.2 107.4 1985 82.3 65.3 147.6 1990 91.4 85.5 176.9 1995 105.8 63.8 169.6 2000 138.2 52.7 191.0 2003 156.2 51.9 208.0 2004 169.2 57.9 227.1 2005 179.0 59.7 238.6 2006 187.4 57.2 244.6 2007 (2) 178.7 57.0 235.7 Note(s): Source(s): Improvements Maintenance and Repairs 1) Improvements includes additions, alterations, reconstruction, and major replacements. Repairs include maintenance. 2) The US Census Bureau discontinued the Survey of Residential Alterations and Repairs (SORAR) after 2007. DOC, Historic Expenditures for Residential Properties by Property Type: Quarterly 1962-2003 (Old structural purposes) for 1980-2000; DOC, Historic Expenditures for Residential Proerties by Property Type: Quarterly 2003-2007 (New structural purposes) for 1995-2007; and EIA, Annual Energy Review

131

Impacts of the 2009 IECC for Residential Buildings at State Level - Wisconsin  

NLE Websites -- All DOE Office Websites (Extended Search)

Wisconsin Wisconsin September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN WISCONSIN BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN WISCONSIN Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Wisconsin Summary The energy efficiency requirements in the Wisconsin building code are the 2006 International Energy Conservation Code (IECC) with amendments that increase stringency. The 2009 IECC contains several major improvements in energy efficiency over the 2006 IECC and the Wisconsin code for the total building energy

132

Environmental assessment in support of proposed voluntary energy conservation standard for new residential buildings  

Science Conference Proceedings (OSTI)

The objective of this environmental assessment (EA) is to identify the potential environmental impacts that could result from the proposed voluntary residential standard (VOLRES) on private sector construction of new residential buildings. 49 refs., 15 tabs.

Hadley, D.L.; Parker, G.B.; Callaway, J.W.; Marsh, S.J.; Roop, J.M.; Taylor, Z.T.

1989-06-01T23:59:59.000Z

133

Building Energy Software Tools Directory : HVAC Residential Load...  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Residential Load Calcs HD for the iPad Back to Tool HVAC Residential Load Calcs HD screenshot HVAC Residential Load Calcs HD screenshot HVAC Residential Load Calcs HD...

134

Energy Efficiency Standards for New Federal Low-Rise Residential Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for New Federal Low-Rise Residential Standards for New Federal Low-Rise Residential Buildings Energy Efficiency Standards for New Federal Low-Rise Residential Buildings October 8, 2013 - 1:57pm Addthis DOE recently updated the requirements for energy efficiency in newly constructed federal buildings. The new rule, 10 CFR 435, Subpart A: Energy Efficiency Standards for New Federal Low-Rise Residential Buildings, applies to residential buildings (one- and two-family dwellings as well as multifamily buildings three stories or less in height) for which design for construction began on or after August 10, 2012. The rule updates the baseline standard in 10 CFR 435, Subpart A to the 2009 IECC. New federal residential buildings are required (effective August 10, 2012) to achieve the 2009 IECC level of energy efficiency or 30% greater

135

Residential Requirements of the 2009 IECC | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

09 IECC 09 IECC This training includes an overview of the residential requirements of the 2009 International Energy Conservation Code. Estimated Length: 1 hour, 9 minutes Presenters: Todd Taylor, Pacific Northwest National Laboratory Original Webcast Date: Tuesday, June 16, 2009 - 13:00 CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Video Downloads: Video Transcript Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Residential Focus: Compliance Code Version: 2009 IECC Target Audience: Architect/Designer Builder Code Official Contractor Engineer Federal Official State Official Contacts Web Site Policies U.S. Department of Energy

136

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.3 42.5 99.4 114 49 84.3 33 615 0.26 456 176 Census Region and Division Northeast 11.7 7.4 21.2 139 49 88.5 34 898 0.31 571 221 New England 1.7 1.0 3.0 155 49 86.8 33 1,044 0.33 586 223 Middle Atlantic 10.0 6.5 18.2 137 49 88.8 35 877 0.31 568 221

137

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 58.7 46.0 111.9 115 47 89.9 34 696 0.29 546 206 Census Region and Division Northeast 12.2 7.7 23.3 145 48 90.9 35 1,122 0.37 703 272 New England 2.2 1.2 4.2 154 45 85.7 34 1,298 0.38 722 290 Middle Atlantic 10.0 6.4 19.1 143 48 92.0 35 1,089 0.37 699 269

138

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division Northeast 18.3 13.0 35.0 31 12 22.3 8 938 0.35 665 245 New England 4.3 3.1 9.0 31 11 22.6 8 869 0.30 635 227 Middle Atlantic 14.0 9.9 26.0 32 12 22.2 8 959 0.36 674 251

139

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Fuel Oil/Kerosene, 2001 Fuel Oil/Kerosene, 2001 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 11.2 9.4 26.0 80 29 67.1 26 723 0.26 607 236 Census Region and Division Northeast 7.1 5.4 16.8 111 36 84.7 33 992 0.32 757 297 New England 2.9 2.5 8.0 110 35 96.3 39 1,001 0.32 875 350 Middle Atlantic 4.2 2.8 8.8 112 36 76.6 30 984 0.32 675 260

140

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.7 44.8 106.3 109 46 84.2 32 609 0.26 472 181 Census Region and Division Northeast 11.9 7.7 23.6 134 44 86.8 33 952 0.31 615 232 New England 2.0 1.1 3.5 146 45 76.0 29 1,135 0.35 592 227 Middle Atlantic 9.9 6.6 20.1 133 44 89.1 34 923 0.30 620 234

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 55.4 41.3 93.2 121 53 89.9 33 722 0.32 537 198 Census Region and Division Northeast 11.7 7.5 21.1 125 44 79.2 30 925 0.33 588 221 New England 2.0 1.3 4.2 122 39 80.3 29 955 0.30 626 224 Middle Atlantic 9.7 6.1 16.9 125 45 78.9 30 919 0.33 580 220

142

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.3 7.2 12.2 44 26 42.8 15 389 0.23 382 133 Census Region and Division Northeast 1.2 1.1 2.7 29 11 26.2 9 318 0.13 288 94 New England 0.5 0.4 1.0 25 11 22.5 8 282 0.12 250 91 Middle Atlantic 0.7 0.7 1.7 31 12 28.6 9 341 0.13 312 96

143

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.4 14.0 33.3 87 37 70.3 27 513 0.22 414 156 Census Region and Division Northeast 9.1 6.3 17.8 140 49 96.0 37 808 0.28 556 212 New England 2.6 2.0 5.8 130 46 102.1 39 770 0.27 604 233 Middle Atlantic 6.5 4.2 12.1 144 51 93.6 36 826 0.29 537 204

144

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division Northeast 19.0 13.2 36.8 34 12 23.3 9 934 0.34 648 251 New England 4.3 3.0 8.4 33 12 22.9 9 864 0.30 600 234 Middle Atlantic 14.8 10.2 28.4 34 12 23.4 9 954 0.34 661 256

145

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division Northeast 20.3 14.1 43.7 37 12 26.0 11 1,268 0.41 883 362 New England 5.4 4.1 13.2 32 10 24.0 10 1,121 0.35 852 358 Middle Atlantic 14.8 10.0 30.5 40 13 27.0 11 1,328 0.44 894 364

146

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.8 7.7 12.0 41 26 40.1 15 406 0.26 398 146 Census Region and Division Northeast 1.4 1.2 2.7 23 10 20.1 7 295 0.13 264 91 New England 0.5 0.4 1.0 31 14 27.6 9 370 0.17 330 114 Middle Atlantic 0.9 0.8 1.8 18 8 15.9 6 253 0.11 226 79

147

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.8 11.6 29.8 92 36 77.5 28 604 0.23 506 186 Census Region and Division Northeast 7.9 5.9 17.2 133 45 98.7 36 854 0.29 636 234 New England 2.8 2.4 6.6 125 45 105.6 40 819 0.30 691 262 Middle Atlantic 5.0 3.5 10.6 138 45 94.8 34 878 0.29 605 219

148

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 81.6 65.3 142.5 38 17 30.3 11 625 0.29 500 178 Census Region and Division Northeast 17.7 12.2 34.8 33 12 23.0 8 742 0.26 514 181 New England 4.3 2.9 8.9 34 11 23.1 8 747 0.25 508 177 Middle Atlantic 13.4 9.3 26.0 33 12 22.9 8 740 0.27 516 183

149

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 66.9 53.8 137.2 90 35 72.4 27 873 0.34 702 265 Census Region and Division Northeast 12.5 7.8 25.4 126 39 78.3 33 1,434 0.44 889 372 New England 2.3 1.5 5.5 128 34 82.5 35 1,567 0.42 1,014 428 Middle Atlantic 10.3 6.3 19.9 126 40 77.4 32 1,403 0.45 861 360

150

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.5 13.8 32.0 91 39 71.9 27 697 0.30 550 203 Census Region and Division Northeast 9.5 6.6 18.2 141 51 97.3 35 1,066 0.38 734 266 New England 2.5 1.9 5.6 140 49 108.8 39 1,105 0.38 856 306 Middle Atlantic 7.0 4.6 12.6 142 52 93.2 34 1,050 0.38 690 252

151

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, 1980 Natural Gas, 1980 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 51.6 39.7 88.5 125 56 96.2 34 497 0.22 383 137 Census Region and Division Northeast 10.9 6.5 18.8 144 50 86.6 31 771 0.27 463 168 New England 1.9 0.9 3.1 162 47 78.9 28 971 0.28 472 169 Middle Atlantic 9.0 5.6 15.7 141 51 88.1 32 739 0.27 461 168

152

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 9.4 9.2 19.6 41 19 40.2 16 607 0.29 598 231 Census Region and Division Northeast 1.7 1.7 4.5 31 11 29.8 11 538 0.20 519 186 New England 0.7 0.7 2.2 34 11 33.1 12 580 0.19 569 209 Middle Atlantic 1.0 0.9 2.4 29 11 27.4 10 506 0.20 482 169

153

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 54.2 41.0 91.8 116 52 87.6 32 658 0.29 498 183 Census Region and Division Northeast 11.6 7.3 21.1 132 46 82.6 31 951 0.33 598 221 New England 2.0 1.3 4.5 126 35 77.9 28 1,062 0.30 658 235 Middle Atlantic 9.6 6.0 16.5 133 49 83.6 31 928 0.34 585 217

154

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.5 12.2 30.0 98 40 77.1 27 829 0.34 650 231 Census Region and Division Northeast 8.8 6.0 17.4 138 48 94.5 34 1,163 0.40 796 283 New England 2.5 1.9 5.9 131 43 101.9 36 1,106 0.36 863 309 Middle Atlantic 6.3 4.1 11.5 142 50 91.5 32 1,191 0.42 769 272

155

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

90 90 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 16.3 13.5 33.2 77 31 63.9 23 609 0.25 506 181 Census Region and Division Northeast 8.9 6.4 19.3 121 40 87.7 32 950 0.32 690 253 New England 2.5 2.1 5.9 121 43 99.0 39 956 0.34 784 307 Middle Atlantic 6.3 4.4 13.4 121 39 83.2 30 947 0.31 652 234

156

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

97 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and Division Northeast 19.7 15.1 34.6 32 14 25.0 10 1,130 0.49 863 345 New England 5.3 4.2 9.3 31 14 24.0 9 1,081 0.49 854 336 Middle Atlantic 14.4 10.9 25.3 33 14 25.0 10 1,149 0.49 867 349

157

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 14.6 11.0 28.9 116 44 87.9 32 1,032 0.39 781 283 Census Region and Division Northeast 8.9 5.9 18.0 158 51 103.5 36 1,405 0.46 923 323 New England 2.4 1.7 5.1 148 50 105.3 36 1,332 0.45 946 327 Middle Atlantic 6.5 4.1 12.8 161 52 102.9 36 1,435 0.46 915 322

158

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.4 11.6 29.7 131 51 99.0 36 1,053 0.41 795 287 Census Region and Division Northeast 9.2 6.0 18.2 176 59 116.2 42 1,419 0.47 934 335 New England 2.7 2.0 6.0 161 53 118.3 42 1,297 0.43 954 336 Middle Atlantic 6.5 4.1 12.2 184 61 115.3 42 1,478 0.49 926 335

159

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division Northeast 17.9 12.1 35.1 33 11 22.1 8 830 0.29 561 195 New England 4.3 2.9 8.3 31 11 21.3 8 776 0.27 531 189 Middle Atlantic 13.7 9.2 26.7 33 11 22.4 8 847 0.29 571 197

160

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, 1997 Natural Gas, 1997 Average Natural Gas Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 61.9 51.3 106.1 103 50 85.3 32 698 0.34 579 218 Census Region and Division Northeast 11.8 8.3 19.9 123 52 86.9 35 1,097 0.46 772 310 New England 1.9 1.4 3.3 123 50 87.0 32 1,158 0.48 819 301 Middle Atlantic 9.9 6.9 16.6 124 52 86.9 36 1,085 0.45 763 312

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.4 181.2 43 18 34.0 13 1,061 0.45 840 321 Census Region and Division Northeast 19.5 13.8 40.1 34 12 24.1 9 1,144 0.39 809 309 New England 5.1 3.7 10.6 33 11 24.1 9 1,089 0.38 797 311 Middle Atlantic 14.4 10.1 29.4 35 12 24.2 9 1,165 0.40 814 309

162

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.2 11.0 23.2 97 46 81.1 31 694 0.33 578 224 Census Region and Division Northeast 8.2 6.2 14.5 136 57 101.3 40 950 0.40 710 282 New England 3.1 2.7 5.8 126 60 111.5 45 902 0.43 797 321 Middle Atlantic 5.2 3.4 8.8 143 56 95.1 38 988 0.39 657 260

163

Infiltration and Natural Ventilation Model for Whole-Building Energy Simulation of Residential Buildings: Preprint  

DOE Green Energy (OSTI)

The infiltration term in the building energy balance equation is one of the least understood and most difficult to model. For many residential buildings, which have an energy performance dominated by the envelope, it can be one of the most important terms. There are numerous airflow models; however, these are not combined with whole-building energy simulation programs that are in common use in North America. This paper describes a simple multizone nodal airflow model integrated with the SUNREL whole-building energy simulation program.

Deru, M.; Burns, P.

2003-03-01T23:59:59.000Z

164

Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas  

E-Print Network (OSTI)

: Based on the existing residential buildings in cold areas, this paper takes the existing residential buildings in a certain district in Beijing to provide an analysis of the thermal characteristics of envelope and energy consumption in winter with the software PKPM, and provides the technical and economic analysis, which may provide reference for suitable plans for energy efficient reconstruction of buildings in cold areas.

Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

2006-01-01T23:59:59.000Z

165

Potential for energy technologies in residential and commercial buildings  

SciTech Connect

The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

Glesk, M.M.

1979-11-01T23:59:59.000Z

166

Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an  

E-Print Network (OSTI)

Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy consumption structure and building conditions, living customs, family income, and thermal environment, as well as local climatic conditions, etc., is analyzed. Measures to optimize the energy utilization consumption are proposed, and further improvements to the energy efficiency of current residential buildings is also discussed.

Ma, B.; Yan, Z.; Gui, Z.; He, J.

2006-01-01T23:59:59.000Z

167

Assessment of photovoltaic application on a residential building in Gävle, Sweden.  

E-Print Network (OSTI)

?? The paper presents a PV-based electricity generation system of residential building located at Norra Fiskargatan in Gävle, Sweden, and aims to examine the environmental… (more)

Wang, Kangkang

2013-01-01T23:59:59.000Z

168

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Study: Window % of Consumption 1. Categorize component loads

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

169

Simulering av energieffektiviserande ĺtgärder för smĺ- och flerbostadshus; Simulation of energy efficiently measures for residential buildings.  

E-Print Network (OSTI)

?? The purpose of this project was to evaluate how energy efficiently some of JM’s residential buildings can become in standard production. What kind of… (more)

Jakobsson, Niklas

2007-01-01T23:59:59.000Z

170

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

171

Investigation of Peak Load Reduction Strategies in Residential Buildings in Cooling Dominated Climates.  

E-Print Network (OSTI)

??This investigation of peak load reduction strategies in residential buildings contributes to the global international efforts in reducing energy consumption and is related directly to… (more)

Atallah, Fady

2013-01-01T23:59:59.000Z

172

Impacts of the 2009 IECC for Residential Buildings at State Level - Michigan  

NLE Websites -- All DOE Office Websites (Extended Search)

Michigan Michigan September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MICHIGAN BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MICHIGAN Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Michigan Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2003 IRC with considerable amendments. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in

173

Impacts of the 2009 IECC for Residential Buildings at State Level - Missouri  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri Missouri September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MISSOURI BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MISSOURI Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Missouri Summary Missouri currently does not have a mandatory energy efficiency code. The 2009 International Energy Conservation Code (IECC) would substantially improve energy efficiency in Missouri homes. A limited analysis of the impact of the 2009 IECC resulted in estimated savings of $353 to $565 a year for an average

174

Impacts of the 2009 IECC for Residential Buildings at State Level - Texas  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Texas September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN TEXAS BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN TEXAS Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Texas Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2001 IECC Supplement. The most notable changes are improved duct sealing and efficient lighting requirements. An energy analysis comparing the 2009 IECC to the state code

175

Impacts of the 2009 IECC for Residential Buildings at State Level - Nebraska  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Nebraska September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEBRASKA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEBRASKA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Nebraska Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2003 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $236 a year

176

Impacts of the 2009 IECC for Residential Buildings at State Level - Utah  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah Utah September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN UTAH BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN UTAH Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $219 to

177

Impacts of the 2009 IECC for Residential Buildings at State Level - Mississippi  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi Mississippi September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MISSISSIPPI BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MISSISSIPPI Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Mississippi Summary Mississippi currently does not have a mandatory energy efficiency code. The 2009 International Energy Conservation Code (IECC) would substantially improve energy efficiency in Mississippi homes. A limited analysis of the impact of the 2009 IECC resulted in estimated savings of $173 to $250 a year for an average

178

Impacts of the 2009 IECC for Residential Buildings at State Level - Nevada  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada Nevada September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEVADA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEVADA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Nevada Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $205 to

179

Impacts of the 2009 IECC for Residential Buildings at State Level - Virginia  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN VIRGINIA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN VIRGINIA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Virginia Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IRC and IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of

180

Impacts of the 2009 IECC for Residential Buildings at State Level - New York  

NLE Websites -- All DOE Office Websites (Extended Search)

York York September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW YORK BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW YORK Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in New York Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2004 IECC Supplement with amendments. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Impacts of the 2009 IECC for Residential Buildings at State Level - New Jersey  

NLE Websites -- All DOE Office Websites (Extended Search)

Jersey Jersey September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW JERSEY BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW JERSEY Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in New Jersey Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IECC with extensive amendments. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in

182

Impacts of the 2009 IECC for Residential Buildings at State Level - Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ALASKA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ALASKA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Alaska Summary The 2009 International Energy Conservation Code (IECC) contains several improvements in energy efficiency over the current state code, the 2006 IECC with amendments. The most notable changes are improved duct sealing and efficient lighting requirements. A comparison of the overall impacts on energy use for these two

183

Impacts of the 2009 IECC for Residential Buildings at State Level - Iowa  

NLE Websites -- All DOE Office Websites (Extended Search)

Iowa Iowa September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN IOWA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN IOWA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Iowa Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $245 to

184

Impacts of the 2009 IECC for Residential Buildings at State Level - Oklahoma  

NLE Websites -- All DOE Office Websites (Extended Search)

Oklahoma Oklahoma September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN OKLAHOMA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN OKLAHOMA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Oklahoma Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2003 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $266 to

185

Impacts of the 2009 IECC for Residential Buildings at State Level - Tennessee  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee Tennessee September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN TENNESSEE BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN TENNESSEE Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Tennessee Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2003 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $231 to

186

Impacts of the 2009 IECC for Residential Buildings at State Level - Rhode Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN RHODE ISLAND BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN RHODE ISLAND Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Rhode Island Summary Rhode Island has adopted the 2009 International Energy Conservation Code (IECC). Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above- grade intended for permanent living (hotel/motel is not "residential"). The code applies to new buildings and

187

Impacts of the 2009 IECC for Residential Buildings at State Level - Illinois  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois Illinois September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ILLINOIS BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ILLINOIS Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Illinois Summary Illinois recently adopted the 2009 International Energy Conservation Code (IECC). Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above- grade intended for permanent living (hotel/motel is not "residential"). The code applies to new buildings and

188

Energy Efficient Residential Building Code for Arab Countries  

E-Print Network (OSTI)

This paper presents an energy analysis to support the Egyptian efforts to develop a New Energy Code for New Residential Buildings in the Arab Countries. Also, the paper represents a brief summary of the code contents specially, the effectiveness of building envelope and weather data in reducing electrical energy consumption. The impacts of the following parameters were studied namely; walls and roof constructions, window size and glazing type for different geographical locations in the Arab Countries. Two different distinguish weather classification were developed and analyzed and presented in this study, the DDC18.3& DDH 25. The first was developed by the Author to calculate DD using a mathematical model on electronic spread sheet. The second depends on the hourly values for each geographical location. The analysis includes the capitals and major cities representing most of the Arab countries. It was determined that the window to wall ratio (WWR) of 15% minimizes the total annual electricity use for the buildings. The Solar Factors (SF) and Window Orientation Factors (OF) were calculated for the eight wall orientations. The Over All Transfer Value (OTTV) was calculated for each orientation for different variables, e.g. WWR, Glazing Type, Shading, wall color and mid and top floor. The results show that the mass and types of building materials; WWR (15%), glass type and shutters; orientation; wall insulation (25mm), wall solar absorptivity (a=.3); roof insulation and shading effect enhance the thermal performance and reduces the cooling load by 60%.

Hanna, G. B.

2010-01-01T23:59:59.000Z

189

Energy Use and Indoor Thermal Environment of Residential Buildings in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use and Indoor Thermal Environment of Residential Buildings in China Energy Use and Indoor Thermal Environment of Residential Buildings in China Speaker(s): Hiroshi Yoshino Date: December 16, 2003 - 12:00pm Location: 90-3122 The first part of this talk will deal with the project on Energy Consumption and Indoor Environment Problems of Residential Buildings in China, organized by the Architectural Institute of Japan. Prof. Yoshino will discuss the results of project elements, including: 1) Literature survey and field investigation on energy consumption and indoor environment of residential buildings, 2) Compilation of weather data for building design based on observed data in China, 3) Literature survey and field investigation on energy consumption and indoor environment of residential buildings, 4) Estimation and verification of the effects of various

190

EMPS-2.1 Computer Program for Residential Building Energy Analysis, Engineering Manual  

Science Conference Proceedings (OSTI)

Evaluating the projected energy efficiency of residential building designs and equipment options requires a sophisticated analytic methodology. Techniques described in this manual analyze building thermal loads, heating and cooling systems, water heaters, and life-cycle costs and electric rates.

1988-02-08T23:59:59.000Z

191

AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL BUILDINGS  

E-Print Network (OSTI)

1 AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL homes energy efficient through Title 24 Part 6 Building Energy Efficiency Standards (Standards for Energy Efficiency in Existing Buildings (AB 549 Report), the Energy Commission made a series

192

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

1 1 Carbon Dioxide Emissions for U.S. Residential Buildings, by Year (Million Metric Tons) (1) Residential U.S. Site Res.% Res.% Fossil Electricity Total Total of Total U.S. of Total Global 1980 385 525 909 4723 19% 4.9% 1981 361 518 878 4601 19% 4.8% 1982 359 511 870 4357 20% 4.8% 1983 340 525 865 4332 20% 4.7% 1984 349 535 883 4561 19% 4.6% 1985 351 549 901 4559 20% 4.6% 1986 343 551 894 4564 20% 4.5% 1987 346 574 920 4714 20% 4.5% 1988 367 603 970 4939 20% 4.6% 1989 374 606 980 4983 20% 4.6% 1990 340 624 963 5039 19% 4.5% 1991 347 633 980 4996 20% 4.6% 1992 357 624 981 5093 19% 4.6% 1993 372 667 1040 5185 20% 4.8% 1994 364 668 1032 5258 20% 4.7% 1995 361 678 1039 5314 20% 4.7% 1996 389 710 1099 5501 20% 4.9% 1997 371 719 1090 5575 20% 4.7% 1998 339 759 1097 5622 20% 4.8% 1999 360 762 1122 5682 20% 4.8% 2000 380 805 1185 5867 20% 5.0% 2001 367 805 1172 5759 20% 4.9% 2002 368 835 1204 5809 21% 4.9% 2003 383 847 1230

193

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 107.0 85.2 211.3 116 47 92.2 36 1,875 0.76 1,493 583 Census Region and Division Northeast 20.3 14.1 43.7 153 49 106.6 44 2,501 0.81 1,741 715 New England 5.4 4.1 13.2 152 47 115.3 48 2,403 0.75 1,825 768 Middle Atlantic 14.8 10.0 30.5 154 50 103.4 42 2,541 0.83 1,710 696

194

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.5 181.2 131 55 103.6 40 1,620 0.68 1,282 491 Census Region and Division Northeast 19.5 13.8 40.1 173 60 122.4 47 2,157 0.74 1,526 583 New England 5.1 3.7 10.6 168 59 123.1 48 2,094 0.73 1,532 598 Middle Atlantic 14.4 10.1 29.4 175 60 122.1 46 2,180 0.75 1,523 578

195

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (millionBtu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.1 66.1 144.2 141 64 111.7 40 1,256 0.58 998 356 Census Region and Division Northeast 17.9 12.1 35.1 194 67 131.6 46 2,016 0.70 1,365 475 New England 4.3 2.9 8.3 181 63 123.9 44 2,018 0.71 1,384 492 Middle Atlantic 13.7 9.2 26.7 199 68 134.0 46 2,016 0.69 1,359 470

196

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per per per per Total Total Floorspace per Square per Household per Square per Household Households Number (billion Building Foot Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) (million Btu) (thousand Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 81.6 65.4 142.5 143 65 114.1 41 1,156 0.53 926 330 Census Region and Division Northeast 17.7 12.3 34.8 199 70 138.3 49 1,874 0.66 1,301 459 New England 4.3 2.9 8.9 197 65 134.4 47 1,964 0.65 1,341 466 Middle Atlantic 13.4 9.3 26.0 200 72 139.5 49 1,846 0.66 1,288 456

197

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census Region and Division Northeast 19.2 13.9 40.3 165 57 119.6 45 2,034 0.70 1,471 556 New England 4.5 3.2 9.3 164 56 113.9 45 2,023 0.69 1,408 562 Middle Atlantic 14.7 10.7 31.1 166 57 121.3 45 2,037 0.70 1,491 555

198

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.8 66.1 142.2 130 60 102.3 37 1,309 0.61 1,033 377 Census Region and Division Northeast 18.0 12.5 34.4 175 64 121.7 44 1,942 0.71 1,353 490 New England 4.2 3.0 9.1 173 56 121.9 43 1,991 0.65 1,402 498 Middle Atlantic 13.7 9.5 25.2 175 66 121.7 44 1,926 0.73 1,338 487

199

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census Region and Division Northeast 19.2 13.9 40.3 165 57 119.6 45 2,038 0.70 1,471 556 New England 4.5 3.2 9.3 164 56 113.9 45 2,028 0.69 1,408 562 Middle Atlantic 14.7 10.7 31.1 166 57 121.3 45 2,041 0.70 1,491 555

200

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space(2) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 101.5 83.2 168.8 123 61 101.0 39 1,633 0.80 1,338 517 Census Region and Division Northeast 19.7 15.1 34.6 158 69 121.0 48 2,153 0.94 1,644 658 New England 5.3 4.2 9.3 156 70 123.0 48 2,085 0.94 1,647 648 Middle Atlantic 14.4 10.9 25.3 159 68 120.0 48 2,179 0.94 1,643 662

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The evaluation of retrofit measures in a tall residential building  

SciTech Connect

As part of a joint demonstration effort involving the US Department of Energy (DOE), the US Department of Housing and Urban Development (HUD), Boston Edison Company (BECo), and the Chelsea Housing Authority, Oak Ridge National Laboratory (ORNL) participated in the evaluation of energy and demand saving retrofits for a tall residential building located in Boston. The thirteen story all-electric building underwent window, lighting, and control renovations in December, 1992. annual energy consumption was reduced by 15% and peak demand fell by 17%. Hourly should building consumption data were available for the comparison of pre- and post- conditions and for calibration of a DOE-2.1D simulation model. The analysis found the window retrofit accounted for 90% of total energy savings and 95% of average demand savings, due to reductions in both conduction and infiltration. Benefits from lighting retrofits were low in cooling months and negligible in winter months due to the increase in the demand for electric resistance heating which was proportional to the reduction in lighting capacity. Finally, the simulation model verified that heating system controls had not been used as intended, and that the utility rate structure would not allow cost savings from the original control strategy. These results and other interesting lessons learned are presented.

Abraham, M.M.; McLain, H.A.

1995-07-01T23:59:59.000Z

202

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 86.3 67.5 144.4 134 63 104.7 39 1,437 0.67 1,123 417 Census Region and Division Northeast 18.3 13.0 35.0 176 65 125.2 46 2,033 0.75 1,443 533 New England 4.3 3.1 9.0 174 61 127.6 46 2,010 0.70 1,471 527 Middle Atlantic 14.0 9.9 26.0 177 67 124.5 46 2,040 0.77 1,435 535

203

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 90.5 70.4 156.8 130 58 100.8 39 1,388 0.62 1,080 416 Census Region and Division Northeast 19.0 13.2 36.8 179 64 124.4 48 1,836 0.66 1,276 494 New England 4.3 3.0 8.4 174 61 121.0 47 1,753 0.62 1,222 475 Middle Atlantic 14.8 10.3 28.4 181 65 125.4 48 1,860 0.67 1,292 499

204

Building and occupant characteristics as determinants of residential energy consumption  

Science Conference Proceedings (OSTI)

The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation.

Nieves, L.A.; Nieves, A.L.

1981-10-01T23:59:59.000Z

205

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 Cost of a Generic Quad Used in the Residential Sector ($2010 Billion) (1) Residential 1980 10.45 1981 11.20 1982 11.58 1983 11.85 1984 11.65 1985 11.43 1986 10.90 1987 10.55 1988 10.18 1989 9.98 1990 10.12 1991 9.94 1992 9.78 1993 9.77 1994 9.78 1995 9.44 1996 9.44 1997 9.59 1998 9.23 1999 8.97 2000 9.57 2001 10.24 2002 9.33 2003 10.00 2004 10.32 2005 11.10 2006 11.60 2007 11.61 2008 12.29 2009 11.65 2010 9.98 2011 9.99 2012 9.87 2013 9.77 2014 9.76 2015 9.88 2016 9.85 2017 9.83 2018 9.86 2019 9.88 2020 9.91 2021 10.00 2022 10.09 2023 10.11 2024 10.12 2025 10.09 2026 10.10 2027 10.13 2028 10.11 2029 10.06 2030 10.06 2031 10.13 2032 10.23 2033 10.34 2034 10.45 2035 10.57 Note(s): 1) See Table 1.5.1 for generic quad definition. This table provides the consumer cost of a generic quad in the buildings sector. Use this table to estimate the average consumer cost savings resulting from the savings of a generic (primary) quad in the buildings sector. 2) Price of

206

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

7 7 2009 Methane Emissions for U.S. Residential Buildings Energy Production, by Fuel Type Fuel Type Petroleum 1.0 Natural Gas 38.8 Coal 0.0 Wood 2.6 Electricity (2) 51.6 Total 94.0 Note(s): Source(s): MMT CO2 Equivalent (1) 1) Sources of emissions include oil and gas production, processing, and distribution; coal mining; and utility and site combustion. Carbon Dioxide equivalent units are calculated by converting methane emissions to carbon dioxide emissions (methane's global warming potential is 23 times that of carbon dioxide). 2) Emissions of electricity generators attributable to the buildings sector. EIA, Emissions of Greenhouse Gases in the U.S. 2009, Mar. 2011, Table 18, p. 37 for energy production emissions; EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009, April 2011, Table 3-10, p. 3-9 for stationary combustion emissions; and EIA, Annual Energy Outlook 2012 Early Release,

207

Building Energy Software Tools Directory: HVAC Residential Load...  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Residential Load Calcs HD for the iPad Carmel Software logo HVAC Residential Load Calcs HD is a comprehensive HVAC heating and cooling load calculation application for the...

208

Assess your starting point | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

to maximize savings. EPA has two tools to help you assess your starting point: Use the Energy Program Assessment Matrix to compare your organization's energy management...

209

Building and occupant characteristics as determinants of residential energy consumption  

Science Conference Proceedings (OSTI)

The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

Nieves, L.A.; Nieves, A.L.

1981-10-01T23:59:59.000Z

210

Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies  

SciTech Connect

This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

2010-08-01T23:59:59.000Z

211

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

Square footage includes attic, garage, and basement square footage. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. Share of Average Home Size (1) Average Home Size...

212

City of Portland - Streamlined Building Permits for Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Residential Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating Program Information Oregon Program Type SolarWind Permitting Standards The...

213

Detecting sources of heat loss in residential buildings from infrared imaging  

E-Print Network (OSTI)

Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

Shao, Emily Chen

2011-01-01T23:59:59.000Z

214

Building-Integrated Photovoltaics (BIPV) in the Residential Section: An Analysis of Installed Rooftop Prices (Presentation)  

DOE Green Energy (OSTI)

This powerpoint presentation to be presented at the World Renewable Energy Forum on May 17, 2012, in Denver, CO, discusses building-integrated photovoltaics (BIPV) in the residential section and includes an analysis of installed rooftop prices.

James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

2012-06-01T23:59:59.000Z

215

An Overview of Residential Ventilation Activities in the Building America Program (Phase I)  

DOE Green Energy (OSTI)

This report provides an overview of issues involved in residential ventilation; provides an overview of the various ventilation strategies being evaluated by the five teams, or consortia, currently involved in the Building America Program; and identifies unresolved technical issues.

Barley, D.

2001-05-21T23:59:59.000Z

216

Impacts of the 2009 IECC for Residential Buildings at State Level - West Virginia  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia West Virginia September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN WEST VIRGINIA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN WEST VIRGINIA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in West Virginia Summary West Virginia is proceeding with adoption of the 2009 International Energy Conservation Code (IECC) through the State Fire Commission. No energy analysis was conducted here comparing the current West Virginia code to the 2009 IECC for this reason. However, the West Virginia energy code has been one of the weaker codes in

217

Impacts of the 2009 IECC for Residential Buildings at State Level - Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas Kansas September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN KANSAS BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN KANSAS Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Kansas Summary Kansas currently does not have a mandatory energy efficiency code. The 2009 International Energy Conservation Code (IECC) would substantially improve energy efficiency in Kansas homes. A limited analysis of the impact of the 2009 IECC resulted in estimated savings of $355 to $582 a year for an average new house

218

Impacts of the 2009 IECC for Residential Buildings at State Level - New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

Mexico Mexico September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW MEXICO BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW MEXICO Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in New Mexico Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $216 to

219

Impacts of the 2009 IECC for Residential Buildings at State Level - South Dakota  

NLE Websites -- All DOE Office Websites (Extended Search)

South Dakota South Dakota September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN SOUTH DAKOTA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN SOUTH DAKOTA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in South Dakota Summary South Dakota currently does not have a mandatory energy efficiency code. The 2009 International Energy Conservation Code (IECC) would substantially improve energy efficiency in South Dakota homes. A limited analysis of the impact of the 2009 IECC resulted in estimated savings of $383 to $427 a year for an average

220

Impacts of the 2009 IECC for Residential Buildings at State Level - Arizona  

NLE Websites -- All DOE Office Websites (Extended Search)

Arizona Arizona September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ARIZONA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ARIZONA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Arizona Summary Arizona is a "home rule" state with no mandatory state-wide energy efficiency code. However, many counties and cities have adopted an energy efficiency code, most often the 2006 International Energy Conservation Code (IECC). The 2009 IECC contains several major improvements in energy efficiency over the 2006 IECC. The

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Study of Transient Behavior During Start-Up of Residential Heat Pumps  

E-Print Network (OSTI)

An experimental and analytical study concerned with the transient performance of heat pumps is presented. A series of tests were performed to study and characterize the transient sensible and dehumidification performance of a heat pump in the cooling node. All the tests were conducted according to the ASHRAE Standard (1983). The effects of indoor dry-bulb temperature (72 to 80 F), indoor relative humidity (20 to 67%), outdoor dry-bulb temperature (82 to 100 F), cycling rate (0.8 to 10 cph) and percent ON-time (20 to 95%) on the transient performance (sensible and latent capacity, efficiency and sensible heat ratio) are addressed in this study. The results indicated that part load factor (PLF) can be as low as 0.65 at low percent ON-times and high cycling rates. The combination of low percent ON-times and high cycling rates produced maximum cyclic losses. The dehumidification process usually started between 60 to 150 seconds after start-up depending on the indoor ambient conditions, percent ON-time and cycling rate. The sensible and latent capacity response and part load efficiency of the heat pump increased with an increase in indoor relative humidity. There was a slight increase in PLF with indoor dry-bulb temperature. The outdoor dry-bulb temperature did not have any effect on the transient performance. Based on the functional relationship of PLF and coefficient of degradation (C_D) with the five independent variables a multiple linear regression analysis was performed on the experimental data. The analysis yielded two general equations to predict PLF and C_D. A lumped parameter heat pump transient analysis computer model was developed, which drew upon methodologies from the earlier models by Chi and Didion [1982] and Oak Ridge National Laboratory [1981]. The model was capable of simulating the transient response of a vapor compression air-to-air heat pump commonly used in residential applications. The simulated results were in good agreement with the laboratory results at high percent ON-times (> 20) and high relative humidities (> 45).

Katipamula, Srinivas

1989-12-01T23:59:59.000Z

222

Building Energy Software Tools Directory: Right-Suite Residential for  

NLE Websites -- All DOE Office Websites (Extended Search)

Right-Suite Residential for Windows Right-Suite Residential for Windows Right-Suite Residential for Windows logo. All-in-one HVAC software performs residential loads calculations, duct sizing, energy analysis, equipment selection, cost comparison calculations, and geothermal loop design. Also allows you to design your own custom proposals. Used for system design, for sales representation, and for quotation preparations. Buy only what you need. Unused functions are shipped as demos, so the program can grow with your needs. Keywords residential loads calculations, duct sizing, energy analysis, HVAC equipment selection, system design Validation/Testing N/A Expertise Required Knowledge of general HVAC concepts. High level of computer literacy not required. Users Over 10,000 users of Right-J loads.

223

Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily Residential Buildings Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested: 2011-2012 Applicable Climate Zone(s): Cold humid continental PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $9,000 on average Projected Energy Savings: 10.2% heating savings Chicago's older multifamily housing stock is primarily heated by centrally metered steam or hydronic systems. Often, significant temperature differentials

224

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

4 4 2015 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Space Heating (4) 180.5 34.9 16.6 1.8 53.3 0.6 66.6 301.0 27.4% Space Cooling 0.0 161.1 161.1 14.7% Water Heating 69.6 5.1 3.1 8.2 75.3 153.1 13.9% Lighting 83.7 83.7 7.6% Refrigeration (5) 71.7 71.7 6.5% Electronics (6) 52.0 52.0 4.7% Wet Cleaning (7) 3.2 51.6 54.7 5.0% Cooking 11.5 1.8 1.8 17.9 31.1 2.8% Computers 30.0 30.0 2.7% Other (8) 10.6 10.6 149.3 160.0 14.6% Total 264.7 40.1 32.2 1.8 74.0 0.6 100% Note(s): Source(s): 759.1 1,098.4 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. 2) Includes kerosene

225

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

3 3 2010 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Space Heating (4) 185.5 38.8 18.7 2.2 59.7 0.7 77.6 323.5 26.3% Space Cooling 0.0 210.2 210.2 17.1% Water Heating 68.7 7.1 4.6 11.7 90.4 170.8 13.9% Lighting 126.0 126.0 10.2% Electronics (5) 96.5 96.5 7.8% Refrigeration (6) 80.7 80.7 6.6% Wet Cleaning (7) 2.9 57.8 60.8 4.9% Cooking 11.4 1.9 1.9 42.6 55.9 4.5% Computers 30.5 30.5 2.5% Other (8) 10.2 10.2 36.3 46.5 3.8% Adjust to SEDS (9) 30.1 30.1 2.4% Total 268.5 45.9 35.3 2.2 83.5 0.7 100% Note(s): Source(s): 878.7 1,231.4 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. Carbon emissions

226

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

6 6 2035 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (4) 169.7 22.8 14.1 1.5 38.3 0.5 76.7 285.3 23.1% Water Heating 67.2 2.6 2.1 4.7 84.8 156.7 12.7% Space Cooling 0.0 194.5 194.5 15.7% Electronics (5) 68.1 68.1 5.5% Refrigeration (6) 81.5 81.5 6.6% Lighting 74.3 74.3 6.0% Wet Cleaning (7) 3.5 50.0 53.4 4.3% Cooking 12.2 1.5 1.5 23.2 37.0 3.0% Computers 41.9 41.9 3.4% Other (8) 14.1 14.1 229.6 243.7 19.7% Total 252.7 25.4 31.9 1.5 58.7 0.5 100% Note(s): Source(s): Electricity (3) 924.5 1,236.4 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. 2) Includes kerosene

227

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

5 5 2025 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Space Heating (4) 173.9 27.9 15.2 1.6 44.7 0.6 73.2 292.3 25.1% Space Cooling 0.0 177.2 177.2 15.2% Water Heating 70.2 3.5 2.5 6.0 83.7 159.9 13.8% Lighting 74.1 74.1 6.4% Refrigeration (5) 75.8 75.8 6.5% Electronics (6) 58.7 58.7 5.1% Wet Cleaning (7) 3.3 47.9 51.2 4.4% Cooking 11.7 1.6 1.6 20.8 34.2 2.9% Computers 37.6 37.6 3.2% Other (8) 12.4 12.4 189.1 201.5 17.3% Total 259.1 31.3 31.8 1.6 64.7 0.6 100% Note(s): Source(s): 838.1 1,162.5 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. 2) Includes kerosene

228

Investigation of "Sick" Residential and Workplace Buildings using a  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of "Sick" Residential and Workplace Buildings using a Investigation of "Sick" Residential and Workplace Buildings using a Computerized/Web-Based Occupant Health Survey Instrument Speaker(s): James Craner Date: September 15, 2005 - 12:00pm Location: Bldg. 90 Epidemiological investigation of occupants of a residential or non-industrial workplace building (or building complex) is a well-established, public health method used to identify and measure the nature, distribution, and cause of occupational or environmental illness related to indoor air quality (IAQ) problems or concerns. Such an investigation is particularly useful where disease-exposure associations have not been clearly established and multiple environmental and human factors may be implicated or considered. --The "sick building syndrome"

229

City of Portland - Streamlined Building Permits for Residential Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Oregon Program Type Solar/Wind Permitting Standards Provider City of Portland The City of Portland's Bureau of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process, solar contractors can submit the project plans and permit application online for residential installations. In order to file the online application, the contractor must first be trained. The City of Portland has staff at the permitting desk trained as solar experts to assist solar contractors who need help filing their permits in person. This process has a turnaround time of

230

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Types of Lights > Lit Floorspace In Lit Buildings Types of Lights > Lit Floorspace In Lit Buildings Lit Floorspace in Lit Buildings To analyze the use of different kinds of lighting equipment with data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), building floorspace can be described in three different ways: total floorspace in all buildings; total floorspace in lit buildings; and total lit floorspace in buildings. The latter two measures of floorspace with lighting differ because not all of the floorspace in lit buildings is illuminated (see Table 1): Table 1: Floorspace Denominators Used To Analyze Lighting Equipment Usage (Million Square Feet) 1995 CBECS Total Floorspace in All Buildings: 58, 772 1995 CBECS Total Floorspace in Lit Buildings: 56, 261 1995 CBECS Total Lit Floorspace in Buildings: 50, 303

231

Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices  

DOE Green Energy (OSTI)

For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

2011-11-01T23:59:59.000Z

232

BTS fact sheet: Ryan Homes and the Consortium for Advanced Residential Buildings  

SciTech Connect

Through Building America's unique collaboration process, Ryan Homes, the US Department of Energy, the National Renewable Energy Laboratory, and the Consortium for Advanced Residential Buildings worked together to identify ways to incorporate money-saving energy features throughout the Carborne house.

1999-05-07T23:59:59.000Z

233

SPP sales flyer for residential home builders | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

residential home builders residential home builders Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

234

The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership  

SciTech Connect

This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

2010-12-31T23:59:59.000Z

235

The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership  

SciTech Connect

This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

2010-12-31T23:59:59.000Z

236

Residential Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Performance: guidelines, analysis and measurements of window and skylight performance Windows in residential buildings consume approximately 2% of all the energy used...

237

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

to 1,499 24% 1,500 to 1,999 16% 2,000 to 2,499 9% 2,500 to 2,999 7% 3,000 or more 11% Total 100% Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC1-3....

238

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

6.9% 5 or more units 2.1% 13.0% 15.0% Mobile Homes 5.1% 1.1% 6.2% Total 70.3% 29.6% 100% Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC3-1 and HC4...

239

The Temperature Sensitivity of the Residential Load and Commercial Building Load  

SciTech Connect

This paper presents a building modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building heating and cooling load in 10 major cities across the Western United States and Canada. A building simulation software are first used to quantify the hourly energy consumption of different building types by end-use and by vintage. Then, the temperature sensitivities are derived based on the climate data inputs.

Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Correia, James; Leung, Lai R.; Wong, Pak C.

2009-07-26T23:59:59.000Z

240

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand and annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.

Konopacki, S.; Akbari, H.; Gartland, L. [and others

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Application and Design of Residential Building Energy Saving in Cold Climates  

E-Print Network (OSTI)

Climate is the one of main considerations for residential building design since the green and energy saving building has become the trend in the building industry. China is actively popularizing high energy-effective and environment harmonious buildings that integrate new techniques, new materials and new equipment. It is absolutely essential to summarize and demonstrate the application of energy-saving building in cold climates for the sake of a favorable economy and directions in the modern building industry. This paper discusses the cold climate features in China vis-ŕ-vis the residential building layout, construction, building materials, envelope and cost from the aspects of environmental optimization and energy efficiency. The investigation combines indoor microclimates in order to decrease the building life cycle energy consumption. The air wall technology is studied for adoption of cold climate features. The research results through a National Demonstration Building Project (NDBP) show that the exterior wall total heat transfer coefficient is K=0.3w/(m2.k). Moreover, this four-layer dual heat-preservation exterior wall has more conformability and higher energy efficiency. It is completely successful for energy saving building project NDBP that deserves generalization because of adoption of cold climates features. The application of energy saving buildings can achieve social, environmental and economical benefits.

Li, Z.; Li, D.; Mei, S.; Zhang, G.; Liu, J.

2006-01-01T23:59:59.000Z

242

Potential Job Creation as a Result of Adopting New Residential Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential Job Creation as a Result of Adopting New Residential Building Potential Job Creation as a Result of Adopting New Residential Building Energy Codes The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. The overall analysis found that transforming the U.S. housing stock through the adoption of more energy-efficient building energy codes could create hundreds of jobs in each of several states. The following reports discuss the analysis and results for four representative states. Minnesota Nevada Rhode Island Tennessee *Please note, these reports have been formatted to facilitate double-sided printing. Contacts Web Site Policies

243

Energy management in residential and small commercial buildings. Annual report, fiscal year 1976  

DOE Green Energy (OSTI)

The goal of the present program is to develop the technical basis for efficient energy use in space heating of residential and small commercial buildings. Efficiency measurements performed on conventional residential oil-fired hot water heating equipment, including both steady state and cyclic (part load) efficiency determinations are described. A list of preliminary recommendations for retrofit actions to improve efficiency is provided. A summary of work carried out in the areas of thermal storage media, fenestration, and building thermal dynamics is also presented.

Batey, J.; Gazerro, V.; Salzano, F.J.; Berlad, A.L.

1976-07-01T23:59:59.000Z

244

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

245

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 for 2005 expenditures; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators.

246

Energy Efficiency Trends in Residential and Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

has grown. Natural gas is the second largest energy source and petroleum (predominantly heating oil) a distant third. Buildings demand for electricity was the principal force...

247

City of Frisco - Residential and Commercial Green Building Codes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Home Ventilation Insulation Program Information Texas Program Type Building Energy Code '''''Note: In the spring on 2012, the city of Frisco was working to update the...

248

The 1992 Pacific Northwest Residential Energy Survey: Phase 1 : Book 1 : Getting Started.  

Science Conference Proceedings (OSTI)

This Executive Summary outlines the general processes employed in and the major findings from the conduct of Phase I of the Pacific Northwest Residential Energy Survey (PNWRES92-I) during the last quarter of 1992. This study was Bonneville`s third comprehensive residential survey of the region, conducted to provide data on energy usage, conservation awareness and behaviors, and associated consumer characteristics for use in forecasting and planning. The summary is divided into four sections: Background sets the stage with respect to the need for the survey, relates it to previous work, outlines the implementation processes, and summarizes the data products. Profiling the respondents summarizes the survey results under these six categories: Demographics; Housing Units; Room Inventory; Appliance Inventory; Air-Conditioning/Heating; Water-Heating; and Opinion. Reports and cross-tabulations describes the various individual documents. Bonneville Power Plus provides a short description of an Excel-spreadsheet-based software program that contains all of the tabulated material in a format that encourages browsing among the tables and charts, with special feature that they can be copied directly into other Windows-based documents.

Applied Management & Planning Group (firm); United States. Bonneville Power Administration. End-Use Research Section.

1993-08-01T23:59:59.000Z

249

Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India  

E-Print Network (OSTI)

For detached residential buildings located in the tropics, it is more challenging and difficult to deal with the space cooling load due to hot and humid climates. In this paper, daily and monthly computer simulations of solar heat gain and cooling load for a detached residential building are carried out using Design Builder software. Different glazing systems ranging from single glazed clear glass to double glaze with electro chromic reflective colored have been analyzed in terms of their impact on solar heat gain and cooling load. The simulation results show reductions in solar heat gain, cooling load and better thermal comfort can be achieved using proper glazing systems for a specific orientation of the building. The significance of these results stems from the fact that they are obtained under local weather conditions, a matter of importance to building architects, designers, contractors, and builders as well as air conditioning equipment manufacturers.

Sahoo, P. K.; Sahoo, R.

2010-01-01T23:59:59.000Z

250

APPLICATION OF DOE-2 TO RESIDENTIAL BUILDING ENERGY PERFORMANCE STANDARDS  

SciTech Connect

One important requirement emerging from national and international efforts to shift from our present energy-intensive way of life to an energy conservation mode is the development of standards for assessing and regulating energy use and performance in buildings. This paper describes a life-cycle-cost approach to Building Energy Performance Standards (BEPS) calculated by using DOE-2: The Energy Use Analysis of Buildings Computer Program. The procedure outlined raises important questions that must be answered before the energy budgets devised from this approach can be reliably used as a policy tool, The DOE-2 program was used to calculate the energy consumption in prototype buildings and in their modified versions in which energy conservation measures were effected. The energy use of a modified building with lowest life-cycle-cost determines the energy budget for all buildings of that type. These calculations were based on a number of assumptions that may be controversial. These assumptions regard accuracy of the model, comparison of the DOE-2 program with other programs, stability of the energy budget, and sensitivity of the results to variations in the building parameters.

Lokmanhekim, M.; Goldstein, D. B.; Levine, M. D.; Rosenfield, A. H.

1980-10-01T23:59:59.000Z

251

Impacts of the 2009 IECC for Residential Buildings at State Level  

NLE Websites -- All DOE Office Websites (Extended Search)

1 DISCLAIMER: The results contained in this report are complete and accurate to the best of BECP's knowledge, based on information available at the time it was written. BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS AT STATE LEVEL V Table of Contents 1.0 Chapter 1 Overview of the 2009 IECC ........................................................................................................ 1 1.1 Introduction .............................................................................................................................................. 1 1.2 Overview of the 2009 IECC ..................................................................................................................... 1

252

Improving the Accuracy of Software-Based Energy Analysis for Residential Buildings (Presentation)  

SciTech Connect

This presentation describes the basic components of software-based energy analysis for residential buildings, explores the concepts of 'error' and 'accuracy' when analysis predictions are compared to measured data, and explains how NREL is working to continuously improve the accuracy of energy analysis methods.

Polly, B.

2011-09-01T23:59:59.000Z

253

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

DOE Green Energy (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

254

Energy Efficiency Trends in Residential and Commercial Buildings Â… August 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Efficiency Trends in Residential and Commercial Buildings August 2010 Prepared by McGraw-Hill Construction for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy OF ENERGY Table of Contents INTRODUCTION 3 EXECUTIVE SUMMARY 4 Chapter One DRIVERS OF ENERGY USE IN BUILDINGS 5 Chapter Two PROFILES OF BUILDING-SECTOR ENERGY USE 13 Chapter Three PATTERNS OF ENERGY-EFFICIENT BUILDING PRODUCT ADOPTION IN COMMERCIAL BUILDING DESIGN 17 Chapter Four INDUSTRY RESEARCH FINDINGS DRIVING ENERGY-EFFICIENT BUILDINGS 25 Chapter Five ENERGY EFFICIENCY STANDARDS, CODES AND INCENTIVES 31 Chapter Six VOLUNTARY PROGRAMS AND LOCAL AND STATE POLICIES FOR GREEN AND ENERGY-EFFICIENT BUILDINGS 38 Chapter Seven RESOURCES FOR MORE INFORMATION 50 Notes and definitions:

255

Energy savings from direct-DC in U.S. residential buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

savings from direct-DC in U.S. residential buildings savings from direct-DC in U.S. residential buildings Title Energy savings from direct-DC in U.S. residential buildings Publication Type Journal Article Year of Publication 2013 Authors Vossos, Vagelis, Karina Garbesi, and Hongxia Shen Journal Energy and Buildings Volume Volume 68, Part A Pagination 223-231 Date Published 09/2013 Keywords Direct current (DC), energy conservation, Photovoltaics (PV), residential buildings Abstract An increasing number of energy-efficient appliances operate on direct current (DC) internally, offering the potential to use DC directly from renewable energy systems, thereby avoiding the energy losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of a 'direct-DC house' compared to that of a typical net-metered house with AC distribution, assuming identical DC-internal loads. The model comparisons were run for 14 cities in the United States, using hourly, simulated PV-system output and residential loads. The model tested the effects of climate and battery storage. A sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect potential energy savings. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate.

256

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

257

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

258

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other (8) 0.0 4.4 4.4 6.7 11.1 4.4% Adjust to SEDS (9) 13.6 13.6 5.4% Total 56.1 13.3 15.2 29.0 0.0 166.8 251.8 100% Note(s): Source(s): 0.5 0.5 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.5 billion). 3) Fan energy use included. 4) Includes residential recreational water heating ($1.4 billion). 5) Includes refrigerators ($15.3 billion) and freezers ($4.4 billion). 6) Includes color televisions ($11.0

259

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015 241.7 2016 241.8 2017 243.0 2018 244.7 2019 246.4 2020 247.9 2021 250.4 2022 253.3 2023 255.6 2024 257.8 2025 260.3 2026 263.2 2027 266.0 2028 267.6 2029 268.1 2030 269.7 2031 272.9 2032 276.6 2033 280.4 2034 284.6 2035 288.6 Note(s): Source(s): 1) Residential petroleum products include distillate fuel oil, LPG, and kerosene. EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table

260

New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market.  

E-Print Network (OSTI)

building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

New Jersey SmartStart Buildings - Direct Install Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey SmartStart Buildings - Direct Install Program New Jersey SmartStart Buildings - Direct Install Program New Jersey SmartStart Buildings - Direct Install Program < Back Eligibility Commercial Industrial Local Government Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Construction Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Lesser of 70% of project costs or $75,000 per project; annual entity cap of $250,000 Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund); ARRA State New Jersey Program Type State Rebate Program Rebate Amount Varies Provider c/o TRC Energy Services The Direct Install program offers turn-key energy efficiency solutions to qualified industrial and commercial customers that, with some exceptions,

262

Field Validation of ICF Residential Building Air-Tightness  

SciTech Connect

Recent advances in home construction methods have made considerable progress in addressing energy savings issues. Certain methods are potentially capable of tightening the building envelope, consequently reducing air leakage and minimizing heating and air conditioning related energy losses. Insulated concrete form (ICF) is an economically viable alternative to traditional woodframe construction. Two homes, one of wood-frame, the other of ICF construction, were studied. Standard air leakage testing procedures were used to compare air tightness characteristics achieved by the two construction types. The ICF home showed consistently lower values for air leakage in these tests. The buildings otherwise provided similar data during testing, suggesting that the difference in values is due to greater airtight integrity of the ICF construction method. Testing on more homes is necessary to be conclusive. However, ICF construction shows promise as a tighter building envelope construction method.

Sacs, I.; Ternes, M.P.

2001-01-01T23:59:59.000Z

263

The Technical and Economical Analysis of the Air-conditioning System Usage in Residential Buildings in Beijing  

E-Print Network (OSTI)

In this paper, we show that the air-conditioning usage in residential buildings in Beijing grows rapidly in relation to the development of civil construction. More and more people are not satisfied with the current style of only using split air-conditioning units in residential buildings, and are using the central air-conditioning system in residential buildings. To determine the best air conditioning mode, a residential tower building with 22 layers was chosen for analysis. The advantages and disadvantages of the central air-conditioning system and the residential multi-unit air-conditioning equipment system and the LiBr absorption chiller were compared based on calculating the first-cost and the annual cost (according to providing cooling 90 days annually). The predicted results show the economical feasibility of using the refrigerating units in air-conditioning systems in Beijing region, and point out the developing directions for the future.

Sheng, G.; Xie, G.

2006-01-01T23:59:59.000Z

264

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings Speaker(s): Steve Taylor Date: April 20, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Steve Taylor, the principal of Taylor Engineering, will be providing an overview of the envelope, lighting, and HVAC requirements of Standard 90.1. Mr. Taylor is a registered mechanical engineer specializing in HVAC system design, control system design, indoor air quality engineering, computerized building energy analysis, and HVAC system commissioning. He graduated from Stanford University with a BS in Physics and a MS in Mechanical Engineering and has over 20 years of commercial HVAC system design and construction experience. He was the primary author of the HVAC

265

Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaps and Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies 2010 Residential Buildings Energy Efficiency Meeting Denver, Colorado - July 20 - 22, 2010 August 2010 Prepared by the National Renewable Energy Laboratory For the U.S. Department of Energy Building Technologies Program NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

266

Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save Energy October 2013 October-November Special Focus: Energy Efficiency, Buildings and the Electric Grid An increasing fraction of the most efficient appliances on the market operate on direct current (DC) internally, making it possible to use DC from renewable energy systems directly and avoid the losses inherent in converting power to alternating current (AC) and back, as is current practice. Products are also emerging on the commercial market that take advantage of that possibility. Lawrence Berkeley National Laboratory researchers Vagelis Vossos, Karina Garbesi, and Hongxia Shen investigated the potential savings of direct-DC power distribution in net-metered residences with on-site photovoltaics

267

Impacts of the 2009 IECC for Residential Buildings at State Level  

SciTech Connect

This report examines the requirements of the 2009 International Energy Conservation Code® (IECC) on residential buildings on a state-by-state basis with a separate, stand-alone chapter for each state. A summary of the requirements of the code is given for each state. The 2009 IECC is then compared to the current state code for most states or typical current construction practice for the states that do not have a residential energy efficiency code. This is the final version of a draft report by the same name that was previously cleared for release (ERICA # PNNL-18545).

Lucas, Robert G.; Cole, Pamala C.

2009-10-01T23:59:59.000Z

268

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a family, an individual, or a group of up to nine unrelated individuals occupying the same housing unit. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part 2; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators. 2,431 847 3% 2,774 909 3% 1,995

269

Steam Balancing and Tuning for Multifamily Residential Buildings in Chicagoland  

SciTech Connect

Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam; system balancing.

Choi, J.; Ludwig, P.; Brand, L.

2012-08-01T23:59:59.000Z

270

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Residential Duct Insulation and Sealing Requirements TOPIC BRIEF 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Insulation and Sealing Requirements TOPIC BRIEF 1 Duct Insulation and Sealing Requirements TOPIC BRIEF 1 Residential Duct Insulation and Sealing Requirements Studies show that duct air leakage results in major energy losses. A ll versions of the International Energy Conservation Code (IECC) require ducts, air handlers, filter boxes, and air cavities used as ducts to be sealed, and reference Chapter 16 of the International Residential Code for details on air sealing. This sealing is required on all ducts and other air distribution components regardless of whether they are located inside or outside the conditioned living space. For single-family homes and other low-rise residential buildings, the 2009 and 2012 IECC have duct insulation and sealing requirements in Section 403.2. Both codes require insulation

271

Building America Top Innovations Hall of Fame Profile Â… National Residential Efficiency Measures Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robust cost data for energy-efficiency Robust cost data for energy-efficiency measures provide an essential framework for transforming the housing industry to high-performance homes. These data allow for effective optimization capabilities to guide builders, researchers, HERS raters, contractors, and designers. Researchers at the U.S. Department of Energy (DOE)'s National Renewable Energy Laboratory (NREL) have developed a public database that characterizes the performance and costs of common residential energy-efficiency measures. The database, called the National Residential Efficiency Measures Database, can be found at www.buildingamerica.gov. The data are available for use in software programs that evaluate cost-effective measures to improve the energy efficiency of new and existing residential buildings.

272

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA, Consumers' Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, Apr. 2002, for water heater capacity; and American Gas Association, Gas Facts 1998, December 1999, www.aga.org for range and clothes dryer consumption. Operating Characteristics of Natural Gas Appliances in the Residential Sector

273

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

SciTech Connect

China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

Zhou, Nan; Nishida, Masaru; Gao, Weijun

2008-12-01T23:59:59.000Z

274

Assessing the impacts of tropical cyclone Tracy on residential building stock – 1974 and  

E-Print Network (OSTI)

Tropical cyclone Tracy (Tracy) remains one of the most destructive natural hazard events in Australia’s history. Growth in the population and size of Darwin since 1974 makes it desirable to know what impact an event similar to Tracy would have on the present day built environment. To assess the impacts in 1974 and the present day, we apply the Tropical Cyclone Risk Model (TCRM) developed at Geoscience Australia. A parametric wind field generated by TCRM is applied to building damage models in an attempt to reproduce the widespread damage to residential structures associated with Tracy in 1974. Employing these models yields a mean damage estimate of 36 per cent of replacement cost across all residential building stock in Darwin — a figure lower than that determined by post-event damage assessments. The unaccounted impact of large windborne debris is one possible explanation for the discrepancy between the observed and simulated damage. Based on the satisfactory replication of the damage associated with the historical impacts of Tracy, the wind field is then applied to the current day residential building database in order to assess the impact of Tracy were it to strike Darwin in 2008. We find that the mean damage to Darwin for the same urban footprint as the 1974 analysis in the present day would be around five per cent. This represents an approximately 90 per cent reduction in the modelled damage, and a significant portion of this reduction can be attributed to building code improvements.

Anthony Schofield; Craig Arthur; Bob Cechet

2008-01-01T23:59:59.000Z

275

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

SciTech Connect

China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

Zhou, Nan; Nishida, Masaru; Gao, Weijun

2008-12-01T23:59:59.000Z

276

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7) 0.0 7.7 7.7 47.9 55.7 19.3% Total 66.0 11.5 17.5 29.6 0.0 193.0 288.6 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.8 billion). 3) Fan energy use included. 4) Includes refrigerators ($14.1 billion) and freezers ($2.9 billion). 5) Includes color televisions ($14.2 billion). 6) Includes clothes washers ($0.8 billion), natural gas

277

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02 2023 4.07 2024 4.10 2025 4.15 2026 4.19 2027 4.23 2028 4.26 2029 4.30 2030 4.34 2031 4.35 2032 4.38 2033 4.43 2034 4.50 2035 4.55 Source(s): EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2, p. 24-25 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A3, p. 6-8 for 2010-2035 and Table G1, p. 215 for fuels' heat content; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

278

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7) 0.0 6.4 6.4 38.7 45.0 17.3% Total 59.1 12.9 16.3 29.8 0.0 171.3 260.3 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.7 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.7 billion) and freezers ($2.8 billion). 5) Includes color televisions ($12 billion). 6) Includes clothes washers ($0.8 billion), natural gas

279

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7) 0.0 5.2 5.2 31.3 36.5 15.1% Total 51.3 14.9 15.7 31.1 0.0 159.3 241.7 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.6 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.3 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9 billion). 6) Includes clothes washers ($1.1 billion), natural gas

280

Background to the development process, Automated Residential Energy Standard (ARES) in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 3  

SciTech Connect

This report documents the development and testing of a set of recommendations generated to serve as a primary basis for the Congressionally-mandated residential standard. This report treats only the residential building recommendations.

1989-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Get started with the benchmarking starter kit | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Get started with the benchmarking starter kit Get started with the benchmarking starter kit Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit Identify your property type Enter data into Portfolio Manager The data quality checker

282

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

Residential Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Avg. 1980 36.40 8.35 16.77 17.64 1981 38.50 8.88 18.35 19.09 1982 40.15 10.08 17.28 19.98 1983 40.43 11.30 16.08 21.00 1984 38.80 11.02 15.61 20.20 1985 38.92 10.68 14.61 20.10 1986 38.24 9.98 11.88 19.38 1987 37.29 9.22 11.23 18.73 1988 36.22 8.80 10.83 18.02 1989 35.67 8.71 11.96 17.93 1990 35.19 8.63 13.27 18.64 1991 34.88 8.38 12.49 18.31 1992 34.79 8.28 11.23 17.76 1993 34.52 8.47 10.75 17.76 1994 34.04 8.63 10.63 17.87 1995 33.43 8.00 10.33 17.50 1996 32.63 8.21 11.70 17.28 1997 32.34 8.83 11.47 17.69 1998 31.33 8.55 9.96 17.73 1999 30.52 8.29 10.13 17.09 2000 30.13 9.54 14.18 18.06 2001 30.71 11.50 13.98 19.38 2002 29.73 9.24 12.26 17.89 2003 30.05 10.87 14.21 18.88 2004 29.98 11.97 15.54 19.76 2005 30.64 13.66 18.93 21.50 2006 32.67 14.30 21.06 23.34 2007 32.50

283

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

3 3 Share of Total U.S. Households, by Census Region, Division, and Vintage, as of 2005 Prior to 1950 to 1970 to 1980 to 1990 to 2000 to Region 1950 1969 1979 1989 1999 2005 Northeast 6.7% 5.2% 2.4% 2.1% 1.3% 0.8% 18.5% New England 2.1% 1.2% 0.5% 0.5% 0.3% 0.3% 4.9% Middle Atlantic 4.6% 4.0% 1.9% 1.6% 1.0% 0.5% 13.6% Midwest 5.7% 5.8% 3.6% 2.5% 3.7% 1.7% 23.0% East North Central 4.3% 3.9% 2.7% 1.8% 2.1% 1.1% 16.0% West North Central 1.4% 1.9% 0.9% 0.7% 1.6% 0.6% 7.1% South 4.0% 6.9% 6.4% 7.5% 7.5% 4.3% 36.6% South Atlantic 2.0% 3.4% 3.5% 4.2% 4.3% 2.2% 17.4% East South Central 0.9% 1.3% 0.9% 1.0% 1.3% 0.7% 6.2% West South Central 1.2% 2.3% 4.7% 2.2% 1.8% 1.4% 13.6% West 3.4% 4.6% 4.5% 4.6% 3.1% 1.5% 21.8% Mountain 0.7% 1.2% 1.3% 1.5% 1.3% 0.9% 6.8% Pacific 2.8% 3.4% 3.3% 3.1% 1.8% 0.6% 15.0% United States 19.9% 22.5% 17.0% 16.7% 15.6% 8.3% 100% Source(s): All Vintages EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC10

284

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Characteristics of a Typical Single-Family Home (1) Year Built | Building Equipment Fuel Age (5) Occupants 3 | Space Heating Natural Gas 12 Floorspace | Water Heating Natural Gas 8 Heated Floorspace (SF) 1,934 | Space Cooling 8 Cooled Floorspace (SF) 1,495 | Garage 2-Car | Stories 1 | Appliances Size Age (5) Foundation Concrete Slab | Refrigerator 19 Cubic Feet 8 Total Rooms (2) 6 | Clothes Dryer Bedrooms 3 | Clothes Washer Other Rooms 3 | Range/Oven Full Bathroom 2 | Microwave Oven Half Bathroom 0 | Dishwasher Windows | Color Televisions 3 Area (3) 222 | Ceiling Fans 3 Number (4) 15 | Computer 2 Type Double-Pane | Printer Insulation: Well or Adequate | Note(s): Source(s): 2-Door Top and Bottom Electric Top-Loading Electric 1) This is a weighted-average house that has combined characteristics of the Nation's stock homes. Although the population of homes with

285

Lighting in Residential and Commercial Buildings (1993 and 1995 data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Light Type Used > Related Goverment Sites Light Type Used > Related Goverment Sites Links to Related Government Sites Publications list from U.S. Department of Energy's Office of Federal Energy Management Programs (FEMP) U.S. Environmental Protection Agency Green Lights Program Updated FLEX 3.0 Lighting software solution available from U.S. Department of Energy's Office of Federal Energy Management Programs Section 3.4 on Lighting and Section 7.2 on Lighting Control can be obtained at this site U.S. Department of Energy's Office of Federal Energy Management Programs lights basic training will be completed in FY '98 Lighting mailing list for exchange of information on lighting issues Lights in commercial buildings in the 21st Century List of major areas of expertise at Lawrence Berkeley National Laboratory, illustrated with specific projects

286

Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building  

E-Print Network (OSTI)

In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy simulation program. The study showed that the heat loss from exterior walls, exterior windows and infiltration took three main parts of the total heat loss. Furthermore, the results of on-site measurement are presented with the conclusion that the EnergyPlus program provides sufficient accuracy for this energy simulation application.

Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

2006-01-01T23:59:59.000Z

287

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

The Feasibility of Small-Scale Residential DC Distributionof a DC microgrid for residential houses. In Transmission &energy storage with PV for residential and commercial use.

Garbesi, Karina

2012-01-01T23:59:59.000Z

288

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

1 1 Total Number of Households and Buildings, Floorspace, and Household Size, by Year 1980 80 N.A. 227 2.9 1981 83 N.A. 229 2.8 1982 84 N.A. 232 2.8 1983 85 N.A. 234 2.8 1984 86 N.A. 236 2.7 1985 88 N.A. 238 2.7 1986 89 N.A. 240 2.7 1987 91 N.A. 242 2.7 1988 92 N.A. 244 2.7 1989 93 N.A. 247 2.6 1990 94 N.A. 250 2.6 1991 95 N.A. 253 2.7 1992 96 N.A. 257 2.7 1993 98 N.A. 260 2.7 1994 99 N.A. 263 2.7 1995 100 N.A. 266 2.7 1996 101 N.A. 269 2.7 1997 102 N.A. 273 2.7 1998 104 N.A. 276 2.7 1999 105 N.A. 279 2.7 2000 106 N.A. 282 2.7 2001 107 2% 285 2.7 2002 105 3% 288 2.7 2003 106 5% 290 2.8 2004 107 7% 293 2.7 2005 109 9% 296 2.7 2006 110 11% 299 2.7 2007 110 12% 302 2.7 2008 111 13% 304 2.8 2009 111 13% 307 2.8 2010 114 14% 310 2.7 2011 115 14% 313 2.7 2012 116 15% 316 2.7 2013 117 16% 319 2.7 2014 118 17% 322 2.7 2015 119 18% 326 2.7 2016 120 19% 329 2.7 2017 122 21% 332 2.7 2018 123 22% 335 2.7 2019 125 23% 338 2.7 2020 126 25% 341 2.7 2021 127 26% 345

289

IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS AT STATE LEVELBUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS AT STATE LEVEL Executive Summary  

E-Print Network (OSTI)

The Building Energy Codes Program (BECP) recently conducted a nationwide residential energy code analysis for the U.S. Department of Energy (DOE). The analysis compares the requirements of the 2009 International Energy Conservation Code ® (IECC) with the residential code—or typical construction practice in the absence of a code—in most states as of June 2009. The results, which include estimated typical energy savings of updating each state’s code to the 2009 IECC, are provided in this report in chapters specific to each state. An overview of the 2009 IECC and its major chapters, as well as a brief comparison to previous versions, is provided as introductory information. The IECC is then briefly compared to the International Residential Code, which contains a chapter with energy efficiency requirements that are very similar to the IECC. Several states have either not adopted a mandatory energy code or developed their own codes which have minimal or no connection to the IECC. The latter—including California, Florida, Oregon, and Washington— were not included in this analysis as the codes in these states would be difficult to appropriately compare to the 2009 IECC and most of these states have energy offices that have already assessed the IECC on their own. Chapter 2 is dedicated to outlining some of the major code differences in the 2009 IECC that are not contained in any previous version of the code, and to which much of the energy savings of the 2009 IECC compared to previous versions is attributable. These energy saving differences are described in further detail in the report,

unknown authors

2009-01-01T23:59:59.000Z

290

Environmental Assessment for Direct Final Rule, 10 CFR 434, ÂŤEnergy Standards for New Federal Commercial and High-Rise Multi-FamilyResidential BuildingsÂŽ and 10 CFR 435, ÂŤEnergy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings"  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposed Rule, 10 CFR 433, Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for the Design and Construction of New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low- Rise Residential Buildings". Section 305(a) of the Energy Conservation and Production

291

Environmental Assessment for Direct Final Rule, 10 CFR 434, ÂŤEnergy Standards for New Federal Commercial and High-Rise Multi-FamilyResidential BuildingsÂŽ and 10 CFR 435, ÂŤEnergy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Rule, 10 CFR 433, Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for the Design and Construction of New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low- Rise Residential Buildings". Section 305(a) of the Energy Conservation and Production

292

Energy and air quality implications of passive stack ventilation in residential buildings  

SciTech Connect

Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

2011-01-01T23:59:59.000Z

293

Building Energy Software Tools Directory: ModEn  

NLE Websites -- All DOE Office Websites (Extended Search)

hierarchy, starting from heat-moisture transfer processes in building envelopes up to HVAC systems of large enterprises, residential and industrial zones. ModEn simulation...

294

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Title Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Publication Type Report LBNL Report Number LBNL-5193E Year of Publication 2011 Authors Garbesi, Karina, Vagelis Vossos, Alan H. Sanstad, and Gabriel Burch Document Number LBNL-5193E Pagination 59 Date Published October Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the 'direct-DC house' with respect to today's typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector-because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation-this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

295

EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AC61)  

Energy.gov (U.S. Department of Energy (DOE))

This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

296

A Spatial Structural and Statistical Approach to Building Classification of Residential Function for City-Scale Impact Assessment Studies  

Science Conference Proceedings (OSTI)

In order to implement robust climate change adaption and mitigation strategies in cities fine spatial scale information on building stock is required. However, for many cities such information is rarely available. In response, we present a methodology ... Keywords: City Spatial Planning and Impact Assessment, Morphological and Spatial Metrics, Multinomial Logistic Regression, Residential Building Classification

Dimitrios P. Triantakonstantis; Stuart L. Barr

2009-07-01T23:59:59.000Z

297

Energy conservation standards for new federal residential buildings: A decision analysis study using relative value discounting  

SciTech Connect

This report presents a reassessment of the proposed standard for energy conservation in new federal residential buildings. The analysis uses the data presented in the report, Economic Analysis: In Support of Interim Energy Conservation Standards for New Federal Residential Buildings (June 1988)-to be referred to as the EASIECS report. The reassessment differs from that report in several respects. In modeling factual information, it uses more recent forecasts of future energy prices and it uses data from the Bureau of the Census in order to estimate the distribution of lifetimes of residential buildings rather than assuming a hypothetical 25-year lifetime. In modeling social preferences decision analysis techniques are used in order to examine issues of public values that often are not included in traditional cost-benefit analyses. The present report concludes that the public would benefit from the proposed standard. Several issues of public values regarding energy use are illustrated with methods to include them in a formal analysis of a proposed energy policy. The first issue places a value on costs and benefits that will occur in the future as an irreversible consequence of current policy choices. This report discusses an alternative method, called relative value discounting which permits flexible discounting of future events-and the possibility of placing greater values on future events. The second issue places a value on the indirect benefits of energy savings so that benefits accrue to everyone rather than only to the person who saves the energy. This report includes non-zero estimates of the indirect benefits. The third issue is how the costs and benefits discussed in a public policy evaluation should be compared. In summary, selection of individual projects with larger benefit to cost ratios leads to a portfolio of projects with the maximum benefit to cost difference. 30 refs., 6 figs., 16 tabs. (JF)

Harvey, C. (Houston Univ., TX (USA). Coll. of Business Administration); Merkhofer, M.M.; Hamm, G.L. (Applied Decision Analysis, Inc., Menlo Park, CA (USA))

1990-07-02T23:59:59.000Z

298

Analyzing the Impact of Residential Building Attributes, Demographic and Behavioral Factors on Natural Gas Usage  

SciTech Connect

This analysis examines the relationship between energy demand and residential building attributes, demographic characteristics, and behavioral variables using the U.S. Department of Energy’s Residential Energy Consumption Survey 2005 microdata. This study investigates the applicability of the smooth backfitting estimator to statistical analysis of residential energy consumption via nonparametric regression. The methodology utilized in the study extends nonparametric additive regression via local linear smooth backfitting to categorical variables. The conventional methods used for analyzing residential energy consumption are econometric modeling and engineering simulations. This study suggests an econometric approach that can be utilized in combination with simulation results. A common weakness of previously used econometric models is a very high likelihood that any suggested parametric relationships will be misspecified. Nonparametric modeling does not have this drawback. Its flexibility allows for uncovering more complex relationships between energy use and the explanatory variables than can possibly be achieved by parametric models. Traditionally, building simulation models overestimated the effects of energy efficiency measures when compared to actual "as-built" observed savings. While focusing on technical efficiency, they do not account for behavioral or market effects. The magnitude of behavioral or market effects may have a substantial influence on the final energy savings resulting from implementation of various energy conservation measures and programs. Moreover, variability in behavioral aspects and user characteristics appears to have a significant impact on total energy consumption. Inaccurate estimates of energy consumption and potential savings also impact investment decisions. The existing modeling literature, whether it relies on parametric specifications or engineering simulation, does not accommodate inclusion of a behavioral component. This study attempts to bridge that gap by analyzing behavioral data and investigate the applicability of additive nonparametric regression to this task. This study evaluates the impact of 31 regressors on residential natural gas usage. The regressors include weather, economic variables, demographic and behavioral characteristics, and building attributes related to energy use. In general, most of the regression results were in line with previous engineering and economic studies in this area. There were, however, some counterintuitive results, particularly with regard to thermostat controls and behaviors. There are a number of possible reasons for these counterintuitive results including the inability to control for regional climate variability due to the data sanitization (to prevent identification of respondents), inaccurate data caused by to self-reporting, and the fact that not all relevant behavioral variables were included in the data set, so we were not able to control for them in the study. The results of this analysis could be used as an in-sample prediction for approximating energy demand of a residential building whose characteristics are described by the regressors in this analysis, but a certain combination of their particular values does not exist in the real world. In addition, this study has potential applications for benefit-cost analysis of residential upgrades and retrofits under a fixed budget, because the results of this study contain information on how natural gas consumption might change once a particular characteristic or attribute is altered. Finally, the results of this study can help establish a relationship between natural gas consumption and changes in behavior of occupants.

Livingston, Olga V.; Cort, Katherine A.

2011-03-03T23:59:59.000Z

299

Residential | OpenEI  

Open Energy Info (EERE)

Residential Residential Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

300

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Assessing the Potential of Developing a Tool for Residential Facility Management Using Building Information Modeling Software  

E-Print Network (OSTI)

Building Information Modeling (BIM) has changed the ways buildings are designed and constructed. Along with design and construction, operation and maintenance of the built facility is also gaining importance in the Architecture-Engineering-Construction industry. Facility management (FM) is widely adopted by industrial, healthcare and other types of commercial facilities for better maintenance and management of assets. BIM is being adopted in the field of Facility management and has become one of the most important tools for better application of operation and maintenance. Facility management is performed by professionals with training and experience in the related fields of building operation, maintenance, upgrade and repair. BIM is a professional tool which requires intense training and knowledge. This tool cannot be used and is hard to understand for non-professionals and people who do not have training to use it. Management of residences is as important as management of commercial, industrial and healthcare facilities for the life and smooth running of such facilities. Residential facilities are properties with one or more residential units or buildings. These buildings could be low rise, high rise or individual units. This thesis will help in analyzing the scope of using BIM and Application Programming Interface (API) for management of maintenance in residences by the owner who are not professionally trained. The research analyzes a single, basic function of a BIM tool to determine the potential for such a tool to help non-expert, first time user to be able to understand their residential facilities maintenance requirements. It is an attempt to propose a system which provides alerts to the owners regarding required maintenance and which shows the location of the work in a 3D model. The system was designed and tested in Microsoft Windows 7 operating system by using Autodesk® Revit building information software to make the 3D model, a Revit API plug-in to craft the alerts and show the location of work and Open Database Connectivity (ODBC) to export the model to a web browser. The system worked through Revit program, but the concept of applying the system to work through web browser failed.

Madhani, Himanshu 1986-

2012-12-01T23:59:59.000Z

302

Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes  

SciTech Connect

Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

Scott, Michael J.; Niemeyer, Jackie M.

2013-09-01T23:59:59.000Z

303

Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes  

Science Conference Proceedings (OSTI)

Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

Scott, Michael J.; Niemeyer, Jackie M.

2013-09-01T23:59:59.000Z

304

Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes  

SciTech Connect

Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

Scott, Michael J.; Niemeyer, Jackie M.

2013-09-01T23:59:59.000Z

305

Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes  

Science Conference Proceedings (OSTI)

Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

Scott, Michael J.; Niemeyer, Jackie M.

2013-09-01T23:59:59.000Z

306

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates  

Science Conference Proceedings (OSTI)

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

2006-08-01T23:59:59.000Z

307

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

308

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per Square Foot (thousand Btu) (1) Per Household (million Btu) Per Household Member (million Btu) 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average

309

Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint  

SciTech Connect

Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

2012-08-01T23:59:59.000Z

310

Renewable Energy and Energy Efficiency Technologies in Residential Building Codes: June 15, 1998 to September 15, 1998  

SciTech Connect

This report is an attempt to describe the building code requirements and impediments to the application of EE and RE technologies in residential buildings. Several modern model building codes were reviewed. These are representative of the codes that will be adopted by most locations in the coming years. The codes reviewed for this report include: International Residential Code, First Draft, April 1998; International Energy Conservation Code, 1998; International Mechanical Code, 1998; International Plumbing Code, 1997; International Fuel Gas Code, 1997; National Electrical Code, 1996. These codes were reviewed as to their application to (1) PV systems in buildings and building-integrated PV systems and (2) active solar domestic hot water and space-heating systems. A discussion of general code issues that impact these technologies is also included. Examples of this are solar access and sustainability.

Wortman, D.; Echo-Hawk, L.

2005-02-01T23:59:59.000Z

311

Measured energy savings from the application of reflective roofsin 2 small non-residential buildings  

SciTech Connect

Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

Akbari, Hashem

2003-01-14T23:59:59.000Z

312

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

residential electricity consumption, a simplified approach was used to determine plausible future penetration rates

Garbesi, Karina

2012-01-01T23:59:59.000Z

313

Assessment of Impacts from Adopting the 2009 International Energy Conservation Code for Residential Buildings in Michigan  

SciTech Connect

Energy and economic analysis comparing the current Michigan residential energy efficiency code to the 2009 IECC.

Lucas, Robert G.

2009-10-18T23:59:59.000Z

314

Saving energy in occupied buildings: results from the Lawrence Berkeley Laboratory residential data bases  

SciTech Connect

This paper summarizes results to date from the residential portion of the Building Energy Use Compilation and Analysis (BECA) project, comprising findings from several hundred studies of new and retrofitted buildings. The following are discussed for both new and retrofitted homes: (1) energy savings and the range of savings for given types of measures; (2) cost and cost-effectiveness of various measures; and (3) methodology. In existing residences, data compiled from roughly 70 retrofit projects, with sample sizes that range from 1 to 33,000 homes, strongly indicate that retrofits often significantly reduce annual space heating energy consumption. But, results are highly variable. The maximum energy savings from individual measures installed in different households are 3 to 7 times greater than the median value. Nineteen conservation programs sponsored by utilities achieved annual space heat savings of 38.5 million Btu at an average investment level of $1050. Twenty-nine of 215 new homes in our BECA-A database have detailed sub-metered data that permits normalization of space heat loads for both indoor temperature and internal gains. In these homes, the standardized heating energy requirement ranges from 10 to 25 kBtu/ft/sup 2/ over various climatic regions, a value that is roughly 50% less than current building practice.

Goldman, C.A.; Wagner, B.S.

1983-09-01T23:59:59.000Z

315

Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing and Improving the Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings B. Polly, N. Kruis, and D. Roberts July 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

316

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

NLE Websites -- All DOE Office Websites (Extended Search)

Window-Related Energy Consumption in the US Window-Related Energy Consumption in the US Residential and Commercial Building Stock Joshua Apte and Dariush Arasteh, Lawrence Berkeley National Laboratory LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate

317

Solar heating and cooling of residential buildings: design of systems, 1980 edition  

SciTech Connect

This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

None

1980-09-01T23:59:59.000Z

318

Methodology for Residential Building Energy Simulations Implemented in the International Code Compliance Calculator (IC3)  

E-Print Network (OSTI)

Since 2001, Texas has been proactive in initiating clean air and energy efficiency in building policies. The Texas Emissions Reduction Plan legislation (SB 5, 77TH Leg., 2001) mandates statewide adoption of energy codes, creates a 5% annual energy savings goal for public facilities in affected counties through 2007 and provides approximately $150 million in cash incentives for clean diesel emissions grants and energy research. The Texas Legislation extended this annual electric reduction goal in public facilities through 2013. Texas was the first state in the nation to create NOx emissions reduction credits for energy efficiency and renewable energy through the State Implementation Plan under the Federal Clean Air Act. This paper presents the methodology for calculating the energy usage from a proposed residential house and the corresponding 2001 International Energy Conservation Code baseline house. This methodology is applied in the International Code Compliance Calculator, which is a publicly accessible web-based energy code compliance software developed by the Energy Systems Laboratory based on the Texas Building Energy Performance Standards. This calculator evaluates and certifies above-code compliance for homes in Texas. It also calculates NOx, SOx and CO2 emissions reductions from the energy savings of the proposed house for the electric utility associated with the user using the data from the Emissions and Generation Resource Integrated Database provided by U.S. Environmental Protection Agency.

Liu, Z.; Mukhopadhyay, J.; Malhotra, M.; Haberl, J.; Gilman, D.; Montgomery, C.; McKelvey, K.; Culp, C.; Yazdani, B.

2008-12-01T23:59:59.000Z

319

Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings  

SciTech Connect

This document serves as the Topical Report documenting the first year of work completed by Washington State University (WSU) under US Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project is being conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser Company, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August, 2002 through October, 2003. WSU's primary experimental role is the design and implementation of a field testing protocol that will monitor long term changes in the hygrothermal response of wall systems. In the first year WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, and installed instrumentation in the test walls. By the end of the contract period described in this document, WSU was recording data from the test wall specimens. The experiment described in this report will continue through December, 2005. Each year a number of reports will be published documenting the hygrothermal response of the test wall systems. Public presentation of the results will be made available to the building industry by industry partners and the University cooperators.

Robert Tichy; Chuck Murray

2003-10-01T23:59:59.000Z

320

Evaluation on Cooling Energy Load with Varied Envelope Design for High-Rise Residential Buildings in Malaysia  

E-Print Network (OSTI)

With the development of the economy in the recent years, Malaysia is maintaining a high economic growth and therefore, its energy consumption increases dramatically. Residential buildings are characterized by being envelope-load dominated buildings, hence are greatly influenced by the outside climatic conditions. Due to the hot humid climate of Malaysia, air conditioning system accounts for more than 45% of the total electricity used in the residential sector which is required to remove substantial amount of gained heat due to poor thermal envelope performance. This paper uses Ecotect software to analyze the impact of building envelope design on energy cooling load for residential building in Penang, Malaysia, which include area ratio of window to floor, exterior wall thermal insulation, and several kinds of shading system. This paper describes an integrated passive design approach to reduce the cooling requirement for high-rise apartments through an improved building envelope design. Comparing with the other passive strategies investigated in this paper, the results indicated that exterior wall thermal insulation is the best strategy to decrease both annual cooling energy load and peak cooling load which achieved a reduction of 10.2% and 26.3% respectively. However, the other passive strategies applied also have some marginal effect on decreasing the cooling load.

Al-Tamimi, N.; Fadzil, S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Draft Environmental Assessment for Direct Final Rule, 10 CFR 434, "Energy Standards for New Federal Commercial and High-Rise High-Rise Multi-FamilyResidential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Re  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Energy "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" Baseline Standards Update (DOE/EA-1871) March 16, 2011 2 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" Baseline Standards Update

322

Recommendations for 2009 IECC 15% Above Code Energy Efficiency Measures for Residential Buildings  

E-Print Network (OSTI)

In the 79th Legislature (2005) the Energy Systems Laboratory was required to develop three alternative methods for achieving 15% above-code energy savings in new residential, commercial and industrial construction. The Laboratory continues to work closely with code officials, energy raters, manufacturers, state officials and other stakeholders to develop cost effective energy efficiency measures. This report presents detailed information about the recommendations for achieving 15% above-code energy performance, which are based on the 2009 International Energy Conservation Code (IECC), for single-family residences across the State of Texas. To estimate above-code savings (%) of energy efficiency measures, total source energy savings from heating, cooling, lighting, equipment, and DHW were considered for emissions reductions determination. The recommendations were developed for three 2009 IECC climate zones in Texas along with simple payback calculations. This information is useful to homebuilders, utility demand side energy managers, homeowners and others who wish to construct residential buildings that exceed the minimum national energy code requirements. The analysis was performed using an ESL simulation model based on the DOE-2.1e simulation of a 2009 IECC code-compliant, single family residence and the appropriate TMY2 weather files for seventeen counties in Texas for which TMY2 data is available. According to 2009 IECC Climate Zone, seventeen counties were categorized into three climate zones: Climate Zone 2, 3, and 4, and the 2009 IECC code-compliance base-case models were constructed for each climate zone. Two options based on the choice of heating fuel type were considered: (a) natural gas (gas-fired furnace for space heating, and gas water heater for domestic water heating), and (b) electricity (heat pump for space heating, and electric water heater for domestic water heating). A total of eighteen measures based on the energy savings above the base-case house were selected. These measures include building envelope and fenestration, HVAC system, domestic hot water (DHW) system, lighting and renewable options. The implementation costs of each individual measure were also calculated along with simple payback calculations. These measures were then combined to achieve the total source energy savings of the group is 15% above the base-case 2009 code-compliant house. As a result, three example combinations were proposed for each base case ((a) electric/gas house and (b) all-electric house) in each climate zone. Each combination was formed to have a different payback period. Finally, the corresponding emissions savings of each combination were calculated based on the eGrid for Texas.

Kim, H.; Liu, Z.; Baltazar, J. C.; Haberl, J.; Culp, C.; Yazdani, B.; Montgomery, C.

2010-11-01T23:59:59.000Z

323

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

324

Sensitivity analysis of window characteristics and their interactions on thermal performance in residential buildings  

E-Print Network (OSTI)

This thesis studies the effects of different window characteristics such as area, conductance and shading on annual energy performance in residential buildings. A single parameter analysis is used to quantify the effect on annual energy due to a change in an individual parameter. However misconceptions about these effects (without regard to the values of the other parameters of the window) lead to predictions that overestimate or underestimate actual savings by neglecting interactions that exist between the parameters. The effect of interactions of two parameter changes is determined in this study using a two parameter analysis technique. This technique uses the difference between changes in annual energy of a parameter at different values of an associated parameter to determine the importance of the interaction effect between the parameters. This interaction effect is used as a measure to determine the important two parameter changes in different orientations for six different climates. The interactions were shown to have significant effects on predicted energy reductions in the six climates studied.

George, Julie N

1996-01-01T23:59:59.000Z

325

Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation  

SciTech Connect

This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

Robertson, J.; Polly, B.; Collis, J.

2013-09-01T23:59:59.000Z

326

Predicting natural ventilation in residential buildings in the context of urban environments  

E-Print Network (OSTI)

Wind Induced Ventila- tion in Shielded Buildings. ” Report, Central Building Research Institute, Roorkee, India.

Sharag-Eldin, A.

1998-01-01T23:59:59.000Z

327

Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Optimizing Hydronic Optimizing Hydronic System Performance in Residential Applications Ithaca, New York PROJECT INFORMATION Project Name: Condensing Boiler Optimization Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, www.ithacanhs.org; Appropriate Designs, www.hydronicpros.com; HTP, www.htproducts.com; Peerless, www.peerlessboilers.com; Grundfos, us.grundfos.com; Bell & Gossett, www.bell-gossett.com; Emerson Swan, www.emersonswan.com. Consortium for Advanced Residential Buildings, www.carb-swa.com Building Component: Space heating, water heating Application: New; single and multifamily Year Tested: 2012-2013 Applicable Climate Zone(s): 4,5,6,7 PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $6,100-$8,200 Projected Energy Savings:

328

Economic analysis in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 6  

Science Conference Proceedings (OSTI)

The objective of this document is to present an analysis of the impacts of the proposed voluntary energy conservation standard fr the construction of new residential buildings. This analysis examines the impacts of having the proposed residential standard apply immediately and, alternatively, having the proposed standard phased in over a five-year period.

NONE

1989-09-01T23:59:59.000Z

329

Environmental assessment in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 7  

SciTech Connect

The objective of this environmental assessment (EA) is to identify the potential environmental impacts that could result from the proposed voluntary residential standard (VOLRES) on private sector construction of new residential buildings. In this report, the scope, objectives, and approach of this EA are presented.

NONE

1989-09-01T23:59:59.000Z

330

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

to Estimate Window % of Space Conditioning Use Original LBNLfactors to estimate space conditioning energy consumptionof Energy, in 2003 space conditioning in residential and

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

331

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

and S.P. Jamieson, DC Microgrids: Benefits and Barriers.of direct-DC and DC microgrids in residential and commercial

Garbesi, Karina

2012-01-01T23:59:59.000Z

332

Combined Heat and Power for Saving Energy and Carbon in Residential Buildings  

E-Print Network (OSTI)

This section describes four micro CHP prime movers. Eachtime frame, the Stirling micro-CHP packages are targeted toComparison of residential micro CHP technologies to separate

2000-01-01T23:59:59.000Z

333

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

for Renewables and Efficiency: Net Metering Policies SummaryDC residential distribution. Net-Metering Because the gridgrid-connected [33]. Net metering makes grid-connected PV

Garbesi, Karina

2012-01-01T23:59:59.000Z

334

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

This consumer fact sheet provides an overview of battery power for residential solar electric systems, including sizing, estimating costs, purchasing, and performing maintenance.

Not Available

2002-10-01T23:59:59.000Z

335

Operational, aesthetic, and construction process performance for innovative passive and active solar building components for residential buildings  

E-Print Network (OSTI)

A system-based framework creates the ability to integrate operational, aesthetic, and construction process performance. The framework can be used to evaluate innovations within residential construction. By reducing the ...

Settlemyre, Kevin (Kevin Franklin), 1971-

2000-01-01T23:59:59.000Z

336

Recommendations for energy conservation standards for new residential buildings - volume 3: Introduction and Background to the Standard Development Effort  

SciTech Connect

The Energy Conservation for New Buildings Act of 1976, as amended, 42 U.S.C Section 6831 et. seq. requires the US Department of Energy to issue energy conservation standards for the design of new residential and commercial buildings. The standards will be mandatory only for the design of new federal buildings, and will serve as voluntary guidelines for the design of new non-federal buildings. This report documents the development and testing of a set of recommendations, from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations have been developed over the past 25 months by a multidisciplinary project team, under the management of the US Department of Energy and its prime contractor, Pacific Northwest Laboratory. Volume III -- Introduction and Background to the Standard Development Effort is a description of the Standard development process and contains the rationale for the general approach and specific criteria contained within the recommendations.

Not Available

1989-05-01T23:59:59.000Z

337

IMPACT OF REDUCED INFILTRATION AND VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network (OSTI)

in building materials such as insulation, particleboard,Particleboard Insulation Adhesives Paint Building Contentsfoam insulation, and radon from various building materials -

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

338

Operation of Energy Efficient Residential Buildings Under Indoor Environmental Quality Requirements  

E-Print Network (OSTI)

This paper is devoted to the influence of Indoor Environmental Quality, [IEQ] requirements associated with occupation regimes on the criterion of energy demand s for HVAC (Heating, Ventilating and Air-Conditioning) central systems that were constructed for student hostels as a residential building in Cairo, Egypt. The paper focuses on the effects of occupation rate profiles with IEQ thermal parameters; (those are air dry-bulb temperatures, relative humidity, fresh air requirements, and local air velocities), on yearly energy demands. It is applied on, in-service, real project as a case study "10-Stories Hostel of 6000 m2 built-up area" that is utilized by Non-Local students as a transferred Egyptian citizens [ EC ] from different governorates. It was concluded that. during energy simulation, occupation rate schedules and operation profiles for each source of heat inside space shall simulate the reality. These profiles and schedules should be added to the local energy code as a guideline for designers. Although in this case study results from simulation task reach the real bills, but sometimes, with multi-use apartments there is another required schedule for the Pre-Action days. Those days before holidays and feasts on which the air conditioning system shall operate in a certain procedure for cleaning or scavenging. Another important issue is the effect of Effective Temperatures [ET] (Temperature for constant thermal sensations) that could implement to reduce the cooling capacity by increasing the room temperature against indoor relative humidity for the same comfort sensation. These two concepts will save 17% to 22% of the project total energy demand, In addition to introducing new design criteria for acceptable indoor conditions in the new rural developed zones in Egypt and similar regions.

Medhat, A. A.; Khalil, E. E.

2010-01-01T23:59:59.000Z

339

OpenEI - Residential  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the buildings/commercial/ref_buildings.html">DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

340

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

342

Evaluation of solar gain through skylights for inclusion in the SP53 residential building loads data base  

DOE Green Energy (OSTI)

The energy performance of skylights is similar to that of windows in admitting solar heat gain, while at the same time providing a pathway for convective and conductive heat transfer through the building envelope. Since skylights are typically installed at angles ranging from 0{degrees} to 45{degrees}, and differ from windows in both their construction and operation, their conductive and convective heat gains or losses, as well as solar heat gain, will differ for the same rough opening and thermal characteristics. The objective of this work is to quantify the impact of solar gain through skylights on building heating and cooling loads in 45 climates, and to develop a method for including these data into the SP53 residential loads data base previously developed by LBL in support of DOE`s Automated Residential Energy Standard (ARES) program. The authors used the DOE-2.1C program to simulate the heating and cooling loads of a prototypical residential building while varying the size and solar characteristics of skylights and windows. The results are presented as Skylight Solar Loads, which are the contribution of solar gains through skylights to the overall building heating and cooling loads, and as Skylight Solar Load Ratios, which are the ratios of skylight solar loads to those for windows with the same orientation. The study shows that skylight solar loads are larger than those for windows in both heating and cooling. Skylight solar cooling loads are from three to four times greater than those for windows regardless of the skylight tilt, except for those facing north. These cooling loads are largest for south-facing skylights at a tilt angle of approximately 20{degrees}, and drop off at higher tilts and other orientations.

Hanford, J.W.; Huang, Y.J.

1993-12-01T23:59:59.000Z

343

Where and how much : density scenarios for the residential build-out of Gaoming, China  

E-Print Network (OSTI)

The author will use Gaoming District in the western part of China's Pearl River Delta (PRD) as an opportunity to examine the impact a range of residential densities along planned public transportation corridors can have ...

Hu, Karen Jia Ying

2005-01-01T23:59:59.000Z

344

Achieving real transparency : optimizing building energy ratings and disclosure in the U.S. residential sector  

E-Print Network (OSTI)

Residential energy efficiency in the U.S. has the potential to generate significant energy, carbon, and financial savings. Nonetheless, the market of home energy upgrades remains fragmented, and the number of homes being ...

Nadkarni, Nikhil S. (Nikhil Sunil)

2012-01-01T23:59:59.000Z

345

Residential building energy analysis : development and uncertainty assessment of a simplified model  

E-Print Network (OSTI)

Effective design of energy-efficient buildings requires attention to energy issues during the preliminary stages of design. To aid in the early consideration of a building's future energy usage, a simplified building energy ...

Spindler, Henry C. (Henry Carlton), 1970-

1998-01-01T23:59:59.000Z

346

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... residential energy consumption. Field Study of the Effect of Wall Mass on the Heating and Cooling Loads of Residential Buildings. ...

347

Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings  

E-Print Network (OSTI)

Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window to wall. The integrated influence result will be different when the building is in different climate zone. This paper studies the variation rule of some aggregative indicators and building energy efficiency rates by simulation and analysis of the same building in different climate zones by eQuest, in order to determine how building energy efficiency works in different climate zones.

Lian, Y.; Hao, Y.

2006-01-01T23:59:59.000Z

348

About Residential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » About Residential Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to developing innovative whole-house energy efficiency solutions through Building America research projects. We also provide guidelines and tools for researchers conducting building related research projects. Promoting a trusted, whole-house process for upgrading existing homes with

349

Corrosiveness of wet residential building thermal insulation---Mechanisms and evaluation of electrochemical methods for assessing corrosion behavior  

SciTech Connect

An evaluation has been made of the corrosiveness of selected wet residential building thermal insulation materials in contact with low carbon steel. Investigations were conducted both in wet insulations and in filtered leachates from insulations derived from thirteen cellulosic, three mineral fiber and four foam products. Potentiodynamic polarization measurements are reported from which the overall corrosion response was assessed and then the techniques of Tafel and polarization resistance analysis applied to estimate corrosion rates. Corrosion rates were also estimated electrochemically using a direct reading instrument which performs the rate calculation based on the polarization resistance principle. Direct determinations of corrosion rate were based on weight loss measurements.

Stansbury, E.E. (Stansbury (E.E.), Knoxville, TN (United States))

1991-10-01T23:59:59.000Z

350

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

solar gains with highly insulating windows, which leads to windows with positive heating energy flows offsetting buildingBuilding Heating Loads (Trillion BTU/yr) Year Made Number of Buildings (Thousands, 1993) U Factor SHGC Window Window SolarSolar Window Cond Window Infiltration Non-Window Infiltration Other Loads Total Loads Total Loads Window Properties Total Building Heating

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

351

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 2005 Residential Delivered Energy Consumption Intensities, by Ownership of Unit Per Square Per Household Per Household Percent of Foot (thousand Btu) (million Btu) Members (million Btu) Total Consumption

352

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

353

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

354

Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Residential Sector Energy Consumption March 2012 1.2.9 Implicit Price Deflators (2005 1.00) Year Year Year 1980 0.48 1990 0.72 2000 0.89 1981 0.52 1991 0.75 2001 0.91 1982 0.55...

355

AB 758 MANDATED COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL BUILDINGS  

E-Print Network (OSTI)

AND NONRESIDENTIAL BUILDINGS A. Legislative Requirements AB 758 requires the Energy Commission to develop and nonresidential building stock. The program will be established through regulations; the Energy Commission by the current California Building Energy Efficiency Standards (Title 24, Part 6). The Legislature recognizes

356

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

E-Print Network (OSTI)

Average statewide residential electricity rates were takenElectricity price escalation rates for the residentialelectricity rate that is 20% higher than the average statewide residential

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-01-01T23:59:59.000Z

357

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC ELECTRIC Battery Power for Your Residential Solar Electric System A Winning Combination-Design, Efficiency, and Solar Technology A battery bank stores electricity produced by a solar electric system. If your house is not connected to the utility grid, or if you antici- pate long power outages from the grid, you will need a battery bank. This fact sheet pro- vides an overview of battery basics, including information to help you select and maintain your battery bank. Types of Batteries There are many types of batteries avail- able, and each type is designed for specific applications. Lead-acid batteries have been used for residential solar electric systems for many years and are still the best choice for this application because of their low mainte- nance requirements and cost. You may

358

Program on Technology Innovation: Advanced Technologies for Energy Efficiency in Residential and Commercial Buildings  

Science Conference Proceedings (OSTI)

This report presents the ideas and opinions expressed by a variety of experts related to the basic science research needs for improving the energy efficiency of end-use technologies for the residential and commercial sectors. The experts participating in this project come from a wide range of institutions, including government research laboratories, universities, state and federal energy agencies, private research laboratories, industry consultants, Electric Power Research Institute (EPRI) member electri...

2008-05-30T23:59:59.000Z

359

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

1 1 Type (1) Single-Family: 55.4 106.6 39.4 80.5% Detached 55.0 108.4 39.8 73.9% Attached 60.5 89.3 36.1 6.6% Multi-Family: 78.3 64.1 29.7 14.9% 2 to 4 units 94.3 85.0 35.2 6.3% 5 or more units 69.8 54.4 26.7 8.6% Mobile Homes 74.6 70.4 28.5 4.6% All Housing Types 58.7 95.0 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. 2005 Residential Delivered Energy Consumption Intensities, by Housing Type

360

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 Year Built (1) Prior to 1950 74.5 114.9 46.8 24% 1950 to 1969 66.0 96.6 38.1 23% 1970 to 1979 59.4 83.4 33.5 15% 1980 to 1989 51.9 81.4 32.3 14% 1990 to 1999 48.2 94.4 33.7 16% 2000 to 2005 44.7 94.7 34.3 8% Average 58.7 95.0 40.0 Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. 2005 Residential Delivered Energy Consumption Intensities, by Vintage Per Square Per Household Per Household

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

1 1 Residential Water Use by Source (Million Gallons per Day) Year 1980 3,400 1985 3,320 1990 3,390 1995 3,390 2000 (3) (3) 3,590 2005 3,830 Note(s): Source(s): 29,430 25,600 1) Public supply water use: water withdrawn by public and private water suppliers that furnish water to at least 25 people or have a minimum of 15 connections. 2) Self-supply water use: Water withdrawn from a groundwater or surface-water source by a user rather than being obtained from a public supply. 3) USGS did not provide estimates of residential use from public supplies in 2000. This value was estimated based on the residential portion of public supply in 1995 and applied to the total public supply water use in 2000. U.S. Geological Survey, Estimated Use of Water in the U.S. in 1985, U.S. Geological Survey Circular 1004, 1988; U.S. Geological Survey, Estimated Use of

362

Draft Environmental Assessment for Direct Final Rule, 10 CFR 434, ÂŤEnergy Standards for New Federal Commercial and High-Rise High-Rise Multi-FamilyResidential BuildingsÂŽ and 10 CFR 435, ÂŤEnergy Efficiency Standards for New Federal Residential Low-Rise Re  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Final Rule, 10 CFR 433, "Energy Efficiency Standards for

363

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

DOE Green Energy (OSTI)

An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

2011-10-13T23:59:59.000Z

364

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

DOE Office of Energy Efficiency and Renewable Energy (2005).Office of Energy Efficiency and Renewable Energy. : http://for Energy Efficiency and Renewable Energy, Building

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

365

Energy Benchmarking And Energy Saving Assessment In High-Rise Multi-Unit Residential Buildings.  

E-Print Network (OSTI)

??The purpose of energy benchmarking is to promote efficient use of energy. Knowing that the energy used by a building is excessive is the first… (more)

Huang, Yirong

2012-01-01T23:59:59.000Z

366

Energy Market Profiles: Volume 2: 1995 Residential Buildings, Appliances, and Energy Use  

Science Conference Proceedings (OSTI)

Energy use and equipment profiles at the region, segment, and end-use levels provide key information required to lay the groundwork for major marketing decisions. These decisions include how desirable a market is for utility entry, how quickly to enter a market, and how to best narrow a research focus. This study provides utility managers and decision makers with residential market profiles for 10 regions in the United States. This report is available only to funders of Program 101A or 101.001. Funders m...

1999-01-05T23:59:59.000Z

367

Energy Market Profiles: Volume 2: 1998 Residential Buildings, Appliances, and Energy Use  

Science Conference Proceedings (OSTI)

Energy use and equipment profiles at the regional, segment, and end-use levels provide key information required to lay the groundwork for major marketing decisions. These decisions include how desirable a market is for utility entry, how quickly to enter a market, and how to best narrow a research focus. This study provides utility managers and decision makers with residential market profiles for ten regions of the United States. This report is available only to funders of Program 101A or 101.001. Funder...

1999-12-02T23:59:59.000Z

368

A Comparison of the 2003 and 2006 International Energy Conservation Codes to Determine the Potential Impact on Residential Building Energy Efficiency  

SciTech Connect

The IECC was updated in 2006. As required in the Energy Conservation and Production Act of 1992, Title 3, DOE has a legislative requirement to "determine whether such revision would improve energy efficiency in residential buildings" within 12 months of the latest revision. This requirement is part of a three-year cycle of regular code updates. To meet this requirement, an independent review was completed using personnel experienced in building science but not involved in the code development process.

Stovall, Therese K [ORNL; Baxter, Van D [ORNL

2008-03-01T23:59:59.000Z

369

Rule-based Mamdani-type fuzzy modelling of thermal performance of multi-layer precast concrete panels used in residential buildings in Turkey  

Science Conference Proceedings (OSTI)

Heat insulation applied on outer wall surfaces of buildings for the purpose of conserving energy, can be analyzed experimentally, mathematically and by using simulation modelling. In this study, simulation modelling of insulation layer (d"2), for residential ... Keywords: Insulation, Prefabricated panel, Rule-based Mamdani-type fuzzy modelling, Thermal analysis

M. Tosun; K. Dincer; S. Baskaya

2011-05-01T23:59:59.000Z

370

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network (OSTI)

Sherman, M.H. (2008). “Energy Implications of Meeting ASHRAE62.2”, ASHRAE Transactions, June 2008, Vol. 114, Pt. 2, pp.and Sustainable Buildings, ASHRAE. Orme, M. 1998. "Energy

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

371

The Potential of Vegetation in Reducing Summer Cooling Loads in Residential Buildings  

Science Conference Proceedings (OSTI)

The potential of trees and other vegetation to reduce building cooling loads has been recorded in a number of studies but the meso- and microclimate changes producing such savings are not well understood. This paper describes a preliminary ...

Y. J. Huang; H. Akbari; H. Taha; A. H. Rosenfeld

1987-09-01T23:59:59.000Z

372

Building Technologies Office: Appliance and Equipment Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Appliance & Equipment Standards...

373

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

6 6 Residential Water Billing Rate Structures for Community Water Systems Rate Structure Uniform Rates Declining Block Rate Increasing Block Rate Peak Period or Seasonal Rate Separate Flat Fee Annual Connection Fee Combined Flat Fee Other Rate Structures Note(s): Source(s): 3.0% 9.0% 1) Systems serving more than 10,000 users provide service to 82% of the population served by community water systems. Columns do not sum to 100% because some systems use more than one rate structure. 2) Uniform rates charge a set price for each unit of water. Block rates charge a different price for each additional increment of usage. The prices for each increment is higher for increasing block rates and lower for decreasing block rates. Peak rates and seasonal rates charge higher prices when demand is highest. Flat fees charge a set price for

374

Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC  

Buildings Energy Data Book (EERE)

3 3 Efficiency Standards for Residential Boilers Effective for products manufactured before September 1, 2012 AFUE(%) (1) Boilers (excluding gas steam) Gas Steam Boilers Effective for products manufactured on or after September 1, 2012 (2) AFUE (%) (1) No Constant Burning Pilot Automatic Means for Adjusting Water Temperature Gas Steam No Constant Burning Pilot Oil Hot Water Automatic Means for Adjusting Water Temperature Oil Steam None Electric Hot water Automatic Means for Adjusting Water Temperature Electric Steam None Note(s): Source(s): 84 82 None None 1) Annual Fuel Utilization Efficiency. 2) Boilers manufactured to operate without any need for electricity, an electric connection, electric gauges, electric pumps, electric wires, or electric devices are not required to comply with the revised standards that take effect September 1,

375

Buildings Energy Data Book: 7.5 Efficiency Standards for Residential Appliances  

Buildings Energy Data Book (EERE)

2 2 Efficiency Standards for Residential Refrigerators and Freezers (1) 1) 2) 3) 4) 5) 6) Note(s): Source(s): Refrigerator-freezers, automatic defrost with side-mounted freezer with through-the-door ice service 10.10AV + 406.0 1) Effective for products manufactured on or after July 1, 2001. Standards do not apply to refrigerators and refrigerator-freezers with total refrigerated volume exceeding 39 cubic feet or freezers with total refrigerated volume exceeding 30 cubic feet. AV = total adjusted volume (ft^3). Title 10, Code of Federal Regulations, Part 430 - Energy Conservation Program for Consumer Products, Subpart C - Energy and Water Conservation Standards and Their Effective Dates. January 1, 2010. Refrigerator-freezers, automatic defrost with side-mounted freezer without through-the-

376

Buildings Energy Data Book: 7.5 Efficiency Standards for Residential Appliances  

Buildings Energy Data Book (EERE)

3 3 Efficiency Standards for Residential Water Heaters (1) Effective for products manufactured from January 20, 2004 through April 15, 2015 Gas-Fired Storage Water Heaters Oil-Fired Water Heaters EF = 0.67 - (0.0019 x Rated Storage Volume in gallons) EF = 0.59 - (0.0019 x Rated Storage Volume in gallons) Instantaneous Gas-Fired Water Heaters Instantaneous Electric and Table Top Water Heaters EF = 0.62 - (0.0019 x Rated Storage Volume in gallons) EF = 0.93 - (0.00132 x Rated Storage Volume in gallons) Electric Storage Water Heaters EF = 0.97 - (0.00132 x Rated Storage Volume in gallons) Effective for products manufactured on or after April 16, 2015 Gas-Fired Storage Water Heaters Rated Storage Volume ≤ 55 gallons EF = 0.675 - (0.0015 x Rated Storage Volume in gallons)

377

Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone pollution levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non-attainment and affected counties. This paper reviews the calculation methods and presents results that show the 2003 annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to single-family and multi-family residences in 2003, which use a code-tracable DOE-2 simulation. A discussion of the development of a web-based emissions reductions calculator is also discussed.

Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

2006-05-23T23:59:59.000Z

378

Calculation of Nox Emissions Reductions from Energy Efficient Residential Building Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone pollution levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non-attainment and affected counties. This paper reviews the calculation methods and presents results that show the 2003 annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to single-family and multi-family residences in 2003, which use a code-traceable DOE-2 simulation. A discussion of the development of a web-based emissions reductions calculator is also discussed.

Haberl, J.; Culp, C.; Gilman, D.; Baltazar-Cervantes, J. C.; Yazdani, B.; Fitzpatrick, T.; Muns, S.; Verdict, M.

2004-01-01T23:59:59.000Z

379

Overview of developing programs in solar desiccant cooling for residential buildings  

DOE Green Energy (OSTI)

An overview is provided of the ongoing work in desiccant cooling under the national solar heating and cooling research program. Open cycle adsorption and absorption systems are examined. The different dehumidifier bed configurations are the distinguishing features of these systems. The basic operating principles of each dehumidifier concept are explained along with some discussion of their comparative features. Performance predictions developed by SERI for a solar desiccant solar system employing an axial-flow desiccant wheel dehumidifier are presented. In terms of life-cycle cost and displaced fossil-fuel energy, the results indicate that it should be beneficial to use solar desiccant coolers in residential applications. Although no prototype testing of any of these concepts is currently underway, test results are expected and will be reported within one year.

Not Available

1979-01-01T23:59:59.000Z

380

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

20 20 Site Consumption Primary Consumption Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 5% 28% 8% 56% | 8% 31% 56% 34.2 1981 5% 26% 7% 59% | 7% 29% 59% 31.9 1982 5% 26% 5% 61% | 6% 28% 61% 30.2 1983 4% 25% 5% 62% | 6% 27% 62% 30.1 1984 5% 26% 4% 61% | 6% 27% 61% 31.1 1985 5% 25% 4% 63% | 6% 26% 63% 30.9 1986 5% 24% 5% 63% | 6% 26% 63% 32.2 1987 5% 25% 4% 63% | 6% 26% 63% 32.9 1988 5% 24% 5% 63% | 6% 26% 63% 34.2 1989 5% 24% 5% 63% | 7% 25% 63% 34.2 1990 4% 25% 4% 64% | 5% 26% 64% 33.6 1991 4% 24% 4% 65% | 5% 26% 65% 32.8 1992 4% 26% 3% 65% | 5% 27% 65% 33.5 1993 4% 25% 3% 65% | 5% 26% 65% 33.8 1994 4% 25% 3% 65% | 5% 26% 65% 34.7 1995 4% 25% 2% 67% | 5% 26% 67% 34.6 1996 4% 25% 2% 66% | 5% 26% 66% 35.8 1997 4% 26% 3% 66% | 5% 26% 66% 36.3 1998 3% 25% 4% 66% | 5% 26% 66% 36.9 1999 4% 25% 3% 66% | 5% 26% 66% 38.0 2000 4% 24% 3% 67% | 5% 25% 67% 38.4 2001 4% 24% 3% 67% | 5% 25% 67% 38.3 2002 4% 24% 3% 68% | 5% 25% 68% 38.4 2003

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

9 9 Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 24% 41% 19% 3% | 30% 49% 3% 20.22 1981 23% 42% 19% 3% | 30% 49% 3% 19.74 1982 26% 39% 18% 3% | 32% 45% 3% 18.36 1983 26% 39% 17% 3% | 32% 46% 3% 17.20 1984 25% 40% 17% 3% | 31% 47% 3% 18.38 1985 25% 40% 18% 3% | 32% 46% 3% 17.70 1986 26% 40% 16% 3% | 32% 46% 3% 16.59 1987 25% 41% 17% 3% | 31% 47% 3% 17.63 1988 26% 42% 15% 3% | 31% 47% 3% 18.44 1989 25% 41% 16% 3% | 30% 47% 3% 19.56 1990 23% 43% 17% 3% | 29% 49% 4% 19.57 1991 23% 43% 17% 3% | 29% 49% 3% 20.03 1992 23% 43% 17% 3% | 29% 49% 3% 20.71 1993 24% 43% 17% 3% | 30% 48% 3% 21.24 1994 23% 42% 18% 3% | 29% 48% 3% 21.75 1995 22% 42% 19% 3% | 28% 49% 3% 22.71 1996 23% 43% 17% 3% | 29% 49% 3% 23.14 1997 22% 43% 18% 3% | 28% 49% 3% 23.34 1998 20% 43% 20% 3% | 27% 50% 3% 22.86 1999 21% 41% 21% 3% | 28% 48% 3% 22.88 2000 21% 40% 22% 3% | 29% 47% 3% 23.66 2001 21% 38% 24% 3% | 30% 45% 3% 22.69 2002 21% 38% 24% 3% | 30% 45%

382

Analysis of improved fenestration for code-compliant residential buildings in hot and humid climates  

E-Print Network (OSTI)

This thesis presents an analysis of energy efficient residential windows in hot and humid climates. To accomplish this analysis, the use of accurate simulation tools such as DOE-2.1e is required, which incorporates the results from the WINDOW-5.2 simulation program to assess accurate fenestration performance. The thesis also investigates the use of optimal glazing types, which, for future applications, could be specified in the code to reduce annual net energy consumption to zero. Results show that combinations of low-E and double pane, clear-glazed windows, which are optimally shaded according to orientation are the best solution for lowering both annual energy consumption and peak electricity loads. The study also concludes that the method used to model fenestration in the simulation program plays an important role in accurately determining the effectiveness of the glazing option used. In this particular study, the use of the WINDOW-5.2 program is highly recommended especially for high performance windows (i.e., low-E glazing). Finally, a discussion on the incorporation of super high performance windows (i.e., super low-E, ultra low-E and dynamic / switchable glazing) into the IECC code concludes that these types of glazing strategies can reduce annual net energy use of the window to zero. Future work identified by this thesis includes a more extensive examination of the passive solar potential of high performance fenestration, and an examination of the appropriate methods for specifying these properties in future versions of the IECC code. This implies that future specifications for fenestration in the IECC code could aim for zero net annual energy consumption levels from residential fenestration.

Mukhopadhyay, Jaya

2005-08-01T23:59:59.000Z

383

Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection  

SciTech Connect

Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

Choi, J.; Ludwig, P.; Brand, L.

2013-08-01T23:59:59.000Z

384

Photovoltaic and solar-thermal technologies in residential building codes, tackling building code requirements to overcome the impediments to applying new technologies  

SciTech Connect

This report describes the building code requirements and impediments to applying photovoltaic (PV) and solar-thermal technologies in residential buildings (one- or two-family dwellings). It reviews six modern model building codes that represent the codes to be adopted by most locations in the coming years: International Residential Code, First Draft (IRC), International Energy Conservation Code (IECC), International Mechanical Code (IMC), International Plumbing Code (IPC), International Fuel Gas Code (IFGC), and National Electrical Code (NEC). The IRC may become the basis for many of the building codes in the United States after it is released in 2000, and it references the other codes that will also likely become applicable at that time. These codes are reviewed as they apply to photovoltaic systems in buildings and building-integrated photovoltaic systems and to active-solar domestic hot-water and space-heating systems. The first discussion is on general code issues that impact the s e technologies-for example, solar access and sustainability. Then, secondly, the discussion investigates the relationship of the technologies to the codes, providing examples, while keeping two major issues in mind: How do the codes treat these technologies as building components? and Do the IECC and other codes allow reasonable credit for the energy impacts of the technologies? The codes can impact the implementation of the above technologies in several ways: (1) The technology is not mentioned in the codes. It may be an obstacle to implementing the technology, and the solution is to develop appropriate explicit sections or language in the codes. (2) The technology is discussed by the codes, but the language is confusing or ambiguous. The solution is to clarify the language. (3) The technology is discussed in the codes, but the discussion is spread over several sections or different codes. Practitioners may not easily find all of the relevant material that should be considered. The so lution is to put all relevant information in one section or to more clearly reference relevant sections. (4) The technology is prohibited by the code. Examples of this situation were not found. However, energy credit for some technologies cannot be achieved with the requirements of these codes. Finally, four types of future action are recommended to make the codes reviewed in this report more accommodating to renewable energy technologies: (1) Include suggested language additions and changes in the codes; (2) Create new code sections that place all of the requirements for a technology in one section of an appropriate code; (3) Apply existing standards, as appropriate, to innovative renewable energy and energy conservation technologies; and (4) Develop new standards, as necessary, to ease code compliance. A synergy may be possible in developing suitable code language changes for both photovoltaic and solar hot-water systems. The installation of rooftop photovoltaic panels and solar hot- water collectors involves many overlapping issues. Roof loading, weather tightness, mounting systems, roof penetrations, and similar concerns are identical for both technologies. If such work can be coordinated, organizations supporting both technologies could work together to implement the appropriate revisions and additions to the codes.

Wortman, D.; Echo-Hawk, L. [authors] and Wiechman, J.; Hayter, S.; Gwinner, D. [eds.

1999-10-04T23:59:59.000Z

385

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

386

The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings  

E-Print Network (OSTI)

In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings and commercial buildings, characteristics such as the cooling load in summer and the storey height must be considered in the design of the air-conditioning system, and the cold storage equipment and the cold supplying means must be properly selected. The option of establishing centralized air-conditioning equipment with cold storage and supplying unified cold in high-rise residential buildings is analyzed objectively with technical and economical methods in this paper. It is not true that the option of supplying unified cold can save energy all the time. CACS with cold storage will not always be economical. Based on a 27-floor building, the running costs in summer and the first costs are both compared between CACS with and without cold storage refrigeration. The cold storage method selected will significantly impact the residents.

Xiang, C.; Xie, G.

2006-01-01T23:59:59.000Z

387

Solar energy and multi-storey residential buildings Larry Hughes and Tylor Wood  

E-Print Network (OSTI)

Factsheet on Summer Heat Gain and Winter Heat Loss In the summer we often feel warm in buildings and in the winter we may feel cold. This may be due to heating from solar gain and heat loss during the winter (see that you stay cool or warm. You can: · Draw blinds to stop solar gain and winter losses · You can wear

Hughes, Larry

388

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Buildings, by Fuel and Region (Thousand BtuSF) Region Electricity Natural Gas Fuel Oil Total Northeast 27.7 45.9 39.9 71.5 Midwest 22.5 49.9 N.A. 70.3 South 53.5 27.9 N.A....

389

Development of Standardized Domestic Hot Water Event Schedules for Residential Buildings  

SciTech Connect

The Building America Research Benchmark is a standard house definition created as a point of reference for tracking progress toward multi-year energy savings targets. As part of its development, the National Renewable Energy Laboratory has established a set of domestic hot water events to be used in conjunction with sub-hourly analysis of advanced hot water systems.

Hendron, R.; Burch, J.

2008-08-01T23:59:59.000Z

390

Vapnik's learning theory applied to energy consumption forecasts in residential buildings  

Science Conference Proceedings (OSTI)

For the purpose of energy conservation, we present in this paper an introduction to the use of support vector (SV) learning machines used as a data mining tool applied to buildings energy consumption data from a measurement campaign. Experiments using ... Keywords: data mining, energy conservation, energy efficiency, predictive modelling, statistical learning theory

Florence Lai; Frederic Magoules; Fred Lherminier

2008-10-01T23:59:59.000Z

391

Thermal Comfort Study in a Naturally Ventilated Residential Building in a Tropical Hot-Humid Climate Region  

E-Print Network (OSTI)

This paper presents a thermal comfort study in a naturally ventilated residential building located in a tropical hot-humid climate region. The specific objective of this study is to investigate whether thermal comfort in this house can be achieved through a passive system only. The methods used in this study included conducting hourly monitoring of the temperature and relative humidity; measuring the air velocities; and assessing occupants' thermal sensations through questionnaires and interview. The data from the questionnaires were matched to the monitored data to assess the acceptable range of comfortable condition. Then using an hourly simulation program, some components of the building were also "modified" to investigate whether the building can be made "more comfortable". This study shows that it is possible to provide a thermally comfortable space in this region without using mechanical air-conditioning systems. The occupants' acceptable range of comfortable condition is different than that of people in the northern latitudes. The occupants sensed "neutrality" when the operative temperature in the house was about 27 degree Celsius (80°F). The occupants could also tolerate slightly warm conditions, that is up to 29 degree Celsius (84OF), and still never wanted to install any air-conditioning systems. The simulation showed that using light wall materials would result in cooler indoor temperature at night but warmer during the day. If all windows were opened (25% the total floor area) the house could be more comfortable at night but less comfortable during the day. Findings of this study are important for architects and engineers in designing comfortable living spaces in these regions.

Soebarto, V. I.; Handjarinto, S.

1998-01-01T23:59:59.000Z

392

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

2 2 2010 Five Largest Residential Homebuilders Homebuilder PulteGroup 5.3% D.R. Horton 5.9% NVR 3.1% Lennar Corporation 3.4% KB Home 2.3% Top Five Total 19.9% Habitat for Humanity (3) 0.1% Note(s): Source(s): 6,032 402 1) 2010 total U.S. new home closings were 323,000 (only single-family). 2) Total share of closings of top 20 builders was 35%. Total share of the top 100 builders was 54%. 3) Habitat for Humanity built more than 400 homes during the week of May 31, 2007; Habitat for Humanity has built over 1,000 homes in the New Orleans area since Hurricane Katrina. Habitat for Humanity's 2,100 worldwide affiliates have completed more than 200,000 homes since 1976, providing more than 1,000,000 with housing. Housing Giants Magazine, May 2011, Professional Builder's 2011 Housing Giants Rankings.

393

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

0 0 Region (1) Northeast 73.5 122.2 47.7 24% New England 77.0 129.4 55.3 7% Middle Atlantic 72.2 119.7 45.3 17% Midwest 58.9 113.5 46.0 28% East North Central 61.1 117.7 47.3 20% West North Central 54.0 104.1 42.9 8% South 51.5 79.8 31.6 31% South Atlantic 47.4 76.1 30.4 16% East South Central 56.6 87.3 36.1 6% West South Central 56.6 82.4 31.4 9% West 56.6 77.4 28.1 18% Mountain 54.4 89.8 33.7 6% Pacific 58.0 71.8 25.7 11% U.S. Average 58.7 94.9 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet.

394

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

2 2 1999 Single-Family Home Daily Water Consumption by End Use (Gallons per Capita) (1) Fixture/End Use Toilet 18.5 18.3% Clothes Washer 15 14.9% Shower 11.6 11.5% Faucet 10.9 10.8% Other Domestic 1.6 1.6% Bath 1.2 1.2% Dishwasher 1 1.0% Leaks 9.5 9.4% Outdoor Use (2) 31.7 31.4% Total (2) 101 100% Note(s): Source(s): Average gallons Total Use per capita per day Percent 1) Based analysis of 1,188 single-family homes at 12 study locations. 2) Total Water use derived from USGS. Outdoor use is the difference between total and indoor uses. American Water Works Association Research Foundation, Residential End Uses of Water, 1999; U.S. Geological Survey, Estimated Use of Water in the U.S. in 2000, U.S. Geological Survey Circular 1268, 2004, Table 6, p. 17; and Vickers, Amy, Handbook of Water Use and Conservation, June 2002, p. 15.

395

Field measurement of the interactions between heat pumps and attic duct systems in residential buildings  

SciTech Connect

Research efforts to improve residential heat-pump performance have tended to focus on laboratory and theoretical studies of the machine itself, with some limited field research having been focused on in-situ performance and installation issues. One issue that has received surprisingly little attention is the interaction between the heat pump and the duct system to which it is connected. This paper presents the results of a field study that addresses this interaction. Field performance measurements before and after sealing and insulating the duct systems were made on three heat pumps. From the pre-retrofit data it was found that reductions in heat-pump capacity due to low outdoor temperatures and/or coil frosting are accompanied by lower duct-system energy delivery efficiencies. The conduction loss reductions, and thus the delivery temperature improvements, due to adding duct insulation were found to vary widely depending on the length of the particular duct section, the thermal mass of that duct section, and the cycling characteristics of the heat-pump. In addition, it was found that the use of strip-heat back-up decreased after the retrofits, and that heat-pump cycling increased dramatically after the retrofits, which respectively increase and decrease savings due to the retrofits. Finally, normalized energy use for the three systems which were operated consistently pre- and post-retrofit showed an average reduction of 19% after retrofit, which corresponds to a chance in overall distribution-system efficiency of 24%.

Modera, M.P.; Jump, D.A. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-11-01T23:59:59.000Z

396

City of Indianapolis - Green Building Incentive Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indianapolis - Green Building Incentive Program Indianapolis - Green Building Incentive Program City of Indianapolis - Green Building Incentive Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Water Heating Solar Buying & Making Electricity Wind Program Info Start Date 08/01/2010 State Indiana Program Type Green Building Incentive Provider City of Indianapolis The Indianapolis Office of Sustainability and the Department of Code

397

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... heaters; water heaters; blowing agents; insulation; residential buildings; physical properties; thermal conductivity; polyurethane foams Abstract: ...

398

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

Construction Statistics of New Homes Completed/Placed Year Thousand Units Average SF Thousand Units Average SF 1980 234 1981 229 1982 234 1983 278 1984 288 1985 283 1986 256 1987 239 1988 224 1989 203 1990 195 1991 174 1992 212 1993 243 1994 291 1995 319 1996 338 1997 336 1998 374 1999 338 2000 281 2001 196 2002 174 2003 140 2004 124 2005 123 2006 112 2007 95 2008 81 2009 55 2010 50 Source(s): 496 2,392 155 1,172 701 DOC, 2010 Characteristics of New Housing, 2010, "Median and Average Square Feet of Floor Area in New Single-Family Houses Completed by Location", "Presence of Air-Conditioning in New Single Family Houses", "Number of Multifamily Units Completed by Number of Units Per Building", "Median and Average Square Feet of Floor Area in Units in New Multifamily Buildings Completed", "Placements of New Manufactured Homes by Region and Size of Home, 1980-

399

Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings  

SciTech Connect

This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.

Choi, J.; Ludwig, P.; Brand, L.

2013-04-01T23:59:59.000Z

400

HUMAN DISEASE FROM RADON EXPOSURES: THE IMPACT OF ENERGY CONSERVATION IN RESIDENTIAL BUILDINGS  

SciTech Connect

The level of radon and its daughters inside conventional buildings is often higher than the ambient background level. Interest in conserving energy is motivating homeowners and builers to reduce ventilation and hence to increase the concentration of indoor generated air contaminants, including radon. It is unliekly that the current radiation levels in conventional homes and buildings from radon daughters could account for a significant portion of the lung cancer rate in non-smokers. However, it is likely that some increased lung cancer risk would result from increased radon exposures; hence, it is prudent not to allow radon concentrations to rise significantly. There are several ways to implement energy conservation measures without increasing risks.

Budnitz, R.J.; Berk, J.V.; Hollowell, C.D.; Nazaroff, W.W.; Nero, A.V.; Rosenfeld, A.H.

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modelling Residential-Scale Combustion-Based Cogeneration in Building Simulation  

SciTech Connect

This article describes the development, calibration and validation of a combustion-cogeneration model for whole-building simulation. As part of IEA Annex 42, we proposed a parametric model for studying residentialscale cogeneration systems based on both Stirling and internal combustion engines. The model can predict the fuel use, thermal output and electrical generation of a cogeneration device in response to changing loads, coolant temperatures and flow rates, and control strategies. The model is now implemented in the publicly-available EnergyPlus, ESP-r and TRNSYS building simulation programs. We vetted all three implementations using a comprehensive comparative testing suite, and validated the model's theoretical basis through comparison to measured data. The results demonstrate acceptable-to-excellent agreement, and suggest the model can be used with confidence when studying the energy performance of cogeneration equipment in non-condensing operation.

Ferguson, A.; Kelly, N.; Weber, A.; Griffith, B.

2009-03-01T23:59:59.000Z

402

Advanced phase change materials and systems for solar passive heating and cooling of residential buildings  

SciTech Connect

During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

Salyer, I.O.; Sircar, A.K.; Dantiki, S.

1988-01-01T23:59:59.000Z

403

Statistical Analysis of Baseline Load Models for Non-Residential Buildings  

SciTech Connect

Policymakers are encouraging the development of standardized and consistent methods to quantify the electric load impacts of demand response programs. For load impacts, an essential part of the analysis is the estimation of the baseline load profile. In this paper, we present a statistical evaluation of the performance of several different models used to calculate baselines for commercial buildings participating in a demand response program in California. In our approach, we use the model to estimate baseline loads for a large set of proxy event days for which the actual load data are also available. Measures of the accuracy and bias of different models, the importance of weather effects, and the effect of applying morning adjustment factors (which use data from the day of the event to adjust the estimated baseline) are presented. Our results suggest that (1) the accuracy of baseline load models can be improved substantially by applying a morning adjustment, (2) the characterization of building loads by variability and weather sensitivity is a useful indicator of which types of baseline models will perform well, and (3) models that incorporate temperature either improve the accuracy of the model fit or do not change it.

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

2008-11-10T23:59:59.000Z

404

Commercial Codes and Standards | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

(or non-residential) buildings, in the context of building energy codes and standards, are all buildings other than low-rise residential buildings, including multi-family...

405

Model Code for the Control of Residential HVAC Distribution System Leakage and HVAC-Induced Building Leakage  

E-Print Network (OSTI)

Modifications to local and state codes are seen as an appropriate strategy for the prevention of residential air distribution system leakage and its impacts. A model code element has been developed to assist this strategy. Recent field studies of Florida residences by Cummings, Tooley and Moyer have revealed a mean leakage of 11 percent for the air distribution systems of central, fan-force heating and air conditioning systems. Such leakage may cause an estimated 20 percent increase in energy consumption for air conditioning, as well as a 50 percent increase in peak cooling load and an 80 percent increase in peak heating load. In addition, building air leakage may be expected to be several times greater when duct leakage is present or when avenues of air egress from closeable rooms are absent. The model duct construction element presented here contains all of the standards, definitions and code language needed to replace the current duct construction element of the local or state code. The content of this paper was used as a principal source for language adopted for the 1991 Florida Energy Efficiency Code For Building Construction. Addressed are the most appropriate standards required for the closure and sealing of metal duct, rigid fibrous glass duct, and nonmetallic flexible duct. Also addressed are (1) detailed requirements for the sealing of mechanical closets when they function as plenum chambers, (2) detailed requirements for the sealing of enclosed support platforms or air handlers and furnaces when they function as return duct, (3) detailed requirements for the sealing of uninhabitable cavities of the building structure, when they function as duct, and (4) detailed requirements for the egress of air from enclosed rooms which receive supply air. Where necessary, commentary is provided to explain the options available for implementing the model code provision as well as its ramifications. All provisions of this model code are compatible with the requirements, standards and guidelines contained in related documents published by the following organizations: the Southern Building Code Congress International, Inc., the Sheet Metal and Air Conditioning Contractors National Association, the American Society of Heating, Refrigerating and Air conditioning Engineers, Underwriters Laboratories, Inc., the Air Conditioning Contractors Of America, the Thermal Insulation Manufacturers Association, the National Fire Protection Association, and the Gypsum Association.

Wemhoff, P.

1990-01-01T23:59:59.000Z

406

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

5 5 Natural Fuel Other Renw. Site Site Primary Gas Oil LPG Fuel(1) En.(2) Electric Total Percent Electric (3) Total Percent Space Heating (4) 3.50 0.53 0.30 0.04 0.43 0.44 5.23 44.7% | 1.35 6.15 27.8% Water Heating 1.29 0.10 0.07 0.01 0.45 1.92 16.4% | 1.38 2.86 12.9% Space Cooling 0.00 1.08 1.08 9.2% | 3.34 3.34 15.1% Lighting 0.69 0.69 5.9% | 2.13 2.13 9.7% Refrigeration (6) 0.45 0.45 3.9% | 1.41 1.41 6.4% Electronics (5) 0.54 0.54 4.7% | 1.68 1.68 7.6% Wet Cleaning (7) 0.06 0.33 0.38 3.3% | 1.01 1.06 4.8% Cooking 0.22 0.03 0.18 0.43 3.7% | 0.57 0.81 3.7% Computers 0.17 0.17 1.5% | 0.53 0.53 2.4% Other (8) 0.00 0.16 0.01 0.20 0.37 3.2% | 0.63 0.80 3.6% Adjust to SEDS (9) 0.42 0.42 3.6% | 1.29 1.29 5.8% Total 5.06 0.63 0.56 0.04 0.45 4.95 11.69 100% | 15.34 22.07 100% Note(s): Source(s): 2010 Residential Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Primary 1) Kerosene and coal are assumed attributable to space heating. 2) Comprised of wood space heating (0.42 quad), solar water heating (0.01

407

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

8 8 Natural Fuel Other Renw. Site Site Primary Gas Oil LPG Fuel(1) En.(2) Electric Total Percent Electric (3) Total Percent Space Heating (4) 3.20 0.31 0.22 0.03 0.46 0.49 4.72 38.9% | 1.45 5.67 23.9% Water Heating 1.27 0.04 0.03 0.02 0.54 1.90 15.6% | 1.60 2.96 12.5% Space Cooling 0.00 1.25 1.25 10.3% | 3.68 3.68 15.5% Lighting 0.48 0.48 3.9% | 1.41 1.41 5.9% Refrigeration (5) 0.52 0.52 4.3% | 1.54 1.54 6.5% Electronics (6) 0.44 0.44 3.6% | 1.29 1.29 5.4% Wet Cleaning (7) 0.07 0.32 0.39 3.2% | 0.95 1.01 4.3% Cooking 0.23 0.02 0.15 0.40 3.3% | 0.44 0.69 2.9% Computers 0.27 0.27 2.2% | 0.79 0.79 3.3% Other (8) 0.00 0.22 0.07 1.48 1.77 14.6% | 4.35 4.64 19.6% Total 4.76 0.35 0.51 0.03 0.55 5.94 12.14 100% | 17.50 23.69 100% Note(s): Source(s): 2035 Residential Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Primary 1) Kerosene and coal are assumed attributable to space heating. 2) Comprised of wood space heating (0.44 quad), solar water heating (0.02

408

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 Natural Fuel Other Renw. Site Site Primary Gas Oil LPG Fuel(1) En.(2) Electric Total Percent Electric (3) Total Percent Space Heating (4) 3.28 0.38 0.24 0.03 0.46 0.46 4.85 41.5% | 1.40 5.78 25.8% Water Heating 1.32 0.05 0.04 0.02 0.53 1.96 16.8% | 1.60 3.03 13.5% Space Cooling 0.00 1.12 1.12 9.6% | 3.38 3.38 15.1% Lighting 0.47 0.47 4.0% | 1.42 1.42 6.3% Refrigeration (5) 0.48 0.48 4.1% | 1.45 1.45 6.5% Electronics (6) 0.37 0.37 3.2% | 1.12 1.12 5.0% Wet Cleaning (7) 0.06 0.30 0.37 3.1% | 0.91 0.98 4.4% Cooking 0.22 0.03 0.13 0.38 3.2% | 0.40 0.64 2.9% Computers 0.24 0.24 2.0% | 0.72 0.72 3.2% Other (8) 0.00 0.20 0.07 1.20 1.46 12.5% | 3.61 3.87 17.3% Total 4.88 0.43 0.50 0.03 1.00 5.30 11.69 100% | 16.00 22.39 100% Note(s): Source(s): 2025 Residential Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Primary 1) Kerosene and coal are assumed attributable to space heating. 2) Comprised of wood space heating (0.43 quad), solar water heating (0.02

409

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

6 6 Natural Fuel Other Renw. Site Site Primary Gas Oil LPG Fuel(1) En.(2) Electric Total Percent Electric (3) Total Percent Space Heating (4) 3.40 0.48 0.26 0.03 0.44 0.42 5.03 44.2% | 1.27 5.88 27.9% Water Heating 1.31 0.07 0.05 0.02 0.48 1.92 16.9% | 1.44 2.88 13.7% Space Cooling 0.00 1.02 1.02 8.9% | 3.07 3.07 14.6% Lighting 0.53 0.53 4.6% | 1.60 1.60 7.6% Refrigeration (5) 0.45 0.45 4.0% | 1.37 1.37 6.5% Electronics (6) 0.33 0.33 2.9% | 0.99 0.99 4.7% Wet Cleaning (7) 0.06 0.33 0.39 3.4% | 0.98 1.04 5.0% Cooking 0.22 0.03 0.11 0.36 3.1% | 0.34 0.59 2.8% Computers 0.19 0.19 1.7% | 0.57 0.57 2.7% Other (8) 0.00 0.17 0.05 0.94 1.17 10.2% | 2.85 3.07 14.6% Total 4.99 0.55 0.51 0.03 0.51 4.79 11.38 100% | 14.47 21.06 100% Note(s): Source(s): 2015 Residential Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Primary 1) Kerosene and coal are assumed attributable to space heating. 2) Comprised of wood space heating (0.43 quad), solar water heating (0.02

410

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

8 8 2009 Sales Price and Construction Cost Breakdown of an Average New Single-Family Home ($2010) (1) Function Finished Lot 20% Construction Cost 59% Financing 2% Overhead & General Expenses 5% Marketing 1% Sales Commission 3% Profit 9% Total 100% Function Building Permit Fees 2% Impact Fees 1% Water and Sewer Inspection 2% Excavation, Foundation, & Backfill 7% Steel 1% Framing and Trusses 16% Sheathing 2% Windows 3% Exterior Doors 1% Interior Doors & Hardware 2% Stairs 1% Roof Shingles 4% Siding 6% Gutters & Downspouts 0% Plumbing 5% Electrical Wiring 4% Lighting Fixtures 1% HVAC 4% Insulation 2% Drywall 5% Painting 3% Cabinets, Countertops 6% Appliances 2% Tiles & Carpet 5% Trim Material 3% Landscaping & Sodding 3% Wood Deck/Patio 1% Asphalt Driveway 1% Other 9% Total 100% Note(s): Source(s): NAHB, Breaking Down House Price and Construction Costs, 2010, Table 1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

411

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

412

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

SciTech Connect

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

413

Commonwealth Solar Hot Water Residential Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $3,500 per building or 25% of total installed costs Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 02/07/2011 Expiration Date 12/31/2016 State Massachusetts Program Type State Rebate Program Rebate Amount Base rate: $45 X SRCC rating in thousands btu/panel/day (Category D, Mildly Cloudy Day) Additional $200/system for systems with parts manufactured in Massachusetts Additional $1,500/system for metering installation Adder for natural disaster relief of twice the base rebate.

414

Please cite this article in press as: R.E. Edwards, et al., Predicting future hourly residential electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.03.010  

E-Print Network (OSTI)

-offs in the building design process, sizing components (e.g., HVAC) for a specific building, optimizing control systemsPlease cite this article in press as: R.E. Edwards, et al., Predicting future hourly residential.03.010 ARTICLE IN PRESSG Model ENB-3661; No.of Pages13 Energy and Buildings xxx (2012) xxx­xxx Contents lists

Parker, Lynne E.

415

Thermal Performance of Phase Change Wallboard for Residential Cooling Application  

E-Print Network (OSTI)

USA ABSTRACT Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand

Feustel, H.E.

2011-01-01T23:59:59.000Z

416

Street-facing Dwelling Units and Livability: The Impacts of Emerging Building Types in Vancouver's New High-density Residential Neighbourhoods  

E-Print Network (OSTI)

s New High-density Residential Neighbourhoods Elizabeths New High-density Residential Neighbourhoods ELIZABETHbuilding new high-density residential neighbourhoods around

Macdonald, Elizabeth

2006-01-01T23:59:59.000Z

417

Comparison of the National Green Building Standard (ICC 700-2008) and LEED for Homes to the Residential Provisions of the 2009 IECC for the Delaware Green for Green Program  

Science Conference Proceedings (OSTI)

Adhering to Delaware’s Green for Green program specifications results in homes being built to more energy-efficient levels than the 2009 IECC levels. Specifically: • Certifying at the Silver Performance Level for the ICC 700 standard using either the Prescriptive or Performance Paths will result in a residential building that is more efficient than if the building only complied with the 2009 IECC. • Certifying at the Silver level under LEED for Homes standard, including mandatory compliance with ENERGY STAR 2006 and earning two additional energy points will result in a residential building that is more efficient than if the building only complied with the 2009 IECC.

Britt, Michelle L.; Makela, Eric J.

2011-01-30T23:59:59.000Z

418

U.S. Department of Energy Commercial Reference Building Models of the National Building Stock  

SciTech Connect

The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

2011-02-01T23:59:59.000Z

419

South Alabama Electric Cooperative - Residential Energy Efficiency...  

Open Energy Info (EERE)

Sector Residential Eligible Technologies Building Insulation, Doors, Heat pumps, Windows, Geothermal Heat Pumps Active Incentive Yes Implementing Sector Utility Energy...

420

Review of Residential Ventilation Technologies.  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Residential Hot Water Distribution Systems: Roundtable Session  

NLE Websites -- All DOE Office Websites (Extended Search)

David Springer, Davis Energy Group Bion D. Howard, Building Environmental Science & Technology ABSTRACT Residential building practice currently ignores the losses of energy...

422

A Comparison of EnergyPlus to DOE-2.1E: Multiple Cases Ranging from a Sealed Box to a Residential Building  

E-Print Network (OSTI)

EnergyPlus (EPlus) is becoming widely used for building simulation. Previous studies have compared the performance of EPlus with other simulation programs including DOE-2 for a variety of cases. These studies identified the different results of programs for the same cases defined in ANSI/ASHRAE Standard 140. This study expanded upon the previous comparisons to include the simplest case scenario where the building was a sealed box without infiltration, internal load, system or plant. The simulations were then extended to include incremental changes on the building load by adding people, lights, equipment and infiltration. EPlus and DOE-2 were compared using multiple base case buildings in Austin from the simplest case to a fully inhabited residential building. With zero infiltration, EPlus calculated 16-17% lower total building load than calculated by DOE-2 as incremental loads were added. Infiltration decreased the difference between DOE-2 and EPlus by 27% and lead to an 11% lower total building load in EPlus when compared to DOE-2.

Andolsun, S.; Culp, C.

2008-12-01T23:59:59.000Z

423

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

424

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

buildings/appliance_standards/residential/ac_central.html>LBNL-56207 Energy Efficiency Standards for Residential andLevels for Upgraded Standards..………………..8 6. Estimation of

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

425

Black Hills Power - Residential Customer Rebate Program (South...  

Open Energy Info (EERE)

Program Applicable Sector Multi-Family Residential, Residential Eligible Technologies Energy Mgmt. SystemsBuilding Controls, Heat pumps, Water Heaters, Geothermal Heat Pumps,...

426

Black Hills Power - Residential Customer Rebate Program (Wyoming...  

Open Energy Info (EERE)

Program Applicable Sector Multi-Family Residential, Residential Eligible Technologies Energy Mgmt. SystemsBuilding Controls, Heat pumps, Water Heaters, Geothermal Heat Pumps,...

427

U.S. Residential Housing Weather Adjusted Site Energy Consumption ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Residential Housing Energy Intensities > Table 1b Glossary U.S. Residential Housing Weather Adjusted ...

428

1997 Residential Energy Consumption and Expenditures per Household ...  

U.S. Energy Information Administration (EIA)

Return to: Residential Home Page . Changes in the 1997 RECS: Housing Unit Type Per Household Member Per Building Increase. Residential Energy Consumption ...

429

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Eligibility Low-Income Residential Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization...

430

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

for technical information on building products, materials, new technologies, business management, and housing systems. DOE's Residential Building Energy Codes - Resource for...

431

Building Technologies Office: Commercial Building Research and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

432

Building Technologies Office: Contact the Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

433

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

434

Analysis of Energy Consumption and Research on Energy-Saving Technology of Rural Residential Buildings in Southern Shaanxi  

Science Conference Proceedings (OSTI)

The article was to grasp trends of energy consumption of village in southern Shaanxi province. Selecting Huangjiagou village of Mian county in Hanzhong city as the investigation base ˇŁRespectively, in January 2009 and July2010, investigation was conducted ... Keywords: rural region, investigation, residential dwellings, energy consumption, energy conservation

Yang Liu; Xia Fang; Meng Dan; An Yungang

2011-02-01T23:59:59.000Z

435

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

E-Print Network (OSTI)

appliance_standards/residential/heating_p roducts_fr_appliance_standards/residential/cac_heatp umps_new_buildings/appliance_standards/residential/fb_tsd_09 07.html

Letschert, Virginie

2010-01-01T23:59:59.000Z

436

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918)  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) June 28, 2013 1 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) SUMMARY The U.S. Department of Energy (DOE) has prepared this environmental assessment (EA) for DOE's Final Rule, 10 CFR Part 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings". The Final Rule updates the baseline standard in 10 CFR 433 to the latest private sector standard based on cost-effectiveness and DOE's determination that energy efficiency has

437

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) June 28, 2013 1 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) SUMMARY The U.S. Department of Energy (DOE) has prepared this environmental assessment (EA) for DOE's Final Rule, 10 CFR Part 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings". The Final Rule updates the baseline standard in 10 CFR 433 to the latest private sector standard based on cost-effectiveness and DOE's determination that energy efficiency has

438

Florida Solar Energy Center (Building America Partnership for...  

Open Energy Info (EERE)

for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction...

439

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

SciTech Connect

Although small wind turbine technology and economics have improved in recent years, the small wind market in the United States continues to be driven in large part by state incentives, such as cash rebates, favorable loan programs, and tax credits. This paper examines the state-by-state economic attractiveness of small residential wind systems. Economic attractiveness is evaluated primarily using the break-even turnkey cost (BTC) of a residential wind system as the figure of merit. The BTC is defined here as the aggregate installed cost of a small wind system that could be supported such that the system owner would break even (and receive a specified return on investment) over the life of the turbine, taking into account current available incentives, the wind resource, and the retail electricity rate offset by on-site generation. Based on the analysis presented in this paper, we conclude that: (1) the economics of residential, grid-connected small wind systems is highly variable by state and wind resource class, (2) significant cost reductions will be necessary to stimulate widespread market acceptance absent significant changes in the level of policy support, and (3) a number of policies could help stimulate the market, but state cash incentives currently have the most significant impact, and will be a critical element of continued growth in this market.

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-03-01T23:59:59.000Z

440

Local Option - Green Building Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Green Building Incentives Local Option - Green Building Incentives Local Option - Green Building Incentives < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info Start Date 6/11/2009 State North Carolina Program Type Green Building Incentive To encourage sustainable building practices, North Carolina law allows all counties and cities to provide reductions or partial rebates for building permit fees. To qualify for a fee reduction, buildings must meet guidelines established by the Leadership in Energy and Environmental Design (LEED)

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Opportunities to Apply Phase Change Materials to Building Enclosures Webinar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2011 1, 2011 Opportunities to Apply Phase Change Materials to Building Enclosures Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-950-6757; Pass code: 6420234 1 | Building America Program www.buildingamerica.gov Building America: Introduction November 11, 2011 Chuck Booten Chuck.Booten@nrel.gov Building Technologies Program 2 | Building America Program www.buildingamerica.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved

442

Technical support documentation for the Automated Residential Energy Standard (ARES) in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 2  

SciTech Connect

The Automated Residential Energy Standard (ARES) program is designed to identify levels of thermal integrity (e.g., insulation levels, glazing layers, equipment efficiencies, etc.) that are cost effective for typical residential structures and to create a residential energy standard based on these levels. This document contains technical background the explains the data and the algorithms used by the program.

NONE

1989-09-01T23:59:59.000Z

443

Hellenic renewable energy policies and energy performance of residential buildings using solar collectors for domestic hot water production in Greece  

Science Conference Proceedings (OSTI)

Total final energy consumption in Hellenic buildings reached 6.5 × 106 tons of oil equivalent (Mtoe) or 34.2% of the total (2010)

2013-01-01T23:59:59.000Z

444

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Building America Residential Research Better Buildings Alliance Solid-State Lighting Events ICMA 99th Annual Conference September 22-25, 2013 Register Now for the 2013...

445

Building Energy Software Tools Directory: Pervidi  

NLE Websites -- All DOE Office Websites (Extended Search)

products. Keywords , building systems, performance, preventative maintenance, analysis, residential and commercial buildings ValidationTesting NA Expertise Required High level...

446

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Eligibility Commercial Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial...

447

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

E-Print Network (OSTI)

buildings/appliance_standards/residential/cac_heatp umps_buildings/appliance_standards/residential/fb_tsd_09 07.htmlof Energy Efficiency Standards and Labeling Programs, LBNL

Letschert, Virginie

2010-01-01T23:59:59.000Z

448

The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings  

Science Conference Proceedings (OSTI)

An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

Desjarlais, Andre Omer [ORNL] [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL] [Metal Construction Association, Glenview, IL; Miller, William A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

449

Sustainable Building Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Sustainable Building Tax Credit (Personal) < Back Eligibility Commercial Multi-Family Residential Nonprofit Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 1/1/2007 Expiration Date 12/31/2016 State New Mexico Program Type Personal Tax Credit Rebate Amount Varies based on the square footage of the building and the certification level Provider New Mexico Taxation and Revenue Department SB 463, enacted in April 2007, established a personal tax credit and a corporate tax credit for sustainable buildings in New Mexico. The tax

450

Sustainable Building Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Sustainable Building Tax Credit (Corporate) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 1/1/2007 Expiration Date 12/31/2016 State New Mexico Program Type Corporate Tax Credit Rebate Amount Varies based on the square footage of the building and the certification level Provider New Mexico Taxation and Revenue Department SB 463, enacted in April 2007, established a personal tax credit and a corporate tax credit for sustainable buildings in New Mexico. The tax

451

U.S. Residential Housing Primary Energy Consumption  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Residential Housing Energy Intensities > Table 1c Glossary U.S. Resident ...

452

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL

2011-01-01T23:59:59.000Z

453

City of San Antonio - Green Building Requirement | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Antonio - Green Building Requirement City of San Antonio - Green Building Requirement Eligibility Commercial Industrial Multi-Family Residential Residential Savings For Heating...

454

City of Palo Alto - Green Building Requirement (California) ...  

Open Energy Info (EERE)

Place California Name City of Palo Alto - Green Building Requirement Incentive Type Building Energy Code Applicable Sector Commercial, Multi-Family Residential, Residential...

455

City of Boulder - Green Points Building Program (Colorado) |...  

Open Energy Info (EERE)

Colorado Name City of Boulder - Green Points Building Program Incentive Type Building Energy Code Applicable Sector Commercial, Construction, Multi-Family Residential, Residential...

456

Energy Data Sourcebook for the U.S. Residential Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Sourcebook for the U.S. Residential Sector Data Sourcebook for the U.S. Residential Sector Title Energy Data Sourcebook for the U.S. Residential Sector Publication Type Report LBNL Report Number LBNL-40297 Year of Publication 1997 Authors Wenzel, Thomas P., Jonathan G. Koomey, Gregory J. Rosenquist, Marla C. Sanchez, and James W. Hanford Date Published 09/1997 Publisher Lawrence Berkeley National Laboratory City Berkeley, CA ISBN Number LBNL-40297, UC-1600 Keywords Enduse, Energy End-Use Forecasting, EUF Abstract Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment; historical and current appliance and equipment market shares; appliance and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl.gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

457

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates  

Science Conference Proceedings (OSTI)

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-01-01T23:59:59.000Z

458

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

459

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

1997-05-01T23:59:59.000Z

460

Diagnostic Measurement and Performance Feedback for Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Feedback for Residential Space Conditioning Equipment Building America Expert Meeting 26-April-2010 Held at NIST, Gaithersburg, MD Diagnostic Measurement and...

Note: This page contains sample records for the topic "residential building starts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Baltimore Gas & Electric Company (Electric) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

freezers, CFLs, HVAC systems, and Building Insulation. The Home Performance with Energy Star Incentive Program also provides residential incentives including envelope and...

462

U.S. Residential Housing Primary  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7c Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

463

Evaluation of High Performance Residential Housing Technology.  

E-Print Network (OSTI)

??The energy consumption of residential buildings in Canada accounts for 17% of national energy use (Trudeau, 2005). Production homes represent a considerable portion of new… (more)

Grin, Aaron

2008-01-01T23:59:59.000Z