National Library of Energy BETA

Sample records for reservoir stimulation evolution

  1. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Broader source: Energy.gov [DOE]

    Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir presentation at the April 2013 peer review meeting held in Denver, Colorado.

  2. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project will provide the first ever formal evaluation of fracture and fracture flow evolution in an EGS reservoir following a hydraulic stimulation.

  3. THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THMC Modeling of EGS Reservoirs - Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity Derek Elsworth Pennsylvania State University Chemistry, Reservoir and Integrated Models Project Officer: Lauren Boyd Total Project Funding: $1.11M + $0.5M = $1.61M April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Challenges * Prospecting

  4. THMC Modeling of EGS Reservoirs -- Continuum through Discontinuum Representations. Capturing Reservoir Stimulation, Evolution and Induced Seismicity

    SciTech Connect (OSTI)

    Elsworth, Derek; Izadi, Ghazal; Gan, Quan; Fang, Yi; Taron, Josh; Sonnenthal, Eric

    2015-07-28

    This work has investigated the roles of effective stress induced by changes in fluid pressure, temperature and chemistry in contributing to the evolution of permeability and induced seismicity in geothermal reservoirs. This work has developed continuum models [1] to represent the progress or seismicity during both stimulation [2] and production [3]. These methods have been used to resolve anomalous observations of induced seismicity at the Newberry Volcano demonstration project [4] through the application of modeling and experimentation. Later work then focuses on the occurrence of late stage seismicity induced by thermal stresses [5] including the codifying of the timing and severity of such responses [6]. Furthermore, mechanistic linkages between observed seismicity and the evolution of permeability have been developed using data from the Newberry project [7] and benchmarked against field injection experiments. Finally, discontinuum models [8] incorporating the roles of discrete fracture networks have been applied to represent stimulation and then thermal recovery for new arrangements of geothermal wells incorporating the development of flow manifolds [9] in order to increase thermal output and longevity in EGS systems.

  5. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for ...

  6. Fracture Evolution Following a Hydraulic Stimulation within an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal ...

  7. Analysis of Geothermal Reservoir Stimulation Using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report ...

  8. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of ...

  9. THMC Modeling of EGS Reservoirs -- Continuum through Discontinuum...

    Office of Scientific and Technical Information (OSTI)

    Capturing Reservoir Stimulation, Evolution and Induced Seismicity Citation Details ... Capturing Reservoir Stimulation, Evolution and Induced Seismicity This work has ...

  10. Understanding the reservoir important to successful stimulation

    SciTech Connect (OSTI)

    Cramer, D.D. )

    1991-04-22

    In anisotropic Bakken shale reservoirs, fracture treatments serve to extend the well bore radius past a disturbed zone and vertically connect discrete intervals. Natural fractures in the near-well bore area strongly control the well deliverability rate. The Bakken is one of the few shale formations in the world with commercial oil production. This article covers the Bakken reservoir properties that influence production and stimulation treatments. The concluding part will discuss the design and effectiveness of the treatments.

  11. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  12. Reservoir-Stimulation Optimization with Operational Monitoring for Creation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Enhanced Geothermal Systems | Department of Energy Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado. reservoir_optimization_geo_sys_peer2013.pdf

  13. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stochastic Analysis of Injection-Induced Seismicity | Department of Energy Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity This project will develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics; finite element modeling; geo-statistical concepts to establish

  14. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The following are included: review of available data from previous fracturing stimulation operations, stimulation process variables, fracturing fluid design, hydraulic fracture design, stimulation case histories, and selected bibliography. (MHR)

  15. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  16. THMC Modeling of EGS Reservoirs … Continuum through Discontinuum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity | Department of Energy THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing

  17. Geothermal reservoir well stimulation program. Final program summary report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Eight field experiments and the associated theoretical and laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Overall results have shown that stimulation is viable where adequate reservoirs are penetrated by wells encountering formation damage or locally tight formation zones. Seven of the eight stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments at Raft River and the two at Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or reservoir transmissivity. The Beowawe chemical stimulation treatment appears to have significantly improved the well's injectivity, but production data were not obtained because of well mechanical problems. The acid etching treatment in the well at the Geysers did not have any material effect on producing rate. Evaluations of the field experiments to date have suggested improvements in treatment design and treatment interval selection which offer substantial encouragement for future stimulation work.

  18. The Stimulation of Hydrocarbon Reservoirs with Subsurface Nuclear Explosions

    SciTech Connect (OSTI)

    LORENZ,JOHN C.

    2000-12-08

    Between 1965 and 1979 there were five documented and one or more inferred attempts to stimulate the production from hydrocarbon reservoirs by detonating nuclear devices in reservoir strata. Of the five documented tests, three were carried out by the US in low-permeability, natural-gas bearing, sandstone-shale formations, and two were done in the USSR within oil-bearing carbonates. The objectives of the US stimulation efforts were to increase porosity and permeability in a reservoir around a specific well by creating a chimney of rock rubble with fractures extending beyond it, and to connect superimposed reservoir layers. In the USSR, the intent was to extensively fracture an existing reservoir in the more general vicinity of producing wells, again increasing overall permeability and porosity. In both countries, the ultimate goals were to increase production rates and ultimate recovery from the reservoirs. Subsurface explosive devices ranging from 2.3 to about 100 kilotons were used at depths ranging from 1208 m (3963 ft) to 2568 m (8427 ft). Post-shot problems were encountered, including smaller-than-calculated fracture zones, formation damage, radioactivity of the product, and dilution of the BTU value of tie natural gas with inflammable gases created by the explosion. Reports also suggest that production-enhancement factors from these tests fell short of expectations. Ultimately, the enhanced-production benefits of the tests were insufficient to support continuation of the pro-grams within increasingly adversarial political, economic, and social climates, and attempts to stimulate hydrocarbon reservoirs with nuclear devices have been terminated in both countries.

  19. THMC Modeling of EGS Reservoirs … Continuum through Discontinuum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THMC Modeling of EGS Reservoirs Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs ...

  20. THMC Modeling of EGS Reservoirs …Continuum through Discontinuum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THMC Modeling of EGS Reservoirs Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs ...

  1. THMC Modeling of EGS Reservoirs …Continuum through Discontinuum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity | Department of Energy THMC Modeling of EGS Reservoirs …Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs …Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity This research will develop a thorough understanding of complex THMC interactions through

  2. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fernandez, Carlos A.

    2013-09-25

    EGS field projects have not sustained production at rates greater than of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  3. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fernandez, Carlos A.

    EGS field projects have not sustained production at rates greater than of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  4. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    SciTech Connect (OSTI)

    Carlos A. Fernandez

    2014-09-15

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  5. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    SciTech Connect (OSTI)

    Fernandez, Carlos A.

    2013-09-25

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  6. Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review

  7. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity

    Broader source: Energy.gov [DOE]

    Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity presentation at the April 2013 peer review meeting held in Denver, Colorado.

  8. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ

    Broader source: Energy.gov [DOE]

    Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ presentation at the April 2013 peer review meeting held in Denver, Colorado.

  9. Project title: Stimulation at Desert Peak and Bradys reservoirs: modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with the coupled THM code FEHM | Department of Energy Project title: Stimulation at Desert Peak and Bradys reservoirs: modeling with the coupled THM code FEHM Project title: Stimulation at Desert Peak and Bradys reservoirs: modeling with the coupled THM code FEHM Project title: Stimulation at Desert Peak and Bradys reservoirs: modeling with the coupled THM code FEHM presentation at the April 2013 peer review meeting held in Denver, Colorado. kelkar_peer2013.pdf (496.77 KB) More

  10. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems GBCGE Resarch, Education and ...

  11. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Impact: LCOE improvements primarily result from better definition of the reservoir geometry and pressure field - Improved management of injectionproduction strategies to more ...

  12. Geothermal-Reservoir Well-Stimulation Program. Program status report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Seven experimental fracture stimulation treatments completed to date and the laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Six of the seven stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments in Raft River and the two in Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or flow rate. The acid etching treatment in the well at The Geysers did not have any material effect on producing rate.

  13. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18, 2010 Geothermal Technologies Program 2013 Peer Review Ghassemi, 2002 Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Principal Investigator: Ahmad Ghassmi EGS Component R&D Stimulation Prediction Models This presentation does not contain any proprietary confidential, or otherwise restricted information. April, 2013 2 | US DOE Geothermal Program eere.energy.gov Relevance/Impact of Research * Develop a model for

  14. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    SciTech Connect (OSTI)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  15. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    SciTech Connect (OSTI)

    George L. Scott III

    2005-01-01

    Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests, there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and Phase 3 project work included the

  16. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    SciTech Connect (OSTI)

    George Scott III

    2003-08-01

    Ongoing Phase 2-3 work comprises the final development and field-testing of two complementary real-time reservoir technologies; a stimulation process and a tracer fracturing diagnostic system. Initial DE-FC26-99FT40129 project work included research, development, and testing of the patented gamma tracer fracturing diagnostic system. This process was field-proven to be technically useful in providing tracer measurement of fracture height while fracturing; however, technical licensing restrictions blocked Realtimezone from fully field-testing this real-time gamma diagnostic system, as originally planned. Said restrictions were encountered during Phase 2 field test work as result of licensing limitations and potential conflicts between service companies participating in project work, as related to their gamma tracer logging tool technology. Phase 3 work principally demonstrated field-testing of Realtimezone (RTZ) and NETL's Downhole-mixed Reservoir Stimulation process. Early on, the simplicity of and success of downhole-mixing was evident from well tests, which were made commercially productive. A downhole-mixed acid stimulation process was tested successfully and is currently commercially used in Canada. The fourth well test was aborted due to well bore conditions, and an alternate test project is scheduled April, 2004. Realtimezone continues to effectuate ongoing patent protection in the United States and foreign markets. In 2002, Realtimezone and the NETL licensed their United States patent to Halliburton Energy Services (HES). Additional licensing arrangements with other industry companies are anticipated in 2004-2005. Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies. Technical data transfer to industry is ongoing via Internet tech-transfer and various industry presentations and publications including Society of Petroleum Engineers. These real-time enhanced stimulation procedures should significantly

  17. Process for stimulating and upgrading the oil production from a heavy oil reservoir

    SciTech Connect (OSTI)

    Sweany, G.A.

    1981-08-18

    A process for thermally stimulating and upgrading oil production from a heavy oil reservoir wherein the heavy oil produced from the reservoir is combined with a hydrogen donor diluent and the mixture is subjected to thermal cracking to upgrade the heavy oil into more valuable hydrocarbon products. The cracked products are fractionated into a light end vapor fraction, an intermediate liquid fraction, a gas oil fraction and a pitch fraction, and at least a portion of the gas oil fraction is hydrogenated by contacting it with a hydrogen-containing gas stream to produce the hydrogen donor diluent combined with the heavy oil. The pitch fraction is subjected to partial oxidation to produce the hydrogen-containing gas stream and a by-product gas stream containing steam which is combined with additional steam and injected into the heavy oil reservoir to enhance the mobility of heavy oil contained therein. The light end vapor fraction and unreacted hydrogen-containing gas produced by the process are utilized as fuel in the process. The intermediate liquid fraction produce and portion of the gas oil fraction not hydrogenated are readily transportable from the process.

  18. Increasing Production from Low-Permeability Gas Reservoirs by Optimizing Zone Isolation for Successful Stimulation Treatments

    SciTech Connect (OSTI)

    Fred Sabins

    2005-03-31

    Maximizing production from wells drilled in low-permeability reservoirs, such as the Barnett Shale, is determined by cementing, stimulation, and production techniques employed. Studies show that cementing can be effective in terms of improving fracture effectiveness by 'focusing' the frac in the desired zone and improving penetration. Additionally, a method is presented for determining the required properties of the set cement at various places in the well, with the surprising result that uphole cement properties in wells destined for multiple-zone fracturing is more critical than those applied to downhole zones. Stimulation studies show that measuring pressure profiles and response during Pre-Frac Injection Test procedures prior to the frac job are critical in determining if a frac is indicated at all, as well as the type and size of the frac job. This result is contrary to current industry practice, in which frac jobs are designed well before the execution, and carried out as designed on location. Finally, studies show that most wells in the Barnett Shale are production limited by liquid invasion into the wellbore, and determinants are presented for when rod or downhole pumps are indicated.

  19. Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect (OSTI)

    C. Cooper; M. Ye; J. Chapman

    2008-04-01

    The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to

  20. Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, Northwest Germany

    SciTech Connect (OSTI)

    Gaupp, R. ); Matter, A.; Ramseyer, K.; Platt, J. ); Walzebuck, J. )

    1993-07-01

    Depositional environment and tectonic setting were important in the diagenesis and evolution of reservoir properties in the Rotliegende sequence of the North German Basin. Facies belts paralleling the edge of a central saline lake controlled the distribution of early and shallow burial cements. Lake shoreline sands with radial chlorite cement show the best reservoir properties in the study area. Juxtaposition of Rotliegende deposits against either Carboniferous Coal Measures or Late Permian (Zechstein) evaporites by faulting resulted in cross-formational fluid exchange. The introduction of fluids from Carboniferous Coal Measures into Rotliegende reservoirs produced intense clay cementation, significantly reducing rock permeabilities. Influx of Zechstein fluids favored precipitation of late carbonate and anhydrite cements. Cross-formational and fault-related fluid flow was enhanced during periods of fault activity. 50 refs., 15 figs., 1 tab.

  1. Project title: Stimulation at Desert Peak and Bradys reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capability of modeling reservoir scale systems over time span of interest (20-30 years) ... that depend on pressure, temperature, and stresses in a highly nonlinear manner. ...

  2. Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 4.5.7 Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity Presentation Number: 027 Investigator: Ghassemi, Ahmad (Texas A&M University) Objectives: To develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics, finite element modeling, geostatistical concepts to establish relationships between microseismicity, reservoir flow and geomechanical characteristics. Average Overall Score:

  3. Project title: Stimulation at Desert Peak and Bradys reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the ...

  4. An integrated approach to seismic stimulation of oil reservoirs: laboratory, field and theoretical results from DOE/industry collaborations.

    SciTech Connect (OSTI)

    Roberts, P. M.; Majer, Ernest Luther; Lo, W. C.; Sposito, Garrison,; Daley, T. M.

    2003-01-01

    It has been observed repeatedly that low-frequency (10-500 Hz) seismic stress waves can enhance oil production from depleted reservoirs . Until recently, the majority of these observations have been anecdotal or at the proof-of-concept level. The physics coupling stress waves to multiphase fluid flow behavior in porous media is still poorly understood, even though numerous underlying physical mechanisms have been proposed to explain the observations . Basic research on the phenomenon is being conducted through a U .S. Department of Energy funded collaboration between Lawrence Berkeley National Laboratory, the University of California at Berkeley, Los Alamos National Laboratory and the U .S . oil and gas industry . The project has focused on three main areas of research: (1) laboratory core flow experiments, (2) field seismic monitoring of downhole stimulation tests, and (3) theoretical modeling of the coupled stress/flow phenomenon . The major goal is to obtain a comprehensive scientific understanding of the seismic stimulation phenomenon so that field application technologies can be improved. Initial developments and experimental results in all three research focus areas confirm historic observations that the stimulated flow phenomenon is real and that a fundamental scientific understanding can be obtained through continued research . Examples of project results and developments are presented here.

  5. FOR STIMUL-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect (OSTI)

    Charles McCormick; Roger Hester

    2004-03-26

    suggest that the two dimensionless groups are indeed related by a universal constant. This model has identified the parameters that are important to fluid mobility, thereby revealing methods to enhance solution performance when using polyions solutions as displacing fluids in oil reservoirs.

  6. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect (OSTI)

    Clay A. Cooper; Ming Ye; Jenny Chapman; Craig Shirley

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released from the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.

  7. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    SciTech Connect (OSTI)

    Clarkson, Christopher R

    2011-01-01

    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  8. Controls upon hydrocarbon reservoir evolution within the Rotliegende group: A fully integrated regional study

    SciTech Connect (OSTI)

    Howell, J.A.; Becker, A.; Turner, P.; Searl, A. ); Edwards, H.E.; Williams, G. )

    1993-09-01

    The collection of a large database, in conjunction with new understandings of sedimentology and structural controls upon diagenesis, has enabled the detailed mapping of the factors that control the distribution of hydrocarbon reservoirs within the Rotliegende Group of the United Kingdom southern North Sea. The results of this regional study incorporate detail previously confined to field scale studies. High resolution sedimentological and stratigraphic studies (4 km of core) have resulted in a twelve-fold subdivision of the Rotliegende Group based upon the recognition of climatically driven depositional cycles. These illustrate a progressive basin expansion controlled by the distribution of buried lower Paleozoic granites and post-Vanscan topography. This model incorporated with mapping of facies distribution has been used to document the distribution of potential reservoir rocks. Detailed diagenetic work has documented the distribution of all the principal mineral phases within the basin. Integration with structural studies has revealed the role of the fractures for introducing fluids to, and compartmentalizing reservoirs has led to significant understanding of the source and transport mechanism for the pore-occluding diagenetic phases. Regionally, an understanding of burial and inversion events has demonstrated that the distribution of clays, particularly permeability destroying illite, is controlled by both burial depth and source of reactants. Combination of sedimentological and diagenetic aspects has enabled the production predictive maps for the area. This, combined with the structural work, has highlighted the importance of timing of hydrocarbon migration in relation to reservoir structuration, particularly in areas away from the main Sole Pit source kitchen.

  9. Nonlinear evolution of stimulated Raman scattering near the quarter-critical density

    SciTech Connect (OSTI)

    Xiao, C. Z.; Wu, D.; Liu, Z. J.; Zheng, C. Y. He, X. T.

    2015-05-15

    Nonlinear evolution of stimulated Raman scattering (SRS) near the quarter-critical density is studied using one-dimensional (1D) and two-dimensional (2D) particle-in-cell simulations in homogeneous plasmas. In 1D configuration, with two-plasmon decay (TPD) instability excluded, the system evolves into two regimes distinguished by whether density cavities have been formed or not. At low temperatures, a cavity regime characterised by high absorption and low reflection, and at high temperatures nonlinear frequency shift regime due to particle trapping, are observed. Furthermore, a competition between SRS and TPD in 2D simulations reveals that the nonlinear SRS does play a significant role near the quarter-critical density, whose influences were mostly neglected before.

  10. Geothermal reservoir well stimulation symposium

    SciTech Connect (OSTI)

    Crichlow, H.B.

    1980-02-07

    Ten papers are included. One was abstracted previuosly. Separate abstracts were prepared for nine. (MHR)

  11. Predicting Stimulation Response Relationships For Engineered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Predicting Stimulation Response Relationships For Engineered Geothermal Reservoirs Project objectives: Using existing LLNL computer programs, develop realistic models of EGS ...

  12. Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures

    SciTech Connect (OSTI)

    Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; André Niemeijer; Hideaki Yasuhara

    2009-03-30

    This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

  13. Reservoir Claddings

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet explains how to properly decouple reservoir claddings from water sensitive materials of the wall assembly.

  14. Predicting Stimulation Response Relationships For Engineered Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoirs | Department of Energy Predicting Stimulation Response Relationships For Engineered Geothermal Reservoirs Predicting Stimulation Response Relationships For Engineered Geothermal Reservoirs Project objectives: Using existing LLNL computer programs, develop realistic models of EGS stimulation-response scenarios involving hydraulic and explosive propagation of tensile/shear fracture systems in hard rock formations where a pre-existing fracture network may be present along with

  15. The Northwest Geysers EGS Demonstration Project, California. Pre-stimulation Modeling and Interpretation of the Stimulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Dobson, Patrick F.; Garcia, Julio; Hartline, Craig; Jeanne, Pierre; Oldenburg, Curtis M.; Vasco, Donald W.; Walters, Mark

    2013-10-17

    pressure and surface deformation data were useful for estimating the reservoir-rock permeability and elastic modulus. Finally, although the extent of the calculated stimulation zone matches the field observations over the first few months of injection, the observed surface deformations and MEQ evolution showed more heterogeneous behavior as a result of more complex geology, including minor faults and fracture zones that are important for consideration in the analysis of energy production and the long-term evolution of the EGS system.« less

  16. PNNL Successes with Novel Stimulation Solutions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    settings for measuring volume expansion, viscosity, shear rate, and chemical evolution. ... how PNNL's research could help optimize reservoir creation in enhanced geothermal systems

  17. Chemistry, Reservoir, and Integrated Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry, Reservoir, and Integrated Models Chemistry, Reservoir, and Integrated Models Below are the project presentations and respective peer review results for Chemistry, Reservoir and Integrated Models. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS), Marte Gutierrez and Masami Nakagawa, Colorado School of Mines Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal

  18. Pacific Northwest National Laboratory - Reservoir Stimulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a string of significant recognitions and accomplishments for Dr. Carlos Fernandez and his team from Pacific Northwest National Laboratory (PNNL) for their GTO-funded research in...

  19. Pacific Northwest National Laboratory- Reservoir Stimulation Optimization

    Broader source: Energy.gov [DOE]

    2015 marked a string of significant recognitions and accomplishments for Dr. Carlos Fernandez and his team from Pacific Northwest National Laboratory (PNNL) for their GTO-funded research in...

  20. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Original Planned Milestone Technical Accomplishment Actual MilestoneTechnical Accomplishment Date Completed 1. Laboratory equipment development and testing (months 0-3) High PT ...

  1. Full Reviews: Reservoir Characterization

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer reviewer comments for Reservoir Characterization.

  2. Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: to develop a 3-D numerical model for simulating mode I; II; and III (tensile; shear; and tearing propagation of multiple fractures using the virtual multi-dimensional internal bond (VMIB); to predict geothermal reservoir stimulation.

  3. Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Geothermal Technology Program Peer Review Report | Department of Energy Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review reservoir_028_ghassmi.pdf (203.27 KB) More Documents & Publications Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010

  4. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  5. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  6. Status of Norris Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

  7. Status of Cherokee Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  8. Status of Wheeler Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  9. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  10. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  11. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  12. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  13. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect (OSTI)

    Davies, D.K.; Vessell, R.K.; Doublet, L.E.

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  14. Acid fracturing of carbonate gas reservoirs in Sichuan

    SciTech Connect (OSTI)

    Meng, M.

    1982-01-01

    The paper presents the geological characteristics of Sinian-furassic carbonate gas reservoirs in the Sichuan basin, China. Based on these characteristics, a mechanism of acid fracturing is proposed for such reservoirs. Included are the results of a research in acid fracturing fluids and field operation conditions for matrix acidizing and acid fracturing in Sichuan. The acid fracturing method is shown to be an effective stimulation technique for the carbonate strata in this area.

  15. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (OSTI)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  16. Advancing reactive tracer methods for measuring thermal evolution in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2-and water-based geothermal reservoirs | Department of Energy Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems. tracers_hull_thermal_evolution.pdf (852.51

  17. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Murphy, M.B.

    1999-02-01

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  18. Seismicity and Reservoir Fracture Characterization

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

  19. FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FRAC-STIM: A Physics-Based Fracture Stimulation, Reservoir Flow and Heat Transport Simulator (aka FALCON) Robert Podgorney Idaho National Laboratory R&D Project Officer: B. Segneri ...

  20. Tight gas reservoirs: A visual depiction

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Future gas supplies in the US will depend on an increasing contribution from unconventional sources such as overpressured and tight gas reservoirs. Exploitation of these resources and their conversion to economically producible gas reserves represents a major challenge. Meeting this challenge will require not only the continuing development and application of new technologies, but also a detailed understanding of the complex nature of the reservoirs themselves. This report seeks to promote understanding of these reservoirs by providing examples. Examples of gas productive overpressured tight reservoirs in the Greater Green River Basin, Wyoming are presented. These examples show log data (raw and interpreted), well completion and stimulation information, and production decline curves. A sampling of wells from the Lewis and Mesaverde formations are included. Both poor and good wells have been chosen to illustrate the range of productivity that is observed. The second section of this document displays decline curves and completion details for 30 of the best wells in the Greater Green River Basin. These are included to illustrate the potential that is present when wells are fortuitously located with respect to local stratigraphy and natural fracturing, and are successfully hydraulically fractured.

  1. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Matthias G. Imhof; James W. Castle

    2005-02-01

    The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. Throughout the project, however, we learned that this strategy was impractical because the different data and model are complementary instead of competitive. For the complex Coalinga field, we found that a thorough understanding of the reservoir evolution through geologic times provides the necessary framework which ultimately allows integration of the different data and techniques.

  2. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis; L. R. Graumann

    2003-03-31

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.

  3. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  4. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-12-11

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  5. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman

    2003-01-17

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  6. EERE PowerPoint 97-2004 Template: Green Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THMC Modeling of EGS Reservoirs - Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity Derek Elsworth Pennsylvania ...

  7. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.

  8. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  9. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    SciTech Connect (OSTI)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  10. Methodologies for Reservoir Characterization Using Fluid Inclusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Methodologies for ...

  11. New tools attack Permian basin stimulation problems

    SciTech Connect (OSTI)

    Ely, J.W.; Schubarth, S.K.; Wolters, B.C.; Kromer, C. )

    1992-06-08

    This paper reports that profitable stimulation treatments in the Permian basin of the southwestern U.S. combine new tools with technology and fluids previously available. This paper reports that a wide selection of fracturing fluids and techniques needs to be considered to solve the varied problems associated with stimulating hydrocarbon reservoirs that are at diverse depths, temperatures, pressures, and lithologies. The Permian basin of West Texas and New Mexico is the most fertile ground in the U.S. for some of the newer stimulation technologies. In this basin, these new tools and techniques have been applied in many older producing areas that previously were treated with more conventional stimulation techniques, including acidizing and conventional fracturing procedures.

  12. US production of natural gas from tight reservoirs

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  13. Encapsulated microsensors for reservoir interrogation

    DOE Patents [OSTI]

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  14. The Potosi Reservoir Model 2013

    SciTech Connect (OSTI)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In the preceding, the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this topical report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48.3km x48.3km), while preserving all property modeling workflows and layering. This model was retained as the base case of Potosi Dynamic Model 2013a. The Potosi reservoir model was updated to take into account the new data from the verification well VW2 which was drilled in 2012. The new porosity and permeability modeling was

  15. Reservoir Modeling Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting 2012 GEOTHERMAL TECHNOLOGIES PROGRAM PEER REVIEW ... History Past Meetings: March 2010 IPGT Modeling Working Group Meeting May 2010 GTP Peer ...

  16. Three-dimensional Modeling of Fracture Clusters in Geeothermal Reservoirs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | US DOE Geothermal Program eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Geothermal Technologies Program 2013 Peer Review Bons (2000) Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs Principal Investigator: Ahmad Ghassemi EGS Component R&D Stimulation Prediction Models April , 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov Relevance/Impact of

  17. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect (OSTI)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  18. FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  19. Water resources review: Ocoee reservoirs, 1990

    SciTech Connect (OSTI)

    Cox, J.P.

    1990-08-01

    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  20. Collapsible sheath fluid reservoirs for flow cytometers

    DOE Patents [OSTI]

    Mark, Graham A. (Los Alamos, NM)

    2000-01-01

    The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.

  1. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    SciTech Connect (OSTI)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

    2003-09-01

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

  2. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect (OSTI)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  3. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  4. Geothermal Reservoir Dynamics - TOUGHREACT

    SciTech Connect (OSTI)

    Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

    2005-03-15

    This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

  5. Iterative Schemes for Time Parallelization with Application to Reservoir Simulation

    SciTech Connect (OSTI)

    Garrido, I; Fladmark, G E; Espedal, M S; Lee, B

    2005-04-18

    Parallel methods are usually not applied to the time domain because of the inherit sequentialness of time evolution. But for many evolutionary problems, computer simulation can benefit substantially from time parallelization methods. In this paper, they present several such algorithms that actually exploit the sequential nature of time evolution through a predictor-corrector procedure. This sequentialness ensures convergence of a parallel predictor-corrector scheme within a fixed number of iterations. The performance of these novel algorithms, which are derived from the classical alternating Schwarz method, are illustrated through several numerical examples using the reservoir simulator Athena.

  6. Chickamauga reservoir embayment study - 1990

    SciTech Connect (OSTI)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  7. SMALL, GEOLOGICALLY COMPLEX RESERVOIRS CAN BENEFIT FROM RESERVOIR SIMULATION

    SciTech Connect (OSTI)

    Richard E. Bennett

    2002-06-24

    The Cascade Sand zone of the Mission-Visco Lease in the Cascade Oil field of Los Angeles County, California, has been under water flood since 1970. Increasing water injection to increase oil production rates was being considered as an opportunity to improve oil recovery. However, a secondary gas cap had formed in the up-dip portion of the reservoir with very low gas cap pressures, creating concern that oil could be displaced into the gas cap resulting in the loss of recoverable oil. Therefore, injecting gas into the gas cap to keep the gas cap pressurized and restrict the influx of oil during water injection was also being considered. Further, it was recognized that the reservoir geology in the gas cap area is very complex with numerous folding and faulting and thus there are potential pressure barriers in several locations throughout the reservoir. With these conditions in mind, there were concerns regarding well to well continuity in the gas cap, which could interfere with the intended repressurization impact. Concerns about the pattern of gas flow from well to well, the possibilities of cycling gas without the desired increased pressure, and the possible loss of oil displaced into the gas cap resulted in the decision to conduct a gas tracer survey in an attempt to better define inter-well communication. Following the gas tracer survey, a reservoir model would be developed to integrate the findings of the gas tracer survey, known geologic and reservoir data, and historic production data. The reservoir model would be used to better define the reservoir characteristics and provide information that could help optimize the waterflood-gas injection project under consideration for efficient water and gas injection management to increase oil production. However, due to inadequate gas sampling procedures in the field and insufficiently developed laboratory analytical techniques, the laboratory was unable to detect the tracer in the gas samples taken. At that point, focus

  8. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    SciTech Connect (OSTI)

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  9. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore » general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  10. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect (OSTI)

    1998-01-01

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  11. Application of Integrated Reservoir management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect (OSTI)

    B. Pregger; D. Davies; D. Moore; G. Freeman; J. Callard; J.W. Nevans; L. Doublet; R. Vessell; T. Blasingame

    1997-08-31

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  12. Reservoir Modeling Working Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting Reservoir Modeling Working Group Meeting Reservoir Modeling working group meeting presentation on May 10, 2012 at the 2012 Peer Review ...

  13. IPGT Reservoir Modeling Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPGT Reservoir Modeling Working Group IPGT Reservoir Modeling Working Group Summary of recommendations and geothermal reservoir benchmarking workshop gtp2012peerreviewreservoirm...

  14. Tenth workshop on geothermal reservoir engineering: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  15. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  16. Sunset Reservoir Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Reservoir Solar Power Plant Facility Sunset Reservoir Sector Solar Facility Type Photovoltaic Developer Recurrent Energy Location San Francisco, California Coordinates...

  17. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.

    2001-03-28

    This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.

  18. 4. International reservoir characterization technical conference

    SciTech Connect (OSTI)

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  19. Tracer Methods for Characterizing Fracture Stimulation in Enhanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report | Department of Energy in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review reservoir_034_pruess.pdf (203.28 KB) More Documents & Publications Tracer Methods for

  20. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    SciTech Connect (OSTI)

    Fowler, M.L.; Young, M.A.; Madden, M.P.

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  1. Altering Reservoir Wettability to Improve Production from Single Wells

    SciTech Connect (OSTI)

    W. W. Weiss

    2006-09-30

    Many carbonate reservoirs are naturally fractured and typically produce less than 10% original oil in place during primary recovery. Spontaneous imbibition has proven an important mechanism for oil recovery from fractured reservoirs, which are usually weak waterflood candidates. In some situations, chemical stimulation can promote imbibition of water to alter the reservoir wettability toward water-wetness such that oil is produced at an economic rate from the rock matrix into fractures. In this project, cores and fluids from five reservoirs were used in laboratory tests: the San Andres formation (Fuhrman Masho and Eagle Creek fields) in the Permian Basin of Texas and New Mexico; and the Interlake, Stony Mountain, and Red River formations from the Cedar Creek Anticline in Montana and South Dakota. Solutions of nonionic, anionic, and amphoteric surfactants with formation water were used to promote waterwetness. Some Fuhrman Masho cores soaked in surfactant solution had improved oil recovery up to 38%. Most Eagle Creek cores did not respond to any of the tested surfactants. Some Cedar Creek anticline cores had good response to two anionic surfactants (CD 128 and A246L). The results indicate that cores with higher permeability responded better to the surfactants. The increased recovery is mainly ascribed to increased water-wetness. It is suspected that rock mineralogy is also an important factor. The laboratory work generated three field tests of the surfactant soak process in the West Fuhrman Masho San Andres Unit. The flawlessly designed tests included mechanical well clean out, installation of new pumps, and daily well tests before and after the treatments. Treatments were designed using artificial intelligence (AI) correlations developed from 23 previous surfactant soak treatments. The treatments were conducted during the last quarter of 2006. One of the wells produced a marginal volume of incremental oil through October. It is interesting to note that the field

  2. Geostatistics applied to gas reservoirs

    SciTech Connect (OSTI)

    Meunier, G.; Coulomb, C.; Laille, J.P. )

    1989-09-01

    The spatial distribution of many of the physical parameters connected with a gas reservoir is of primary interest to both engineers and geologists throughout the study, development, and operation of a field. It is therefore desirable for the distribution to be capable of statistical interpretation, to have a simple graphical representation, and to allow data to be entered from either two- or three-dimensional grids. To satisfy these needs while dealing with the geographical variables, new methods have been developed under the name geostatistics. This paper describes briefly the theory of geostatistics and its most recent improvements for the specific problem of subsurface description. The external-drift technique has been emphasized in particular, and in addition, four case studies related to gas reservoirs are presented.

  3. Geothermal well stimulation program

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    The stimulation of geothermal production wells presents some new and challenging problems. Formation temperatures in the 275 to 550/sup 0/F range can be expected and the behavior of fracturing fluids and fracture proppants at these temperatures in a hostile brine environment must be carefully evaluated in laboratory tests. To avoid possible damage to the producing horizon of the formation, the high-temperature chemical compatibility between the in situ materials and the fracturing fluids, fluid loss additives, and proppants must be verified. In geothermal wells, the necessary stimulation techniques are required to be capable of initiating and maintaining the flow of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional oil field stimulation. The objective of well stimulation is to initiate and maintain additional fluid production from existing wells at a lower cost than either drilling new replacement wells or multiply redrilling existing wells. The economics of well stimulation will be vastly enhanced when proven stimulation techniques can be implemented as part of the well completion (while the drilling rig is still over the hole) on all new wells exhibiting some form of flow impairment. Results from 7 stimulation tests are presented and planned tests are described.

  4. Gas evolution from geopressured brines

    SciTech Connect (OSTI)

    Matthews, C.S.

    1980-06-01

    The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

  5. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  6. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    2013-11-01

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  7. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    2013-10-01

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  8. Newberry Volcano EGS Demonstration Stimulation Modeling

    SciTech Connect (OSTI)

    Trenton T. Cladouhos, Matthew Clyne, Maisie Nichols,; Susan Petty, William L. Osborn, Laura Nofziger

    2011-10-23

    As a part of Phase I of the Newberry Volcano EGS Demonstration project, several data sets were collected to characterize the rock volume around the well. Fracture, fault, stress, and seismicity data has been collected by borehole televiewer, LiDAR elevation maps, and microseismic monitoring. Well logs and cuttings from the target well (NWG 55-29) and core from a nearby core hole (USGS N-2) have been analyzed to develop geothermal, geochemical, mineralogical and strength models of the rock matrix, altered zones, and fracture fillings (see Osborn et al., this volume). These characterization data sets provide inputs to models used to plan and predict EGS reservoir creation and productivity. One model used is AltaStim, a stochastic fracture and flow software model developed by AltaRock. The software's purpose is to model and visualize EGS stimulation scenarios and provide guidance for final planning. The process of creating an AltaStim model requires synthesis of geologic observations at the well, the modeled stress conditions, and the stimulation plan. Any geomechanical model of an EGS stimulation will require many assumptions and unknowns; thus, the model developed here should not be considered a definitive prediction, but a plausible outcome given reasonable assumptions. AltaStim is a tool for understanding the effect of known constraints, assumptions, and conceptual models on plausible outcomes.

  9. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  10. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect (OSTI)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olson; Deanna Combs; Dhiraj Dembla

    2004-06-01

    The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. To this end it has commissioned several small consulting studies to technically support its effort to secure a partner. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and has written a thesis describing his research (titled ''Stimulating enhanced oil recovery (EOR) by high-pressure air injection (HPAI) in west Texas light oil reservoir''). We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete all activities specified in the proposal, it will be necessary to request

  11. Department of Energy Awards up to $38 Million to Advance Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... project will enable efficient reservoir creation by monitoring enhanced geothermal system ... the shape, volume and evolution of a stimulated reservoir and optimize its performance. ...

  12. Department of Energy Awards up to $38 Million to Advance Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This project will enable efficient reservoir creation by monitoring enhanced geothermal ... the shape, volume and evolution of a stimulated reservoir and optimize its performance. ...

  13. Geothermal Well Stimulation

    SciTech Connect (OSTI)

    Campbell, D. A.; Morris, C. W.; Sinclair, A. R.; Hanold, R. J.; Vetter, O. J.

    1981-03-01

    The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600 F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated before performance expectations can be determined. In order to avoid possible damage to the producing horizon of the formation, high temperature chemical compatibility between the in situ materials and the stimulation materials must be verified. Perhaps most significant of all, in geothermal wells the required techniques must be capable of bringing about the production of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional petroleum well stimulation and demands the creation of very high near-wellbore permeability and/or fractures with very high flow conductivity.

  14. Skimming' a reservoir for trash

    SciTech Connect (OSTI)

    Shenman, L.E. )

    1993-02-01

    Several hydropower facilities are using a new technology for removing floating trash in reservoirs. Representatives from the facilities say the boat, called a trashskimmer, is efficient, easy to maneuver, and transportable. Designed by United Marine International, Inc., the pontoon boat features an operators cab that straddles an open hull between the skis of the pontoon, and uses dual propellers to maneuver through the water. The Marineskimmer allows the operator to approach the trash from the water side upstream of the plant. The Tennessee Valley Authority has used the boat since 1990.

  15. Hydrothermal Convection Systems with Reservoir Temperatures greater...

    Open Energy Info (EERE)

    Systems with Reservoir Temperatures greater than or equal to 90 degrees C Authors Brook, Mariner, Mabey, Swanson, Guffanti and Muffler Published Journal Assessment of...

  16. Geothermometry At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Activity Details Location Blackfoot Reservoir Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown References Amy Hutsinpiller, W. T....

  17. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  18. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  19. Characterization of Fractures in Geothermal Reservoirs Using...

    Open Energy Info (EERE)

    Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly...

  20. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  1. International reservoir operations agreement helps NW fish &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or 503-230-5131 International reservoir operations agreement helps Northwest fish and power Portland, Ore. - The Bonneville Power Administration and the British Columbia...

  2. Precise Gravimetry and Geothermal Reservoir Management | Open...

    Open Energy Info (EERE)

    Precise Gravimetry and Geothermal Reservoir Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Precise Gravimetry and Geothermal...

  3. 201202 Reservoir System Modeling Technologies Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Applied To The Columbia River - PSR Adjoint Modeling Framework for Real-Time Control of Water - Deltares Reservoir Operations Analysis in the Willamette Water 2100...

  4. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  5. Towards the Understanding of Induced Seismicity in Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity Microearthquake Technology for EGS Fracture Characterization

  6. The Role of Geochemistry and Stress on Fracture Development and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Creation of an Engineered Geothermal System through ... Capturing Reservoir Stimulation, Evolution and Induced Seismicity Development and ...

  7. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  8. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  9. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, Don; Koerner, Roy; Moos, Dan; Nguyen, John; Phillips, Chris; Tagbor, Kwasi; Walker, Scott

    1999-11-09

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  10. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  11. Reservoir facies architecture of microtidal barrier systems

    SciTech Connect (OSTI)

    Galloway, W.E.

    1986-06-01

    Sandstone reservoirs deposited in microtidal barrier systems contain large oil and gas reserves in several Gulf Coast basin plays. Three representative Frio Sandstone reservoirs in West Ranch field show that barrier-island sand bodies are complex mosaics of barrier-core, inlet-fill, flood-tidal-delta, washover-fan, barrier-flat, and shoreface facies. The proportions of these facies differ within progradational, aggradational, and transgressive barrier sand bodies. The 41-A reservoir is a progradational barrier sand body. The most important producing facies include the barrier core and crosscutting inlet fill. Permeability and distributions of irreducible water saturation reveal depositional patterns and subdivisions of the sand body into numerous facies-controlled compartments. Both original hydrocarbon saturation and irregularities in water encroachment show that the facies compartments locally affect fluid movement within the reservoir. The Greta reservoir is an aggradational barrier complex. This massive sand body consists of intermixed barrier-core and inlet-fill units. Prominent resistivity compartments are dip oriented, indicating the importance of inlet development during barrier aggradation. Despite the uniform appearance of the Greta reservoir, water encroachment has been irregular. The Glasscock reservoir is characterized by comparatively low permeability and is an atypically thin and discontinuous Frio reservoir. It is interpreted to be a transgressive barrier deposit that consists mainly of large washover-fan and associated barrier-flat sands. Hydrocarbon saturation, drainage, and injection response all reflect the facies geometry typical of a transgressive barrier complex.

  12. Economics of Developing Hot Stratigraphic Reservoirs

    SciTech Connect (OSTI)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  13. Water resources review: Wheeler Reservoir, 1990

    SciTech Connect (OSTI)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  14. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  15. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  16. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted Production Reservoir Storage

  17. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    1996-01-26

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  18. Increasing waterflood reserves in the Wilmington Oil Field through improved reservoir characterization and reservoir management. Annual report, March 21, 1995--March 20, 1996

    SciTech Connect (OSTI)

    Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1997-08-01

    This project uses advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three- dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturation sands will be stimulated by recompleting existing production and injection wells in these sands using conventional means as well as short radius and ultra-short radius laterals. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  19. Evaluation of Reservoir Wettability and its Effect on Oil Recovery...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Reservoir Wettability and its Effect on Oil Recovery. Citation Details In-Document Search Title: Evaluation of Reservoir Wettability and its Effect on Oil Recovery. ...

  20. Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...

    Open Energy Info (EERE)

    Reservoirs- an Analysis of Tracer-Determined Residence Time Distributions Abstract A methodology for analyzing the internal flow characteristics of a fractured geothermal reservoir...

  1. Update on the Raft River Geothermal Reservoir | Open Energy Informatio...

    Open Energy Info (EERE)

    the Raft River Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Update on the Raft River Geothermal Reservoir...

  2. Deep Geothermal Reservoir Temperatures in the Eastern Snake River...

    Office of Scientific and Technical Information (OSTI)

    Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry Citation Details In-Document Search Title: Deep Geothermal Reservoir ...

  3. An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...

    Open Energy Info (EERE)

    Humeros Geothermal Reservoir (Mexico) Abstract An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed...

  4. Geysers Hi-T Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Hi-T Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Hi-T Reservoir Geothermal Area Contents 1 Area Overview 2 History and...

  5. Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code...

    Office of Scientific and Technical Information (OSTI)

    of an EGS Reservoir - Geothermal Code Comparison Study Citation Details In-Document Search Title: Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code Comparison Study ...

  6. Two-dimensional simulation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    of the Raft River geothermal reservoir and wells. (SINDA-3G program) Abstract Computer models describing both the transient reservoir pressure behavior and the time...

  7. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project ... More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks ...

  8. Property:USGSMeanReservoirTemp | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name USGSMeanReservoirTemp Property Type Temperature Description Mean estimated reservoir temperature at location based on the USGS 2008 Geothermal...

  9. Sustainability of Shear-Induced Permeability for EGS Reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study ...

  10. North Dakota Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) North Dakota Dry Natural Gas ... Dry Natural Gas New Reservoir Discoveries in Old Fields North Dakota Dry Natural Gas ...

  11. ,"West Virginia Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Crude Oil Reserves in Nonproducing Reservoirs ... to Contents","Data 1: West Virginia Crude Oil Reserves in Nonproducing Reservoirs ...

  12. ,"Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs ... Contents","Data 1: Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs ...

  13. A combination of streamtube and geostatical simulation methodologies for the study of large oil reservoirs

    SciTech Connect (OSTI)

    Chakravarty, A.; Emanuel, A.S.; Bernath, J.A.

    1997-08-01

    The application of streamtube models for reservoir simulation has an extensive history in the oil industry. Although these models are strictly applicable only to fields under voidage balance, they have proved to be useful in a large number of fields provided that there is no solution gas evolution and production. These models combine the benefit of very fast computational time with the practical ability to model a large reservoir over the course of its history. These models do not, however, directly incorporate the detailed geological information that recent experience has taught is important. This paper presents a technique for mapping the saturation information contained in a history matched streamtube model onto a detailed geostatistically derived finite difference grid. With this technique, the saturation information in a streamtube model, data that is actually statistical in nature, can be identified with actual physical locations in a field and a picture of the remaining oil saturation can be determined. Alternatively, the streamtube model can be used to simulate the early development history of a field and the saturation data then used to initialize detailed late time finite difference models. The proposed method is presented through an example application to the Ninian reservoir. This reservoir, located in the North Sea (UK), is a heterogeneous sandstone characterized by a line drive waterflood, with about 160 wells, and a 16 year history. The reservoir was satisfactorily history matched and mapped for remaining oil saturation. A comparison to 3-D seismic survey and recently drilled wells have provided preliminary verification.

  14. Performance testing the Phase 2 HDR reservoir

    SciTech Connect (OSTI)

    Ponden, R.F.; Dreesen, D.S. ); Thomson, J.C. )

    1991-01-01

    The geothermal energy program at the Los Alamos National Laboratory is directed toward developing the Hot Dry Rock (HDR) technology as an alternate energy source. Positive results have been obtained in previous circulation tests of HDR reservoirs at the Laboratory's test site in Fenton Hill, New Mexico. There still remains however, the need to demonstrate that adequate geothermal energy can be extracted in an efficient manner to support commercial power production. This year, the Laboratory will begin a circulation test of its Phase 2, reservoir. The objectives of this test are to characterize steady-state power production and long-term reservoir performance. 6 refs., 2 figs., 3 tabs.

  15. EERE PowerPoint 97-2004 Template: Green Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    well stimulation * Challenge: Reservoir creation via well stimulation is the key to EGS ... can reproduce observed long-term evolution of injectivity 10 | US DOE Geothermal ...

  16. New York Canyon Stimulation

    SciTech Connect (OSTI)

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "œNo Go" decision and initiate project termination in April 2012.

  17. Structural Evolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evolution in the Neutron Rich-Nucleus 14 B Shadi Bedoor Department of Physics Western Michigan University We have studied 14 B employing two complementary reactions: 13 B(d,p)...

  18. Application of reservoir characterization and advanced technologies to improve recovery and economics in a lower quality shallow shelf Sand Andreas Reservoir: Quarterly technical report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Taylor, A.R., Hickman, T.S., Justice, J.J.

    1997-04-30

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l.Advanced petrophysics 1547 2.Three-dimensional (3-D) seismic 3.Cross-well bore tomography 4.Advanced reservoir simulation 5.Carbon dioxide (CO{sub 2}) stimulation treatments 6.Hydraulic fracturing design and monitoring 7. Mobility control agents SUMMARY OF TECHNICAL PROGRESS West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982- 86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible CO injection project at the South Welch Unit.

  19. Practical model for predicting pressure in gas-storage reservoirs

    SciTech Connect (OSTI)

    Mollnard, J.E.; Le Bitoux, P.; Pelce, V. ); Tek, M.R. )

    1990-11-01

    Optional planning, design, and operation of gas fields in production or storage critically depends on reliable models for predicting pressures that are often based on sophisticated numerical and mathematical concepts. The pressure that prevails at a given time is a direct function of production/injection schedules, past history, and surface equipment as related to reserves and reservoir characteristics. Maintaining the pressure within prescribed limits is particularly important in underground storage to avoid pressures above a maximum for reasons of safety and migration and below a minimum for surface-equipment and contracted-deliverability considerations. This paper presents a way to calculate the convolution integral on which the pressure variations depend. The classic methods were long and costly to run and seldom used. The author's method, which identifies this convolution integral with a finite sum of exponential terms, is much quicker and has been implemented in a program called PREPRE, usable on microcomputers. Based on a production/pressure schedule, the model is capable of forecasting the evolution of pressures in main zones of interest, such as wellbores, gathering systems, and surface equipment. The data required for the model-past production/pressure history-are matched by a special algorithm that automatically calculates the main reservoir parameters used as bases for future projections.

  20. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  1. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect (OSTI)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  2. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Authors Lou, M.; Rial and J.A. Published Journal...

  3. Magic Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    110C383.15 K 230 F 689.67 R 1 USGS Estimated Reservoir Volume: 2 km 1 USGS Mean Capacity: 9 MW 1 Click "Edit With Form" above to add content History and...

  4. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, December 13, 1994--March 12, 1995

    SciTech Connect (OSTI)

    1995-03-12

    Results are presented concerning reservoir performance analysis and effectiveness of hydraulic fracture treatments. A geostatistical analysis task, reservoir simulation, and integrated reservoir description tasks are also described.

  5. PROCEEDINGS FOURTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING

    Office of Scientific and Technical Information (OSTI)

    SGP - TR - 30 PROCEEDINGS FOURTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING c - .- - L Paul Kruger and Henry J. Ramey, Jr. Editors December 13-15, 1978 CONF-781222-29 RECENT RESERVOIR ENGINEERING DEVELOPMENTS AT BRADY HOT SPRINGS, NEVADA J. M. Rudisill Thermal Power Company 601 California St. San Francisco, California 94108 Brady's Hot Springs is a hydrothermal area located approximately 28Km northeast of Fernley, Nevada. Surface manifestations of geothermal activity occur along a north -

  6. Fracture Evolution Following a Hydraulic Stimulation within an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice Do not include any proprietary or confidential information. ...

  7. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir. seismic_fehler_fluid_flow.pdf (1.15 MB) More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and

  8. Geologic aspects of horizontal drilling in self-sourcing reservoirs

    SciTech Connect (OSTI)

    Illich, H.A. )

    1991-03-01

    Horizontal drilling techniques provide a way to exploit hydrocarbon reserves that are either noneconomic or only marginally economic using vertical drilling techniques. A significant fraction of these reserves is contained in reservoirs that are self-sourcing or in reservoirs that are closely associated with their resources. Most formations drilled as horizontal targets are self-sourcing. The Austin Chalk, Niobrara, Mesaverde, and Bakken are examples of horizontally drilled, self-sourcing reservoir systems. In formations like the Bakken or Austin Chalk, the close relationship between reservoir and source makes risks associated with migration and accumulation less important. Reservoirs of this kind can contain oil or gas and often have little or no associated water. They can be matrix-dominated reservoirs, dual-porosity reservoirs (Mesaverde), or fractured reservoirs (Austin Chalk, Bakken, and Niobrara). Fractured, self-sourcing reservoirs also can possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess highly heterogeneous reservoir systems. Characterization of the style of reservoir heterogeneity in self-sourcing systems is important if the favorable properties of horizontally oriented bore holes are to be realized. Production data and rock mechanics considerations are important in horizontal drilling ventures. Examples of the use of these data for the purpose of defining reservoir characteristics are discussed. Knowledge of lateral changes in reservoir properties is essential if we are to recover known reserves efficiently.

  9. Pressure behavior of laterally composite reservoirs

    SciTech Connect (OSTI)

    Kuchuk, F.J.; Habashy, T.

    1997-03-01

    This paper presents a new general method for solving the pressure diffusion equation in laterally composite reservoirs, where rock and fluid properties may change laterally as a function of y in the x-y plane. Composite systems can be encountered as a result of many different types of depositional and tectonic processes. For example, meandering point bar reservoirs or reservoirs with edgewater encroachment are examples of such systems. The new solution method presented is based on the reflection-transmission concept of electromagnetics to solve fluid-flow problems in 3D nonhomogeneous reservoirs, where heterogeneity is in only one (y) direction. A general Green`s function for a point source in 3D laterally composite systems is developed by using the reflection-transmission method. The solutions in the Laplace transform domain are then developed from the Green`s function for the pressure behavior of specific composite reservoirs. The solution method can also be applied to many different types of wells, such as vertical, fractured, and horizontal in composite reservoirs. The pressure behavior of a few well-known laterally composite systems are investigated. It is shown that a network of partially communicating faults and fractures in porous medium can be modeled as composite systems. It is also shown that the existing solutions for a partially communicating fault are not valid when the fault permeability is substantially larger than the formation permeability. The derivative plots are presented for selected faulted, fractured, channel, and composite reservoirs as diagnostic tools for well-test interpretation. It is also shown that if the composite system`s permeability varies moderately in the x or y direction, it exhibits a homogeneous system behavior. However, it does not yield the system`s average permeability. Furthermore, the composite systems with distributed low-permeability zones behave as if the system has many two no-flow boundaries.

  10. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    SciTech Connect (OSTI)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  11. Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge diatomite

    SciTech Connect (OSTI)

    Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.; Wawersik, W.R. |

    1996-11-01

    This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation and used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included -200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.

  12. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  13. Seismic imaging of reservoir flow properties: Resolving waterinflux and reservoir permeability

    SciTech Connect (OSTI)

    Vasco, D.W.; Keers, Henk

    2006-11-27

    Methods for geophysical model assessment, in particuale thecomputation of model parameter resolution, indicate the value and thelimitations of time-lapse data in estimating reservoir flow properties. Atrajectory-based method for computing sensitivities provides an effectivemeans to compute model parameter resolutions. We examine the commonsituation in which water encroaches into a resrvoir from below, as due tothe upward movement of an oil-water contact. Using straight-forwardtechniques we find that, by inclusing reflections off the top and bottomof a reservoir tens of meters thick, we can infer reservoir permeabilitybased upon time-lapse data. We find that, for the caseof water influxfrom below, using multiple time-lapse 'snapshots' does not necessarilyimprove the resolution of reservoir permeability. An application totime-lapse data from the Norne field illustrates that we can resolve thepermeability near a producing well using reflections from threeinterfaces associated with the reservoir.

  14. Fractured shale reservoirs: Towards a realistic model

    SciTech Connect (OSTI)

    Hamilton-Smith, T.

    1996-09-01

    Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

  15. Experience in operating the Bratsk Reservoir

    SciTech Connect (OSTI)

    Nazarov, A.V.

    1984-04-01

    The Bratsk reservoir is the largest in the USSR and second largest in the world. Initially, the reservoir was expected to be filled by the end of 1966. However, the actual filling was not completed until September of 1967. During filling and in the first years of operation it was constantly necessary to deal with floating timber in order to ensure normal operation of the hydrostation, navigation safety, conditions for fishery, and fulfillment of the sanitary requirements. During seasonal variations of the reservoir level about 160 sq km of the shore zone was subjected to variable flooding and waterlogging. Maximum erosion occurred on expanded stretches, and within their limits on slopes composed of loam and sand deposits. Within the narrows, where the banks are composed mainly of hard and soft rocks and wave action is weak, erosion is negligible. Wind setup and setdown cause maximum denivellation of the water surface. The maximum increase of the level during setup reaches 232 cm and the maximum decrease during setdown is 24 cm. Seiche oscillations with various amplitudes and periods are observed on the reservoir surface. The main uses of the complex are hydropower, water transport, timber floating, water supply, and fishery. For the successful development of the shores of reservoirs it is necessary to select the construction sites with consideration of possible occurrence of karstic and landslide processes; the construction of heavy structures requires special karst-control measures. 3 references, 3 figures, 1 table.

  16. Eolian reservoir characteristics predicted from dune type

    SciTech Connect (OSTI)

    Kocurek, G.; Nielson, J.

    1985-02-01

    The nature of eolian-dune reservoirs is strongly influenced by stratification types (in decreasing order of quality: grain-flow, grain-fall, wind-ripple deposits) and their packaging by internal bounding surfaces. These are, in turn, a function of dune surface processes and migration behavior, allowing for predictive models of reservoir behavior. Migrating, simple crescentic dunes produce tabular bodies consisting mainly of grain-flow cross-strata, and form the best, most predictable reservoirs. Reservoir character improves as both original dune height and preserved set thickness increase, because fewer grain-fall deposits and a lower percentage of dune-apron deposits occur in the cross-strata, respectively. It is probable that many linear and star dunes migrate laterally, leaving a blanket of packages of wind ripple laminae reflecting deposition of broad, shifting aprons. This is distinct from models generated by freezing large portions of these dunes in place. Trailing margins of linear and star dunes are prone to reworking by sand-sheet processes that decrease potential reservoir quality. The occurrence of parabolic dunes isolated on vegetated sand sheets results in a core of grain-flow and grain-fall deposits surrounded by less permeable and porous deposits. Compound crescentic dunes, perhaps the most preservable dune type, may yield laterally (1) single sets of cross-strate, (2) compound sets derived from superimposed simple dunes, or (3) a complex of diverse sets derived from superimposed transverse and linear elements.

  17. Secondary heat recovery from low-permeability high-temperature reservoir: A possible project in the Larderello Field, Italy

    SciTech Connect (OSTI)

    Gianelli, G.; Squarci, P.; Capocecera, P.

    1997-12-31

    A project of fracture stimulation and secondary heat recovery from the metamorphic reservoir of the Larderello geothermal field could be developed in a next future. Geological and geophysical data suggest that the stimulation can enhance permeability and that the water injection can be recovered as steam. In particular, the area of the project is characterized by the presence of an important seismic reflector which has been explained assuming the presence of fractured rocks filled with high pressure fluids. Extensional and hydraulic fractures can present at temperatures of 300-350{degrees}C, and this makes the experiment of extreme interest.

  18. For Stimul-Responsive Polymers with Enhanced Efficiency in Reservoir Recovery Processes

    SciTech Connect (OSTI)

    Charles McCormick; Roger Hester

    2003-02-28

    Acrylamide-based hydrophobically modified (HM) polybetaines containing N-butylphenylacrylamide (BPAM) and varying amounts of either sulfobetaine (3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulfonate, AMPDAPS) or carboxybetaine (4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate, AMPDAB) comonomers were synthesized via micellar copolymerization. The terpolymers were characterized via {sup 13}C NMR and UV spectroscopies, classical and dynamic light scattering, and potentiometric titration. The response of aqueous polymer solutions to various external stimuli, including changes in solution pH, electrolyte concentration, and the addition of small molecule surfactants, was investigated using surface tension and rheological measurements. Low charge density terpolymers were found to show greater viscosity enhancement upon the addition of surfactant compared to the high charge density terpolymers. The addition of sodium dodecyl sulfate (SDS) produced the largest maximum in solution viscosity, while N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), and Triton X-100 tended to show reduced viscosity enhancement. In most cases, the high charge density carboxybetaine terpolymer exhibited diminished solution viscosities upon surfactant addition. In our last report, we discussed solution thermodynamic theory that described changes in polymer coil conformation as a function of solution temperature and polymer molecular weight. These polymers contained no ionic charges. In this report, we expand polymer solution theory to account for the electrostatic interactions present in solutions of charged polymers. Polymers with ionic charges are referred to as polyions or polyelectrolytes.

  19. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  20. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  1. An Intelligent Systems Approach to Reservoir Characterization

    SciTech Connect (OSTI)

    Shahab D. Mohaghegh; Jaime Toro; Thomas H. Wilson; Emre Artun; Alejandro Sanchez; Sandeep Pyakurel

    2005-08-01

    Today, the major challenge in reservoir characterization is integrating data coming from different sources in varying scales, in order to obtain an accurate and high-resolution reservoir model. The role of seismic data in this integration is often limited to providing a structural model for the reservoir. Its relatively low resolution usually limits its further use. However, its areal coverage and availability suggest that it has the potential of providing valuable data for more detailed reservoir characterization studies through the process of seismic inversion. In this paper, a novel intelligent seismic inversion methodology is presented to achieve a desirable correlation between relatively low-frequency seismic signals, and the much higher frequency wireline-log data. Vertical seismic profile (VSP) is used as an intermediate step between the well logs and the surface seismic. A synthetic seismic model is developed by using real data and seismic interpretation. In the example presented here, the model represents the Atoka and Morrow formations, and the overlying Pennsylvanian sequence of the Buffalo Valley Field in New Mexico. Generalized regression neural network (GRNN) is used to build two independent correlation models between; (1) Surface seismic and VSP, (2) VSP and well logs. After generating virtual VSP's from the surface seismic, well logs are predicted by using the correlation between VSP and well logs. The values of the density log, which is a surrogate for reservoir porosity, are predicted for each seismic trace through the seismic line with a classification approach having a correlation coefficient of 0.81. The same methodology is then applied to real data taken from the Buffalo Valley Field, to predict inter-well gamma ray and neutron porosity logs through the seismic line of interest. The same procedure can be applied to a complete 3D seismic block to obtain 3D distributions of reservoir properties with less uncertainty than the geostatistical

  2. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  3. Reservoir compartmentalization assessed with fluid compositional data

    SciTech Connect (OSTI)

    Smalley, P.C.; England, W.A. . Alliance R D Centre)

    1994-08-01

    Fluid composition is a valuable addition to the battery of static'' data available during reservoir appraisal that can be used to predict the dynamic behavior of the reservoir later in field life. This is because fluid data are not truly static; natural fluid mixing is a dynamic process that occurs over a long (geologic) time scale. Oil compositional differences, especially those that parallel changes in density, should be mixed rapidly by convection; their preservation indicates barriers to fluid flow. Water variations, now measurable on conventional core samples by use of residual salt analysis (RSA), help identify barriers to vertical fluid flow in oil and water legs.

  4. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  5. Optically stimulated differential impedance spectroscopy

    DOE Patents [OSTI]

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  6. Properties of CO2-Rich Pore Fluids and Their Effect on Porosity Evolution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in EGS Rocks | Department of Energy Properties of CO2-Rich Pore Fluids and Their Effect on Porosity Evolution in EGS Rocks Properties of CO2-Rich Pore Fluids and Their Effect on Porosity Evolution in EGS Rocks Project objective: Quantify key parameters critically needed for developing and validating numerical modeling of chemical interactions between EGS reservoir rocks and supercritical CO2and CO2-rich aqueous fluids. chemistry_cole_porosity_evolution.pdf (1.28 MB) More Documents &

  7. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  8. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    SciTech Connect (OSTI)

    Rose, Peter Eugene

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team

  9. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    SciTech Connect (OSTI)

    Rose, Peter Eugene

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team

  10. Evolution Securities Ltd formerly Evolution Beeson Gregory |...

    Open Energy Info (EERE)

    7AN Product: Evolution Securities is the investment banking business of Evolution Group plc providing equity research, institutional sales and trading and corporate finance...

  11. Underground natural gas storage reservoir management

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  12. Waterflood surveillance techniques; A reservoir management approach

    SciTech Connect (OSTI)

    Thakur, G.C. )

    1991-10-01

    The reservoir management aspects of waterflooding span the time before the start of waterflood to the time when the secondary recovery either is uneconomic or is changed to an enhanced recovery. This paper reviews waterflood techniques and reports on surveillance techniques in the management of waterflooding of oil wells.

  13. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  14. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  15. EOR by stimulated microflora

    SciTech Connect (OSTI)

    Svarovskaya, L.I.; Altunina, L.K.; Rozhenkova, Z.A.; Bulavin, V.D.

    1995-12-31

    A combined microbiological and physico-chemical method for EOR has been developed for flooded West Siberia oil fields with formation temperature of 45{degrees}-95{degrees}C (318-365K). Formation water includes rich and various biocenoses numbering up to 2 x 10{sup 7} cells per ml. Representatives of genera, i.e, Pseudomonas, Bacillus, Actinomyces, Micrococcus, Mycobacterium, Sarcina, etc. were found to be the most widely distributed microorganisms. The method is based on injection of systems exhibiting high oil displacing capacity and at the same time being an additional nitrous nutrient for endemic populations of microorganisms. Their injection into formation water favors biomass growth by 4-6 orders and promotes syntheses of biosurfactants, biopolymers, acids, etc., and gaseous products. The features of residual oil displacement have been studied on laboratory models using a combined microbiological and physico-chemical method. A curve for the yield of residual oil is presented by two peaks. The first peak is stipulated by the washing action of oil displacement system, and the second one by the effect of metabolites produced at stimulation of biogenic processes. Oil displacement index increases by 15%-30%.

  16. Roger Road Reservoir Single-Axis Photovoltaic Array

    Broader source: Energy.gov [DOE]

    In this photograph, the Roger Road Reclamation Water Reservoir features a 110-kilowatt (kW) solar array. This system was built on a reservoir deck as its special design allowed for a single-axis...

  17. Tracer testing in geothermal reservoirs | Open Energy Information

    Open Energy Info (EERE)

    geothermal reservoirs Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Tracer testing in geothermal reservoirs Author PetroWiki Published PetroWiki,...

  18. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground Natural Gas Well

  19. Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  20. Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  1. Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  2. Mississippi Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  3. Montana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  4. Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  5. West Virginia Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) West Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  6. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  7. Florida Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ... Dry Natural Gas New Reservoir Discoveries in Old Fields Florida Dry Natural Gas Proved ...

  8. Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  9. Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  10. Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  11. Utah Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  12. Pennsylvania Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Pennsylvania Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  13. Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  14. Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  15. Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  16. Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  17. New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  18. New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs...

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  19. Incorporating reservoir heterogeneity with geostatistics to investigate waterflood recoveries

    SciTech Connect (OSTI)

    Wolcott, D.S. ); Chopra, A.K. )

    1993-03-01

    This paper presents an investigation of infill drilling performance and reservoir continuity with geostatistics and a reservoir simulator. The geostatistical technique provides many possible realizations and realistic descriptions of reservoir heterogeneity. Correlation between recovery efficiency and thickness of individual sand subunits is shown. Additional recovery from infill drilling results from thin, discontinuous subunits. The technique may be applied to variations in continuity for other sandstone reservoirs.

  20. Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) Exploration Activity...

  1. Geotechnology for low permeability gas reservoirs; [Progress report], April 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Lorenz, J.C.; Warpinski, N.R.; Teufel, L.W.

    1993-11-01

    The objectives of this program are (1) to use and refine a basinal analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteritics of natural fracture systems for their use in completion, stimulation and production operations. Continuing work on this project has demonstrated that natural fracture systems and their flow characteristics can be defined by a thorough study of well and outcrop data within a basin. Outcrop data provides key information on fracture sets and lithologic controls, but some fracture sets found in the outcrop may not exist at depth. Well log and core data provide the important reservoir information to obtain the correct synthesis of the fracture data. In situ stress information is then linked with the natural fracture studies to define permeability anisotropy and stimulation effectiveness. All of these elements require field data, and in the cases of logs, core, and well test data, the cooperation of an operator.

  2. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  3. Relation between facies, diagenesis, and reservoir quality of Rotliegende reservoirs in north Germany

    SciTech Connect (OSTI)

    David, F.; Gast, R.; Kraft, T. (BEB Erdgas Erdol GmbH, Hannover (Germany))

    1993-09-01

    In north Germany, the majority of Rotliegende gas fields is confined to an approximately 50 km-wide east-west-orientated belt, which is situated on the gently north-dipping flank of the southern Permian basin. Approximately 400 billion m[sup 3] of natural gas has been found in Rotliegende reservoir sandstones with average porosities of depths ranging from 3500 to 5000 m. Rotliegende deposition was controlled by the Autunian paleo-relief, and arid climate and cyclic transgressions of the desert lake. In general, wadis and large dunefields occur in the hinterland, sebkhas with small isolate dunes and shorelines define the coastal area, and a desert lake occurs to the north. The sandstones deposited in large dunefields contain only minor amounts of illite, anhydrite, and calcite and form good reservoirs. In contrast, the small dunes formed in the sebkha areas were affected by fluctuations of the desert lake groundwaters, causing the infiltration of detrital clay and precipitation of gypsum and calcite. These cements were transformed to illite, anhydrite, and calcite-II during later diagenesis, leading to a significant reduction of the reservoir quality. The best reservoirs occur in the shoreline sandstones because porosity and permeability were preserved by early magnesium-chlorite diagenesis. Since facies controls diagenesis and consequently reservoir quality, mapping of facies also indicates the distribution of reservoir and nonreservoir rocks. This information is used to identify play area and to interpret and calibrate three-dimensional seismic data.

  4. Inflow performance relationships for solution-gas-drive reservoirs

    SciTech Connect (OSTI)

    Camacho-V, R.G.; Raghavan, R.

    1989-05-01

    In this theoretical study, a numerical model was used to examine the influence of pressure level and skin factor on the inflow performance relationships (IPR's) of wells producing under solution-gas-drive systems. Examination of the synthetic deliverability curves suggests that the exponent of the deliverability curve is a function of time and that the exponent is usually greater than unity. The implication of this observation to field data is discussed. The accuracy of procedures given in the literature to predict oilwell deliverabilities is also examined. It is shown that these methods can be used to predict future performance provided that the exponent of the deliverability curve is known and that extrapolations over large time ranges are avoided. If single-point tests are used to predict future performance (such tests assume that the exponent of the deliverability curve is constant), then errors in predictions will be minimized. Although relative permeability and fluid property data are required, the Muskat material-balance equation and the assumption that GOR is independent of distance can be used to predict future production rates. This method avoids problems associated with other methods in the literature and always yields reliable results. New methods to modify the IPR curve to incorporate changes in skin factor are presented. A new flow-efficiency definition based on the structure of the deliverability equations for solution-gas-drive reservoirs is proposed. This definition avoids problems that result when the currently available methods are applied to heavily stimulated wells.

  5. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, James W.

    1995-01-01

    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  6. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-05-09

    A device is described for stimulating bone tissue by applying a low level alternating current signal directly to the patient`s skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures. 5 figs.

  7. Method of extracting heat from dry geothermal reservoirs

    DOE Patents [OSTI]

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  8. Metal-gas cell with electrolyte reservoir

    SciTech Connect (OSTI)

    Miller, L.E.; Carr, D.D.

    1984-10-16

    A metal-gas electrochemical cell is disclosed wherein electrolyte is progressively supplied from a reservoir into the electrode or cell stack as needed, so as to maintain each stack component with adequate electrolyte, as the plates ''grow'' and absorb electrolyte with repeated cycling. The reservoir preferably is a compressible bladder positioned between on end of the plate stack and a retaining plate. As the plate stack ''grows'' with repeated cycling, the bladder is slowly compressed, forcing electrolyte from the bladder through an electrolyte distribution tube located within the plate stack. One end of the electrolyte distribution tube is fixed to an end plate of the plate stack and the second end of the distribution tube may be connected to a Belleville washer or other spring which acts through the distribution tube to compress the plate stack. The elasticity of the spring permits the stack to expand as the electrodes grow.

  9. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  10. Demultiplexer circuit for neural stimulation

    DOE Patents [OSTI]

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean

    2012-10-09

    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.