National Library of Energy BETA

Sample records for residential air conditioners

  1. Covered Product Category: Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    acquisition guidance for residential central air conditioners (CACs), which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that...

  2. Covered Product Category: Residential Central Air Conditioners

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential central air conditioners (CACs), which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  3. Rating of Mixed Split Residential Air Conditioners 

    E-Print Network [OSTI]

    Domanski, P. A.

    1988-01-01

    require that manufac- turers derive cooling ratings for unitary systems by testing a sample of sufficient size to meet certain specified statistical confidence levels. For split unitary systems comprising an outdoor unit and an indoor coil assembly...(95), SEER, and recommended indoor volumetric flow rate of air, are publicly available. The procedure also assumee that the matched indoor section is available for inspection and evaluation of the indoor coil capacity and the indoor fan power...

  4. The Impact of Residential Air Conditioner Charging and Sizing on Peak Electrical Demand 

    E-Print Network [OSTI]

    Neal, L.; O'Neal, D. L.

    1992-01-01

    of Residential Air Conditioner Charging and Sizing on Peak Electrical Demand Leon Neal North Carolina Alternate Energy Corporation Research Triangle Park, N.C. ABSTRACT Electric utilities have had a number of air conditioner rebate and maintenance... of the equipment), system sizing, and efficiency on the steady-state, coincident peak utility demand of a residential central air conditioning system. The study is based on the results of laboratory tests of a three-ton, capillary tube expansion, split...

  5. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  6. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  7. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  8. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brandemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  9. An Evaluation of the Effects of Refrigerant Charge on a Residential Central Air Conditioner with Orifice Expansion 

    E-Print Network [OSTI]

    O'Neal, D. L.; Ramsey, C. J.; Farzad, M.

    1989-01-01

    Recent studies have been conducted at Texas A & M University to quantify the effect of over/undercharging on the performance of a residential central air conditioner with two different expansion devices: capillary tubes ...

  10. Simulation of Dehumidification Characteristics of High Efficiency Residential Central Air-Conditioners in Hot and Humid Climates 

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D.; Somasundram, S.

    1988-01-01

    This study assesses the dehumidifying performance of the high efficiency residential central air conditioners (CAC) in hot/humid climates typified by that of Houston and Galveston. The performance study is based on such factors as: (i) weather (ii...

  11. Residential Air Conditioner Direct Load Control "Energy Partners Program" 

    E-Print Network [OSTI]

    Cook, J. D.

    1994-01-01

    ) approach in which both demand- side and supply side resources are evaluated. HL&P also recognizes the contribution demand-side programs make to the company's long-term ability to provide reliable and reasonably priced electric service for its... effected, according to EPRI. Numerous large investor-owned electric utilities are presently offering residential load control programs with great success. Arkansas Power & Light, Duke Power Company, Florida Power Corporation, Florida Power t Light...

  12. An Evaluation of Steady-State Dehumidification Characteristics of Residential Central Air Conditioners, Final Report 

    E-Print Network [OSTI]

    O'Neal, D. L.; Chan, N.; Somasundaram, S.; Katipamula, S.

    1987-01-01

    This report is the first of two reports on the project "Determination of the Transient Response Characteristics of High Efficiency Commercial Air Conditioners" funded by Houston Lighting and Power Company. The purpose ...

  13. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners 

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

    1986-01-01

    This report summarizes: (1) the performance improvements possible for central air conditioners and heat pumps using conventional design improvements, (2) the development of a methodology for estimating the seasonal performance of variable speed heat...

  14. The Effect of Reduced Evaporator Air Flow on the Performance of a Residential Central Air Conditioner 

    E-Print Network [OSTI]

    Palani, M.; O'Neal, D.; Haberl, J.

    1992-01-01

    the performance of a residential cooling system operating under degraded conditions such as reduced evaporator air flow. Degraded performance measurements can provide information which could help electric utilities evaluate the potential impact of system...

  15. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect (OSTI)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  16. Effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential split-system air conditioners 

    E-Print Network [OSTI]

    Dooley, Jeffrey Brandon

    2005-02-17

    -1 EFFECTS OF SYSTEM CYCLING, EVAPORATOR AIRFLOW, AND CONDENSER COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to the Office of Graduate Studies of Texas... A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2004 Major Subject: Mechanical Engineering EFFECTS OF SYSTEM CYCLING, EVAPORATOR AIRFLOW, AND CONDENSER...

  17. Energy Impacts of Oversized Residential Air Conditioners— Simulation Study of Retrofit Sequence Impacts

    SciTech Connect (OSTI)

    Booten, C.; Christensen, C.; Winkler, J.

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home, which can result in significant energy penalties. However, the reason for this was due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters.

  18. Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench 

    E-Print Network [OSTI]

    Palani, M.; O'Neal, D. L.; Haberl, J. S.

    1992-01-01

    This report presents the measured degradation in performance of a residential air conditioning system operating under degraded conditions. Experiments were conducted using a R-22 threeton split-type cooling system with a short-tube orifice expansion...

  19. Energy Impacts of Oversized Residential Air Conditioners -- Simulation Study of Retrofit Sequence Impacts

    SciTech Connect (OSTI)

    Booten, C.; Christensen, C.; Winkler, J.

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home. Conventional wisdom holds that oversizing the AC results in significant energy penalties. However, the reason for this was shown to be due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters. A case study of a typical 1960's vintage home demonstrates results in the context of whole building simulations using EnergyPlus.

  20. Monitoring the Performance of a Residential Central Air Conditioner under Reduced Evaporator Air Flow on a Test Bench 

    E-Print Network [OSTI]

    Palani, Manivannan

    1992-01-01

    This report presents results from degraded performance measurements of a residential air conditioning system operating under reduced evaporator air flow. Experiments were conducted using a R-22 three-ton split-type cooling system with a short...

  1. 13 EER Window Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13 EER Window Air Conditioner 2014 Building Technologies Office Peer Review Broadway Apartment Building with WACs in NYC Pradeep Bansal, bansalpk@ornl.gov Oak Ridge National...

  2. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners July 1, 2012 - 5:35pm Addthis A room air conditioner is one solution to cooling part of a house. | Photo courtesy of iStockphoto...

  3. Maintaining Your Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with a clean one can lower your air conditioner's energy consumption by 5% to 15%. For central air conditioners, filters are generally located somewhere along the return duct's...

  4. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01

    Maintenance costs are assumed to apply to all product types (split or package systems, air conditioners or heat pumps) and

  5. Effect of Return Air Leakage on Air Conditioner Performance in Hot/Humid Climates 

    E-Print Network [OSTI]

    O'Neal, D. L.; Rodriguez, A.; Davis, M.; Kondepudi, S.

    1996-01-01

    An experimental study was conducted to quantify the effect of return air leakage from hot/humid attic spaces on the performance of a residential air conditioner. Tests were conducted in psychrometric facilities where temperatures and humidities...

  6. Improving Air-Conditioner and Heat Pump Modeling

    SciTech Connect (OSTI)

    Winkler, Jon

    2012-03-02

    This presentation describes a new approach to modeling residential air conditioners and heat pumps, which allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted “behind-the-scenes” without negatively impacting the reliability of energy simulations.

  7. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  8. Cromer Cycle Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE)

    New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity

  9. High-Efficiency Window Air Conditioners - Building America Top...

    Energy Savers [EERE]

    Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air...

  10. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01

    Central Air Conditioners and Heat Pumps Energy ConservationW.R. Coleman. 1990. “Heat Pump Life and Compressor LongevityC.C.. 1990. “Predicting Future Heat Pump Production Volume

  11. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    poor service procedures, and inadequate maintenance. Improper installation of a central air conditioner can result in leaky ducts and low airflow. Many times, the...

  12. Four Central Air Conditioners Determined Noncompliant With Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Four Central Air Conditioners Determined Noncompliant With Energy Efficiency Standard Four Central Air Conditioners Determined Noncompliant With Energy Efficiency Standard October...

  13. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01

    in use patterns and electricity rates between commercial andRates Residential electricity rates are much lower thanin India. Residential electricity rates are subsidized to a

  14. Laboratory Performance Testing of Residential Window Mounted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was...

  15. Determination of the Transient Dehumidification Characteristics of High Efficiency Central Air Conditioners 

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D. L.; Somasundaram, S.

    1987-01-01

    A series of tests were performed to assesses the dehumidifying performance of residential central air conditioners (CACs). The performance studies were based on factors such as: (i) dynamic performance (ii) the ASHRAE comfort zone, (iii) control...

  16. Ductless Mini-Split Air Conditioners | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mean for me? A ductless mini-split air conditioner is easier to install than a central air conditioning system. A ductless mini-split air conditioner provides zoned air...

  17. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  18. The effects of galvanic corrosion on air conditioner performance 

    E-Print Network [OSTI]

    Grisham, Phillip Ryan

    2001-01-01

    Corrosion of air conditioner outdoor heat exchangers (condensers) poses a significant problem for consumers living in coastal regions. This research sought to experimentally determine effects of galvanic corrosion on air conditioner condenser coils...

  19. Ductless Mini-Split Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    Mini-Split Air Conditioners A ductless mini-split air conditioner is one solution to cooling part of a house. | Photo courtesy of iStockphotoLUke1138. A ductless...

  20. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  1. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and...

    Energy Savers [EERE]

    ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings ISSUANCE 2015-05-01: Commercial Package Air...

  2. Air Conditioner Compressor Performance Model

    SciTech Connect (OSTI)

    Lu, Ning; Xie, YuLong; Huang, Zhenyu

    2008-09-05

    During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

  3. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2014-01-01

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  4. An Evaluation of Improper Refrigerant Charge on the Performance of a Split System Air Conditioner with Capillary Tube Expansion 

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1988-01-01

    The effect of the improper charging on the performance (capacity, EER, power consumption, SEER, and coefficient of degradation) of a residential air conditioner during the steady state (wet and dry coils) and cycling ...

  5. Ex Parte Communication on Central Air-Conditioner Test Procedure...

    Broader source: Energy.gov (indexed) [DOE]

    with a representative from the Department of Energy (DOE) to discuss proposed amended test procedures for central air conditioners and how they would impact ICM manufacturers....

  6. Measured Impacts of Air Conditioner Condenser Shading 

    E-Print Network [OSTI]

    Parker, D. S.; Barkaszi, S. F.; Sonne, J. K.

    1996-01-01

    A study has been conducted by the Florida Solar Energy Center (FSEC) to examine if space cooling energy savings can be achieved from shading of residential air conditioning (AC) condenser units. The investigation consisted of before...

  7. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

  8. Establish the Commercial Pacakge Air Conditioners and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commercial package air conditioners, heat pumps, and commercial warm air furnaces is an action issued by the Department of Energy. Though it is not intended or expected, should any...

  9. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    integrated with an air conditioner unit and air/water heatan air conditioner unit and air/water heat exchanger Source:system and a standard air/water heat exchanger. Figure A-

  10. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore »R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  11. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  12. YMGI Through-the-Wall Air Conditioner Determined Noncompliant...

    Broader source: Energy.gov (indexed) [DOE]

    11, 2012, to YMGI Group, LLC (YMGI) regarding through-the-wall split system central air conditioner basic model TTWC-18K-31B. DOE enforcement testing revealed that this model...

  13. Electrolux Gibson Air Conditioner and Equator Clothes Washer...

    Broader source: Energy.gov (indexed) [DOE]

    DOE testing in support of the ENERGY STAR program has revealed that an Electrolux Gibson air conditioner (model GAH105Q2T1) and an Equator clothes washer (model EZ 3720 CEE), both...

  14. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01

    AIR CONDITIONERS AND HEAT PUMPS K. Dao, M. Wahlig, E. Wali,are liquid paths. DM: multistage pump driver, driven by highvapor. DW: main circulation pump driven by strong absorbent.

  15. High-Efficiency Rooftop Air Conditioners: Innovative Procurement...

    Office of Scientific and Technical Information (OSTI)

    air conditioner manufacturers to produce equipment that exceeded US energy efficiency standards by at least 25% at a lower life-cycle cost. An outgrowth of the project, a...

  16. The Natural gas Heat Pump and Air Conditioner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Natural Gas Heat Pump and Air Conditioner 2015 Building Technologies Office Peer Review Heat from Burner Combined Heat Delivered (25 kW) Ambient (10 kW) Paul Schwartz, CEO...

  17. Influence of Air Conditioner Operation on Electricity Use and Peak Demand 

    E-Print Network [OSTI]

    McGarity, A. E.; Feuermann, D.; Kempton, W.; Norford, L. K.

    1987-01-01

    Electricity demand due to occupant controlled room air conditioners in a large mater-metered apartment building is analyzed. Hourly data on the electric demand of the building and of individual air conditioners are used in analyses of annual...

  18. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and Heat Pump Models...

  19. ISSUANCE 2015-06-09: Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information

  20. ISSUANCE 2015-08-21: Energy Conservation Standards for Central Air Conditioners and Heat Pumps: Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Standards for Central Air Conditioners and Heat Pumps: Notice of Data Availability

  1. ISSUANCE 2015-11-19: Energy Conservation Program: Test Procedures for Portable Air Conditioners; Supplemental Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Test Procedures for Portable Air Conditioners; Supplemental Notice of Proposed Rulemaking

  2. Investigation of a family of power conditioners integrated into the utility grid: Category 1. Residential power conditioner. Final report

    SciTech Connect (OSTI)

    Steigerwald, R.L.; Ferraro, A.; Tompkins, R.E.

    1981-07-01

    The development of power conditioners for residential photovoltaic applications of approximately 5 to 30 kW is reported. The interface of the inverter and the solar array, as well as the ac utility is investigated including the effects of array input current, utility impedance, and injected harmonic currents. The trade-off study of alternate power conversion schemes are covered which results in a recommended approach. A conceptual design of the recommended approach, including performance results obtained from an inverter simulated is presented. (LEW)

  3. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep [ORNL; Shen, Bo [ORNL

    2015-01-01

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  4. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  5. The Impact of Energy Recovery on Window Air-conditioner Efficiency 

    E-Print Network [OSTI]

    Luo, Q.; Tang, C.; Liao, K.

    2006-01-01

    An experimental energy recovering air-conditioner can produce fresh air exchange heat with exhaust air in the heat exchanger, which has no additional moving parts. The EER of the experimental air-conditioner (EAC) is increased by 17.4~37.3 percent...

  6. Maintaining Your Air Conditioner | Department of Energy

    Office of Environmental Management (EM)

    its years of service. Neglecting necessary maintenance ensures a steady decline in air conditioning performance while energy use steadily increases. Check out our Energy...

  7. Tips: Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    before proper dehumidification occurs, making the area feel "clammy" and uncomfortable. Central air-conditioning systems need to be sized by professionals. Explore our Energy...

  8. Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...

    Broader source: Energy.gov (indexed) [DOE]

    recent advances in thermoelectric device fabrication and the design of novel coolingheating engines exploiting thermal storage for efficient air-conditioners in automobiles...

  9. Do residential air-conditioning rebates miss the mark?

    SciTech Connect (OSTI)

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  10. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject DevelopsforReportingResourcesDepartmentDepartment ofRoom Air

  11. DOE Investigates Possible Air Conditioner Efficiency Violations |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional|Certify AirDepartment of

  12. List of Room Air Conditioners Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList of RefuelingRoom Air Conditioners

  13. Florida Public Utilities- Residential HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers rebates to electric residential customers who improve the efficiency of homes. Central air conditioners and heat pumps which meet program requirements are eligible...

  14. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect (OSTI)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  15. Investigation of residential central air conditioning load shapes in NEMS

    E-Print Network [OSTI]

    Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

    2002-01-01

    of Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMS

  16. A Preliminary Evaluation of Alternative Liquid Desiccants for a Hybrid Desiccant Air Conditioner 

    E-Print Network [OSTI]

    Studak, J. W.; Peterson, J. L.

    1988-01-01

    and the condenser of a vapor-compression air conditioner. The liquid desiccants studied were lithium chloride, lithium bromide, calcium chloride, and triethylene glycol. Each candidate desiccant was subjected to a screening process which weighed the merits...

  17. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  18. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner...

    Broader source: Energy.gov (indexed) [DOE]

    AeroSys, Inc. to stop distributing two product models - one air conditioner and one heat pump - that DOE testing found to consume more energy than allowed under federal...

  19. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  20. Residential Energy Efficiency Rebates (Offered by 5 Utilities)

    Broader source: Energy.gov [DOE]

     For residential customers, rebates are available for ENERGY STAR ceiling fans, clothes washers, decorative light strings, dehumidifiers, dishwashers, refrigerators, room air conditioners, and he...

  1. Dirty Air Conditioners: Energy Implications of Coil Fouling Jeffrey Siegel, Lawrence Berkeley National Laboratory/ UC Berkeley

    E-Print Network [OSTI]

    Berkeley National Laboratory ABSTRACT Residential air conditioning is responsible for a substantial amount conditioning commissioning and maintenance practices. Introduction Residential air conditioning is responsible. For typical residential heat pump and air conditioning #12;systems, they predict a 10 ­ 25 % average energy

  2. ISSUANCE 2015-07-17: Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information, Extension of the Public Comment Period

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information, Extension of the Public Comment Period

  3. ISSUANCE 2015-06-08: Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

  4. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOE Patents [OSTI]

    Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  5. NREL Solves Residential Window Air Conditioner Performance Limitations (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Comprehensive performance tests lead to enhanced modeling capability and affordable methods to increase energy efficiency.

  6. Covered Product Category: Residential Central Air Conditioners | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLakeDepartmentEnergyEnterprise ServersHotDepartmentof

  7. 13 SEER Standard for Central Air Conditioners and Heat Pumps (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In January 2004, after years of litigation in a case that pitted environmental groups and Attorneys General from 10 states against the U.S. Secretary of Energy, the U.S. Court of Appeals for the Second Circuit reestablished the central air conditioner and heat pump standard originally set in January 200. The Courts ruling, which struck down a May 2002 rollback of the 2001 standard to a 12 Seasonal Energy Efficiency Ratio (SEER) mandates that all new central air conditioners and heat pumps meet a 13 SEER standard by January 2006, requiring a 30% increase in efficiency relative to current law. The Annual Energy Outlook 2005 reference case incorporates the 13 SEER standard as mandated by the Courts ruling.

  8. Analysis of Air Leakage Measurements from Residential Diagnostics Database

    E-Print Network [OSTI]

    Chan, W.R.

    2014-01-01

    Analysis of Air Leakage Measurements from ResidentialType Previous analyses of air leakage data suggest that

  9. Residential Humidity Control: Exciting New Opportunities with Air Flow Modulation 

    E-Print Network [OSTI]

    Crawford, J. G.

    1987-01-01

    This paper reviews psychrometric principles and shows how to formulate a psychrometric chart from a single equation. The chart is used to demonstrate the manner in which a conventional single-speed air conditioner adjusts its operating point...

  10. Desiccant Moisture Exchange for Dehumidification Enhancement of Air Conditioners 

    E-Print Network [OSTI]

    Cromer, C. J.

    1988-01-01

    amling mil. Bqe surfam is needed to accomplish the heat ex&ange, so lamberenthian anl wrnpted surfaces have been used. Ihe of heat is ~Wlled by duct* & bypaseirq varying armnrts of air 8ud-1 that all air does not casrtact all the heat exdmqe...

  11. Cromer Cycle Air Conditioner: A Unique Air-Conditioner Desiccant Cycle to Enhance Dehumidification and Save Energy 

    E-Print Network [OSTI]

    Cromer, C. J.

    2000-01-01

    The Cromer cycle uses a desiccant to move moisture from the saturated air leaving an air conditioning (AC) cooling coil to the air returning to the AC unit from the conditioned space. This has the thermodynamic effect of reducing the overall energy...

  12. Development of an Automated Fault Detection System Tool for Unitary Air Conditioners at Undustrial Energy Audits 

    E-Print Network [OSTI]

    Parikh, P.; Pasmussen, B. P.

    2015-01-01

    Faulty air conditioners are prevalent; as is the related energy inefficiency 57% Of 13,000 systems incorrectly charged 13% Average efficiency loss 10% Efficiency loss due to 30% overcharge 9% Efficiency loss due to 30% undercharge ESL-IE-15... • Refrigerant Type Brochure • Rated Subcooling• Rated Superheat Other • Type of Valve • Avoided Cost of Electricity • Operating Hours • Presence of Accumulator Co In Co Pr Co Out Ev Out Ev In Co In Co Out Ev Pr Ev Out Air side Temperatures Refrigerant side...

  13. Cromer Cycle Air Conditioner: A Study to Confirm Target Performance 

    E-Print Network [OSTI]

    Cromer, C. J.

    2001-01-01

    The Cromer cycle uses a desiccant wheel operating in conjunction with a typical air conditioning system. Simulations and laboratory prototypes demonstrate that the cycle has the potential for enhanced humidity control with sensible heat ratios...

  14. Model-Based Commissioning for Filters in Room Air Conditioners 

    E-Print Network [OSTI]

    Wang, F.; Yoshida, H.; Kitagawa, H.; Matsumoto, K.; Goto, K.

    2004-01-01

    This paper proposes a model that can estimate filter resistance. Two sorts of value are used as inputs to estimate filter resistance. One is the power consumed by the fan in the indoor unit and the other is the thermal performance. For the room air...

  15. Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners

    E-Print Network [OSTI]

    . Figure 1 illustrates a typical rooftop (NREL Pix 06451) installation. Building Industry Trends - 10 performance of this equipment has remained relatively constant, close to the minimum standard over this period. An evaluation of data on currently available models from theAirConditioning andRefrigerationInstitute (ARI2000

  16. The Explorationon the Energy Saving Potential of an Innovative Dual-temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycl 

    E-Print Network [OSTI]

    Zhao,L.; Zhao,X.; Hu,A.

    2014-01-01

    and Municipal Engineering Xi’an University of Architecture and Technology The Exploration on the Energy Saving Potential of an Innovative Dual- temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycle ESL-IC-14-09-35a... conditioner. However, energy losses caused by secondary heat transfer leave more room for the whole system performance to be improved if they can be avoided. 1 Introduction ?An innovative dual-temperature air-conditioner and the corresponding theoretical...

  17. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  18. NREL: Continuum Magazine - Air Conditioner Ready to Change Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:NewsWebmaster Please enter your name andEnergyAir

  19. Covered Product Category: Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department of Energy Whole-Home Gas Tankless Water HeatersRoom Air

  20. Commercial Air Conditioners and Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of EnergyofDepartmentProcess DocumentPartner: A.O.Air

  1. Covered Product Category: Room Air Conditioners | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergyEvery Thanksgiving, we hearfreezers, aroom air

  2. Product Standards for Air Conditioners (Japan) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsenBioSolutions JumpProblems withAir

  3. 2014-05-05 Issuance: Test Procedure for Portable Air Conditioners; Notice of Data Availability

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of data availabilty regarding test procedures for portable air conditioners, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  4. Duct Design Impacts on Energy Consumptions and Life Cycle Costs for Residential Central Heating and Cooling Systems 

    E-Print Network [OSTI]

    Yin, Peng

    2015-08-10

    In this study, a series of laboratory measurements was conducted on residential air handling units (AHUs) and air conditioners to characterize their performance at typical installed conditions. In addition, performance models of blowers and air...

  5. Delivering Tons to the Register: Energy Efficient Design and Operation of Residential Cooling Systems

    E-Print Network [OSTI]

    Delivering Tons to the Register: Energy Efficient Design and Operation of Residential Cooling Systems Jeffrey Siegel, Lawrence Berkeley National Laboratory Iain Walker, Lawrence Berkeley National and air conditioner performance. These parameters included placing the entire air conditioning system

  6. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  7. Using National Survey Data to Estimate Lifetimes of Residential Appliances

    E-Print Network [OSTI]

    Lutz, James D.

    2013-01-01

    central air-conditioners, heat pumps, furnaces, boilers,central air-conditioners, heat pumps, furnaces, boilers,air-conditioners and heat pumps, units are added to the

  8. 2014-03-06 Issuance: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for packaged terminal air conditioners and packaged terminal heat pumps, as issued by the Deputy Assistant Secretary on March 6, 2014.

  9. Covered Product Category: Residential Air-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air-source heat pumps, which is an ENERGY STAR qualified product category.

  10. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  11. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    heater replacement, air conditioner replacement, solar thermal waterheater replacement, air conditioner replacement, solar thermal water

  12. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  13. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  14. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner...

    Broader source: Energy.gov (indexed) [DOE]

    against Air-Con, International, requiring the company to stop selling certain air conditioning systems in the U.S. that have been shown to violate minimum energy efficiency...

  15. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    In recent years China's energy consumption has increased rapidly. The problem of high energy consumption intensity and low energy utilization efficiency is serious, and the contradiction between economic development and energy and environmental resources has become increasingly acute, making energy conservation and consumption reduction an important society-wide concern. At the same time, global climate change has and will continue to have profound impacts on human survival and development, and is another major challenge to all countries. In order to accelerate China's energy conservation and emission reduction work, the National Leading Group to Address Climate Change, Energy Conservation and Emission Reduction was founded with Premier Wen Jiabao as the head, and the 'Comprehensive Work Program of Energy Conservation and Emission Reduction' and 'China's National Program of Addressing Climate Change' were issued, under which China's energy conservation and emission reduction work has been fully deployed. Efforts to promote energy efficiency have been further strengthened in all levels of government, and various policies and measures have progressively been issued and implemented. In addition, based on China's experience with implementing energy-saving priority strategies over the past 20+ years, our government established a goal of a 20% decrease in energy consumption per unit GDP in the 'Eleventh Five-year Development Plan'. Furthermore, in November 2009, in order to support global greenhouse gas emission reduction activities and promote China's low carbon economic development, the government established a further 40-50% reduction in energy consumption per unit GDP by 2020 compared to the year 2005. Improving energy utilization efficiency by scientific and technological progress will undoubtedly play an important role in achieving the above stated objectives. The improvement of energy efficiency of energy consuming products has always been an important component of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor products. Promoting the energy efficiency and market shares of main energy-consuming products has become an important determinant of achieving energy conservation and emission reduc

  16. Residential Forced Air System Cabinet Leakage and Blower Performance

    SciTech Connect (OSTI)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  17. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01

    G. Henderson (2005) Home air conditioning in Europe – howhigher growth in Indian air conditioner saturation duringand A.A. Pavlova ( 2003). Air conditioning market saturation

  18. AIR LEAKAGE OF NEWLY INSTALLED RESIDENTIAL WINDOWS

    E-Print Network [OSTI]

    Weidt, John

    2013-01-01

    Tables 2.0.2a 2.0.2b PAGE Air Leakage Through Sash/FrameOperation Types . . . . . Air Leakage of Installed WindowsComparison of Window Types Air Leakage Performance of

  19. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    the energy efficiency of air conditioning products isbetween the energy efficiency of air conditioning productsthe air conditioning testing facilities of energy efficiency

  20. Longevity of Duct Tape in Residential Air Distribution

    E-Print Network [OSTI]

    LBNL 51099 Longevity of Duct Tape in Residential Air Distribution Systems: 1-D, 2-D, and 3-D Joints involved the aging of common "core-to-collar joints" of flexible duct to sheet metal collars, and sheet consisted of baking duct tape specimens in a constant 212°F (100°C) oven following the UL 181B

  1. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    shows that most foreign energy efficien- cy standards arethe measurement of the energy efficien- cies of air/air airshare consists of energy- efficient electric motor products.

  2. The Technical and Economical Analysis of the Air-conditioning System Usage in Residential Buildings in Beijing 

    E-Print Network [OSTI]

    Sheng, G.; Xie, G.

    2006-01-01

    -conditioning units in residential buildings, and are using the central air-conditioning system in residential buildings. To determine the best air conditioning mode, a residential tower building with 22 layers was chosen for analysis. The advantages and disadvantages...

  3. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  4. Analysis of Air Leakage Measurements from Residential

    E-Print Network [OSTI]

    that are useful as explanatory variables, including floor area, height, vintage, and climate zone. Foundation type IMPACTS Building envelope airtightness is important because heating and cooling accounts for about 50% of the heating and cooling energy. Understanding the current air leakage characteristics and the factors

  5. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01

    Consumption 2005-2030 Consumption (TWh) IND INDO SAS-PAS BRASAS-PAS BRA MEA Figure 4 Air Conditioner Saturation by Region 2005-

  6. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    use, the water-side economizer and the air-side economizer.The air-side economizer takes advantage of the cool outdoorair is cool enough to provide total cooling. The water-side economizer

  7. Air Barriers for Residential and Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartment of EnergyIndustryDepartment ofAir

  8. Comparison of freezing control strategies for residential air-to-air heat recovery ventilators

    SciTech Connect (OSTI)

    Phillips, E.G.; Bradley, L.C. ); Chant, R.E. ); Fisher, D.R.

    1989-01-01

    A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.

  9. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    86 Figure A-4: (a) Physical DEVap concept; (b)Illustration of DEVap air conditioningcontrolled ventilation DEVap Desiccant-enhanced evaporative

  10. Modeling the effects of Refrigerant Charging on Air Conditioner Performance Characteristics For Three Expansion Devices 

    E-Print Network [OSTI]

    Farzad, Mohsen

    1990-01-01

    a small refrigerant charge. A new heat exchanger model based on tube-by-tube simulation was developed and integrated into the ORNL heat pump model. The model was capable of simulating the steady state response of a vapor compression air-to-air heat...

  11. Testing and Economic Evaluation of a High Efficiency 10-ton Rooftop Air Conditioner 

    E-Print Network [OSTI]

    O'Neal, D. L.; Davis, M. A.

    2006-11-09

    In 1993, the U.S. Environmental Protection Agency initiated a project to design, build and demonstrate a high efficiency commercial rooftop air conditioning unit. The unit was designed by Hibberd Consulting of Westminster, Colorado, and was built...

  12. Fault detection methods for vapor-compression air conditioners using electrical measurements

    E-Print Network [OSTI]

    Laughman, Christopher Reed.

    2008-01-01

    (cont.) This method was experimentally tested and validated on a commercially available air handler and duct system. In the second class of faults studied, liquid refrigerant, rather than vapor, enters the cylinder of a ...

  13. Investigations on Vapour Compression Air Conditioner with Direct Contact Desiccant Loop over Condenser and Evaporator 

    E-Print Network [OSTI]

    Maiya, M. P.; Ravi, J.; Tiwari, S.

    2010-01-01

    (low humidity). Operation of such a novel system is explained, elucidating the operational feasibility. The results presented consider the characteristics of such a system with respect to changes in the evaporator inlet air temperature and humidity...

  14. Improving the Operating Efficiency of Packaged Air Conditioners and Heat Pumps

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Wang, Weimin; Vowles, Mira

    2014-03-10

    This article discusses several control strategies that can significantly reduce energy consumption associated with packaged rooftop units RTUs). Although all of the considered strategies are widely used in built-up air-handing units, they are not commonly used in existing RTUs. Both simulation and field evaluations show that adding these control strategies to existing RTUs can reduce their energy consumption by between 30% and 60%.

  15. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect (OSTI)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  16. 2015-02-13 Issuance: Energy Conservation Standards for Portable Air Conditioners; Notice of Public Meeting and Availability of the Preliminary Technical Support Document

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for portable air conditioners, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 13, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  17. 2014-08-19 Issuance Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC)- Central Air Conditioner Regional Standards Enforcement Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Registe notice of open meetings regarding the Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) - Central Air Conditioner Regional Standards Enforcement Working Group, as issued by the Deputy Assistant Secretary for Energy Efficiency on August 19, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  18. Local Voltage Support from Distributed Energy Resources to Prevent Air Conditioner Motor Stalling

    SciTech Connect (OSTI)

    Baone, Chaitanya A; Xu, Yan; Kueck, John D

    2010-01-01

    Microgrid voltage collapse often happens when there is a high percentage of low inertia air-conditioning (AC) motors in the power systems. The stalling of the AC motors results in Fault Induced Delayed Voltage Recovery (FIDVR). A hybrid load model including typical building loads, AC motor loads, and other induction motor loads is built to simulate the motoring stalling phenomena. Furthermore, distributed energy resources (DE) with local voltage support capability are utilized to boost the local bus voltage during a fault, and prevent the motor stalling. The simulation results are presented. The analysis of the simulation results show that local voltage support from multiple DEs can effectively and economically solve the microgrid voltage collapse problem.

  19. Intelligent Residential Air-Conditioning System with Smart-Grid Functionality

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Intelligent Residential Air-Conditioning System with Smart-Grid Functionality Auswin George residential air-conditioning (A/C) system controller that has smart grid functionality. The qualifier, conditional on anticipated retail energy prices. The term "smart- grid functionality" means that retail energy

  20. 2015-03-24 Issuance: ASRAC; Notice of Intent to Establish the Commercial Package Air Conditioners and Heat Pumps and Commercial Warm Air Furnaces Working Group to Negotiate Potential Energy Conservation Standards

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register Notice of Intent regarding potential Energy Conservation Standards for Commercial Package Air Conditioners and Heat Pumps and Commercial Warm Air Furnaces, as issued by the Deputy Assistant Secretary for Energy Efficiency on March 24, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Kosciusko REMC- Residential Geothermal and Air-source Heat Pump Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kosciusko REMC offers rebates (as bill credits) to residential members for the purchase and installation of high efficiency air-source heat pumps, geothermal heat pumps, and electric water heaters....

  2. CWS-fired residential warm-air heating system

    SciTech Connect (OSTI)

    Balsavich, J.C.; Becker, F.E.; Smolensky, L.A.

    1990-03-01

    The objective of the CWS-Fired Residential Warm-Air Heating System program was the development of an economically viable coal water slurry (CWS) fueled furnace that is competitive with current oil and natural gas systems. During the first phase of the program, a novel state-of-the-art Inertial Reactor with Internal Separation (IRIS) combustor was designed and tested. The second phase of the program focused on evaluating the interaction between the individual components and system design optimization. Testing was conducted on the prototype furnace. This work concentrated on optimizing the combustor configuration to yield high combustion efficiencies and prevent the possible agglomeration of coal within the combustor. Also, a new twin-fluid CWS atomizer was designed and tested. This atomizer employed a supersonic airstream to shear the CWS external to the nozzle and thereby eliminated erosion problems. Also, a new furnace system was designed, constructed, and extensively tested. This furnace, called the third-generation system, served as a basis for a manufacturing prototype and included all the necessary controls needed for automatic operation. In life testing of the third-generation furnace system, the unit operated for 200 hours and burned 1,758 pounds of CWS. This translated into an average input rate throughout the test period of 87,200 Btu/hr. During this period, combustion efficiencies ranged from 98.2 to 99.1 percent, with a noted increase in efficiency with time. This furnace was also tested in a cyclic manner for an additional period of 54 hours to evaluate the effect of thermal transients. During cyclic testing, the furnace went through repeated transient cycles, which included startup on oil, transition to CWS, and cool-down. As part of an economic evaluation the high volume cost of a CWS-fired warm air furnace was determined. 90 figs., 7 tabs.

  3. Stronger Manufacturers' Energy Efficiency Standards for Residential Air

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs, Before the CommitteeYears 2003 - 2008 U . S . D eConditioners

  4. Delmarva Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: Rebates for ENERGY STAR appliances on air conditioners, freezers, water heaters purchased after Feb 1, 2015 have been discontinued.  

  5. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01

    In Review J. Indoor Air) 2007 LBNL-63193 Tarantola, Albert,Gas Measurement to Determine Air Movements in a House,Measurement Techniques”, Air Infiltration and Ventilation

  6. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY-EFFICIENT RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    Berk, J.V.

    2011-01-01

    Modem RESIDENTIAL ENERGY CONSUMPTION DATA (1976) TOTAL 18.95HEATING COMMERCIAL ENERGY CONSUMPTION DATA (1976) TOTAL 10.3data on various active and pas- sive methods of reducing energy consumption

  7. Emission factor estimation in regional air quality studies of residential natural gas fuel interchangeability

    E-Print Network [OSTI]

    Dabdub, Donald

    Emission factor estimation in regional air quality studies of residential natural gas fuel applicable to investigations of modeling the effect of natural gas interchangeability on urban air quality for natural gas burner emissions data. The method is built to compensate for the typically small sample size

  8. Effect modification by residential traffic-related air pollution

    E-Print Network [OSTI]

    2014-01-01

    with application to air pollution exposures. Stat Med. 2005;G, Segala C, et al. Air pollution, asthma attacks, andWilkins Asthma and Air Pollution 38. Brauer M. How much, how

  9. PERFORMANCE OF AN EXPERIMENTAL SOLAR-DRIVEN ABSORPTION AIR CONDITIONER--ANNUAL REPORT JULY 1975-SEPT. 1976

    E-Print Network [OSTI]

    Dao, K.

    2010-01-01

    from flat-plate solar collectors and use air cooling forwith flat-plate solar collectors and air cooling; namely,from flat-plate solar collectors. Absorption refrigeration

  10. PERFORMANCE OF AN EXPERIMENTAL SOLAR-DRIVEN ABSORPTION AIR CONDITIONER--ANNUAL REPORT JULY 1975-SEPT. 1976

    E-Print Network [OSTI]

    Dao, K.

    2010-01-01

    from flat-plate solar collectors and use air cooling foroperation with flat-plate solar collectors and air cooling;from flat-plate solar collectors. Absorption refrigeration

  11. Effect modification by residential traffic-related air pollution

    E-Print Network [OSTI]

    2014-01-01

    A. Case-crossover analysis of air pollution health effects:Lumley T. Case-crossover analyses of air pollution exposure

  12. The effect of hardware configuration on the performance of residential air conditioning systems at high outdoor ambient temperatures 

    E-Print Network [OSTI]

    Bain, Joel Alan

    1995-01-01

    A study was performed which investigated the effect of hardware configuration on air conditioning cooling system performance at high outdoor temperatures. The initial phase of the investigation involved the testing of ten residential air...

  13. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01

    and Cost of Conserved Energy Given estimates of retail price, UEC, marginal electricity prices and discount rates, calculation

  14. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01

    Study of Coal in India's Future Energy Scope. Tata EnergyLabeling and Energy Efficiency Standards in India. Indianproducts: The case of India." Energy Policy 36(9): CLASP .

  15. NREL Solves Residential Window Air Conditioner Performance Limitations (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNO FEAR ActUsingStudy013 Denver West

  16. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect (OSTI)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  17. Technology Solutions Case Study: A Homeowner’s Guide to Window Air Conditioner Installation for Efficiency and Comfort

    SciTech Connect (OSTI)

    C. Booten

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve energy efficiency, cost savings, and comfort for homeowners.

  18. Analysis of U.S. Residential Air Leakage Database Wanyu R. Chan

    E-Print Network [OSTI]

    1 Analysis of U.S. Residential Air Leakage Database Wanyu R. Chan , Phillip N. Price, Michael D Road Berkeley, California 94720-8132 Corresponding author (Mail Stop: 90R3058; Tel: 510-495-2459; Fax to these two factors are presented for three types of houses: low-income, energy-efficient, and conventional

  19. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and...

  20. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  1. Wright-Hennepin Cooperative Electric Association - Residential...

    Broader source: Energy.gov (indexed) [DOE]

    Program Type Rebate Program Rebate Amount Central Air Conditioner: 50 - 200 Air-Source Heat Pump: 330 - 630 Geothermal Heat Pump: 150 per ton Electronically Commuted Motor:...

  2. Energy Consumption Estimation for Room Air-conditioners Using Room Temperature Simulation with One-Minute Intervals 

    E-Print Network [OSTI]

    Wang, F.; Yoshida, H.; Matsumoto, K.

    2006-01-01

    time can be known so that its energy consumption can be estimated accurately. In order to verify the simulation accuracy, an actual room equipped with a gas-engine heat pump (GHP) air-conditioning system is studied by both simulation and measurement...

  3. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to...

  4. An Evaluation of Improper Refrigerant Charge on the Performance of a Split System Air Conditioner with a Thermal Expansion Valve 

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1989-01-01

    and was exhausted by the unit fan back into the room through the outdoor coil. PSYCHROMETRIC ROOMS The psychrometric rooms could simulate all testing conditions required for air conditioning and heat pump performance testing. Dew point and room temperatures could..., Including Heat Pumps (1979)[7]. The entering dry bulb temperature for the outdoor coil for steady state and cyclic tests was 82? +/-0.3 F DB and 20% relative humidity. The steady state tests were repeated for outdoor temperatures of 90?, 95?, and 100?F...

  5. Assessment methodology for the air quality impact of residential wood burning

    SciTech Connect (OSTI)

    Lipfert, F.W.

    1981-01-01

    Data from surveys of 1977-1979 indicate that firewood usage tends to vary inversely with population density, resulting in an implied limit to the density of usage. Tests of wood stoves indicate that emissions of particulates vary inversely with heat demand, such that nighttime emissions at low combustion rates may be worse than those during maximum heat demand conditions. Finally, atmospheric dispersion rates are coupled to the driving forces of space heating so that nighttime emissions tend to have a disproportionately large impact on ambient air quality. All of these factors must be considered jointly in order to perform a meaningful assessment of the air quality impacts of increased residential wood fuel use; the results indicate that in flat terrain primary ambient standards are not threatened by residential wood combustion.

  6. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01

    target residential water heaters and air conditioners usingStrategies for Water Heaters and Air Conditioners Voluntaryor snapback of load. Water heaters and air conditioners have

  7. Air Barriers for Residential and Commercial Buildings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie PezzulloAgenda AgendaEnergy Air Barriers for

  8. Energy and air quality implications of passive stack ventilation in residential buildings

    SciTech Connect (OSTI)

    Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

    2011-01-01

    Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

  9. Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps 

    E-Print Network [OSTI]

    Rodriguez, Angel Gerardo

    1995-01-01

    evaporator airflow, and return air leakage from hot attic spaces. There were five sets of tests used for this research: two of them for the charging tests, two for the reduced evaporator airflow, and one for the return air leakage tests. For the charging...

  10. The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings 

    E-Print Network [OSTI]

    Xiang, C.; Xie, G.

    2006-01-01

    In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

  11. CWS-Fired Residential Warm-Air Heating System

    SciTech Connect (OSTI)

    Balsavich, J.; Becker, F.E.; Smolensky, L.A.

    1989-07-01

    During the report period, work continued on the life-cycle testing, optimization and refining of the second-generation furnace assembly, which comprises all the major furnace components: The combustor, heat exchanger, and baghouse, as well as the auxiliary subsystems. The furnace has operated for about 90 hours, and has burned 1,000 pounds of CWS. During testing, the only maintenance that was performed on the system was to clean the bag filters to obtain ash samples for analysts. Concurrent with testing the second-generation furnace, fabrication and assembly of the third-generation furnace was completed, and a life-cycle testing and optimization process for this furnace has started. In contrast to the second-generation furnace, which was designed more as an experimental unit, the third-generation furnace is a stand-alone heating unit Incorporating the standard air handling system, blower, pump, and control box as part of the furnace. During the report period, the third-generation furnace operated for a total of 35 hours, and burned more than 300 pounds of CWS, with average tests lasting 6 hours. During the next quarter, life-cycle testing of the third-generation furnace will continue to identify areas needing further development.

  12. Development of residential-conservation-survey methodology for the US Air Force. Interim report. Task two

    SciTech Connect (OSTI)

    Abrams, D. W.; Hartman, T. L.; Lau, A. S.

    1981-11-13

    A US Air Force (USAF) Residential Energy Conservation Methodology was developed to compare USAF needs and available data to the procedures of the Residential Conservation Service (RCS) program as developed for general use by utility companies serving civilian customers. Attention was given to the data implications related to group housing, climatic data requirements, life-cycle cost analysis, energy saving modifications beyond those covered by RCS, and methods for utilizing existing energy consumption data in approaching the USAF survey program. Detailed information and summaries are given on the five subtasks of the program. Energy conservation alternatives are listed and the basic analysis techniques to be used in evaluating their thermal performane are described. (MCW)

  13. Minnesota Valley Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    RefrigeratorsFreezers Boilers Heat Pumps Air conditioners Other EE Maximum Rebate Ground-Source Heat Pump: 5 ton maximum Program Info Sector Name Utility Administrator Minnesota...

  14. Mansfield Municipal Electric Department - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Type Rebate Program Rebate Amount Central AC: 100 Refrigerators: 100 Clothes Washing Machines: 100 Dishwashers: 75 Dehumidifiers: 50 Window Air Conditioners: 50 Summary...

  15. Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Customers are eligible for room air conditioners and water heaters through the Appliance Rebate Program. Room air conditioners qualify for a rebate of $25 and water heaters qualify for a rebate o...

  16. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  17. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  18. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01

    of passive stack ventilation in residential buildings Dortheof passive stack ventilation in residential buildings Dorthepassive stack ventilation systems. They have been used for centuries to ventilate buildings

  19. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  20. Effect of residential air-to-air heat and moisture exchangers on indoor humidity

    SciTech Connect (OSTI)

    Barringer, C.G.; McGugan, C.A. )

    1989-01-01

    A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration, exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.

  1. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  2. Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    Efficiency & Renewable Energy, Central Air ConditionerEnergy Efficiency & Renewable Energy, Furnaces and BoilersEnergy Efficiency & Renewable Energy, Refrigerators,

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Industrial, Residential, Multifamily Residential Savings Category: Lighting, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  4. Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

  5. In Proc. 1996 ACEEE Summer Study, August 1996, Asilomar, CA Field Measurements of Efficiency and Duct Retrofit Effectiveness in Residential Forced air

    E-Print Network [OSTI]

    of Efficiency and Duct Retrofit Effectiveness in Residential Forced air Distribution Systems David A. Jump, Iain. The systems in these houses included conventional air conditioning, gas furnaces, electric furnaces and heat, duct air temperatures, ambient temperatures, surface areas of ducts, and HVAC equipment energy

  6. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  7. Integrating affordability, energy and environmental efficiency, air quality and disaster resistance into residential design and construction

    SciTech Connect (OSTI)

    Cook, G.D. [Univ. of Florida, Gainesville, FL (United States)

    1995-12-31

    Much has been researched and written about the individual qualities of good home design and construction in terms of: energy efficiency; affordability; indoor air quality; sustainability; and wind, fire, and flood resistance. The real challenge is to integrate all these characteristics into the ideal house. The purpose of this paper is to review the characteristics of each of the above features and explore the integration of them into the ideal residential structure. The house would take the shape of a compact two story structure. A geometrically compact structure uses less construction materials per floor area, presents less area for improved thermal efficiency, and less profile for wind and flood resistance. The first floor would be constructed using insulated strong high thermal mass masonry system resistant to flood, wind, fire, and termite damage. The second story would be constructed using a lighter reinforced wood frame system with between stud insulation coupled with exterior insulated sheathing to minimize thermal bridging across studs. Optimizing floor plan such as separating living and sleeping areas present opportunities for efficient split HVAC zoning, natural ventilation, and solar passive adaptation. The design would emphasize the 4, 8, and 12 foot dimensioning for waste reduction; selection of environmentally friendly building materials, such as cellulose insulation; and efficient lighting and appliances. Features providing improved indoor air quality such as prudent duct selection, design and location, use of radon barriers, omission of carpeting, and control of moisture would be addressed. The design philosophy, concepts and rationale for the integration of these and many other features of the ideal residence will be addressed and illustrated.

  8. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  9. IMPACT OF REDUCED INFILTRATION AND VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    Hollowell, Craig D.

    2011-01-01

    G.W. , "Combustion-Generated Indoor Air Pollution," LBLfocused on combustion-generated indoor air pollution, namelyimpact of combustion-generated indoor air pollution on human

  10. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How does it work? An air conditioner uses energy -- usually electricity -- to transfer heat from the interior of your home to the relatively warm outside environment....

  11. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the Republic of Korea

    E-Print Network [OSTI]

    McNeil, Michael A.

    2014-01-01

    dispenser or homebar door No CCE below Tariff Residential Freezers Split Room Air Conditioners Motors

  12. JEA- ShopSmart Residential Rebate Program

    Broader source: Energy.gov [DOE]

    In order to receive rebates for window tinting, heat pumps, or central air conditioners, interested customers should contact a pre-qualified contractor to perform an assessment.  The rebate from...

  13. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  14. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01

    to optimize indoor air quality and energy use. The resultsthe indoor air quality and energy use of passive stacks.of the improved air quality is energy consumption increases

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential, Low Income Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Furnaces, Air conditioners, Caulking...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential, Low Income Residential Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Water Heaters, Furnaces, Boilers, Air conditioners,...

  17. El Paso Electric Company- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

  18. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

  19. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    that the newly installed air conditioner has the exact refrigerant charge and airflow rate specified by the manufacturer Locates the thermostat away from heat sources, such as...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Residential, Multifamily Residential, Low Income Residential Savings Category: Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing,...

  1. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01

    for Residential Winter and Summer Air Conditioning.Air Conditioning Contractors of America. Washington, DC.refrigerating and Air-conditioning Engineers, Atlanta, GA.

  2. Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers

    SciTech Connect (OSTI)

    Howard-Reed, C.; Corsi, R.L.; Moya, J.

    1999-07-01

    Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

  3. EVALUATION OF A NEW SOLAR AIR CONDITIONER

    E-Print Network [OSTI]

    · Benefits to California · Overall Technology Assessment · Appendices o Appendix A: Final Report (under-16 Grant Funding: $74,547 Term: February 2001 ­ June 2003 PIER Subject Area: Renewable Energy Technologies/Agricultural/Water End-Use Energy Efficiency · Renewable Energy Technologies · Environmentally-Preferred Advanced

  4. Measure Guideline. Air Conditioner Diagnostics, Maintenance,...

    Office of Scientific and Technical Information (OSTI)

    Building Innovation (ARBI), Davis, CA (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B) (Building...

  5. Common Air Conditioner Problems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges |1-01 Audit|3:Analysis:

  6. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5 BUDGETUCivilConsortium Commercialization andProcessCommon

  7. Maintaining Your Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSites | DepartmentLowering65-OCT.Department of

  8. Room Air Conditioners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklinRohm and HaasRomoland,Rooks

  9. Room Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOA Applicantof YearsRevolving Loan Fundsand

  10. Tips: Air Conditioners | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel:February 25, 2015 |7Design » Types of

  11. Tips: Air Conditioners | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram Manager Directoryof Energy Think Outside the Box10 Timeline of

  12. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us Rob Roberts -Ronald E.

  13. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _s - "U N

  14. Central Air conditioners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo EnergyOhio: Energy Resources

  15. Room Air Conditioners | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMay 13, 2015 TheTechnologies-2015 UpdateremovetoC.RodneyA

  16. Maintaining Your Air Conditioner | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internetMagneticPlasmaMaintaining Your

  17. Common Air Conditioner Problems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchersOctoberCharles DOE Launches DataA refrigerant leak

  18. Tips: Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline of Events: 1938-1950 August 2,10Design

  19. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  20. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    E-Print Network [OSTI]

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-01-01

    the effect of heating and cooling system inefficiencies onwith inefficient heating and cooling systems in CaliforniaForced-Air Heating and Cooling Systems May 2002 Walker, I. ,

  1. AIR FLOW DISTRIBUTION IN A HIGH-RISE RESIDENTIAL Helmut E. Feustel and Richard C. Diamond

    E-Print Network [OSTI]

    Diamond, Richard

    To provide good indoor air quality or to calculate space conditioning loads for energy consumption for providing sufficient indoor air quality has an impact on the energy consumption of the building. The effect consumption per floor for a 12 story apartment building in Pittsburgh, Pennsylvania. Consumption data have

  2. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    E-Print Network [OSTI]

    2004-01-01

    of Commercial and Residential Air Conditioning and HeatingOF COMMERCIAL AND RESIDENTIAL AIR-CONDITIONING AND HEATINGand residential air-conditioning and heating equipment.

  3. A Field Study on Residential Air Conditioning Peak Loads During Summer in College Station, Texas 

    E-Print Network [OSTI]

    Reddy, T. A.; Vaidya, S.; Griffith, L.; Bhattacharyya, S.; Claridge, D. E.

    1992-01-01

    located on the main campus of Texas A&M university provided the necessary climatic data, especially ambient temperature, relative humidity and solar radiation. The data were analysed to determine the extent to which air-conditioning over...

  4. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

  5. Low-noise pulse conditioner

    DOE Patents [OSTI]

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Programmable Thermostats, DuctAir sealing, Other EE Energy Optimization (Electric)- Residential Efficiency Program Energy Optimization...

  7. Residential forced-air-distribution system study. Semi-annual report March-September 1982

    SciTech Connect (OSTI)

    Orlando, J.A.; Pettit, V.E.; Gamze, M.G.

    1982-11-01

    Tracer gas techniques have frequently been used to determine the air change characteristics for various structures. Previously, GKCO had utilized a tracer gas procedure to measure intrastructural air flows as a basis for computing the heat loss due to forced air distribution systems. Testing of several gas furnace hot air systems indicated that distribution losses can be significant and were affected by the characteristics of the heat source. In a subsequent study, the field testing was expanded to other heating system components including an electric heat pump, a gas heat pump, and a gas furnace/electric heat pump hybrid system. In addition, cooling mode data were taken as a basis for an annual analysis of distribution system efficiency. The report describes the detailed instrumentation of a single test home with a tracer gas and with flowmeters and temperature sensors installed in the duct system, the calibration of these flowmeters, and two alternative analyses of the resulting data. It also includes results from data collection in two additional structures - a two story structure with the duct system located in the basement and attic, and a one story rambler with a radial duct system buried in the building slab. Distribution system efficiencies ranged from 66% to over 74%.

  8. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    SciTech Connect (OSTI)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  9. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    SciTech Connect (OSTI)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  10. Air-Con International: Noncompliance Determination and Proposed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Air-Con International finding that a variety of central air conditioners and air conditioning heat pumps distributed under the Air-Con private label do not comport with the...

  11. Alliant Energy Interstate Power and Light (Electric) - Residential...

    Broader source: Energy.gov (indexed) [DOE]

    70% of total installation cost up to 250 Room Air Conditioners: 20 SolidThermal Entry Door: 10 - 25 LED and CFL bulbs: 50% of cost Summary Interstate Power and Light...

  12. AEP Public Service Company of Oklahoma - Residential Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Air ConditionerHeat Pump Replacement: 900 Existing Homes: 5,000 Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount AtticCeling Insulation (0-7 inches...

  13. Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work on a desiccant enhanced evaporative air conditioner (DEVap) that uses 90% less electricity than traditional air conditioning units.

  14. Residential Furnace Blower Performance

    E-Print Network [OSTI]

    LBNL 61467 Residential Furnace Blower Performance I.S. Walker Environmental Energy Technologies combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test and peak demand reductions in this study are based on replacing a Permanent Split Capacitor (PSC) blower

  15. El Paso Electric Company- Residential Efficiency Program (New Mexico)

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

  16. Focus Series: Maine - Residential Direct Install Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Better Buildings Neighborhood Program Focus Series: Maine - Residential Direct Install Program: Residential Air Sealing Program Drives Maine Home Energy Savings Through the Roof....

  17. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  18. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  19. Modeling diffusion of electrical appliances in the residential sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2009-11-22

    This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

  20. Tips: Air Ducts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tubes in the walls, floors, and ceilings; it carries the air from your home's furnace and central air conditioner to each room. Ducts are made of sheet metal, fiberglass, or other...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    equipment... Eligibility: Residential, Multifamily Residential Savings Category: Heat Pumps, Air conditioners, DuctAir sealing, Building Insulation, Windows, Roofs, Other EE,...

  2. Department Sets Aggressive Schedule for New Appliance Standards...

    Broader source: Energy.gov (indexed) [DOE]

    service lamps; fluorescent lamp ballasts; residential dishwashers; ranges and ovens; microwave ovens; residential clothes dryers; room air conditioners; packaged terminal air...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential Savings Category: Geothermal Heat Pumps, Water Heaters, Lighting, Heat Pumps, Air conditioners, Programmable Thermostats, CaulkingWeather-stripping,...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Residential, InstallersContractors Savings Category: Geothermal Heat Pumps, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    regarding future funding. Eligibility: Residential Savings Category: Geothermal Heat Pumps, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Caulking...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial, Construction, Residential, InstallersContractors Savings Category: Solar Photovoltaics, Geothermal Heat Pumps, Water Heaters, Heat Pumps, Air conditioners,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    invoice from retai... Eligibility: Residential Savings Category: Solar Water Heat, Solar Photovoltaics, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Air conditioners,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Air conditioners, Programmable Thermostats, Comprehensive MeasuresWhole Building Baltimore Gas & Electric Company (Electric)- Residential Energy Efficiency Rebate Program The...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Commercial, Nonprofit, Multifamily Residential Savings Category: Combined Heat & Power, RefrigeratorsFreezers, Lighting, Heat Pumps, Air conditioners, Heat...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Income Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Furnaces, Air conditioners, CaulkingWeather-stripping, Building...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Residential, InstallersContractors Savings Category: Geothermal Heat Pumps, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats,...

  12. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    E-Print Network [OSTI]

    Letschert, Virginie E.

    2013-01-01

    for Residential Gas Boilers in China. Beijing Electric Powerfor Commercial Gas Boilers and Room Air Conditioners,Boilers

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Industrial, Residential Savings Category: Geothermal Heat Pumps, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Lighting, Heat Pumps, Air conditioners,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eligibility: Residential Savings Category: Geothermal Heat Pumps, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Dehumidifiers, Water Heaters, Heat Pumps, Air conditioners,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Freezers, Water Heaters, Heat Pumps, Air conditioners, Motors, Other EE, LED Lighting Energy Optimization (Electric)- Residential Efficiency Program Energy Optimization...

  16. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with...

  17. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  18. Residential Load Management Program and Pilot 

    E-Print Network [OSTI]

    Haverlah, D.; Riordon, K.

    1994-01-01

    In 1986 LCRA embarked on residential load management to control peak summer loads. At that time, LCRA was considered a summer peaking utility, and residential air conditioning and water heating systems were selected for control. The program...

  19. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect (OSTI)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  20. History of Air Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE)

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  1. Clallam County PUD- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Clallam County PUD offers a variety of rebates for residential customers for energy efficiency improvements. Eligible measures and incentives include window upgrades, insulation, air and duct...

  2. Central Hudson Gas & Electric (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    residential electric customers who upgrade heating, cooling or ventilation systems with specific types of energy efficient equipment. These rebates include efficient central air...

  3. Clark Energy - Residential Energy Efficiency Rebate Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Touchstone Energy Home with Air-SourceGeothermal Heat Pump: 250 - 750 Summary Clark Energy offers a free energy audit to provide residential customers with suggestions on ways...

  4. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    SciTech Connect (OSTI)

    Starke, Michael R; Onar, Omer C; DeVault, Robert C

    2011-09-01

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Full Text2 Citations0 Multimedia0 Datasets0 Filter Results Filter by Subject building america (2) residential (2) air conditioner (1) airflow (1) alliance for residential...

  6. Chemical Emissions of Residential Materials and Products: Review of Available Information

    E-Print Network [OSTI]

    Willem, Henry

    2010-01-01

    44: 525- Page | 39 Chemical Emissions of ResidentialHazard Assessment of Chemical Air Contaminants Measured intoxicity Page | 37 Chemical Emissions of Residential

  7. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  8. CWS-Fired Residential Warm-Air Heating System. Quarterly report, November 1, 1988--January 31, 1989

    SciTech Connect (OSTI)

    Balsavich, J.; Becker, F.E.; Smolensky, L.A.

    1989-03-01

    Work continued on life-cycle testing, optimization, and refining of the second-generation furnace assembly as well as the auxiliary subsystems. Emphasis of combustor testing was to determine optimum size and location of air inlets in primary combustion chambers; it was found that using a single air inlet about 70 degrees upsteam from the agglomeration site produces a combustion efficiency of 99.0% while producing no agglomeration. The test of the fouling effect on heat exchanger performance showed a steady decrease in time of the overall heat transfer coefficient. Particle size distribution of fly ash in the baghouse showed 50% of the particles smaller than 11.2 microns.

  9. A PLASMA CHANNEL BEAM CONDITIONER FOR A FREE ELECTRON LASER

    E-Print Network [OSTI]

    Wurtele, Jonathan

    . In this paper, we give examples of conditioners that might be employed at the Linac Coherent Light Source (LCLS is the output wavelength, and is the average beta function in the FEL. For LCLS parameters, the corresponding

  10. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  11. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01

    2004) Survey on Electricity Consumption Characteristics ofof residential electricity consumption in rapidly developingbusiness as usual’ electricity consumption by country/region

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Income Residential Savings Category: Equipment Insulation, Water Heaters, Heat Pumps, Air conditioners, DuctAir sealing, Building Insulation, Windows, Doors U.S....

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ranges from 6... Eligibility: Residential Savings Category: Solar Photovoltaics, Water Heaters, Furnaces, Heat Pumps, Air conditioners, DuctAir sealing, Building...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Low Income Residential Savings Category: Equipment Insulation, Water Heaters, Lighting, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agency at (405) 232-0199. Eligibility: Residential Savings Category: Geothermal Heat Pumps, Water Heaters, Lighting, Furnaces, Heat Pumps, Air conditioners, DuctAir sealing,...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Programmable Thermostats, DuctAir sealing, Other EE Baltimore Gas & Electric Company (Electric)- Residential Energy Efficiency Rebate Program The...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential, Agricultural Savings Category: Geothermal Heat Pumps, Water Heaters, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building...

  18. Golden Opportunity: Order (2014-CE-20003) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Golden Opportunity had failed to certify that certain models of room air conditioners, central air conditionersheat pumps, and residential clothes washers comply with the...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    built prior to May 1, 1989. There is no... Eligibility: Residential Savings Category: Water Heaters, Lighting, Furnaces, Boilers, Air conditioners, DuctAir sealing, Building...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Star appliances,... Eligibility: Residential Savings Category: Clothes Washers, Dishwasher, RefrigeratorsFreezers, Ceiling Fan, Heat Pumps, Air conditioners, DuctAir...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category: Lighting, Heat Pumps, Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs,...

  2. History of the Air Conditioner | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    at Rivoli Theater in New York, Carrier publicly debuted a new type of system that used a centrifugal chiller, which had fewer moving parts and compressor stages than existing...

  3. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    calculation include the installed consumer cost (purchase price plus installation cost), operating expenses (energy and

  4. Development of a room air conditioner design model 

    E-Print Network [OSTI]

    Penson, Steven Brad

    1988-01-01

    AND RECOMMENDATIONS. Page . 12 . 12 . 20 . 33 . 38 . 48 . 50 . 56 Conclusions. Recommendations. REFERENCES APPENDIX A . 57 . 57 . 59 . 61 VITA . 66 LZST OP TABLES Table Page 2. 1 Major output parameters from the ORNL model 3. 1 Effect of tube.... Efficiency improvements are evaluated with the aid of a computer model. The model chosen for this analysis was the Oak Ridge National Laboratory (ORNL) heat pump model [5] . The ORNL Heat Pump Design Model is a FORTRAN computer program developed...

  5. Variable Speed Fan Retrofits for Computer Room Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NSIDC Data Center: Energy Reduction Strategies Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Wireless Sensors Improve Data Center Efficiency...

  6. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01

    driver, driven by high pressure vapor. DW: main circulationpump driven by high pressure vapor. ~ restrictors ~ checkof the amount of high pressure vapor used to run the pump

  7. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    shell characteristics and occupant behavior) and geographicto forecast (e.g. , occupant behavior and climate). Lee

  8. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    of Energy, DRAFT Marginal Energy Prices Report, July, 1999.energy use by the energy price paid by the household.energy consumption, energy price, discount rate, and central

  9. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    analyze, the energy price projection, and the start year (uncertainty of projections offuture energy prices, the LCC

  10. An Analysis of Efficiency Improvements in Room Air Conditioner 

    E-Print Network [OSTI]

    O'Neal, D. L.; Penson, S. B.

    1988-01-01

    for an Energy-Efficient Economy Washington, DC ABSTRACT Reliable monitoring and measurement of the energy savings resulting from the installation of combined heat and power (CHP) systems and power recovered from waste energy (recycled energy) projects... is becoming increasingly important. As a growing number of states and now the federal government look to mandatory energy efficiency portfolio programs such as an Energy Efficiency Resource Standard (EERS), CHP and waste heat recovery stands to play a...

  11. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    Administration, Annual Energy Outlook 2000, December, 1999.trends from EIA's Annual Energy Outlook 2000 (AE02000) were

  12. Enforcement Policy: Split-System Central Air Conditioners Without HSVC |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgramof-SA-02:Innovative Energy AppsA123Enforcement| Department of

  13. Ex Parte Communication on Central Air-Conditioner Test Procedure |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22, 2014 TheMonday March 3, 2014, a

  14. Natural Gas Heat Pump and Air Conditioner | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(Million Cubicthrough 1996) inNatural Gas Heat Pump and

  15. Novel Solid State Magnetocaloric Air Conditioner | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew JerseyEnergybenefits of61075 LisaLaboratory, Oak

  16. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _s - "U NMeasure

  17. List of Central Air conditioners Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds JumpOxiranchemRemodelersList ofList

  18. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article)SciTech Connect HighHighin a Bent

  19. 13-Energy Efficiency Ratio Window Air Conditioner | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a n t S eOF 1121DaveOF THE DEPARTMENT

  20. Air Conditioner Regional Standards Brochure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONYDepartment of Energy with7:00AM EST9

  1. Enforcement Policy Statement: Off Mode Standards for Central Air Conditioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution JPG20,1LLC |Compliance Period

  2. Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof EnergyBreakout2 DOEof EnergyEnergy

  3. High-Efficiency Window Air Conditioners - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartmentHigh-Efficiency Parking

  4. Four Central Air Conditioners Determined Noncompliant With Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent LampFort Collins, ColoradoEfficiency Standard |

  5. Variable Speed Fan Retrofits for Computer Room Air Conditioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-SavingofCode |DepartmentVampire

  6. Variable Speed Fan Retrofits for Computer Room Air Conditioners |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartmentVOICES of Experience955

  7. Ductless Mini-Split Air Conditioners | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sectorfor $1.14 Per GallonDataEnergyDuctDuctless

  8. Central Air Conditioner Enforcement Policy Statement | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiencyCOP 21:Department of Energy Bill ValdezApril

  9. Radio-Frequency Beam Conditioner for Fast-Wave Free-Electron Generators of Coherent Radiation

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01

    to Physical Review Letters Radio-Frequency Beam ConditionerDE-AC03-76SF00098 LBL-31006 RADIO-FREQUENCY BEAM CONDITIONERIbaraki, 305, Japan. RADIO-FREQUENCY BEAM CONDITIONER FOR

  10. CWS-Fired Residential Warm-Air Heating System. Quarterly report, February 1, 1989--April 30, 1989

    SciTech Connect (OSTI)

    Balsavich, J.; Becker, F.E.; Smolensky, L.A.

    1989-07-01

    During the report period, work continued on the life-cycle testing, optimization and refining of the second-generation furnace assembly, which comprises all the major furnace components: The combustor, heat exchanger, and baghouse, as well as the auxiliary subsystems. The furnace has operated for about 90 hours, and has burned 1,000 pounds of CWS. During testing, the only maintenance that was performed on the system was to clean the bag filters to obtain ash samples for analysts. Concurrent with testing the second-generation furnace, fabrication and assembly of the third-generation furnace was completed, and a life-cycle testing and optimization process for this furnace has started. In contrast to the second-generation furnace, which was designed more as an experimental unit, the third-generation furnace is a stand-alone heating unit Incorporating the standard air handling system, blower, pump, and control box as part of the furnace. During the report period, the third-generation furnace operated for a total of 35 hours, and burned more than 300 pounds of CWS, with average tests lasting 6 hours. During the next quarter, life-cycle testing of the third-generation furnace will continue to identify areas needing further development.

  11. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  12. Ozark Border Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Ozark Border Electric Cooperative has made rebates available to residential members for the installation of energy efficient geothermal and air source heat pumps, electric water heaters, and room...

  13. Energy Savings Potential and RD&D Opportunities for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Systems This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide...

  14. Independence Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps,...

  15. Progress Energy Carolinas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides incentives for residential customers to increase home energy efficiency. Rebates are provided for certain heating and cooling products, duct sealing and repairs, air...

  16. Simulations of Sizing and Comfort Improvements for Residential

    E-Print Network [OSTI]

    LBNL 47309 1 Simulations of Sizing and Comfort Improvements for Residential Forced-Air Heating...................................................................................... 18 PEAK DEMAND AND POWER CONSUMPTION

  17. Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Louisville Gas & Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  18. Kentucky Utilities Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  19. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01

    Henderson (2005) Home air conditioning in Europe – how muchA.A. Pavlova ( 2003). Air conditioning market saturation and+ paper 6,306 Future Air Conditioning Energy Consumption in

  20. Advanced Development and Market Penetration of Desiccant-Based Air-Conditioning Systems

    SciTech Connect (OSTI)

    Vineyard, E A; Sand, J R; Linkous, R L; Baskin, E; Mason, D

    1998-01-01

    Desiccant Air Conditioning Systems can be used as alternatives for conventional air conditioning equipment in any commercial or residential building.

  1. Save Money and Stay Cool with an Efficient, Well-Maintained Air...

    Energy Savers [EERE]

    buy a qualified energy-efficient model. In some states, you may still be able to get a rebate on an ENERGY STAR air conditioner purchase through a Recovery Act-funded program....

  2. A Study to Determine the Energy Impact of Adding Polarshield to Air Conditioning Systems 

    E-Print Network [OSTI]

    Cromer, C. J.

    2001-01-01

    PolarShield is a polarized refrigerant compressor oil additive containing the a-olefin molecule which is a commonly used oil additive to reduce high pressure viscosity breakdown. The manufacturers of this air conditioner compressor oil additive (COA...

  3. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category: Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat Pumps, Air conditioners, Motors, Motor VFDs, Processing and Manufacturing Equipment,...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Geothermal Heat Pumps, Clothes Washers, RefrigeratorsFreezers, Heat Pumps, Air conditioners PSEG Long Island- Residential Energy Efficiency Rebate...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential, Institutional Savings Category: Biomass, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Energy Mgmt. SystemsBuilding Controls, Motor VFDs, Other EE...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Residential Savings Category: Biomass, Water Heaters, Furnaces, Boilers, Heat Pumps, Air conditioners, Building Insulation, Windows, Roofs, Other EE ConserFund...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    listed on the program web site. Rebates are also available for air conditioner and furnace tune-ups. The rebate... Eligibility: Residential Savings Category: Clothes Washers,...

  9. 2014-10-30 Issuance: Energy Conservation Program: Energy Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps, Request for Information 2014-10-30 Issuance: Energy Conservation Program: Energy...

  10. Enforcement Policy Statement: Compliance Period for Regional...

    Office of Environmental Management (EM)

    conservation standards for residential furnaces, central air conditioners, and heat pumps, including regional standards for different product types in indicated States. 76 FR...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps, Air conditioners, Comprehensive MeasuresWhole Building, LED Lighting Baltimore Gas & Electric Company (Electric)- Residential Energy Efficiency Rebate Program The...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnaces, Boilers, Heat Pumps, Air conditioners, Programmable Thermostats, Other EE Baltimore Gas & Electric Company (Gas)- Residential Energy Efficiency Rebate Program The...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    conditioners, DuctAir sealing, Building Insulation, Other EE, Tankless Water Heater Baltimore Gas & Electric Company (Electric)- Residential Energy Efficiency Rebate Program The...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Other EE, Personal Computing Equipment City of Plano- Smart Energy Loan Program Eligible properties must be owner-occupied existing residential...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category: Solar Water Heat, Solar Thermal Electric, Solar Pool Heating, RefrigeratorsFreezers, Water Heaters, Heat Pumps, Air conditioners, Heat...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air conditioners Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings PG&E- Residential Energy Efficiency Rebate Programs Pacific Gas and Electric Company (PG&E) offers...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category: Clothes Washers, Lighting, Lighting ControlsSensors, Heat Pumps, Air conditioners, Motor VFDs, Processing and Manufacturing Equipment, Custom...

  18. Addendum to the Building America House Simulation Protocols

    Broader source: Energy.gov (indexed) [DOE]

    Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Wenzel, T.; Kooney, J.; Rosenquist, G.; Sanchez,...

  19. Comments on reducing regulatory burden | Department of Energy

    Office of Environmental Management (EM)

    Solutions, manufacturer of Trane and American Standard residential air conditioners, heat pumps, furnaces, and accessories Comments on reducing regulatory burden More...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Biomass, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Energy Mgmt. SystemsBuilding Controls, Motor VFDs, Other EE PSEG Long Island- Residential Energy...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Heat Pumps, Air conditioners, Programmable Thermostats, Energy Mgmt. SystemsBuilding Controls, Other EE, LED Lighting PSEG Long Island- Residential Energy...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    conditioners, DuctAir sealing, CustomOthers pending approval, Other EE, LED Lighting Energy Optimization (Electric)- Residential Efficiency Program Energy Optimization...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting, Lighting ControlsSensors, Heat Pumps, Air conditioners, Other EE, LED Lighting Energy Optimization (Electric)- Residential Efficiency Program Energy Optimization...

  4. Advancing Residential Energy Retrofits

    SciTech Connect (OSTI)

    Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute

    2012-01-01

    To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

  5. Residential Energy Efficiency Messaging | Department of Energy

    Office of Environmental Management (EM)

    Residential Energy Efficiency Messaging Residential Energy Efficiency Messaging Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency...

  6. Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance 

    E-Print Network [OSTI]

    Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

    2004-01-01

    Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time...

  7. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01

    1989). Residential indoor air quality and energy efficiency.book Residential Indoor Air Quality and Energy Efficiency by2009). Indoor air quality in highly energy efficient homes—A

  8. Residential market transformation: National and regional indicators

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura L.; McNamara, Maureen; Suozzo, Margaret

    2000-06-01

    A variety of programs are underway to address market barriers to the adoption of energy-efficient residential technologies and practices. Most are administered by utilities, states, or regions that rely on the Energy Star as a consistent platform for program marketing and messaging. This paper reviews regional and national market transformation activities for three key residential end-uses -- air conditioning, clothes washing, and lighting -- characterizing current and ongoing programs; reporting on progress; identifying market indicators; and discussing implications.

  9. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    E-Print Network [OSTI]

    Logue, J.M.

    2010-01-01

    in residential indoor air in Prince Edward Island, Canada."Boston, Massachusetts UK Prince Edward Island, Canada SW and

  10. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect (OSTI)

    None

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  11. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01

    Swainson, M. (2009). Indoor air quality in highly energyClayton, R. (2001). Indoor air quality: Residential cookingSacramento, CA: California Air Resources Board. Fugler, D. ,

  12. Using Hydrated Salt Phase Change Materials for Residential Air Conditioning Peak Demand Reduction and Energy Conservation in Coastal and Transitional Climates in the State of California

    E-Print Network [OSTI]

    Lee, Kyoung Ok

    2013-05-31

    The recent rapid economic and population growth in the State of California have led to a significant increase in air conditioning use, especially in areas of the State with coastal and transitional climates. This fact makes that the electric peak...

  13. Kentucky Utilities Company and Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  14. Residential Energy Audits 

    E-Print Network [OSTI]

    Brown, W.

    1985-01-01

    A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

  15. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  16. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | Department ofPotawatomi Community |

  17. Housing and Residential Life

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

  18. Guide for Benchmarking Residential Energy Efficiency Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential...

  19. Presentation: Better Buildings Residential Program Solution Center...

    Office of Environmental Management (EM)

    Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

  20. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  1. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  2. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  3. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  4. Identifying Efficiency Degrading Faults in Split Air Conditioning Systems 

    E-Print Network [OSTI]

    Terrill, T. J.; Brown, M. L.; Cheyne, R. W. Jr.; Cousins, A. J.; Daniels, B. P.; Erb, K. L.; Garcia, P. A.; Leutermann, M. J.; Nel, A. J.; Robert, C. L.; Widger, S. B.; Williams, A. G.; Rasmussen, B. P.

    2013-01-01

    and fault diagnosis of vapor-compression equipment." HVAC&R Research 15.3 (2009): 597-616. (12) N, Lu et al., ?Air Conditioner Compressor Performance Model,? Pac. NW Nat. Lib., Richland, WA, Rep. PNNL-17796, 2008. (13) A. Maier, ?Troubleshooting Thermal...

  5. Kenergy- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

  6. Essays on residential desegregation

    E-Print Network [OSTI]

    Wong, Maisy

    2008-01-01

    Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

  7. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

  8. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect (OSTI)

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  9. Residential Building Audits and Retrofits

    Broader source: Energy.gov [DOE]

    This presentation covers local, regional, and national efforts to promote energy efficiency in residential buildings, programmatic elements of residential building audit and retrofit programs, and resources that you can access to address residential retrofit issues.

  10. PERFORMANCE EFFECTS OF AIR VELOCITY PROFILES IN

    E-Print Network [OSTI]

    PERFORMANCE EFFECTS OF AIR VELOCITY PROFILES IN A RESIDENTIAL HEAT PUMP By NATHAN ANDREW WEBER PROFILES IN A RESIDENTIAL HEAT PUMP Thesis Approved: _______________________________________ Thesis Advisor the air speed transducer mount and the Plexiglas model of the heat pump. Ipseng Iu and myself worked side

  11. Energy and IAQ Implications of Residential Ventilation Cooling

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  12. AeroSys: Proposed Penalty (2010-CE-01/0201)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that AeroSys, Inc. failed to certify residential central air conditioners and air conditioning heat pumps as compliant with the applicable energy conservation standards.

  13. Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor

    DOE Patents [OSTI]

    Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

    2013-09-10

    An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

  14. Model Code for the Prevention of Residential HAC Distribution System Leakage and HAC-Induced Building Leakage, 1994 Edition 

    E-Print Network [OSTI]

    Wemhoff, P.

    1994-01-01

    program, thou h Its attachment by pi Ing Is analo ous to that opan externa11~-mounte8air conditioner. The AD standards are contained in Part 3280, and the HUD regulations in Part 3282, of 24 CFR Ch. XX installed and site-installed space conditioning...C-:+:-- -' plenum chamber. i 2. Enclosed support platforms conta air stream 3. Through-wall, through-floor, and I ceiling returns. (d) Return Air Requirements (e) HUD-Regulated Manufactured Hon Buildings 1. System design. 2 Closure requirements. (0 Air...

  15. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  16. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  17. Residential Energy Efficiency Customer Service Best Practices...

    Energy Savers [EERE]

    Residential Energy Efficiency Customer Service Best Practices Residential Energy Efficiency Customer Service Best Practices Better Buildings Residential Network Peer Exchange Call...

  18. Residential Air-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Note: Beginning January 1, 2016, rebates will be reduced to $625 per single-head system and $625 per 12,000 BTU/hr for multi-head systems, with a maximum rebate of $2,500.

  19. AIR LEAKAGE OF NEWLY INSTALLED RESIDENTIAL WINDOWS

    E-Print Network [OSTI]

    Weidt, John

    2013-01-01

    than the general industry standard. Analysis of the impact302.9-1977 "NWMA Industry Standard for Wood Window Units I.Based on industry and government standards, 40% of all

  20. Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

  1. Development of a Residential Integrated Ventilation Controller

    SciTech Connect (OSTI)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  2. Building America Webinar: National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview...

  3. Estimated United States Residential Energy Use in 2005

    SciTech Connect (OSTI)

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  4. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  5. Residential Retrofit Design Guide Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  6. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  7. Applying a Domestic Water-cooled Air-conditioner in Subtropical Cities 

    E-Print Network [OSTI]

    Lee, W.; Chen, H.

    2006-01-01

    fluid. The indoor unit includes a capillary tube and a DX evaporator with copper tubes and aluminium fins. The outdoor unit includes a high performance tube-in-tube water-cooled condenser connected to a hermetic rotary compressor. The cooling tower...

  8. Enforcement Policy Statement: Split-System Central Air Conditioners Without HSVC

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSof 2005 at Iowa WindEnergy1-03 - October 24,2-05 -2, Split-System

  9. Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement

    E-Print Network [OSTI]

    Bode, Josh

    2013-01-01

    degree-day cooling degree-hour coefficient of alienationas measured by cooling degree hours (CDH), and total heatas measured by cooling degree hours (CDH), and total heat

  10. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    leakage than when the hose is removed with refrigerant in gas phase or if a quick con- nect/disconnect sealing valve

  11. Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement

    E-Print Network [OSTI]

    Bode, Josh

    2013-01-01

    of California Statewide Aggregator Demand Response Programs.Analysis of AMP Aggregator Demand Response Program. Preparedof California Statewide Aggregator Demand Response Programs.

  12. An Investigation of Alternative Methods for Measuring Static Pressure of Unitary Air Conditioners and Heat Pumps 

    E-Print Network [OSTI]

    Wheeler, Grant Benson

    2013-08-12

    , with the two smallest units additionally being tested in Scenario 1 with an over-sized duct. The scenario tests were required to be within 5% power and 2.5% airflow of a baseline test following ASHRAE Standard 37. he results for Scenario 1 have shown...

  13. User-Oriented Modeling Tools for Advanced Hybrid and Climate-Appropriate Rooftop Air Conditioners

    Broader source: Energy.gov [DOE]

    Lead Performer: University of California, Davis – Davis, CADOE Total Funding: $200,000Cost Share: $339,515Project Term: 2015 – 2017Funding Opportunity: Building University Innovators and Leaders...

  14. Techno-Economic Analysis of Indian Draft Standard Levels for Room Air Conditioners

    E-Print Network [OSTI]

    McNeil, Michael A.; Iyer, Maithili

    2008-01-01

    because of the higher electricity rates, higher hours ofin use patterns and electricity rates between commercial andUEC), marginal electricity rates, and discount rates.

  15. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    accessed on 11th February 2011. IEA 4E M&B, 2010 “4E Mappingusing CO2 as working fluid, IEA Heat Pump Center Newsletter,Source: Catalog searches, IEA 4E M&B 2010, Baillargeon, 2011

  16. Air Conditioner Efficiency Under Hot Dry and Hot Humid Conditions - The Utility Perspective 

    E-Print Network [OSTI]

    Amarnath, A.

    2008-01-01

    Despite the recent growth of social media, rhetorical theory which addresses authorship in this realm has been slow to develop. Static terms such as "reader," "writer," and "author" are often used to refer to the roles ...

  17. Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement

    E-Print Network [OSTI]

    Bode, Josh

    2013-01-01

    regions. In addition, the SCADA was not available for allData Real Time Visibility SCADA 5 minutes or less Limited

  18. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    L ABORATORY China Energy Efficiency Round Robin TestingNeed to Improve the Energy Efficiency of Energy Consumingfor Implementing the China Energy Efficiency Label System (

  19. Analysis of Efficiency Standards for Air Conditioners, Heat Pumps, and Other Products

    Reports and Publications (EIA)

    2002-01-01

    A series of analyses showing the impacts of each of the selected provisions of the bills on energy supply, demand, and prices, macroeconomic variables where feasible, import dependence, and emissions.

  20. 2015-02-12 Issuance: Test Procedures for Portable Air Conditioners...

    Broader source: Energy.gov (indexed) [DOE]

    Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document. PAC TP NOPR.pdf...

  1. Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement

    E-Print Network [OSTI]

    Bode, Josh

    2013-01-01

    93 Figure I-1: Electricty Use for a Specific Feeder in Santerritory. Figure I-1: Electricty Use for a Specific Feeder

  2. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    utility company issues a demand response message in the formsystem receives the demand response message through aas an effective demand response program that achieves

  3. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    Values of the Energy Efficiency and Energy Efficiency Gradesavin g standards and energy efficiency rat- ings. Energymanufacturers, and energy efficiency testing laboratories

  4. Ex Parte Communication on Central Air-Conditioner Test Procedure - ICM

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22, 2014 TheMonday March 3, 2014, a group

  5. Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment ofJune 28, 2011 "Just doDepartment

  6. Stirling Air Conditioner for Compact Cooling (Program Document) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmallTechnicalSheldon Glashow and-DConnect Program

  7. 2015-02-12 Issuance: Test Procedures for Portable Air Conditioners; Notice

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8 2 of 8of EnergyEnableNotice ofof

  8. Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4 AdvanceEnergyDepartment of

  9. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigeratorsDepartment ofHeat Pump Models | Department of

  10. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigeratorsDepartmentEP9425Violating Minimum Appliance

  11. Five ENERGY STAR Room Air Conditioners Fail Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,EnergyFinancingWIPP |DepartmentOpening

  12. YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.Energy WindWorkplaceEnvironmentalY-12

  13. Save Money and Stay Cool with an Efficient, Well-Maintained Air Conditioner

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMay 13, 2015reports issuedExperienceEnergy|

  14. Tips for Running an Air Conditioner Without Breaking the Bank | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMayBuildingTheEasements30, 2008: US portion ofof

  15. DOE Orders AeroSys to Halt Distribution of Inefficient Air Conditioner and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominate anDepartmentAssThis orderHighDOEOrderHeat Pump

  16. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergy U.S.Safety,of Energy|

  17. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. In this project, researchers at the National Renewable Energy Laboratory (NREL) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, the team tested the part load performance of four residential dehumidifiers in NREL’s Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  18. STORM WATER Residential

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

  19. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Vehicle for Residential PV Installations: Opportunities andfor Financing Residential PV Systems Mark Bolinger, Lawrencefor residential photovoltaic (PV) systems. Though financing

  20. EIS-0095: Bonneville Power Administration's Expanded Residential Weatherization Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Bonneville Power Administration prepared this statement to examine the environmental impacts of an expansion of the existing Residential Weatherization Program to include air-infiltration reducing (tightening) measures, such as storm windows and doors, insulation, weather-stripping and other improvements.

  1. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. Residential Retrofit Program Design Guide More...

  2. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, W.K.; Hubbard, B.

    1999-02-09

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner`s operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs.

  3. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  4. UES (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to...

  5. Efficient Residential Water Heaters Webinar

    Broader source: Energy.gov [DOE]

    A webinar by Jerone Gagliano, director of Energy Engineering Performance Systems Development, about residential water heating technology and how to choose the right water heater.

  6. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Energy Savers [EERE]

    ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and...

  7. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  8. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  9. SRP- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. Rebates and discounts are...

  10. Solar Now! Residential Brochure | Department of Energy

    Energy Savers [EERE]

    Information Resources Solar Now Residential Brochure Solar Now Residential Brochure Four Oregon organizations have teamed up to help Oregon homeowners learn about and install...

  11. Guide for Benchmarking Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. Guide for Benchmarking Residential Energy Efficiency Program...

  12. Does Mixing Make Residential Ventilation More Effective?

    E-Print Network [OSTI]

    Sherman, Max

    2011-01-01

    Does Mixing Make Residential Ventilation More Effective? Maxmanufacturer, or otherwise, does not necessarily constitutethe University of California. Does Mixing Make Residential

  13. National Residential Efficiency Measures Database - Building...

    Energy Savers [EERE]

    National Residential Efficiency Measures Database - Building America Top Innovation National Residential Efficiency Measures Database - Building America Top Innovation Image of a...

  14. Residential Energy Efficiency Research Planning Meeting Summary...

    Energy Savers [EERE]

    Residential Energy Efficiency Research Planning Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings...

  15. Building America Residential Energy Efficiency Technical Update...

    Broader source: Energy.gov (indexed) [DOE]

    Update meeting in August 2011, held in Denver, Colorado. 2011 Residential Energy Efficiency Technical Update Meeting More Documents & Publications 2011 Residential Energy...

  16. Development of guidelines for Modeling Underfloor Air Distribution (UFAD) Systems in EnergyPlus, eQUEST, and EnergyPro for use in California non-residential Building Energy Efficiency Standards

    E-Print Network [OSTI]

    2011-01-01

    hour heat extrac. eQuest_heat rate_calc Energyplus zone air EPlus Parameter Current hour heat extraction rate,  FORTRAN  Calculated heat extraction rate  Sensible Cooling/

  17. Residential Water Heaters Webinar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7| DepartmentMultifamily Residential Low Income<

  18. Residential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergyResidential

  19. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane price

  20. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane price1,

  1. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane

  2. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4, 2015

  3. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4, 2015

  4. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4,

  5. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential

  6. Chemical Emissions of Residential Materials and Products: Review of Available Information Environmental Energy Technologies Division

    E-Print Network [OSTI]

    infiltration of outdoor air through cracks and other leakage pathways in the residential building envelope Building Technologies Program, Office of Energy Efficiency and Renewable Energy under DOE Contract No. DE in the context of a larger program whose mission is to advance understanding of ventilation and indoor air

  7. Fresh air indoors

    SciTech Connect (OSTI)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  8. Maximizing Information from Residential Measurements of Volatile Organic Compounds

    SciTech Connect (OSTI)

    Maddalena, Randy; Li, Na; Hodgson, Alfred; Offermann, Francis; Singer, Brett

    2013-02-01

    Continually changing materials used in home construction and finishing can introduce new chemicals or changes in the VOC profile in residential air and the trend towards tighter homes can lead to higher exposure concentrations for many indoor sources. However, the complex mixture of VOCs in residential air makes it difficult to discover emerging contaminants and/or trends in pollutant profiles. The purpose of this study is to prepare a comprehensive library of chemicals found in homes, along with a semi-quantitative approach to maximize the information gained from VOC measurements. We carefully reviewed data from 108 new California homes and identified 238 individual compounds. The majority of the identified VOCs originated indoors. Only 31% were found to have relevant health based exposure guidelines and less than 10% had a chronic reference exposure level (CREL). The finding highlights the importance of extending IAQ studies to include a wider range of VOCs

  9. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Tight homes require intentional mechanical ventilation to ensure healthy indoor air. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. There is currently not sufficient information available at a wide enough range of operating points to design dehumidification systems for high performance homes in hot-humid climates. The only industry information available on dehumidifier moisture removal and energy consumption are performance ratings conducted at a single test condition, which does not provide a full representation of dehumidifier operation under real-world conditions. Winkler et al. (2011) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, we tested the part load performance of four residential dehumidifiers in the National Renewable Energy Laboratory's (NREL) Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  10. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  11. CONSULTANT REPORT 2009 CALIFORNIA RESIDENTIAL

    E-Print Network [OSTI]

    . Data collection was completed in early 2010. The study yielded energy consumption estimates for 27 statistical methods to combine survey data, household energy consumption data and weather information Commission, conditional demand analysis, CDA, unit energy consumption, UEC, residential, appliance

  12. RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*

    E-Print Network [OSTI]

    best available data, the energy liability as- sociated with providing the current levels of ventilationRESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS* Max Sherman Nance Matson Energy Performance of Buildings Group Energy and Environment Division Lawrence Berkeley Laboratory University of California

  13. What Explains Manhattan's Declining Share of Residential Construction?

    E-Print Network [OSTI]

    DAVIDOFF, THOMAS

    2007-01-01

    Share of Residential Construction? Thomas Davido? ? June 20,market. Residential construction in Manhattan has fallento total US residential construction over the last 45 years.

  14. Fort Collins Utilities - Residential and Small Commercial Appliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential and Small Commercial Appliance Rebate Program Fort Collins Utilities - Residential and Small Commercial Appliance Rebate Program < Back Eligibility Residential Savings...

  15. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    2007). Coping with Residential Electricity Demand in India'sResidential Electricity Demand in China –Can EfficiencyBoom of Electricity Demand in the residential sector in the

  16. Residential water use and landscape vegetation dynamics in Los Angeles

    E-Print Network [OSTI]

    Mini, Caroline

    2013-01-01

    Reidy, K. (2008). Residential Water Demand Management:Estimation of residential water demand: a state-of-the-art2009, Determinants of residential water demand in Germany,

  17. PowerChoice Residential Customer Response to TOU Rates

    E-Print Network [OSTI]

    Peters, Jane S.

    2010-01-01

    New Evidence on Residential Demand Response. ” May 11.past studies on residential demand response have examinedpast studies on residential demand response have examined

  18. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide This Residential Retrofit Program Design Guide focuses on the key elements and design...

  19. Tracking the Sun VIII: The Installed Price of Residential and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States Tracking the Sun VIII: The Installed Price of Residential...

  20. Incorporating Experience Curves in Appliance Standards Analysis

    E-Print Network [OSTI]

    Desroches, Louis-Benoit

    2012-01-01

    Air Conditioners and Heat Pumps (Advanced Notice of ProposedCentral Air Conditioners, Heat Pumps, and Furnaces (Directair conditioners and heat pumps, furnaces, refrigerators and

  1. Practical Diagnostics for Evaluating Residential Commissioning Metrics

    SciTech Connect (OSTI)

    Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

    2002-06-11

    In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24 practical diagnostics range from a few hundred dollars to many thousands of dollars. The higher costs are associated with infrared thermography and state-of-the-art automated diagnostic systems. Most tests can be performed in one hour or less, using equipment priced toward the lower end of the cost spectrum.

  2. Use of Residential Smart Appliances for Peak-Load Shifting and Spinning Reserves Cost/Benefit Analysis

    SciTech Connect (OSTI)

    Sastry, Chellury; Pratt, Robert G.; Srivastava, Viraj; Li, Shun

    2010-12-01

    In this report, we present the results of an analytical cost/benefit study of residential smart appliances from a utility/grid perspective in support of a joint stakeholder petition to the ENERGY STAR program within the Environmental Protection Agency (EPA) and Department of Energy (DOE). The goal of the petition is in part to provide appliance manufacturers incentives to hasten the production of smart appliances. The underlying hypothesis is that smart appliances can play a critical role in addressing some of the societal challenges, such as anthropogenic global warming, associated with increased electricity demand, and facilitate increased penetration of renewable sources of power. The appliances we consider include refrigerator/freezers, clothes washers, clothes dryers, room air-conditioners, and dishwashers. The petition requests the recognition that providing an appliance with smart grid capability, i.e., products that meet the definition of a smart appliance, is at least equivalent to a corresponding five percent in operational machine efficiencies. It is then expected that given sufficient incentives and value propositions, and suitable automation capabilities built into smart appliances, residential consumers will be adopting these smart appliances and will be willing participants in addressing the aforementioned societal challenges by more effectively managing their home electricity consumption. The analytical model we utilize in our cost/benefit analysis consists of a set of user-definable assumptions such as the definition of on-peak (hours of day, days of week, months of year), the expected percentage of normal consumer electricity consumption (also referred to as appliance loads) that can shifted from peak hours to off-peak hours, the average power rating of each appliance, etc. Based on these assumptions, we then formulate what the wholesale grid operating-cost savings, or benefits, would be if the smart capabilities of appliances were invoked, and some percentage of appliance loads were shifted away from peak hours to run during off-peak hours, and appliance loads served power-system balancing needs such as spinning reserves that would otherwise have to be provided by generators. The rationale is that appliance loads can be curtailed for about ten minutes or less in response to a grid contingency without any diminution in the quality of service to the consumer. We then estimate the wholesale grid operating-cost savings based on historical wholesale-market clearing prices (location marginal and spinning reserve) from major wholesale power markets in the United States. The savings derived from the smart grid capabilities of an appliance are then compared to the savings derived from a five percent increase in traditional operational machine efficiencies, referred to as cost in this report, to determine whether the savings in grid operating costs (benefits) are at least as high as or higher than the operational machine efficiency credit (cost).

  3. Air quality evaluation of London Paddington train station

    E-Print Network [OSTI]

    Chong, Uven; Swanson, Jacob J.; Boies, Adam M.

    2015-01-01

    concentrations in residential houses. Atmospheric Environment 2004, 38 (21), 3405-3415. 9. Long, C. M.; Suh, H. H.; Koutrakis, P., Characterization of indoor particle sources using continuous mass and size monitors. Journal of the Air & Waste Management...

  4. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, William K. (1300 Mills St., Menlo Park, CA 94025); Hubbard, Bradley (Santa Cruz, CA)

    1999-01-01

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner's operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system.

  5. Better Buildings Residential Network Reporting and Benefits Template

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  6. Better Buildings Residential Network Reporting and Benefits FAQ

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  7. Questions Asked during the Financing Residential Energy Efficiency...

    Energy Savers [EERE]

    Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar Transcript...

  8. Residential Energy Efficiency Solutions: From Innovation to Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 Residential Energy Efficiency Solutions: From Innovation to Market...

  9. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manager, Energy Smart Colorado Madeline Priest, Residential Programs Associate, Connecticut Green Bank (Clean Energy Finance and Investment Authority) - Residential Network...

  10. Piedmont Natural Gas- Residential Equipment Efficiency Program

    Broader source: Energy.gov [DOE]

    Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

  11. Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

  12. Residential Retrofit Program Design Guide Overview Transcript...

    Energy Savers [EERE]

    Overview Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript Weatherization & Intergovernmental Programs Office Home...

  13. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    SciTech Connect (OSTI)

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  14. Residential Fire Safety Policies Introduction

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Residential Fire Safety Policies Introduction University Housing and Campus Code Compliance and Fire Safety at the City University of New York at Queens College in compliance with the Higher Education Opportunity Act (HEOA) have developed an annual fire safety report. This document summarizes

  15. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01

    for Intelligent Energy Management in Residential Buildingsfor Intelligent Energy Management in Residential Buildingsthat can provide autonomous energy management to residential

  16. YMGI: Order (2011-SCE-1605)

    Broader source: Energy.gov [DOE]

    DOE ordered YMGI Group LLC to pay a $31,400 civil penalty after finding (1) YMGI had failed to certify that certain models of residential central air conditioners comply with the applicable energy conservation standards and (2) YMGI had distributed in commerce model TTWC-18K-31B, a through-the-wall air conditioner that does not meet the applicable energy conservation standard.

  17. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  18. Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative StandardFeet) Marketed Production (Million Cubic84.

  19. Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative StandardFeet) Marketed Production (Million Cubic84.5.

  20. The Energy Cooperative - Residential Energy Efficiency Rebate Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGE andOffice -Energy Clean air means a lot

  1. Development of empirical temperature and humidity-based degraded-condition indicators for low-tonnage air conditioners 

    E-Print Network [OSTI]

    Watt, James Bonner

    1997-01-01

    was equipped with the ability to use either a short-tube orifice (STO) or a thermal expansion valve (TXV). The degraded conditions studied include low evaporator airflow, high and low-charge, and a blocked condenser coil. The work presented in this thesis...

  2. Development of Temperature and Humidity-Based Indicators for Diagnosing Problems in Low Tonnage, Split System Air Conditioners 

    E-Print Network [OSTI]

    Watt, J. B.; O'Neal, D. L.; Haberl, J. S.

    1998-01-01

    with the ability to use either a short-tube orifice (STO) or a thermal expansion valve (TXV). The degraded conditions studied include low evaporator airflow, high- and low- charge, and a blocked condenser coil. The empirical work was performed to identify.... The original work showed that low-cost temperature sensors can be used to detect the degraded conditions studied. However, it also showed that the temperature-based indicators of low evaporator airflow depend on three loading factors; outdoor...

  3. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01

    Current and future electricity demand from Room ACs andof ACs to the Peak Electricity Demand In this section, weseasonal variation in electricity demand in both sectors,

  4. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2014-06-19

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  5. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2013-10-15

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  6. Measurement of Fine Particles From Mobile and Stationary Sources, and Reducing the Air Conditioner Power Consumption in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Brewer, Eli Henry

    2015-01-01

    Bengtsson K. , 2002, “Gas Turbines – Sources or Sinks forParticle Emissions from Gas Turbines, Technical reportGrowth from Natural Gas Turbines. ,” Prep. [31] Lobo P. ,

  7. Measurement of Fine Particles From Mobile and Stationary Sources, and Reducing the Air Conditioner Power Consumption in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Brewer, Eli Henry

    2015-01-01

    REPORT: TEST RESULTS FOR A COMBINED CYCLE POWER PLANT WITHTEST RESULTS FOR A COMBINED CYCLE POWER PLANT WITH OXIDATIONfired natural gas, combined cycle power plants, however,

  8. Measurement of Fine Particles From Mobile and Stationary Sources, and Reducing the Air Conditioner Power Consumption in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Brewer, Eli Henry

    2015-01-01

    from the stack of the turbine engine in comparison to thoseparticles from gas turbine engines; the second phase [15] offrom the stack of the turbine engine in comparison to those

  9. Assessing the Impact of Measurement Policy on the Accuracy of Certified Energy Efficiency Ratio for Split-System Air Conditioners

    E-Print Network [OSTI]

    Yu, Bingyi

    2013-01-01

    20740-6001. [15] ASHRAE (1995). ANSI/ASHRAE Standard 116-95,Volume 32, pg. ASHRAE (2009). ANSI/ASHRAE Standard 37-2009,GA, 30329. ASHRAE (2007). ANSI/ASHRAE Standard 51-2007,

  10. The Influence of Operating Modes, Room Temperature Set Point and Curtain Styles on Energy Consumption of Room Air Conditioner 

    E-Print Network [OSTI]

    Yu, J.; Yang, C.; Guo, R.; Wu, D.; Chen, H.

    2006-01-01

    mode, setting outer curtain can conserve energy for 40.9% and 20.4% compared with no curtain and inner curtain states, respectively. In winter high speed mode is the most efficient for saving energy which can decrease 40.3% and 30.9% compared with low...

  11. Understanding Energy Impacts of Oversized Air Conditioners (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 - 19 Publicationsresearch reveals the effects of

  12. NREL Demonstrates Game-Changing Air Conditioner Technology (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNO FEAR Act Notice NONPSRS:3367

  13. Residential Retrofit Program Design Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7, 2015VerizonResidentialRebateTaxfor theRenewable

  14. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  15. Better Buildings Residential Network Workforce/ Business Partners...

    Energy Savers [EERE]

    and Resources Call Slides and Discussion Summary August 14, 2014 Agenda Call Logistics and Introductions Residential Network and Peer Exchange Call Overview ...

  16. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  17. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Program Sustainability Peer Exchange Call: Operating as a Prime Contractor Call Slides and Discussion Summary Agenda - Operating as a Prime Contractor * Call...

  18. EWEB- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Eugene Water and Electric Board (EWEB) provides cash incentives to help residential customers increase the energy efficiency of homes through several different rebate programs. Rebates are provided...

  19. Fact Sheet: Better Buildings Residential Network | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. BBRN Fact Sheet More Documents & Publications Fact Sheet - Better...

  20. Charlottesville Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for...