Sample records for reservoir repressuring production

  1. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01T23:59:59.000Z

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  2. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01T23:59:59.000Z

    Garg, 1978, Reservoir Engineering Data: Wai.akei Geothermalof the reservoir engineer because production data are alwaysGeothermal Reservoirs IV. DATA PROCESSING • • • . • Data

  3. Experimental production characteristics of anticlinal reservoirs

    E-Print Network [OSTI]

    Williams, Charles David

    1959-01-01T23:59:59.000Z

    The production characteristics of an anticlinal model reservoir have been studied. The results show the effects of production rate, structural well location, well density, and fluid properties on the oil and gas recovery. The results of this study indicate... the need to shut in high gas- oil ratio wells in order to achieve maximum recovery. An increase in well density increased recovery significantly for both upstructure and downstructure wells. An increase in the production rate appeared to increase re...

  4. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYearAdditionsLiquidsRepressuring (Million

  5. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year Jan FebRepressuring (Million

  6. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year Jan FebRepressuring

  7. Illinois Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million CubicRepressuring

  8. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet)2009Repressuring

  9. Ohio Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9 20102009 2010 2011Repressuring

  10. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May JunFeet) (MillionRepressuring (Million

  11. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May JunFeet) (MillionRepressuring

  12. Well Productivity Enhancement of High Temperature Heterogeneous Carbonate Reservoirs

    E-Print Network [OSTI]

    Wang, Guanqun

    2014-05-08T23:59:59.000Z

    Acidizing is one of the most popular techniques for well productivity enhancement during oil and gas production. However, the treatment method is not very effective when the wellbore penetrates through multiple layers of heterogeneous reservoirs...

  13. Streamline-based production data integration in naturally fractured reservoirs

    E-Print Network [OSTI]

    Al Harbi, Mishal H.

    2005-08-29T23:59:59.000Z

    Streamline-based models have shown great potential in reconciling high resolution geologic models to production data. In this work we extend the streamline-based production data integration technique to naturally fractured reservoirs. We use a...

  14. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  15. Some practical aspects of reservoir management

    SciTech Connect (OSTI)

    Fowler, M.L.; Young, M.A.; Cole, E.L.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)

    1996-09-01T23:59:59.000Z

    The practical essence of reservoir management is the optimal application of available resources-people, equipment, technology, and money to maximize profitability and recovery. Success must include knowledge and consideration of (1) the reservoir system, (2) the technologies available, and (3) the reservoir management business environment. Two Reservoir Management Demonstration projects (one in a small, newly-discovered field and one in a large, mature water-flood) implemented by the Department of Energy through BDM-Oklahoma illustrate the diversity of situations suited for reservoir management efforts. Project teams made up of experienced engineers, geoscientists, and other professionals arrived at an overall reservoir management strategy for each field. in 1993, Belden & Blake Corporation discovered a regionally significant oil reservoir (East Randolph Field) in the Cambrian Rose Run formation in Portage County, Ohio. Project objectives are to improve field operational economics and optimize oil recovery. The team focused on characterizing the reservoir geology and analyzing primary production and reservoir data to develop simulation models. Historical performance was simulated and predictions were made to assess infill drilling, water flooding, and gas repressurization. The Citronelle Field, discovered in 1955 in Mobile County, Alabama, has produced 160 million barrels from fluvial sandstones of the Cretaceous Rodessa formation. Project objectives are to address improving recovery through waterflood optimization and problems related to drilling, recompletions, production operations, and regulatory and environmental issues. Initial efforts focused on defining specific problems and on defining a geographic area within the field where solutions might best be pursued. Geologic and reservoir models were used to evaluate past performance and to investigate improved recovery operations.

  16. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2002-10-08T23:59:59.000Z

    During this reporting period, research was continued on characterizing and modeling the behavior of naturally fractured reservoir systems. This report proposed a model to relate the seismic response to production data to determine crack spacing and aperture, provided details of tests of proposed models to obtain fracture properties from conventional well logs with actual field data, and verification of the naturally fractured reservoir simulator developed in this project.

  17. US production of natural gas from tight reservoirs

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  18. Hierarchical Economic Optimization of Oil Production from Petroleum Reservoirs

    E-Print Network [OSTI]

    Van den Hof, Paul

    Hierarchical Economic Optimization of Oil Production from Petroleum Reservoirs Gijs M. van Essen-dirk.jansen@shell.com). Abstract: In oil production waterflooding is a popular recovery technology, which involves the injection daily production is generally neglected. To resolve this, a hierarchical optimization structure

  19. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31T23:59:59.000Z

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for optimizing the recovery from naturally fractured reservoir systems. The next logical extension of this work is to apply the proposed methods to an actual field case study to provide information for verification and modification of the techniques and simulator. This report provides the details of the proposed techniques and summarizes the activities undertaken during the course of this project. Technology transfer activities were highlighted by a two-day technical conference held in Oklahoma City in June 2002. This conference attracted over 90 participants and included the presentation of seventeen technical papers from researchers throughout the United States.

  20. Fractured shale reservoirs: Towards a realistic model

    SciTech Connect (OSTI)

    Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

    1996-09-01T23:59:59.000Z

    Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

  1. CFD Modeling of Methane Production from Hydrate-Bearing Reservoir

    SciTech Connect (OSTI)

    Gamwo, I.K.; Myshakin, E.M.; Warzinski, R.P.

    2007-04-01T23:59:59.000Z

    Methane hydrate is being examined as a next-generation energy resource to replace oil and natural gas. The U.S. Geological Survey estimates that methane hydrate may contain more organic carbon the the world's coal, oil, and natural gas combined. To assist in developing this unfamiliar resource, the National Energy Technology Laboratory has undertaken intensive research in understanding the fate of methane hydrate in geological reservoirs. This presentation reports preliminary computational fluid dynamics predictions of methane production from a subsurface reservoir.

  2. Experimental production characteristics of anticlinal reservoirs 

    E-Print Network [OSTI]

    Williams, Charles David

    1959-01-01T23:59:59.000Z

    field examples showing the importance of gxavity dxain- age on oil reservoir, perfoxmance have been pubhshed. Among these are the Gook Ranch Field in Shackleford County, Texas, the Mile (5) Six Pool in Peru, the Elk Basin Tensleep Reservoiz in Wyom... through the kerosene until a pressure above the desired bubble point pressure was attained. Kerosene was then circulated through. the gas cap in the mixing cylinder with a Hills-McGanna proportlosing pump until no further pressure drop was noted...

  3. Shale Oil Production Performance from a Stimulated Reservoir Volume

    E-Print Network [OSTI]

    Chaudhary, Anish Singh

    2011-10-21T23:59:59.000Z

    .1 Unconventional resources ................................................................................. 1 1.2 Oil shale and shale oil ....................................................................................... 6 1.3 Production from unconventional..., heavy oil, shale gas and shale oil. On the other hand, conventional reservoirs can be produced at economic flow rates and produce economic volumes of oil and gas without large stimulation treatments or any special recovery process. Conventional...

  4. Geomechanical Development of Fractured Reservoirs During Gas Production

    E-Print Network [OSTI]

    Huang, Jian

    2013-04-05T23:59:59.000Z

    GEOMECHANICAL DEVELOPMENT OF FRACTURED RESERVOIRS DURING GAS PRODUCTION A Dissertation by JIAN HUANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... this research work. I would also want to extend my appreciation to my friends and colleagues, Jun Ge, Chakra Rawal, Reza Safari, Sonia Wang, Vahid Serajian, Wenxu Xue and other members in the geomechanics group, who were always willing to help and offer...

  5. Low permeability gas reservoir production using large hydraulic fractures

    E-Print Network [OSTI]

    Holditch, Stephen A

    1970-01-01T23:59:59.000Z

    extending up to three thousand feet from the producing well. Also, a model simulating a nuclear cavity was designed. This model simulated a well containing an eighty foot radius cavity with a fractured zone of one hundred times the reservoir permeability... of each system was prepared. The results of this study showed that all fractures of greater than one thousand foot radius had greater productivity and greater cumu- lative gas produced than did the nuclear cavity. It appears that large hydraulic...

  6. U.S. Natural Gas Repressuring (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoalWithdrawalsPoint of EntryRepressuring

  7. West Virginia Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million Cubic Feet)Nov-14Repressuring

  8. Other States Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan FebYearThousandRepressuring

  9. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11T23:59:59.000Z

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  10. Altering Reservoir Wettability to Improve Production from Single Wells

    SciTech Connect (OSTI)

    W. W. Weiss

    2006-09-30T23:59:59.000Z

    Many carbonate reservoirs are naturally fractured and typically produce less than 10% original oil in place during primary recovery. Spontaneous imbibition has proven an important mechanism for oil recovery from fractured reservoirs, which are usually weak waterflood candidates. In some situations, chemical stimulation can promote imbibition of water to alter the reservoir wettability toward water-wetness such that oil is produced at an economic rate from the rock matrix into fractures. In this project, cores and fluids from five reservoirs were used in laboratory tests: the San Andres formation (Fuhrman Masho and Eagle Creek fields) in the Permian Basin of Texas and New Mexico; and the Interlake, Stony Mountain, and Red River formations from the Cedar Creek Anticline in Montana and South Dakota. Solutions of nonionic, anionic, and amphoteric surfactants with formation water were used to promote waterwetness. Some Fuhrman Masho cores soaked in surfactant solution had improved oil recovery up to 38%. Most Eagle Creek cores did not respond to any of the tested surfactants. Some Cedar Creek anticline cores had good response to two anionic surfactants (CD 128 and A246L). The results indicate that cores with higher permeability responded better to the surfactants. The increased recovery is mainly ascribed to increased water-wetness. It is suspected that rock mineralogy is also an important factor. The laboratory work generated three field tests of the surfactant soak process in the West Fuhrman Masho San Andres Unit. The flawlessly designed tests included mechanical well clean out, installation of new pumps, and daily well tests before and after the treatments. Treatments were designed using artificial intelligence (AI) correlations developed from 23 previous surfactant soak treatments. The treatments were conducted during the last quarter of 2006. One of the wells produced a marginal volume of incremental oil through October. It is interesting to note that the field tests were conducted in an area of the field that has not met production expectations. The dataset on the 23 Phosphoria well surfactant soaks was updated. An analysis of the oil decline curves indicted that 4.5 lb of chemical produced a barrel of incremental oil. The AI analysis supports the adage 'good wells are the best candidates.' The generally better performance of surfactant in the high permeability core laboratory tests supports this observation. AI correlations were developed to predict the response to water-frac stimulations in a tight San Andres reservoir. The correlations maybe useful in the design of Cedar Creek Anticline surfactant soak treatments planned for next year. Nuclear Magnetic Resonance scans of dolomite cores to measure porosity and saturation during the high temperature laboratory work were acquired. The scans could not be correlated with physical measurement using either conventional or AI methods.

  11. Production-management techniques for water-drive gas reservoirs. Annual Report, August 1990-December 1991

    SciTech Connect (OSTI)

    Hower, T.L.; Abbott, W.A.; Arsenault, J.W.; Jones, R.E.

    1992-01-01T23:59:59.000Z

    The project was designed to investigate production management strategies through a field study approach. The initial task was to prepare a summary of industry experience with water-drive gas and water-drive gas storage reservoirs. This activity was necessary to define the variety of reservoir situations in which water influx occurs, to identify those cases where alternative production practices will increase ultimate recovery, and to develop techniques to better characterize these reservoirs for further analysis. Four fields were selected for study: 1 onshore Gulf Coast gas reservoir, 2 offshore Gulf Coast reservoirs, and 1 mid-continent aquifier gas storage field. A modified material balance technique was developed and validated which predicts the pressure and production performance of water-drive gas reservoirs. This method yields more accurate results than conventional water influx techniques.

  12. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28T23:59:59.000Z

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  13. Joint Inversion of Production and Temperature Data Illuminates Vertical Permeability Distribution in Deep Reservoirs

    E-Print Network [OSTI]

    Zhang, Zhishuai

    2012-10-19T23:59:59.000Z

    of Characterization Results Conditioned on Various Observations ......................................................................................... 29 Figure 3-5 MAP Characterization Result with Downhole Temperature Sensors .. 30 Figure 3-6 Production... the lower layer of the reservoir has a higher temperature. Thus, production temperature carries information about hydraulic properties distribution with depth in the reservoir. In addition, the usage of modern monitor technology like permanent downhole...

  14. Accounting for Nonuniform Induced Properties in Production Analysis of Unconventional Reservoirs 

    E-Print Network [OSTI]

    Fuentes Cruz, Gorgonio

    2014-10-31T23:59:59.000Z

    -flow signature of commonly observed well performance of unconventional shale reservoirs; however, the extrapolation of the production behavior departs from the standard models significantly. This research contributes to the understanding of the production...

  15. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    SciTech Connect (OSTI)

    Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

    1997-08-01T23:59:59.000Z

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  16. Shale Oil Production Performance from a Stimulated Reservoir Volume 

    E-Print Network [OSTI]

    Chaudhary, Anish Singh

    2011-10-21T23:59:59.000Z

    The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale oil using the same strategy. Due to its higher viscosity and eventual...

  17. Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement

    SciTech Connect (OSTI)

    Dershowitz, William S.; Curran, Brendan; Einstein, Herbert; LaPointe, Paul; Shuttle, Dawn; Klise, Kate

    2002-07-26T23:59:59.000Z

    The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.

  18. Computational Geosciences 0 (2000) ?--? 1 Risk Management for Petroleum Reservoir Production

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    2000-01-01T23:59:59.000Z

    Computational Geosciences 0 (2000) ?--? 1 Risk Management for Petroleum Reservoir Production solution error. We explore the extent to which the coarse grid oil production rate is sufficient to predict future oil production rates. We find that very early oil production data is sufficient to reduce

  19. A New Type Curve Analysis for Shale Gas/Oil Reservoir Production Performance with Dual Porosity Linear System

    E-Print Network [OSTI]

    Abdulal, Haider Jaffar

    2012-02-14T23:59:59.000Z

    With increase of interest in exploiting shale gas/oil reservoirs with multiple stage fractured horizontal wells, complexity of production analysis and reservoir description have also increased. Different methods and models were used throughout...

  20. Geological and production characteristics of strandplain/barrier island reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.; Jackson, S.; Madden, M.P.; Reeves, T.K.; Salamy, S.P.; Young, M.A.

    1994-12-01T23:59:59.000Z

    The Department of Energy`s (DOE`s) primary mission in the oil research program is to maximize the economically and environmentally sound recovery of oil from domestic reservoirs and to preserve access to this resource. The Oil Recovery Field Demonstration Program supports DOE`s mission through cost-shared demonstrations of improved Oil Recovery (IOR) processes and reservoir characterization methods. In the past 3 years, the DOE has issued Program Opportunity Notices (PONs) seeking cost-shared proposals for the three highest priority, geologically defined reservoir classes. The classes have been prioritized based on resource size and risk of abandonment. This document defines the geologic, reservoir, and production characteristics of the fourth reservoir class, strandplain/barrier islands. Knowledge of the geological factors and processes that control formation and preservation of reservoir deposits, external and internal reservoir heterogeneities, reservoir characterization methodology, and IOR process application can be used to increase production of the remaining oil-in-place (IOR) in Class 4 reservoirs. Knowledge of heterogeneities that inhibit or block fluid flow is particularly critical. Using the TORIS database of 330 of the largest strandplain/barrier island reservoirs and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (sufactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000.

  1. The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs 

    E-Print Network [OSTI]

    Ferguson, Ed Martin

    1972-01-01T23:59:59.000Z

    THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1972 Major Subject: PETROLEUM ENGINEERING THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Approved as. to style...

  2. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    SciTech Connect (OSTI)

    Maria Cecilia Bravo

    2006-06-30T23:59:59.000Z

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  3. Lexicographic Optimization of Multiple Economic Objectives in Oil Production from Petroleum Reservoirs

    E-Print Network [OSTI]

    Van den Hof, Paul

    Lexicographic Optimization of Multiple Economic Objectives in Oil Production from Petroleum Systems Approach to Petroleum Production (ISAPP) knowledge centre. ISAPP is a joint project between Delft Reservoirs Gijs van Essen, Paul M.J. Van den Hof and Jan Dirk Jansen Abstract-- In oil production

  4. Production management teachniques for water-drive gas reservoirs. Field No. 3. Offshore gulf coast normally pressured, dry gas reservoir. Topical report, July 1993

    SciTech Connect (OSTI)

    Hower, T.L.; Uttley, S.J.

    1993-07-01T23:59:59.000Z

    To develop improved completion and reservoir management strategies for water-drive gas reservoir, the study conducted on an offshore, normally pressured, dry gas reservoir is reported. The strategies that were particularly effective in increasing both the ultimate recovery and the net present value of the field are high volume water production from strategically located downdip wells and the recompletion of an upstructure well to recover trapped attic gas. High volume water production lowered the average reservoir pressure, which liberated residual gas trapped in the invaded region. Recompleting a new well into the reservoir also lowered the pressure and improved the volumetric displacement efficiency by recovering trapped attic gas. Ultimate recovery is predicted to increase 5-12% of the original gas-in-place.

  5. Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization

    SciTech Connect (OSTI)

    Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-06-01T23:59:59.000Z

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  6. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    SciTech Connect (OSTI)

    Maria Cecilia Bravo; Mariano Gurfinkel

    2005-06-30T23:59:59.000Z

    This document reports progress of this research effort in identifying possible relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. Based on a critical review of the available literature, a better understanding of the main weaknesses of the current state of the art of modeling and simulation for tight sand reservoirs has been reached. Progress has been made in the development and implementation of a simple reservoir simulator that is still able to overcome some of the deficiencies detected. The simulator will be used to quantify the impact of microscopic phenomena in the macroscopic behavior of tight sand gas reservoirs. Phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization are being considered as part of this study. To date, the adequate modeling of gas slippage in porous media has been determined to be of great relevance in order to explain unexpected fluid flow behavior in tight sand reservoirs.

  7. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04T23:59:59.000Z

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  8. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin).

    SciTech Connect (OSTI)

    Dutton, S.P.

    1997-10-30T23:59:59.000Z

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, water flood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other present at ions, the knowledge gained in the comparative study of these two fields can then be applied to increase product ion from the more than 100 other Delaware Mountain Group reservoirs.

  9. Reservoir characterization using oil-production-induced microseismicity, Clinton County, Kentucky

    E-Print Network [OSTI]

    -1- Reservoir characterization using oil-production-induced microseismicity, Clinton County;-2- Abstract Microseismic monitoring tests were conducted from 1993 to 1995 in the Seventy-Six oil field, Clinton County, Kentucky. Oil is produced from low-porosity, fractured carbonate rocks at

  10. A new approach to integrate seismic and production data in reservoir models

    SciTech Connect (OSTI)

    Ouenes, A.; Chawathe, A.; Weiss, W. [New Mexico Tech, Socorro, NM (United States)] [and others

    1997-08-01T23:59:59.000Z

    A great deal of effort is devoted to reducing the uncertainties in reservoir modeling. For example, seismic properties are used to improve the characterization of interwell properties by providing porosity maps constrained to seismic impedance. Another means to reduce uncertainties is to constrain the reservoir model to production data. This paper describes a new approach where the production and seismic data are simultaneously used to reduce the uncertainties. In this new approach, the primary geologic parameter that controls reservoir properties is identified. Next, the geophysical parameter that is sensitive to the dominant geologic parameter is determined. Then the geology and geophysics are linked using analytic correlations. Unfortunately, the initial guess resulted in a reservoir model that did not match the production history. Since the time required for trial and error matching of production history is exorbitant, an automatic history matching method based on a fast optimization method was used to find the correlating parameters. This new approach was illustrated with an actual field in the Williston Basin. Upscalling problems do not arise since the scale is imposed by the size of the seismic bin (66m, 219 ft) which is the size of the simulator gridblocks.

  11. Reservoir Simulation and Uncertainty Analysis of Enhanced CBM Production Using Artificial Neural Networks

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 125959 Reservoir Simulation and Uncertainty Analysis of Enhanced CBM Production Using, Society of Petroleum Engineers This paper was prepared for presentation at the 2009 SPE Eastern Regional by the author(s). Contents of the paper have not been reviewed by the Society of Petroleum Engineers

  12. Controls on hydrocarbon production from Lower Silurian Clinton sandstone reservoir in Portage County, Ohio

    SciTech Connect (OSTI)

    Wilson, J.T.; Coogan, A.H. (Kent State Univ., OH (USA))

    1989-08-01T23:59:59.000Z

    The Lower Silurian Clinton section (Ordovician Queenston Shale to Packer Shell/Brassfield Limestone) represents a deltaic sequence in Portage County where it occurs approximately 25 mi east of the delta edge and 50 mi east of the sandstone depositional limit. In Portage County, the Clinton section is approximately 190 ft thick. The mean sandstone thickness is 53 ft (range from > 100 to < 10 ft). The mean sandstone thickness is much greater than it is for the Clinton sandstone reservoir closer to the delta edge, where hydrocarbon production is comparable to, or surpasses that in Portage County. It is now evident that the occurrence of thick, clean Clinton sandstone is not the only primary geologic factor for high production from the reservoir. Two productive areas were studied to isolate controls on hydrocarbon occurrence and production. One area is structurally low, the other is structurally high, but both have about the same mean Clinton sandstone thickness.

  13. The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs

    E-Print Network [OSTI]

    Ferguson, Ed Martin

    1972-01-01T23:59:59.000Z

    models as com- pletely as possible prior to making the gas injection simulations. One validation test involved simulating a horizontal gas drive ex- cluding gravity effects by using the same densities for gas and oil. Shown in Figure 6 is the GOR...THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

  14. Production management techniques for water-drive gas reservoirs. Field No. 4; mid-continent aquifer gas storage reservoir. Volume 1. Topical report, January 1994

    SciTech Connect (OSTI)

    Hower, T.L.; Obernyer, S.L.

    1994-01-01T23:59:59.000Z

    A detailed reservoir characterization and numerical simulation study is presented for a mid-continent aquifer gas storage field. It is demonstrated that rate optimization during both injection and withdrawal cycles can significantly improve the performance of the storage reservoir. Performance improvements are realized in the form of a larger working volume of gas, a reduced cushion volume of gas, and decrease in field water production. By utilizing these reservoir management techniques gas storage operators will be able to minimize their base gas requirements, improve their economics, and determine whether the best use for a particular storage field is base loading or meeting peak day requirements. Volume I of this two-volume set contains a detailed technical discussion.

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  16. Production Management Decision Analysis Using AI-Based Proxy Modeling of Reservoir Simulations A Look-Back Case Study

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 170664 Production Management Decision Analysis Using AI-Based Proxy Modeling of Reservoir in the Middle East. This prolific mature asset that includes more than 160 production wells has been the subject of peripheral water injection for many years to maintain pressure and help displace oil toward the production

  17. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30T23:59:59.000Z

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  18. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30T23:59:59.000Z

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  19. Integrated reservoir fracturing and completion study to maximize productivity of individual Niobrara wells in Yuma County, Colorado

    SciTech Connect (OSTI)

    Blauer, R.E.; Brady, B.D.; Holcomb, D.L.; Robinson, F.L.

    1996-12-31T23:59:59.000Z

    Consistently and continuously applied fracturing, reservoir and production engineering used to increase recovery from a marginal production low-permeability and low-pressure dry-gas reservoir has approximately doubled the initial production rate and the estimated ultimate recovery expected from new wells. The on-going costs of the additional engineering and technology to sustain the increased productivity of this reservoir is a few cents per MCF. As a result, new wells can be drilled and produced economically, the selection criteria for acceptable infill and exploration locations is greatly expanded, and proven gas reserves for both the new wells and the region are increased. Significant performance improvement can be achieved using a minimum number of wells, consistently collected data, and continuous review of performance changes caused by completion procedures changes. Exploitation optimization is an evolutionary process, not a one time study.

  20. Geology and oil production of the Ervay (Phosphoria) reservoirs, eastern Big Horn Basin, Wyoming

    SciTech Connect (OSTI)

    Coalson, E.B. (Bass Enterprises Production, Co., Denver, CO (USA)); Inden, R.F. (LSSI, Denver, CO (USA))

    1990-07-01T23:59:59.000Z

    The Ervay consists of carbonate ramp sediments deposited under conditions of varying sea level. On the east flank of the Bighorn Basin, the Ervay displays two major, regionally correlative, shallowing-upward cycles that vary in lithofacies across the basin. West of this area, the Ervay contains four regional cycles. Within each cycle, lithofacies tracts lie subparallel to northwest-trending Permian uplifts. From southwest to northeast, the lithofacies are open-marine limestones, restricted-subtidal dolomites, peritidal (island) dolomites, and lagoon/salina deposits. Each Ervay lithofacies displays characteristic ranges in matrix permeability. The most permeable reservoirs are lower-intertidal dolomite boundstones containing well-connected laminoid-fenestral pores. As a result, lower matrix permeabilities are seen in upper-intertidal to supratidal dolomites containing poorly-connected irregular fenestral pores and vugs. Restricted-subtidal dolomites contain mainly small intercrystalline pores and poorly-connected vugs and molds, and therefore also display poor reservoir quality. Vertical tectonic macrofractures probably make a significant contribution to primary production in relatively few wells, while negatively affecting secondary recovery. Microfractures, on the other hand, may be important to primary production throughout the study area. Thus, the major factors determining Ervay Member producibility are stratigraphic and diagenetic, even though may traps are structural. In the Cottonwood Creek area, many wells with thick sequences of lower-intertidal rocks produce more than 250,000 BO, irrespective of whether or not they are structurally high. By contrast, upper-intertidal, restricted-subtidal, and fractured reservoirs generally produce fewer than 100,000 BO per well.

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05T23:59:59.000Z

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  3. The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost

    SciTech Connect (OSTI)

    Reagan, M. T.; Kowalsky, M B.; Moridis, G. J.; Silpngarmlert, S.

    2010-05-01T23:59:59.000Z

    The quantity of hydrocarbon gases trapped in natural hydrate accumulations is enormous, leading to significant interest in the evaluation of their potential as an energy source. Large volumes of gas can be readily produced at high rates for long times from methane hydrate accumulations in the permafrost by means of depressurization-induced dissociation combined with conventional technologies and horizontal or vertical well configurations. Initial studies on the possibility of natural gas production from permafrost hydrates assumed homogeneity in intrinsic reservoir properties and in the initial condition of the hydrate-bearing layers (either due to the coarseness of the model or due to simplifications in the definition of the system). These results showed great promise for gas recovery from Class 1, 2, and 3 systems in the permafrost. This work examines the consequences of inevitable heterogeneity in intrinsic properties, such as in the porosity of the hydrate-bearing formation, or heterogeneity in the initial state of hydrate saturation. Heterogeneous configurations are generated through multiple methods: (1) through defining heterogeneous layers via existing well-log data, (2) through randomized initialization of reservoir properties and initial conditions, and (3) through the use of geostatistical methods to create heterogeneous fields that extrapolate from the limited data available from cores and well-log data. These extrapolations use available information and established geophysical methods to capture a range of deposit properties and hydrate configurations. The results show that some forms of heterogeneity, such as horizontal stratification, can assist in production of hydrate-derived gas. However, more heterogeneous structures can lead to complex physical behavior within the deposit and near the wellbore that may obstruct the flow of fluids to the well, necessitating revised production strategies. The need for fine discretization is crucial in all cases to capture dynamic behavior during production.

  4. Analysis and interpretation of well test and production data for bounded reservoir systems

    E-Print Network [OSTI]

    Likitsupin, Phisit

    1994-01-01T23:59:59.000Z

    performance data to determine the influence of reservoir boundaries. We provide new, closed form solutions for bounded circular reservoirs with and without vertical fractures, and we provide methodologies for the analysis and interpretation of test data...

  5. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  6. Production management techniques for water-drive gas reservoirs. Field number 1, onshore gulf coast over-pressured, high yield condensate reservoir. Topical report, July 1993

    SciTech Connect (OSTI)

    Hower, T.L.

    1993-07-01T23:59:59.000Z

    To develop improved completion and reservoir management strategies for water-drive gas reservoirs, the study conducted on an overpressured high yield gas condensate reservoir is reported. The base recovery factor for the field was projected to be only 47.8%, due to high residual gas saturation and a relatively strong aquifer which maintained reservoir pressure.

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08T23:59:59.000Z

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

  8. Analysis of the dynamics of saturation and pressure close to the wellbore for condensate reservoirs as a tool to optimize liquid production

    E-Print Network [OSTI]

    Guerra Camargo, Andrea M

    2001-01-01T23:59:59.000Z

    Gas condensate reservoirs often exhibit a rapid decline in production with depletion. During early production, liquid dropout accumulates in the near wellbore area and this liquid dropout reduces the effective permeability to gas and thereby...

  9. Increasing Production from Low-Permeability Gas Reservoirs by Optimizing Zone Isolation for Successful Stimulation Treatments

    SciTech Connect (OSTI)

    Fred Sabins

    2005-03-31T23:59:59.000Z

    Maximizing production from wells drilled in low-permeability reservoirs, such as the Barnett Shale, is determined by cementing, stimulation, and production techniques employed. Studies show that cementing can be effective in terms of improving fracture effectiveness by 'focusing' the frac in the desired zone and improving penetration. Additionally, a method is presented for determining the required properties of the set cement at various places in the well, with the surprising result that uphole cement properties in wells destined for multiple-zone fracturing is more critical than those applied to downhole zones. Stimulation studies show that measuring pressure profiles and response during Pre-Frac Injection Test procedures prior to the frac job are critical in determining if a frac is indicated at all, as well as the type and size of the frac job. This result is contrary to current industry practice, in which frac jobs are designed well before the execution, and carried out as designed on location. Finally, studies show that most wells in the Barnett Shale are production limited by liquid invasion into the wellbore, and determinants are presented for when rod or downhole pumps are indicated.

  10. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  11. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    SciTech Connect (OSTI)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13T23:59:59.000Z

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  12. Abqaiq Hanifa reservoir: Geologic attributes controlling hydrocarbon production and water injection

    SciTech Connect (OSTI)

    Grover, G. Jr. (Saudi Aramco, Dhahran (Saudi Arabia))

    1993-09-01T23:59:59.000Z

    The Hanifa reservoir at Abqaiq field consists entirely of mudsupported (>90% matrix) limestones that were deposited in the deeper water interior of the Arabian Intrashelf basin. The Hanifa mudstones lack megascopic pore spaces; porosity is evidenced by high porosities (5-32%) within these fine-grained rocks, based on porosity logs and core-plug analyses, absence of visible pore spaces to account for these high pore volumes, and 2000x SEM images that show a crystal framework texture composed of micro-rhombic (clay-size) calcite crystals with 2 - 5 [mu]m-size pore spaces between these calcite crystals. Flow meters indicate that the reservoir is capable of producing/injecting large volumes of oil/water. But there is little stratigraphic predictability to the flow, and thin (2-10 ft) low porosity (<15%) intervals can contribute over 60% of the entire flow. These reservoir attributes, coupled with the low [open quotes]matrix[close quotes] permeabilities (0.1-10 md) of the reservoir indicate the presence of an apparent permeability that is controlling fluid flow. Core studies have revealed that this apparent permeability is in the form of high-angle fractures. These fractures are [le]1 mm wide, contain hydrocarbon residue and calcite cement, and many are in close association with high-amplitude stylolites, suggesting a genetic link between stylolitization and fracturing. Borehole imaging logs are critical for fracture location, abundance, orientation, and size. The Hanifa is separated from the giant Arab-D reservoir by over 450 ft of fine-grained carbonates of the Jubaila Formation. These two reservoirs, however, are in pressure-fluid communication via a network of fractures through the Jubaila carbonates. Reservoir communication and reservoir heterogeneity is a challenge to reservoir geologists and reservoir engineers in formulating a development plan, involving horizontal producer and injector wells, to extract the reserves within the Abqaiq Hanifa reservoir.

  13. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01T23:59:59.000Z

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  14. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect (OSTI)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-05-01T23:59:59.000Z

    The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]).

  15. Evaluating reservoir production strategies in miscible and immiscible gas-injection projects

    E-Print Network [OSTI]

    Farzad, Iman

    2004-11-15T23:59:59.000Z

    pressure (MMP) and other factors such as reservoir and fluid characterization. The MMP indicates the lowest pressure at which the displacement process becomes multicontact miscible. The experimental methods available for determining MMP are both costly...

  16. Accounting for Adsorbed gas and its effect on production bahavior of Shale Gas Reservoirs

    E-Print Network [OSTI]

    Mengal, Salman Akram

    2010-10-12T23:59:59.000Z

    pressures )( p by conventional well tests due to very low permeabilities. Decline curves for conventional gas, when applied on shale gas reservoirs, can not be validated by material balance due to unavailability of average reservoir pressure. However...* variable rate gas BDF including adsorbed gas exhibiting exponential decline (b = 1)................. 25 4.6 Plot of [m(pi )? m(pwf )] / qg(t) vs material balance pseudo time tca*, xii FIGURE...

  17. A study to assess the value of post-stack seismic amplitude data in forecasting fluid production from a Gulf-of-Mexico reservoir

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    from a Gulf-of-Mexico reservoir Maika Gambús-Ordaz, Carlos Torres-Verdín The University of Texas in the Gulf of Mexico. The availability of measured time records of fluid production and pressure depletion

  18. Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

    1997-05-11T23:59:59.000Z

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  19. The production characteristics of a solution gas-drive reservoir as measured on a centrifugal model

    E-Print Network [OSTI]

    Goodwin, Robert Jennings

    1955-01-01T23:59:59.000Z

    Mixtures and Cetus Oil - Natural Gas Mixtures Reservoir Pez&ormance Characteristics for Test Number 17 Through Well Number Three with Fluid Number One Reservoir Perfozmanco Characteristics for Test Number 32 Through Well Number One with Fluid Number... data to show that recovery 8?9, . 10 is a function of well spacing for the soluti on gas drive producing mecha- 12 nism while Kaveler has countered the proposition with other data. Tomlinson and Craze and 77uckley have interprei, ed the same API 11...

  20. A quadratic cumulative production model for the material balance of an abnormally pressured gas reservoir 

    E-Print Network [OSTI]

    Gonzalez, Felix Eduardo

    2005-02-17T23:59:59.000Z

    for the case of an abnormally-pressured gas reservoir. The primary assumption in this derivation is that WGp <1 or Ce(p)(pi-p)<1. Further, we can proceed by assuming that W is either constant or some arbitrary function. If we assume W...

  1. Simulation of production and elastic properties of reservoirs to validate time-lapse seismics.

    E-Print Network [OSTI]

    Guerin, Gilles

    , including the 3D seismic processing and inversion, and the preliminary time- lapse interpretation. We-lapse seismics. 3.1 Introduction Time-lapse, or 4-D, seismic monitoring is an integrated reservoir exploitation technique based on the analysis of successive 3-D seismic surveys. Differences over time in seismic

  2. General screening criteria for shale gas reservoirs and production data analysis of Barnett shale

    E-Print Network [OSTI]

    Deshpande, Vaibhav Prakashrao

    2009-05-15T23:59:59.000Z

    Shale gas reservoirs are gaining importance in United States as conventional oil and gas resources are dwindling at a very fast pace. The purpose of this study is twofold. First aim is to help operators with simple screening criteria which can help...

  3. Analysis of stress sensitivity and its influence on oil production from tight reservoirs

    E-Print Network [OSTI]

    Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

    2008-01-01T23:59:59.000Z

    and Its Influence on Oil Production from Tight Reservoirscan affect well oil production. Specifically, pressure-Stress Sensitivity on Oil Production During oil production

  4. Production management techniques for water-drive gas reservoirs. Field No. 2, offshore gulf coast over-pressured, dry gas reservoirs. Topical report, July 1993

    SciTech Connect (OSTI)

    Jones, R.E.; Jirik, L.A.; Hower, T.L.

    1993-07-01T23:59:59.000Z

    An investigation of reservoir management strategies for optimization of ultimate hydrocarbon recovery and net present value from an overpressured, high yield gas condensate reservoir with water influx is reported. This field evaluation was based on a reservoir simulation. Volumetric and performance-derived original gas-in-place estimates did not agree: the performance-derived values were significantly lower than those predicted from volumetric analysis. Predicted field gas recovery was improved significantly by methods which accelerated gas withdrawals. Recovery was also influenced by well location. Accelerated withdrawals from wells near the aquifer tended to reduce sweep by cusping and coning water. This offset any benefits of increased gas rates.

  5. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 312 site, northern Gulf of Mexico

    SciTech Connect (OSTI)

    Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly; Anderson, Brian J.

    2012-06-01T23:59:59.000Z

    In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from the Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a case using impermeable boundaries. The main reason for the reduced productivity is water influx from the surrounding strata; a secondary cause is gas escape into the overburden. The results dictate that in order to reliably estimate production potential, permeability of the surroundings has to be included in a model.

  6. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31T23:59:59.000Z

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  7. Longevity evaluation for optimum development in a liquid dominated geothermal field; Effects of interaction of reservoir pressure and fluid temperature on steam production at operating conditions

    SciTech Connect (OSTI)

    Hanano, M.; Takahashi, M. (Japan Metals and Chemicals Co., Ltd., 24 Ukai, Takizawa-mura, Iwate 020-01 (JP)); Hirako, Y.; Nakamura, H. (Japan Metals and Chemicals Co., Ltd., 8-4 Koami-cho, Nihonbashi, Chuo-ku. Tokyo 103 (JP)); Fuwa, S. (Cosco Co., Ltd., 4-9-12 Takatanobaba, Shinjuku-ku, Tokyo 160 (JP)); Itoi, R. (Geothermal Research Center, Kyushu Univ., 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816 (JP))

    1990-01-01T23:59:59.000Z

    The steam production rate of a well at fixed operating conditions in a liquid-dominated geothermal field is reduced at first by a decline in reservoir pressure and then by a decrease in fluid temperature, if reinjected water returns to the production well. In many cases, the fluid temperature decrease reduces the steam production rate more than does the reservoir pressure decline. Those effects should therefore be taken into due account in the evaluation of the longevity of an area, because sufficient longevity and recoverable electric energy are the minimum requirements for planning field development.

  8. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect (OSTI)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01T23:59:59.000Z

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  9. Characterization of gas condensate reservoirs using pressure transient and production data - Santa Barbara Field, Monagas, Venezuela

    E-Print Network [OSTI]

    Medina Tarrazzi, Trina Mercedes

    2003-01-01T23:59:59.000Z

    (Test Date: 09O1-2001j. . . . . . IV INTEGRATION OF ANALYSIS RESULTS. Maps of Reservoir Properdes. Origimd Gas-in-Place (OGIP) and Estimated Ultimate Recovery (EUR) . . . . . . Flow Properiies (k, tt, s) . Well Interference Effects . . . . . 13... . . . . . . . . . ?. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . ?. .. . . . . . . . . 52 4. 2 4. 4 4. 5 4. 6 4. 7 4. 8 Computed Estimated Ultimate Recovery versus Well Completion Date ? Block A, Santa Barbara Field. . Comparison of Estimated Ultimate Recovery (EUR) versus Computed Origmal Gas- in-Place (OIGP) ? Block A, Santa...

  10. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  11. TopTop--Down Intelligent ReservoirDown Intelligent Reservoir Modeling (TDIRM)Modeling (TDIRM)

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Reservoir ModelingModeling · In top-down modeling we start from production data and try to deduce a pictureTopTop--Down Intelligent ReservoirDown Intelligent Reservoir Modeling (TDIRM)Modeling (TDIRM) A NEW APPROACH IN RESERVOIR MODELING BY INTEGRATING CLASSIC RESERVOIR ENGINEERING WITH ARTIFICIAL INTELLIGENCE

  12. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24T23:59:59.000Z

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  13. Prior-production performance analysis of commingled reservoirs with unequal initial pressures

    E-Print Network [OSTI]

    Ahmed, Ahmed Mohamed Aly

    1992-01-01T23:59:59.000Z

    , Dintensionless Wellhore Pressure P p l(sp) = ? G Lp(sp), 1 W (2. 2. 2. 4) Dirnensionless Sandface Rate 1 tcjOj qpj I(sD) = ? GwLD(sp) Sp Gwpj(sp)+3j (2. 2. 2. 5) Where G LD is defined by Eq. 2. 2. 1. 3b. All the terms presented in Eq. 2. 2. 2. 4 and 2. 2. 2... OF CONTENTS . . . . . V1 LIST OF TABLES. . . . vn1 LIST OF FIGURES . . . . x CHAPTER I INTRODUCTION AND LITERATURE REVIEW 1, 1 Introduction. . 1. 2 Literature Review. . . . . . I 3 II MATHEMATICAL MODELLING, 2. 1 Commingled Reservoirs with Unequal...

  14. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

    2001-05-08T23:59:59.000Z

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  15. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  16. Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation on Production from Shale Formations: Application to New

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    fractured reservoirs. Reasons for selecting a non-commercial simulator for this study were two folds. First and by performing sensitivity analysis on key reservoir and fracture parameters. Sensitivity analysis is performed to identify the impact of reservoir characteristics and natural fracture aperture, density and length on gas

  17. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect (OSTI)

    Andrew G. Cole; George B. Asquith; Jose I. Guzman; Mark D. Barton; Mohammad A. Malik; Shirley P. Dutton; Sigrid J. Clift

    1998-04-01T23:59:59.000Z

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based enhanced oil recovery. The study focused on the Ford Geraldine unit, which produces from the upper Bell Canyon Formation (Ramsey sandstone). Reservoirs in this and other Delaware Mountain Group fields have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Outcrop analogs were studied to better interpret the depositional processes that formed the reservoirs at the Ford Geraldine unit and to determine the dimensions of reservoir sandstone bodies. Facies relationships and bedding architecture within a single genetic unit exposed in outcrop in Culberson County, Texas, suggest that the sandstones were deposited in a system of channels and levees with attached lobes that initially prograded basinward, aggraded, and then turned around and stepped back toward the shelf. Channel sandstones are 10 to 60 ft thick and 300 to 3,000 ft wide. The flanking levees have a wedge-shaped geometry and are composed of interbedded sandstone and siltstone; thickness varies from 3 to 20 ft and length from several hundred to several thousands of feet. The lobe sandstones are broad lens-shaped bodies; thicknesses range up to 30 ft with aspect ratios (width/thickness) of 100 to 10,000. Lobe sandstones may be interstratified with laminated siltstones.

  18. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  19. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06T23:59:59.000Z

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  20. The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost

    E-Print Network [OSTI]

    Reagan, M. T.

    2010-01-01T23:59:59.000Z

    Spatial distributions of gas and hydrate phase saturations (from the Mallik 2002 Gas Hydrate Production Research Wellsimulating the behavior of gas hydrates, Energy Conversion

  1. -Reservoir Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-91 - Reservoir Technology - Geothermal Reservoir Engineering Research at Stanford Principal in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California #12;TABLE OF CONTENTS Page ...PREFACE................................................................................ 20 3.4 Thermal Stress Effects on Thermal Conductivity .................................... 27 #12

  2. Integrated reservoir characterization for the Mazari oil field, Pakistan

    E-Print Network [OSTI]

    Ashraf, Ejaz

    1994-01-01T23:59:59.000Z

    evaluated reservoir performance potential using the production history, well tests and cased-hole well log surveys. Suggestions for reservoir management activities in conjunction with the evaluation of the reservoir performance are discussed in detail...

  3. Optimal Reservoir Management and Well Placement Under Geologic Uncertainty 

    E-Print Network [OSTI]

    Taware, Satyajit Vijay

    2012-10-19T23:59:59.000Z

    Reservoir management, sometimes referred to as asset management in the context of petroleum reservoirs, has become recognized as an important facet of petroleum reservoir development and production operations. In the ...

  4. Structural Reliability: Assessing the Condition and Reliability of Casing in Compacting Reservoirs 

    E-Print Network [OSTI]

    Chantose, Prasongsit

    2012-02-14T23:59:59.000Z

    Casing has a higher risk of failure in a compacting reservoir than in a typical reservoir. Casing fails when reservoir compaction induces compression and shear stresses onto it. They compact as reservoir pressure depletes during production. High...

  5. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    . While geomechanics in conventional reservoir simulator is often governed by change in pore addresses the modelling of the geomechanical effects induced by reservoir production and reinjection, the optimum production rate and the reservoir performance, reservoir geomechanics tries to capture rock

  6. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  7. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  8. Optimizing injected solvent fraction in stratified reservoirs

    E-Print Network [OSTI]

    Moon, Gary Michael

    1993-01-01T23:59:59.000Z

    Waterflooding has become standard practice for extending the productive life of many solution gas drive reservoirs, but has the disadvantage of leaving a substantial residual oil volume in the reservoir. Solvent flooding has been offered as a...

  9. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect (OSTI)

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02T23:59:59.000Z

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  10. Bachaquero-01 reservoir, Venezuela-increasing oil production by switching from cyclic steam injection to steamflooding using horizontal wells 

    E-Print Network [OSTI]

    Rodriguez, Manuel Gregorio

    1999-01-01T23:59:59.000Z

    The Bachaquero-01 reservoir of the Lagunillas field is located in the eastern part of the Maracaibo Lake, Venezuela. The field is operated by the national oil company of Venezuela, PDVSA (Petroleos de Venezuela, S.A.). The ...

  11. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    SciTech Connect (OSTI)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30T23:59:59.000Z

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  12. RATE DECLINE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    RATE DECLINE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS A REPORT SUBMITTED TO THE DEPARTMENT analylsiis for constant pressure production in a naturally fractured reservoir is presented. The solution, the Warren and Root model which assumes fracturing is perfectly unifom, provides an upper bound of reservoir

  13. Tenth workshop on geothermal reservoir engineering: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-22T23:59:59.000Z

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  14. Integrated reservoir study of the 8 reservoir of the Green Canyon 18 field

    E-Print Network [OSTI]

    Aniekwena, Anthony Udegbunam

    2004-11-15T23:59:59.000Z

    The move into deeper waters in the Gulf of Mexico has produced new opportunities for petroleum production, but it also has produced new challenges as different reservoir problems are encountered. This integrated reservoir characterization effort has...

  15. Joint Inversion of Reservoir Production Measurements and 3D Pre-Stack Seismic Data: Proof Carlos Torres-Verdn, Zhan Wu, Omar J. Varela, Mrinal K. Sen, and Indrajit G. Roy.

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    in this paper is also suitable for the quantitative interpretation of 4D seismic data. Simulation and InversionJoint Inversion of Reservoir Production Measurements and 3D Pre-Stack Seismic Data: Proof-stack seismic data and fluid production history. The production measurements and the seismic data

  16. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 3 report, economic development and production plan

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase 3 of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objective of this phase of the study was to establish the economic potential for the field by determining the optimum economic plan for development and production. The optimum economic plan used net cash flow analysis to evaluate future expected Department of Energy revenues less expenses and investments for proved developed, proved undeveloped, probable, possible and possible-enhanced oil recovery (EOR) reserves assigned in the Phase 2 study. The results of the Phase 2 study were used to define future production flowstreams. Additional production scheduling was carried out to evaluate accelerated depletion of proved developed reserves in the 29R, 31 C/D Shale and Northwest Stevens T Sand/N Shale Reservoirs. Production, cost and investment schedules were developed for the enhanced oil recovery projects identified in Phase 2. Price forecasts were provided by the Department of Energy. Operating costs and investment requirements were estimated by Bergeson. 4 figs., 48 tabs.

  17. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly technical progress report, March 30, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Clarke, D. [Long Beach City Dept. of Oil Properties, CA (United States); Ershaghi, I. [Southern California, CA (United States); Davies, D. [Davies (David K.) and Associates, Kingwood, TX (United States); Phillips, C.; Mondragon, J. [Tidelands Oil Production Company (United States)

    1995-07-28T23:59:59.000Z

    This is the first quarterly technical progress report for the project. Although the contract was awarded on March 30, 1995 and Pre-Award Approval was given on January 26, 1995, the partners of this project initiated work on October 1, 1994. As such, this progress report summarizes the work performed from project inception. The production and injection data, reservoir engineering data, and digitized and normalized log data were all completed sufficiently by the end of the quarter to start work on the basic reservoir engineering and geologic stochastic models. Basic reservoir engineering analysis began June 1 and will continue to March, 1996. Design work for the 5 observation/core holes, oil finger printing of the cored oil sands, and tracers surveys began in January, 1995. The wells will be drilled from July--August, 1995 and tracer injection work is projected to start in October, 1995. A preliminary deterministic 3-D geologic model was completed in June which is sufficient to start work on the stochastic 3-D geologic model. The four proposed horizontal wells (two injectors and two producers) have been designed, equipment has been ordered, and the wells will be drilled from mid-August through September. Four existing steam injection wells were converted to hot water injection in March, 1995. Initial rates were kept low to minimize operational problems. Injection rates will be increased significantly in July.

  18. Bachaquero-01 reservoir, Venezuela-increasing oil production by switching from cyclic steam injection to steamflooding using horizontal wells

    E-Print Network [OSTI]

    Rodriguez, Manuel Gregorio

    1999-01-01T23:59:59.000Z

    The Bachaquero-01 reservoir of the Lagunillas field is located in the eastern part of the Maracaibo Lake, Venezuela. The field is operated by the national oil company of Venezuela, PDVSA (Petroleos de Venezuela, S.A.). The Bachaquero-01 heavy oil...

  19. GEOMECHANICS IN RESERVOIR SIMULATION: OVERVIEW OF ...

    E-Print Network [OSTI]

    P. LONGUEMARE

    2002-11-12T23:59:59.000Z

    dans le réservoir et de faciliter le calage des historiques de production. Abstract — Geomechanics in Reservoir Simulation: Overview of Coupling Methods and ...

  20. Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California

    SciTech Connect (OSTI)

    Janice Gillespie

    2004-11-01T23:59:59.000Z

    Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which has less measured fault displacement. The main difference between the DGZ and the LSOZ appears to be the presence of a sandpoor area in the LSOZ in eastern Elk Hills. The lack of permeable migration pathways in this area would not allow eastern bacterial gas to migrate farther updip into western Elk Hills. A similar sand-poor area does not appear to exist in the DGZ but future research may be necessary to verify this.

  1. Frio sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy

    SciTech Connect (OSTI)

    Bebout, D.G.; Loucks, R.G.; Gregory, A.R.

    1983-01-01T23:59:59.000Z

    Detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At leat 30 percent of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300/sup 0/F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feet of methane in solution in this water. Only 10 percent of the water and methane (1 billion barrels of water and 40 billion cubic feet of methane) will be produced without reinjection of the waste water into the producing formation. Reservoir simulation studies indicate that 90 percent of the methane can be produced with reinjection. 106 figures.

  2. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect (OSTI)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01T23:59:59.000Z

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

  3. Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems Novel use of 4D Monitoring Techniques to Improve Reservoir...

  4. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980

    SciTech Connect (OSTI)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1980-07-01T23:59:59.000Z

    Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greater proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.

  5. Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs 

    E-Print Network [OSTI]

    Ma, Xiaodan

    2013-12-10T23:59:59.000Z

    Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

  6. Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and 76 Field, Clinton Co., KY.

    E-Print Network [OSTI]

    SPE 36651 Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and enhanced recovery, production operations in fracture- dominated oil and gas reservoirs. Borehole geophones to study reservoir fracture systems. Methods currently applied to study fracture systems include tilt

  7. Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs

    E-Print Network [OSTI]

    Ma, Xiaodan

    2013-12-10T23:59:59.000Z

    Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

  8. TRITIUM RESERVOIR STRUCTURAL PERFORMANCE PREDICTION

    SciTech Connect (OSTI)

    Lam, P.S.; Morgan, M.J

    2005-11-10T23:59:59.000Z

    The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.

  9. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  10. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  11. Improved energy recovery from geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1981-01-01T23:59:59.000Z

    The behavior of a liquid-dominated geothermal reservoir in response to production from different horizons is studied using numerical simulation methods. The Olkaria geothermal field in Kenya is used as an example where a two-phase vapor-dominated zone overlies the main liquid-dominated reservoir. The possibility of improving energy recovery from vapor-dominated reservoirs by tapping deeper horizons is considered.

  12. Economics of Developing Hot Stratigraphic Reservoirs

    SciTech Connect (OSTI)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01T23:59:59.000Z

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  13. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    SciTech Connect (OSTI)

    Clarkson, Christopher R [ORNL

    2011-01-01T23:59:59.000Z

    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  14. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    in available cost and reservoir data and from the need forfluid flow” to simulate reservoir data for use in economicfluid flow” to simulate reservoir data for the production

  15. On the value of 3D seismic amplitude data to reduce uncertainty in the forecast of reservoir production

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    .elsevier.com/locate/petrol #12;1. Introduction Flow simulations are routinely used as the main input to the economical evaluation production Omar J. Varela 1 , Carlos Torres-Verdi´n*, Larry W. Lake Petroleum and Geosystems Engineering of production, did exhibit an uncertainty reduction as did a global measure of recovery. We evaluate how

  16. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  17. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    to maintain oil production as a reservoir is depleted. Weoil wells typically are abandoned well before the reservoirs are depleted.

  18. Prevention of Reservoir Interior Discoloration

    SciTech Connect (OSTI)

    Arnold, K.F.

    2001-04-03T23:59:59.000Z

    Contamination is anathema in reservoir production. Some of the contamination is a result of welding and some appears after welding but existed before. Oxygen was documented to be a major contributor to discoloration in welding. This study demonstrates that it can be controlled and that some of the informal cleaning processes contribute to contamination.

  19. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements

    SciTech Connect (OSTI)

    Locke, C.D.; Salamy, S.P.

    1991-09-01T23:59:59.000Z

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  20. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report

    SciTech Connect (OSTI)

    Locke, C.D.; Salamy, S.P.

    1991-09-01T23:59:59.000Z

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  1. New multilateral well architecture in heterogeneous reservoirs

    E-Print Network [OSTI]

    Jia, Hongqiao

    2004-09-30T23:59:59.000Z

    . The performance of new multilateral well in heterogeneous reservoirs is studied, and that is compared with vertical well architecture also. In order to study the productivity of new multilateral wells, we use a numerical simulation method to set up heterogeneous...

  2. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-05-30T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  3. UONPR No. 1, Elk Hills, 26R Reservoir, Elk Hills oil and gas field, Kern County, California: Management Review: Surface operations and measurements of production and injection volumes

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    Evans, Carey and Crozier was given the task to conduct a Management Review of the Surface Operations of the 26R Reservoir in UONPR No. 1, Elk Hills field, Kern County, California. The MER strategy for this reservoir is to maintain pressure, and toward this end, gas injection volumes are scheduled to amount to 110% of calculated withdrawals. In spite of this, however, reservoir pressure continues to decline. The purpose of this study was, therefore, to determine if, and to what extent, field operating practices and accounting procedures may be contributing to this dilemma and to make appropriate recommendations pertaining to correcting any deficiencies which may have been found.

  4. 5641_FrozenReservoirs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from a frozen reservoir. Most prior work has been on developing production techniques for heavy oil in unconsolidated but unfrozen sands, or for gas hydrates. There is no...

  5. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    Gasoline and Diesel Fuel Update (EIA)

    Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production Reservoir Underground...

  6. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect (OSTI)

    Nancy Moller Weare

    2006-07-25T23:59:59.000Z

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

  7. Volume 4: Characterization of representative reservoirs -- Gulf of Mexico field, U-8 reservoir

    SciTech Connect (OSTI)

    Koperna, G.J. Jr.; Johnson, H.R. [BDM Federal, Inc., McLean, VA (United States); Salamy, S.P.; Reeves, T.K. [BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sawyer, W.K. [Mathematical and Computer Services, Inc., Danville, VA (United States); Kimbrell, W.C.; Schenewerk, P.A. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Petroleum Engineering

    1998-07-01T23:59:59.000Z

    A reservoir study was performed using a publicly available black oil simulator to history match and predict the performance of a Gulf of Mexico reservoir. The first objective of this simulation study was to validate the Black Oil Applied Simulation Tool version three for personal computers (BOAST3-PC) model to ensure the integrity of the simulation runs. Once validation was completed, a field history match for the Gulf of Mexico U-8 oil reservoir was attempted. A verbal agreement was reached with the operator of this reservoir to blindcode the name and location of the reservoir. In return, the operator supplied data and assistance in regards to the technical aspects of the research. On the basis of the best history match, different secondary recovery techniques were simulated as a predictive study for enhancing the reservoir productivity.

  8. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  9. Adsorption of water vapor on reservoir rocks

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  10. The Statistical Reservoir Model: calibrating faults and fractures, and predicting reservoir response to water flood

    E-Print Network [OSTI]

    geomechanics to have a significant influence on hydrocarbon production rates through changes in the effective 2004). Geomechanics not only predicts a reservoir response in the near field, but also at long range i

  11. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05T23:59:59.000Z

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  12. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  13. Seismic characterization of fractured reservoirs by focusing Gaussian beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    Naturally fractured reservoirs occur worldwide, and they account for the bulk of global oil production. The most important impact of fractures is their influence on fluid flow. To maximize oil production, the characterization ...

  14. New inflow performance relationships for gas condensate reservoirs

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30T23:59:59.000Z

    In this work we propose two new Vogel-type Inflow Performance Relations (or IPR) correlations for gas-condensate reservoir systems. One correlation predicts dry gas production the other predicts condensate (liquid) production. These correlations...

  15. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11T23:59:59.000Z

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  16. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    SciTech Connect (OSTI)

    Stephen C. Ruppel

    2005-02-01T23:59:59.000Z

    Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.

  17. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  18. Application of geostatistical reservoir description for maximizing waterflood infill drilling recovery from La Cira Field, Colombia 

    E-Print Network [OSTI]

    Cubillos Gutierrez, Helber

    1995-01-01T23:59:59.000Z

    One of the prospective ways to increase the oil production is to maximize the oil recovery from mature oil fields. In this study we apply an integrated approach that combines geostatistical reservoir description and reservoir ...

  19. Data quality enhancement in oil reservoir operations : an application of IPMAP

    E-Print Network [OSTI]

    Lin, Paul Hong-Yi

    2012-01-01T23:59:59.000Z

    This thesis presents a study of data quality enhancement opportunities in upstream oil and gas industry. Information Product MAP (IPMAP) methodology is used in reservoir pressure and reservoir simulation data, to propose ...

  20. Well Performance Analysis for Low to Ultra-low Permeability Reservoir Systems 

    E-Print Network [OSTI]

    Ilk, Dilhan

    2010-10-12T23:59:59.000Z

    to evaluate well performance in unconventional (i.e., low to ultra-low permeability) reservoir systems. The specific tasks achieved in this work include the following: ? Integrated Diagnostics and Analysis of Production Data in Unconventional Reservoirs: We...

  1. Seismic characterization of reservoirs with variable fracture spacing by double focusing Gaussian beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    2013-01-01T23:59:59.000Z

    Fractured reservoirs account for a majority of the oil production worldwide and often have low recovery rate. Fracture characterization is important in building reservoir flow models for enhanced oil recovery. Information ...

  2. Application of geostatistical reservoir description for maximizing waterflood infill drilling recovery from La Cira Field, Colombia

    E-Print Network [OSTI]

    Cubillos Gutierrez, Helber

    1995-01-01T23:59:59.000Z

    One of the prospective ways to increase the oil production is to maximize the oil recovery from mature oil fields. In this study we apply an integrated approach that combines geostatistical reservoir description and reservoir simulation to evaluate...

  3. Simulation of paraffin damage due to natural cooling in reservoirs

    E-Print Network [OSTI]

    Peddibhotla, Sriram

    1993-01-01T23:59:59.000Z

    and phases at reservoir conditions Fig. 4 - Solid-liquid phase equilibrium Fig. 5 - Paraffin plugging pore spaces 12 15 Fig. 6 - Simulated oil rates for a well in a reservoir without gas . . . . . . . . . Fig. 7 - Paraffin deposition profile... of paraffin removal with cyclic ERH heating for Case 1 Fig. 15 - Simulated oil rates for a well in a reservoir with gas. . . . , . . . . . Fig. 16 - Paraffin deposition profile for an initial solid concentration 3. 5/o Fig. 17 - Production ratio as a...

  4. Horizontal well applications in complex carbonate reservoirs

    SciTech Connect (OSTI)

    Rahman, M.; Al-Awami, H.

    1995-10-01T23:59:59.000Z

    Over the past four years, Saudi Aramco has drilled over eighty horizontal wells, onshore and offshore. It has successfully applied this technology to develop new reservoirs as well as enhance recovery from its mature fields. This paper presents the reservoir engineering aspects of `horizontal` and `high angle` wells drilled in a major offshore field in Saudi Arabia. It shows how horizontal wells have (a) increased the recovery of bypassed oil, (b) improved well productivity in tight reservoirs, (c) increased production from thin oil zones underlain by water, and (d) improved peripheral injection. The paper discusses the actual performance of the horizontal wells and compares them with offset conventional wells. It presents the results of logging and testing of these wells, and highlights actual field data on (a) relationship between productivity gain and horizontal length, (b) pressure loss along the horizontal wellbore, and (c) effect of heterogeneity on coning an inflow performance.

  5. Reservoir management using streamline simulation

    E-Print Network [OSTI]

    Choudhary, Manoj Kumar

    2000-01-01T23:59:59.000Z

    of information and sparsity of data. Quantifying this uncertainty in terms of reservoir performance forecast poses a major reservoir management challenge. One solution to this problem is flow simulation of a large number of these plausible reservoir descriptions...

  6. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    upon the available reservoir data. If the latter data a r eThe use of measured data in reservoir engineering simulationdata on the condition of the well and the static reservoir

  7. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28T23:59:59.000Z

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  8. Natural Gas Used for Repressuring

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996)200971 andEIA1-2015 Colorado NA

  9. Natural Gas Used for Repressuring

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,1958 2009

  10. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; M. Michnick; R. Reynolds

    1997-10-15T23:59:59.000Z

    The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

  11. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; R. Reynolds; m. Michnick

    1998-04-15T23:59:59.000Z

    The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

  12. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; M. Cichnick; R. Reynolds

    1998-07-15T23:59:59.000Z

    The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

  13. TRACER ANALYSIS IN A FRACTURED GEO'MERMAL RESERVOIR: FIELD RESULTS FROM WAIRAKEI, NEW ZEALAND

    E-Print Network [OSTI]

    Stanford University

    TRACER ANALYSIS IN A FRACTURED GEO'MERMAL RESERVOIR: FIELD RESULTS FROM WAIRAKEI, NEW ZEALAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 -V- #12;Chapter I INTRODUCTION Interwell tracers have been used extensively in oil reservoirs to detect reservoir heterogeneities. High permeability production zones can channel a disproportionate

  14. Reservoir Protection (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Oklahoma Water Resource Board has the authority to make rules for the control of sanitation on all property located within any reservoir or drainage basin. The Board works with the Department...

  15. Reservoir Operation in Texas

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    management of the surface water resources of the various river basins of the state. The operation of these essential water control facilities is examined in this report. Reservoir operation is viewed here from the perspective of deciding how much water...

  16. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect (OSTI)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  17. Seawater can damage Saudi sandstone oil reservoirs

    SciTech Connect (OSTI)

    Dahab, A.S. (King Saud Univ., Riyadh (SA))

    1990-12-10T23:59:59.000Z

    Experiments have shown that formation damage from waterflooding of the Aramco and Alkhafji sandstones of Saudi Arabia will not occur if the salinity of the injected brines is higher than 20% NaCl. Because the connate water in these reservoirs has a high salt content of up to 231,000 ppm, Saudi oil fields are almost always susceptible to formation damage when flooded with seawater (about 38,500 ppm). The productive behavior of a reservoir can be affected by clay crystals developed within rock pores.

  18. Analysis of Water Flowback Data in Gas Shale Reservoirs 

    E-Print Network [OSTI]

    Aldaif, Hussain

    2014-09-24T23:59:59.000Z

    it at different reservoir conditions. For this purpose, several simulation cases were run. The results of the simulation runs were compared with the production data from several Fayetteville gas wells. Different conclusions were obtained from these comparisons...

  19. Reservoir Simulation Used to Plan Diatomite Developement in Mountainous Region 

    E-Print Network [OSTI]

    Powell, Richard

    2012-10-19T23:59:59.000Z

    In Santa Barbara County, Santa Maria Pacific (an exploration and production company) is expanding their cyclic steam project in a diatomite reservoir. The hilly or mountainous topography and cut and fill restrictions have interfered with the company...

  20. Reservoir Simulation Used to Plan Diatomite Developement in Mountainous Region

    E-Print Network [OSTI]

    Powell, Richard

    2012-10-19T23:59:59.000Z

    In Santa Barbara County, Santa Maria Pacific (an exploration and production company) is expanding their cyclic steam project in a diatomite reservoir. The hilly or mountainous topography and cut and fill restrictions have interfered with the company...

  1. Analyzing aquifer driven reservoirs using a computer-oriented approach

    E-Print Network [OSTI]

    Flumerfelt, Raymond William

    1996-01-01T23:59:59.000Z

    on knowledge of the aquifer properties, nor does it depend specifically on a large amount of accurate pressure and production data. Instead, an initial reservoir model, based on the flow properties, boundary conditions, and geometry of the aquifer, is refined...

  2. Selection of fracture fluid for stimulating tight gas reservoirs

    E-Print Network [OSTI]

    Malpani, Rajgopal Vijaykumar

    2007-04-25T23:59:59.000Z

    , surveys from fracturing experts, and statistical analysis of production data, this research provides guidelines for selection of the appropriate stimulation treatment fluid in most gas shale and tight gas reservoirs. This study takes into account various...

  3. Evaluation of hydrogen sulfide concentrations in Norwegian reservoir fluids

    E-Print Network [OSTI]

    Haland, Kjersti

    1998-01-01T23:59:59.000Z

    exponential relationship between [HZS] and reservoir temperature, the others include additional fluid parameters. This contribution is considered of particular importance for planning [HZS] control strategies and for production management....

  4. Analyzing aquifer driven reservoirs using a computer-oriented approach 

    E-Print Network [OSTI]

    Flumerfelt, Raymond William

    1996-01-01T23:59:59.000Z

    A new computer-oriented approach for analyzing aquifer driven reservoirs incorporates both geological and historical pressure data to determine original hydrocarbons-in-place and to forecast production. This new approach does not rely entirely...

  5. Analysis of Water Flowback Data in Gas Shale Reservoirs

    E-Print Network [OSTI]

    Aldaif, Hussain

    2014-09-24T23:59:59.000Z

    Properties of both shale gas reservoirs and hydraulic fractures are usually estimated by analyzing hydrocarbon production data while water data is typically ignored. This study introduces a new method to estimate the effective fracture volume...

  6. New inflow performance relationships for gas condensate reservoirs 

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30T23:59:59.000Z

    In this work we propose two new Vogel-type Inflow Performance Relations (or IPR) correlations for gas-condensate reservoir systems. One correlation predicts dry gas production the other predicts condensate (liquid) ...

  7. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01T23:59:59.000Z

    that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

  8. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    o f Energy from Fractured Geothermal Reservoirs. Dal las:well behavior, fractured matrix reservoir behavior, wellEnergy from Fractured Geothermal Reservoirs." Society of ~

  9. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis; L. R. Graumann

    2003-03-31T23:59:59.000Z

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.

  10. OIL RESERVOIR CHARACTERIZATION AND CO2 INJECTION MONITORING IN THE PERMIAN BASIN WITH CROSSWELL ELECTROMAGNETIC IMAGING

    SciTech Connect (OSTI)

    Michael Wilt

    2004-02-01T23:59:59.000Z

    Substantial petroleum reserves exist in US oil fields that cannot be produced economically, at current prices, unless improvements in technology are forthcoming. Recovery of these reserves is vital to US economic and security interests as it lessens our dependence on foreign sources and keeps our domestic petroleum industry vital. Several new technologies have emerged that may improve the situation. The first is a series of new flooding techniques to re-pressurize reservoirs and improve the recovery. Of these the most promising is miscible CO{sub 2} flooding, which has been used in several US petroleum basins. The second is the emergence of new monitoring technologies to track and help manage this injection. One of the major players in here is crosswell electromagnetics, which has a proven sensitivity to reservoir fluids. In this project, we are applying the crosswell EM technology to a CO{sub 2} flood in the Permian Basin oil fields of New Mexico. With our partner ChevronTexaco, we are testing the suitability of using EM for tracking the flow of injected CO{sub 2} through the San Andreas reservoir in the Vacuum field in New Mexico. The project consisted of three phases, the first of which was a preliminary field test at Vacuum, where a prototype system was tested in oil field conditions including widely spaced wells with steel casing. The results, although useful, demonstrated that the older technology was not suitable for practical deployment. In the second phase of the project, we developed a much more powerful and robust field system capable of collecting and interpreting field data through steel-cased wells. The final phase of the project involved applying this system in field tests in the US and overseas. Results for tests in steam and water floods showed remarkable capability to image between steel wells and provided images that helped understand the geology and ongoing flood and helped better manage the field. The future of this technology is indeed bright with development ongoing and a commercialization plan in place. We expect that this DOE sponsored technology will be a major technical and commercial success story in the coming years.

  11. Tight gas reservoirs: A visual depiction

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    Future gas supplies in the US will depend on an increasing contribution from unconventional sources such as overpressured and tight gas reservoirs. Exploitation of these resources and their conversion to economically producible gas reserves represents a major challenge. Meeting this challenge will require not only the continuing development and application of new technologies, but also a detailed understanding of the complex nature of the reservoirs themselves. This report seeks to promote understanding of these reservoirs by providing examples. Examples of gas productive overpressured tight reservoirs in the Greater Green River Basin, Wyoming are presented. These examples show log data (raw and interpreted), well completion and stimulation information, and production decline curves. A sampling of wells from the Lewis and Mesaverde formations are included. Both poor and good wells have been chosen to illustrate the range of productivity that is observed. The second section of this document displays decline curves and completion details for 30 of the best wells in the Greater Green River Basin. These are included to illustrate the potential that is present when wells are fortuitously located with respect to local stratigraphy and natural fracturing, and are successfully hydraulically fractured.

  12. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11T23:59:59.000Z

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  13. A triple-continuum pressure-transient model for a naturally fractured vuggy reservoir

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    reservoir. The fraction of oil reserves in a vuggy fracturedcontribute to oil and gas reserves and production [Kossackreserves estimation. Field Examples Pressure transient data from two oil-

  14. A reservoir management strategy for multilayered reservoirs in eastern Venezuela

    E-Print Network [OSTI]

    Espinel Diaz, Arnaldo Leopoldo

    1998-01-01T23:59:59.000Z

    A reservoir management strategy has been developed for a field located in eastern Venezuela. The field contains deep, high pressure, multilayer reservoirs. A thorough formation evaluation was accomplished using the log data, core data, PVT data...

  15. A project management approach to the integrated reservoir characterization process

    SciTech Connect (OSTI)

    Tsingas, C.; Tyraskis, P.A.

    1995-12-31T23:59:59.000Z

    The ultimate goal of an Exploration and Production (E&P) organization is to increase reserves and optimize production in a cost effective manner. Efficient reservoir management requires in depth knowledge of reservoir properties and their distribution within the field. Saudi Aramco`s Exploration organization formed a multi-disciplinary team in order to develop an Integrated Reservoir Characterization Process Model (IRCPM). The IRCPM team produced a quantitative multi-disciplinary model of existing work, data and technology in order to optimize resources and minimize costs during reservoir characterization projects. The activities describing this generic, relational and dynamic model were input into project management software. An extensive analysis from the perspective of organizations, work flow and deliverables was performed, employing various project management concepts and tools. A thorough understanding of the interactions among various disciplines was identified, as well. The ability to incorporate the necessary software/hardware data acquisition, processing, interpretation, integration and management during the reservoir characterization process, resulted in serving to highlight both bridges and barriers in the flow of information and resources. The application of the IRCPM to a specific reservoir characterization process, showed that it can have a direct, positive impact on Saudi Aramco`s core mission - the more efficient production of hydrocarbons - through increasing efficiency of the reservoir projects to which it is applied.

  16. Atlas of Northern Gulf of Mexico Gas and Oil Reservoirs: Procedures and examples of resource distribution

    SciTech Connect (OSTI)

    Seni, S.J.; Finley, R.J.

    1995-06-01T23:59:59.000Z

    The objective of the program is to produce a reservoir atlas series of the Gulf of Mexico that (1) classifies and groups offshore oil and gas reservoirs into a series of geologically defined reservoir plays, (2) compiles comprehensive reservoir play information that includes descriptive and quantitative summaries of play characteristics, cumulative production, reserves, original oil and gas in place, and various other engineering and geologic data, (3) provides detailed summaries of representative type reservoirs for each play, and (4) organizes computerized tables of reservoir engineering data into a geographic information system (GIS). The primary product of the program will be an oil and gas atlas series of the offshore Northern Gulf of Mexico and a computerized geographical information system of geologic and engineering data linked to reservoir location.

  17. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01T23:59:59.000Z

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  18. Applying reservoir characterization technology

    SciTech Connect (OSTI)

    Lake, L.W.

    1994-12-31T23:59:59.000Z

    While reservoir characterization is an old discipline, only within the last 10 years have engineers and scientists been able to make quantitative descriptions, due mostly to improvements in high-resolution computational power, sophisticated graphics, and geostatistics. This paper summarizes what has been learned during the past decade by using these technologies.

  19. Reservoir characterization of Pennsylvanian Sandstone reservoirs. Quarterly progress report, January 1, 1991--March 31, 1991

    SciTech Connect (OSTI)

    Kelkar, B.G.

    1993-08-08T23:59:59.000Z

    The overall objectives of this work are: (i) to investigate the importance of various qualities and quantities of data on the optimization of waterflooding performance; and (ii) to study the application of newly developed geostatistical techniques to analyze available production data to predict future proposals of infill drilling. The study will be restricted to Pennsylvanian sandstone reservoirs commonly found in Oklahoma.

  20. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    SciTech Connect (OSTI)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30T23:59:59.000Z

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the reservoir.

  1. A New Method for History Matching and Forecasting Shale Gas/Oil Reservoir Production Performance with Dual and Triple Porosity Models

    E-Print Network [OSTI]

    Samandarli, Orkhan

    2012-10-19T23:59:59.000Z

    Different methods have been proposed for history matching production of shale gas/oil wells which are drilled horizontally and usually hydraulically fractured with multiple stages. These methods are simulation, analytical models, and empirical...

  2. Identification and quantification of fracture behavior through reservoir simulation

    SciTech Connect (OSTI)

    Cline, S. [Univ. of Oklahoma, Oklahoma City, OK (United States)]|[Hefner Corporation, Oklahoma City, OK (United States)

    1995-08-01T23:59:59.000Z

    This study demonstrated the use of reservoir simulation as a tool for quantifying and describing the relative significance of fracture and matrix flow units to overall reservoir storage capacity and transmissibility in a field development example. A high matrix porosity Pennsylvanian age sandstone oil reservoir, that is currently undergoing the early stages of secondary recovery by waterflood, was studied. Unexpected early water breakthrough indicated the presence of a high directional permeability fracture system superimposed on the high porosity matrix system. To further understand the reservoir behavior, improve field performance and to quantify the relative contributions of fracture and matrix units to permeability and storage capacity, a reservoir simulation and characterization project was initiated. Well test, well log, tracer and geologic data were integrated into the simulation project. The integrated study indicated that the fractures exhibited high directional permeability but low storage capacity relative to the matrix portion of the reservoir. Although fractures heavily influenced overall fluid flow behavior, they did not contain large storage capacity. The system had a low calculated fracture intensity index. Reservoir simulation enabled the quantification of the relative importance of the two flow systems which in turn had a large impact on total reserves estimates and production forecasting. Simulation results indicated a need to realign injector and producer patterns which improved production rates and ultimate recovery.

  3. A study of Kg/Ko values from reservoir performance 

    E-Print Network [OSTI]

    Young, Gerald Sewall

    1957-01-01T23:59:59.000Z

    factor at current pressure, barrels reservoir oil per barrel stook tank oil bo = forjsation volune factor at original yressure, barrels reservoir oil per barrel stock tank oil TABLE 3 VOLUEETRIC CALCULATIOEE POR FIELD?A? R-r (36V9 - ISO~ ( ~0 026... absolute. This study was concluded when the average reservoir pressure had decU. ned to 4, , 3Q, pounds per square inch absolute. This pressure deoline was accompanied by the production sf 566, 137 barrels of stock tank oil and 2, ling, 310 standar4 MCF...

  4. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource Resistivity Tomography (ERT) to characterize fractures in geothermal reservoirs. ERT is a technique to their surroundings. Electrical current moving through the reservoir passes mainly through fluid-filled fractures

  5. PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Stanford University

    for more than 30 years with small decreases in reservoir pressure and temperature in the production zonePROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL RESERVOIR, OITA, JAPAN Saeid Jalilinasrabady1 , Ryuichi Itoi1 , Hiroki Gotoh2 , Toshiaki Tanaka1 1

  6. Using multi-layer models to forecast gas flow rates in tight gas reservoirs 

    E-Print Network [OSTI]

    Jerez Vera, Sergio Armando

    2007-04-25T23:59:59.000Z

    , and (2) to use the single-layer match to demonstrate the error that can occur when forecasting long-term gas production for such complex gas reservoirs. A finite-difference reservoir simulator was used to simulate gas production from various layered tight...

  7. Technology and Economics Affecting Unconventional Reservoir Development 

    E-Print Network [OSTI]

    Flores Campero, Cecilia P.

    2010-01-15T23:59:59.000Z

    5.1.1 Low-Permeability Oil (Chalk Reservoirs) ???...? 47 5.1.1.1 Austin Chalk Formation????????? 48 5.1.1.1.1 Production History?????????. 49 5.1.2 Oil Shale???????????????..??. 53 5.1.2.1 Bakken Shale Formation... are more sensitive to certain type of resources such as oil shales and gas hydrates????????????????????.. 3 1.2 Oil shale resources in the Green River formation are giant accumulations waiting for economical exploitation???????????...???... 4 1...

  8. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  9. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. (Saudi Aramco, Dhahran (Saudi Arabia))

    1996-01-01T23:59:59.000Z

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  10. Effects of diagenesis on reservoir quality within two Cypress reservoirs in the Illinois basin

    SciTech Connect (OSTI)

    Scott, B.D.; McGee, K.R.; Seyler, B. (Illinois State Geological Survey, Champaign (United States))

    1991-08-01T23:59:59.000Z

    One billion bbl of oil have been produced from the Chesterian Cypress Formation in the Illinois basin. These heterogeneous reservoirs may consist of deltaic, marine-reworked deltaic, and/or reworked marine sandstone within mixed siliciclastic-carbonate environments. Thin section, x-ray diffraction, and scanning electron microscopy coupled with energy dispersive x-ray analysis indicate that the effects of diagenesis play a significant role in reservoir quality of Mattoon and Parkersburg fields in Illinois. Five separate Cypress sandstones may be present at Mattoon field (Coles County), a predominantly stratigraphic trap, produces from three distinct Cypress strata. In these fields, reservoir quality is reduced when quartz overgrowths and later stage, blocky mosaic ferroan-calcite cement occlude pore throats. Authigenic clay minerals occur as pore-lining particles that inhibit fluid-flow. Clay minerals preset are illite, mixed-layered illite/smectite, chlorite, and kaolinite. Reservoir quality is enhanced through dissolution of early ferroan-calcite cement, dissolution of detrital feldspar, and microfracturing. Completion, stimulation, and production programs within the heterogeneous Cypress sandstone reservoirs would be improved by recognition of mineral relationships and diagenetic overprints. Developments programs may need to include the use of clay stabilizers in mud clean-out acid treatments.

  11. Reservoir Outflow (RESOUT) Model 

    E-Print Network [OSTI]

    Purvis, Stuart Travis

    1988-01-01T23:59:59.000Z

    rating tables for a comprehensive range of outlet structure types and configurations, simulating a dam breach, routing a hydrograph through the reservoir, and performing drawdown analyses. The thesis describes the basic equations and computational... of Rating Curves Rating Curves for Uncontrolled Ogee Spillways Rating Curves for Uncontrolled Broad-crested Spillways Rating Curves for Spillway Gates Rating Curves for Drop Inlet Spillways Rating Curves for Outlet Works Breach Simulation Storage...

  12. Geochemical analysis of reservoir continuity and connectivity, Arab-D and Hanifa Reservoirs, Abqaiq Field, Saudia Arabia

    SciTech Connect (OSTI)

    Mahdi, A.A.; Grover, G. [Saudi Aramco, Dhahran (Saudi Arabia); Hwang, R. [Chevron Petroleum Technology Co., La Habra, CA (United States)] [and others

    1995-08-01T23:59:59.000Z

    Organic geochemistry and its integration with geologic and reservoir engineering data is becoming increasingly utilized to assist geologists and petroleum engineers in solving production related problems. In Abqaiq Field of eastern Saudi Arabia, gas chromatographic analysis (FSCOT) of produced oils from the Arab-D and Hanifa reservoirs was used to evaluate vertical and lateral continuity within and between these reservoirs. Bulk and molecular properties of produced Arab-D oils do not vary significantly over the 70 km length and 10 km width of the reservoir. Hanifa oils, however, do reflect two compositionally distinct populations that are hot in lateral communication, compatible with the occurrence of a large oil pool in the southern part of the field, and a separate, and smaller northern accumulation. The Arab-D and underlying Hanifa oil pools are separated by over 450 feet of impermeable carbonates of the Jubaila Formation, yet the Southern Hanifa pool and the Arab-D have been in pressure communication since onset of Hanifa production in 1954. Recent borehole imaging and core data from horizontal Hanifa wells confirmed the long suspected occurrence of fractures responsible for fluid transmissibility within the porous (up to 35%) but tight (<10md matrix K) Hanifa reservoir, and between the Hanifa and Arab-D. The nearly identical hydrocarbon composition of oils from the Arab-D and southern Hanifa pool provided the final confirmation of fluid communication between the two reservoirs, and extension of a Hanifa fracture-fault network via the Jubaila Formation. This work lead to acquisition of 3-D seismic to image and map the fracture-fault system. The molecular fingerprinting approach demonstrated that produced oils can be used to evaluate vertical and lateral reservoir continuity, and at Abqaiq Field confirmed, in part, the need to produce the Hanifa reservoir via horizontal wells to arrest the reservoir communication that occurs with existing vertical wells.

  13. Putting integrated reservoir characterization into practice - in house training

    SciTech Connect (OSTI)

    Wright, F.M. Jr.; Best, D.A.; Clarke, R.T. [Mobile Exploration and Producing Technical Center, Dallas, TX (United States)

    1997-08-01T23:59:59.000Z

    The need for even more efficient reservoir characterization and management has forced a change in the way Mobil Oil provides technical support to its production operations. We`ve learned that to be successful, a good understanding of the reservoir is essential. This includes an understanding of the technical and business significance of reservoir heterogeneities at different stages of field development. A multi-disciplinary understanding of the business of integrated reservoir characterization is essential and to facilitate this understanding, Mobil has developed a highly successful {open_quotes}Reservoir Characterization Field Seminar{close_quotes}. Through specific team based case studies that incorporate outcrop examples and data the program provides participants the opportunity to explore historic and alternative approaches to reservoir description, characterization and management. We explore appropriate levels and timing of data gathering, technology applications, risk assessment and management practices at different stages of field development. The case studies presented throughout the course are a unique element of the program which combine real life and hypothetical problem sets that explore how different technical disciplines interact, the approaches to a problem solving they use, the assumptions and uncertainties contained in their contributions and the impact those conclusions may have on other disciplines involved in the overall reservoir management process. The team building aspect of the course was an added bonus.

  14. Data Integration for the Generation of High Resolution Reservoir Models

    SciTech Connect (OSTI)

    Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

    2009-01-07T23:59:59.000Z

    The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

  15. The Stimulation of Hydrocarbon Reservoirs with Subsurface Nuclear Explosions

    SciTech Connect (OSTI)

    LORENZ,JOHN C.

    2000-12-08T23:59:59.000Z

    Between 1965 and 1979 there were five documented and one or more inferred attempts to stimulate the production from hydrocarbon reservoirs by detonating nuclear devices in reservoir strata. Of the five documented tests, three were carried out by the US in low-permeability, natural-gas bearing, sandstone-shale formations, and two were done in the USSR within oil-bearing carbonates. The objectives of the US stimulation efforts were to increase porosity and permeability in a reservoir around a specific well by creating a chimney of rock rubble with fractures extending beyond it, and to connect superimposed reservoir layers. In the USSR, the intent was to extensively fracture an existing reservoir in the more general vicinity of producing wells, again increasing overall permeability and porosity. In both countries, the ultimate goals were to increase production rates and ultimate recovery from the reservoirs. Subsurface explosive devices ranging from 2.3 to about 100 kilotons were used at depths ranging from 1208 m (3963 ft) to 2568 m (8427 ft). Post-shot problems were encountered, including smaller-than-calculated fracture zones, formation damage, radioactivity of the product, and dilution of the BTU value of tie natural gas with inflammable gases created by the explosion. Reports also suggest that production-enhancement factors from these tests fell short of expectations. Ultimately, the enhanced-production benefits of the tests were insufficient to support continuation of the pro-grams within increasingly adversarial political, economic, and social climates, and attempts to stimulate hydrocarbon reservoirs with nuclear devices have been terminated in both countries.

  16. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  17. Top-Down Intelligent Reservoir Modeling of New Albany Shale A. Kalantari-Dahaghi, SPE, S.D. Mohaghegh, SPE, West Virginia University

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 125859 Top-Down Intelligent Reservoir Modeling of New Albany Shale A. Kalantari-Dahaghi, SPE, S-cellular model. Top-Down intelligent reservoir modeling(TDIRM) starts by analyzing the production data using

  18. Dry gas zone, Elk Hills Field, Kern County, California: General reservoir study: Engineering data, effective August 1, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-10T23:59:59.000Z

    This reservoir study of the dry gas zone of Elk Hills Field is a data compilation with information relating to well: completion; production; pressure; and back pressure. (JF)

  19. Three dimensional geologic modeling of a fractured reservoir, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T.; Grover, G.A. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-11-01T23:59:59.000Z

    A geological assessment of a large carbonate reservoir in Saudi Arabia shows that it is a Type 2 fractured reservoir in which fractures provide the essential permeability. Intercrystalline microporosity, found within the basinally deposited mudstones and wackestones, is the dominant porosity type. Near-vertical, east-west-oriented extension fractures are preferentially localized in low-to-moderate porosities associated with stylolites. Porosity/fracture density relationships, combined with the results of structural curvature mapping, yielded a 3-dimensional model of fracture density. Fracture permeability and fracture porosity distributions were generated by integrating fracture density modeling results with average fracture aperture information derived from well test data. Dramatic differences exist between matrix- and fracture-related porosity, permeability models that help explain observed production behavior within the field. These models are being used by reservoir and simulation engineers for daily reservoir management, history matching, and long-term development drilling planning.

  20. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  1. Evaluation of Devonian shale gas reservoirs

    SciTech Connect (OSTI)

    Vanorsdale, C.R.

    1987-05-01T23:59:59.000Z

    The evaluation of predominantly shale reservoirs presents a problem for engineers traditionally educated either to correct for or to ignore such lithologic zones. Currently accepted evaluation techniques and their applicability are discussed to determine the best way to forecast remaining recoverable gas reserves from the Devonian shales of the Appalachian basin. This study indicates that rate/time decline-curve analysis is the most reliable technique and presents typical decline curves based on production data gathered from 508 shale wells in a three-state study area. The resultant type curves illustrate a dual- (or multiple-) porosity mechanism that violates standard decline-curve analysis guidelines. The results, however, are typical not only for the Devonian shales but for all naturally fractured, multilayered, or similar shale reservoirs.

  2. Fluid Flow Simulation in Fractured Reservoirs

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2002-01-01T23:59:59.000Z

    The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

  3. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    results w i t h other reservoir data. Ramey [1974] definesone-dimen- sional data on reservoir drainage which has beenC. R. , Goodwill D. Data t o Reservoir Engine H. Application

  4. Reservoir permeability from seismic attribute analysis

    E-Print Network [OSTI]

    Goloshubin, G.

    2008-01-01T23:59:59.000Z

    of the reservoir permeability based on seismic and log data.seismic reservoir response based on well and 3D seismic datadata analysis we suggest seismic imaging of the reservoir

  5. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    SciTech Connect (OSTI)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

    2003-09-01T23:59:59.000Z

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

  6. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect (OSTI)

    Allan, M.E.; Wilson, M.L.; Wightman, J. [Bechtel Petroleum, Elk Hills, CA (United States)

    1996-12-31T23:59:59.000Z

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  7. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect (OSTI)

    Allan, M.E.; Wilson, M.L.; Wightman, J. (Bechtel Petroleum, Elk Hills, CA (United States))

    1996-01-01T23:59:59.000Z

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  8. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    reservoir crack patterns using shear-wave splitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Characterization of geothermal reservoir...

  9. Hydrological and Geochemical Investigations of Selenium Behavior at Kesterson Reservoir

    E-Print Network [OSTI]

    Zawislanski, P.T.

    2010-01-01T23:59:59.000Z

    Ecological Characterization of Kesterson Reservoir. AnnualEcological Characterization of Kesterson Reservoir. Annual

  10. TEXAS A&M UNIVERSITY Reservoir Geophysics Program

    E-Print Network [OSTI]

    includes applications to clastic reservoirs, heavy oil reservoirs, gas/oil shale, gas hydrates. Basic

  11. A study of Kg/Ko values from reservoir performance

    E-Print Network [OSTI]

    Young, Gerald Sewall

    1957-01-01T23:59:59.000Z

    this work as the pe'essure and gas-oil ratio history of the remaining two wells indicated, they were still producing undersaturated oil. The portion of ths reservoir studied contained 21, 875 net effective sere-feet of pay over an areal extent of 1, 225... as Indicated by Recent Gas In)ection Experinents and Reservoir- . Perfornance History?2 API and Production P~rt (1946), P. 1 0. Musket? Mep ?Physical Principles of Oil Production?p McGraw-H11I Book Con Inc H , (19/9)p p. A67. Patton, E. Cep Jr...

  12. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-04-01T23:59:59.000Z

    West Carney Field produces from Hunton Formation. All the wells produce oil, water and gas. The main objective of this study is to understand the unique behavior observed in the field. This behavior includes: (1) Decrease in WOR over time; (2) Decrease in GOR at initial stages; (3) High decline rates of oil and gas; and (4) strong hydrodynamic connectivity between wells. This report specifically addresses two issues relevant to our understanding of the West Carney reservoir. By using core and log data as well as fluorescence information, we demonstrate that our hypothesis of how the reservoir is formed is consistent with these observations. Namely, oil migrated in water wet reservoir, over time, oil changed the wettability of some part of the reservoir, oil eventually leaked to upper formations prompting re-introduction of water into reservoir. Because of change in wettability, different pore size distributions responded differently to water influx. This hypothesis is consistent with fluorescence and porosity data, as we explain it in this quarterly report. The second issue deals with how to best calculate connected oil volume in the reservoir. The log data does not necessarily provide us with relevant information regarding oil in place. However, we have developed a new material balance technique to calculate the connected oil volume based on observed pressure and production data. By using the technique to four different fields producing from Hunton formation, we demonstrate that the technique can be successfully applied to calculate the connected oil in place.

  13. Reproducing human decisions in reservoir management: the case of lake Lugano

    E-Print Network [OSTI]

    Corani, Giorgio

    local linear regression. We setup a daily predictor, which achieves good accuracy, with a mean absolute irrigation of agricultural fields, to drinking water sup- ply, hydroelectric power production, and even reservoir systems often im- poses that different reservoirs have different types of regulation: a major

  14. Post Doctoral Research Fellowship Simulating the greenhouse gas emission from boreal region reservoirs

    E-Print Network [OSTI]

    of greenhouse gases from northern boreal reservoirs as part of a Natural Sciences and Engineering Research modified the DeNitrification-DeComposition (DNDC) model to simulate the exchange of CO2 between boreal by the creation of reservoirs for the production of hydro-electricity. We have recently developed a water column

  15. Domain Decomposition Algorithm and Analytical Simulation of Coupled Flow in Reservoir / Well System

    E-Print Network [OSTI]

    Lazarov, Raytcho

    and on its production index. 1. Introduction The modern technology in oil and gas recovery requires new shown [2] that in a 3-D unbounded reservoir with permeability less than 1-Darcy and laminar well flow of the wall and acceleration terms in balance equation. In the present paper a model of a reservoir

  16. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  17. Berea Sandstone gas reservoirs in Portage County, Ohio

    SciTech Connect (OSTI)

    Coogan, A.H.; Heath, L.L.

    1984-12-01T23:59:59.000Z

    The Mississippian Berea Sandstone is a reservoir for shallow gas in Randolph and Suffield townships of Portage County, Ohio. The Berea Sandstone is well known in Ohio from its outcrops at the outskirts of Cleveland. It is among the more productive formations in Ohio where it yields gas, oil, or gas and oil at moderate to very shallow depths. The great differences in reservoir quality, sandstone distribution, and producibility in Berea oil and gas fields are partly related to the use of the term Berea for several sandstone bodies that produce from different structural and stratigraphic settings. In Portage County, the Berea Sandstone is up to 60 ft (18 m) thick and has a porosity in the 15-25% range. The sand is white, medium to fine-grained quartz, poorly cemented, and without substantial shale interbeds. The reservoir lies below the Cap Berea, a gray, cemented thin bed at the base of the Sunbury Shale (driller's Coffee shale). In Portage County, the sand is currently interpreted as fluvial or deltaic. Within the field, thickness of the reservoir and hydrocarbon saturated zone varies little. Natural gas is produced from the top 30 ft (9 m) of the reservoir. The reservoir energy is water drive. The gas fields lie just updip from a steep structural terrace interpreted as a fault zone. The trap for the fields is anticlinal and the Sunbury Shale is the seal. New wells drilled into the reservoir at 400-500 ft (122-152 m) in depth produce gas without water. Initial open flow tested up to 1.0 MMCFGD at an initial reservoir pressure of about 80 psig (552 kPa).

  18. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  19. Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  20. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect (OSTI)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01T23:59:59.000Z

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  1. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-09-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir`s capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  2. Rock Physics Based Determination of Reservoir Microstructure for Reservoir Characterization

    E-Print Network [OSTI]

    Adesokan, Hamid 1976-

    2013-01-09T23:59:59.000Z

    One of the most important, but often ignored, factors affecting the transport and the seismic properties of hydrocarbon reservoir is pore shape. Transport properties depend on the dimensions, geometry, and distribution of pores and cracks. Knowledge...

  3. Volume 3: Characterization of representative reservoirs -- South Marsh Island 73, B35K and B65G Reservoirs

    SciTech Connect (OSTI)

    Young, M.A.; Salamy, S.P.; Reeves, T.K. [BDM-Oklahoma, Inc., Bartlesville, OK (United States); Kimbrell, W.C. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Petroleum Engineering; Sawyer, W.K. [Mathematical and Computer Services, Inc., Danville, VA (United States)

    1998-07-01T23:59:59.000Z

    This report documents the results of a detailed study of two Gulf of Mexico salt dome related reservoirs and the application of a publicly available PC-based black oil simulator to model the performances of gas injection processes to recover attic oil. The overall objective of the research project is to assess the oil reserve potential that could result from the application of proven technologies to recover bypassed oil from reservoirs surrounding piercement salt domes in the Gulf of Mexico. The specific study objective was to simulate the primary recovery and attic gas injection performance of the two subject reservoirs to: (1) validate the BOAST model; (2) quantify the attic volume; and (3) predict the attic oil recovery potential that could result from additional updip gas injection. The simulation studies were performed on the B-35K Reservoir and the B-65G Reservoir in the South Marsh Island Block 73 Field using data provided by one of the field operators. A modified PC-version of the BOAST II model was used to match the production and injection performances of these reservoirs in which numerous gas injection cycles had been conducted to recover attic oil. The historical performances of the gas injection cycles performed on both the B-35K Reservoir and B-65G Reservoir were accurately matched, and numerous predictive runs were made to define additional potential for attic oil recovery using gas injection. Predictive sensitivities were conducted to examine the impact of gas injection rate, injection volume, post-injection shut-in time, and the staging of gas injection cycles on oil recovery.

  4. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    reservoir engineering research program a t the University of Colorado is described. Physical characterization

  5. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 1. Damage fracturing Seth Busetti, Kyran mechanics, fluid flow in fractured reservoirs, and geomechanics in nonconventional reservoirs. Kyran Mish finite deformation of reservoir rocks. We present an at- tempt to eliminate the main limitations

  6. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-29T23:59:59.000Z

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.

  7. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01T23:59:59.000Z

    3&0.OQ t~~~ ~:g~g ~: g8~ g:88~ 8: 8g 8:ggX _. --. ---l-120"-00£+ O~ 2 • 12-04-0G-O~+G8 2.0500000E+Oo -1. 3106622E+1.1,h414t3E+Q8 1.G.. 321'o3E+G8 1.00,+9266E+08 1.07691,+3E+

  8. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01T23:59:59.000Z

    MONTH FIG. 17b. Pow 15, Cerro Prieto, Mexico. FIG. 17e. Borei FIG. 17c. Pow 25, Cerro Prieto, Mexico. FIG. 17f. Bore 18,Activities at the Cerro Prieto Field, LBL-8538, Dec. ,

  9. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01T23:59:59.000Z

    Estimation of Primary Oil Reserves, Trans. AlME, 207 Arps,and codified work on oil reserve estimation that had beenExtrapolation and Reserve Calculation, The Oil Weekly, Sept.

  10. Reservoir characterization using wavelet transforms

    E-Print Network [OSTI]

    Rivera Vega, Nestor

    2004-09-30T23:59:59.000Z

    Automated detection of geological boundaries and determination of cyclic events controlling deposition can facilitate stratigraphic analysis and reservoir characterization. This study applies the wavelet transformation, a recent advance in signal...

  11. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon

    DOE Patents [OSTI]

    Sircar, Shivaji (Wescosville, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Nataraj, Shankar (Allentown, PA)

    2000-01-01T23:59:59.000Z

    In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

  12. Reservoir management strategy for East Randolph Field, Randolph Township, Portage County, Ohio

    SciTech Connect (OSTI)

    Safley, L.E.; Salamy, S.P.; Young, M.A.; Fowler, M.L.; Wing, J.L.; Thomas, J.B.; Mills, J.; Wood, D.

    1998-07-01T23:59:59.000Z

    The primary objective of the Reservoir Management Field Demonstration Program is to demonstrate that multidisciplinary reservoir management teams using appropriate software and methodologies with efforts scaled to the size of the resource are a cost-effective method for: Increasing current profitability of field operations; Forestalling abandonment of the reservoir; and Improving long-term economic recovery for the company. The primary objective of the Reservoir Management Demonstration Project with Belden and Blake Corporation is to develop a comprehensive reservoir management strategy to improve the operational economics and optimize oil production from East Randolph field, Randolph Township, Portage County, Ohio. This strategy identifies the viable improved recovery process options and defines related operational and facility requirements. In addition, strategies are addressed for field operation problems, such as paraffin buildup, hydraulic fracture stimulation, pumping system optimization, and production treatment requirements, with the goal of reducing operating costs and improving oil recovery.

  13. HYDRAULIC FRACTURE MODEL SENSITIVITY ANALYSES OF MASSIVELY STACKED LENTICULAR RESERVOIRS

    E-Print Network [OSTI]

    and 50% of the total cost may be due to the well stimulation treatment. Therefore, there is a need (MWX) site. A geologic characterization of the Mesaverde group established that the production. In common with most tight gas reservoirs, hydraulic stimulation is required to interconnect the dual

  14. Reservoir characterization of the Upper and Lower Repetto reservoirs of the Santa Clara field-federal waters, offshore California

    E-Print Network [OSTI]

    Roco, Craig Emmitt

    2000-01-01T23:59:59.000Z

    are based on the analysis of field production data. These reservoir characterization approaches include: The application of the Fetkovich/McCray decline type curve to estimate original oil-in-place, drainage area, flow capacity, and a skin factor for each...

  15. Analysis of a geopressured gas reservoir using solution plot method

    E-Print Network [OSTI]

    Hussain, Syed Muqeedul

    1992-01-01T23:59:59.000Z

    reservoir to estimate OGIP, c~ and W~. The only input parameters required are the pressure-production data. 2. It is important to recognize that all the energy sources i. e. expansion of gas, rock and water, and water influx may be active at any time... geopressured gas reservoir has been observed to deviate from the theoretical straight line of the Solution plot. These deviations have been designated as Tail 1 and Tail 2. Tail 1, exhibiting increasing effective compressibility is a response to rock...

  16. The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs 

    E-Print Network [OSTI]

    Kamenov, Anton

    2013-04-11T23:59:59.000Z

    Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

  17. FRACTURE MODELING AND FAULT ZONE CHARACTERISTICS APPLIED TO RESERVOIR CHARACTERIZATION OF THE RULISON GAS FIELD,

    E-Print Network [OSTI]

    that incorporates geologic well data, three dimensional seismic data, geomechanical analysis, and well production been calculated based on available well data. Incorporation of geomechanical stresses allows the known geomechanical properties of the reservoir interval. Ultimately, this model highlights

  18. Reservoir characterization and development opportunities in Jacob Field, South-Central Texas

    E-Print Network [OSTI]

    Hernandez Depaz, Mirko Joshoe

    2004-09-30T23:59:59.000Z

    the study, determine the oil potential, and make recommendations to improve production. Since no previous reservoir study was performed in this field, the original oil in place and the current status of depletion was unknown. Therefore a complete integrated...

  19. Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems

    E-Print Network [OSTI]

    Freeman, Craig Matthew

    2013-11-25T23:59:59.000Z

    in the rate and pressure data. Integration of the compositional shift analysis of this work with modern production analysis is used to infer reservoir properties. This work extends the current understanding of flow behavior and well performance for shale...

  20. An Integrated Well Performance Study for Shale Reservoir Systems - Application to the Marcellus Shale

    E-Print Network [OSTI]

    Riser, Landon Jess

    2013-11-15T23:59:59.000Z

    In this work we focus on the integration of two independent analyses, time-rate analysis and model-based production analysis, as an approach to resolve the uncertainty in estimating ultimate recovery (EUR) for wells in unconventional reservoirs...

  1. Stochastic Modeling of a Fracture Network in a Hydraulically Fractured Shale-Gas Reservoir 

    E-Print Network [OSTI]

    Mhiri, Adnene

    2014-08-10T23:59:59.000Z

    The fundamental behavior of fluid production from shale/ultra-low permeability reservoirs that are produced under a constant wellbore pressure remains difficult to quantify, which is believed to be (at least in part) due to the complexity...

  2. Reservoir Characterization of Upper Devonian Gordon Sandstone, Jacksonburg, Stringtown Oil Field, Northwestern West Virginia

    SciTech Connect (OSTI)

    Ameri, S.; Aminian, K.; Avary, K.L.; Bilgesu, H.I.; Hohn, M.E.; McDowell, R.R.; Patchen, D.L.

    2002-05-21T23:59:59.000Z

    The purpose of this work was to establish relationships among permeability, geophysical and other data by integrating geologic, geophysical and engineering data into an interdisciplinary quantification of reservoir heterogeneity as it relates to production.

  3. The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs

    E-Print Network [OSTI]

    Kamenov, Anton

    2013-04-11T23:59:59.000Z

    Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

  4. Comparison of Various Deterministic Forecasting Techniques in Shale Gas Reservoirs with Emphasis on the Duong Method

    E-Print Network [OSTI]

    Joshi, Krunal Jaykant

    2012-10-19T23:59:59.000Z

    There is a huge demand in the industry to forecast production in shale gas reservoirs accurately. There are many methods including volumetric, Decline Curve Analysis (DCA), analytical simulation and numerical simulation. Each one of these methods...

  5. Coupled Modeling of Dynamic Reservoir/Well Interactions under Liquid-loading Conditions

    E-Print Network [OSTI]

    Limpasurat, Akkharachai

    2013-10-23T23:59:59.000Z

    backpressure on the formation, which decreases the gas production rate and may stop the well from flowing. To model these phenomena, the dynamic interaction between the reservoir and the wellbore must be characterized. Due to wellbore phase re...

  6. Integrated reservoir study of the Monument Northwest field: a waterflood performance evaluation

    E-Print Network [OSTI]

    Nduonyi, Moses Asuquo

    2008-10-10T23:59:59.000Z

    methodology for a deterministic approach. The data history of the wells in the field beginning from spud date were gathered and analyzed into information necessary for building an upscaled reservoir model of the field. Means of increasing production...

  7. Integrated reservoir study of the Monument Northwest field: a waterflood performance evaluation

    E-Print Network [OSTI]

    Nduonyi, Moses Asuquo

    2009-05-15T23:59:59.000Z

    methodology for a deterministic approach. The data history of the wells in the field beginning from spud date were gathered and analyzed into information necessary for building an upscaled reservoir model of the field. Means of increasing production...

  8. Improved reservoir characterization of the Rose Run sandstone on the East Randolph Field, Portage County, Ohio

    SciTech Connect (OSTI)

    Safley, I.E. [BDM-Oklahoma, Bartlesville, OK (United States); Thomas, J.B. [Belden & Blake Corp., North Canton, OH (United States)

    1996-09-01T23:59:59.000Z

    The East Randolph Field, located in Randolph Township, Portage County, Ohio, produces oil and gas from the Cambrian Rose Run sandstone unit, a member of the Knox Supergroup. Field development and infill drilling opportunities illustrate the need for improved reservoir characterization of the hydrocarbon productive intervals. This reservoir study is conducted under the Department of Energy`s Reservoir Management Program with professionals from BDM-Oklahoma and Belden & Blake Corporation. Well log and core analyses were conducted to determine the reservoir distribution, the heterogeneity of the hydrocarbon producing intervals, and the effects of faulting and fracturing on well productivity. The Rose Run sandstones and interbedded dolomites were subdivided into three productive intervals. Cross sections were constructed for correlation of individual layers and identification of localized faulting. The geologic data was input into GeoGraphix software for construction of structure, net pay, production, and gas- and water-oil ratio maps.

  9. Sensitivity analysis of modeling parameters that affect the dual peaking behaviour in coalbed methane reservoirs

    E-Print Network [OSTI]

    Okeke, Amarachukwu Ngozi

    2006-10-30T23:59:59.000Z

    of the various modeling parameters on its reservoir performance. A dual porosity coalbed methane simulator is used to model primary production from a single well coal seam, for a variety of coal properties for this work. Varying different coal properties...

  10. A simulation-based reservoir management program

    SciTech Connect (OSTI)

    Voskanian, M.M. [California State Lands Commission, Sacramento, CA (United States); Kendall, R.P.; Whitney, E.M. [Los Alamos National Lab., NM (United States); Coombs, S. [Pacific Operators Offshore, Inc., Santa Barbara, CA (United States); Paul, R.G. [Minerals Management Service, Reston, VA (United States). Headquarters Office; Ershaghi, I. [Univ. of Southern California, Los Angeles, CA (United States)

    1996-05-01T23:59:59.000Z

    There are more than 5,200 independent oil and gas producers operating in the US today (based on current IPAA membership figures). These companies are playing an increasingly important role in production of hydrocarbons in California and elsewhere in the US. Pacific Operators Offshore, Inc., in a historic collaboration with its government royalty owners, the California State Lands Commission and the Minerals Management Service of the US Department of Interior, is attempting to redevelop the Carpinteria Offshore Field after two-and-a-half decades of production and partial abandonment by a previous operator. This paper will describe a project which focuses on the distribution of advanced reservoir management technologies (geological, petrophysical, and engineering) to independent producers like Pacific Operators Offshore, Inc. The evolving information highway, specifically the World Wide Web (WWW), serves as the distribution medium. The project to be described in this paper is an example of the implementation of a reservoir management tool which is supported by distributed databases, incorporates a shared computing environment, and integrates stochastic, geological, and engineering modeling.

  11. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01T23:59:59.000Z

    the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

  12. GMINC - A MESH GENERATOR FOR FLOW SIMULATIONS IN FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01T23:59:59.000Z

    Flow in Naturally Fractured Reservoirs, Society of Petroleumfor Naturally Fractured Reservoirs, paper SPE-11688,Determining Naturally Fractured Reservoir Properties by Well

  13. Analysis of flow behavior in fractured lithophysal reservoirs

    E-Print Network [OSTI]

    Liu, Jianchun; Bodvarsson, G.S.; Wu, Yu-Shu

    2002-01-01T23:59:59.000Z

    R. , 1980. Naturally Fractured Reservoirs, Petroleum, Tulsa,bounded naturally fractured reservoirs. Soc. Pet. Eng. J.test in a naturally fractured reservoir. J. Pet. Tech. 1295–

  14. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-01-01T23:59:59.000Z

    Heat Flow in Fractured Reservoirs, SPE Advanced TechnologyTransfer Area in Fractured Reservoirs Karsten Pruess 1 , Tonbehavior arises in fractured reservoirs. As cold injected

  15. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01T23:59:59.000Z

    Summary of reservoir engineering data: Wairakei Geothermaland new data important to geothermal reservoir engineeringdata and other information related to geothermal reservoir

  16. SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND

    E-Print Network [OSTI]

    Pritchett, J.W.

    2012-01-01T23:59:59.000Z

    W. , L. F. Rice "Reservoir Engineering Data: thermal Field,Summary of Reservoir Engineering Data: Wairakei GeothermalSUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL

  17. Hydrological and Geochemical Investigations of Selenium Behavior at Kesterson Reservoir

    E-Print Network [OSTI]

    Zawislanski, P.T.

    2010-01-01T23:59:59.000Z

    of Kesterson Reservoir, and supplements data provided in1991). The Reservoir-wide sampling data has been reviewed toinventory at Kesterson Reservoir. The data presented herein

  18. SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND

    E-Print Network [OSTI]

    Pritchett, J.W.

    2010-01-01T23:59:59.000Z

    W. , L. F. Rice "Reservoir Engineering Data: thermal Field,Summary of Reservoir Engineering Data: Wairakei GeothermalSUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL

  19. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01T23:59:59.000Z

    in data interpretation, and reservoir performance as relatedgeothermal reservoir, the acquisition of data on the v i s cfield data and for modeling reservoir performance. such

  20. A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS

    E-Print Network [OSTI]

    Anderson, C.

    2011-01-01T23:59:59.000Z

    FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

  1. Manufacturability of lab on chip devices : reagent-filled reservoirs bonding process and its effect on reagents flow pattern

    E-Print Network [OSTI]

    Saber, Aabed (Aabed Saud)

    2013-01-01T23:59:59.000Z

    In its lab-on-a-chip product, Daktari Diagnostics utilizes "reagent-filled reservoirs" as a means of storing and delivering the liquid reagent. During the clinical trials of the product, undesired reagent flow patterns ...

  2. Hydrolyzed Polyacrylamide- Polyethylenimine- Dextran Sulfate Polymer Gel System as a Water Shut-Off Agent in Unconventional Gas Reservoirs

    E-Print Network [OSTI]

    Jayakumar, Swathika 1986-

    2012-07-09T23:59:59.000Z

    Technologies such as horizontal wells and multi-stage hydraulic fracturing have made ultra-low permeability shale and tight gas reservoirs productive but the industry is still on the learning curve when it comes to addressing various production...

  3. Case history of pressure maintenance by gas injection in the 26R gravity drainage reservoir

    SciTech Connect (OSTI)

    Wei, M.H.; Yu, J.P.; Moore, D.M.; Ezekwe, N. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); Querin, M.E. (USDOE Naval Petroleum Reserves in California, Tupman, CA (United States)); Williams, L.L. (Chevron U.S.A., Inc., San Francisco, CA (United States))

    1992-01-01T23:59:59.000Z

    This paper is a field case history on the performance of the 26R Reservoir. This is a gravity drainage reservoir under pressure maintenance by crestal gas injection. The 26R Reservoir is a highly layered Stevens turbidite sandstone. The reservoir is located in the Naval Petroleum Reserve No. 1 (NPR{number sign}1) in Elk Hills, Kern County, California. The 26R Reservoir is contained within the steeply dipping southwestern limb of the 31S Anticline. The reservoir had an initial oil column of 1800 feet. Original oil-in-place (OOIP) was estimated at 424 million barrels. Pressure maintenance by crestal gas injection was initiated immediately after production began in October 1976. The total volume of gas injected is about 586 BCF. This exceeds one reservoir pore volume. Reservoir pressure has declined from 3030 psi to 2461 psi. This pressure decline believe to be due to migration of injected gas into the overlaying shale reservoirs. Under the gas injection pressure maintenance strategy, reserves are estimated to be approximately 212 million barrels. Reservoir studies have concluded that the aquifer at the base of the reservoir has been relatively inactive. Well recompletions, deepenings, and horizontal wells are used to improve oil recovery. An aggressive program of controlling gas production began in the mid 1980's by the installation of multiple packers and sleeves. As the gas-oil contact (GOC) has dropped, sand intervals have subsequently been isolated behind packers. A cased hole logging program was recently undertaken to identify possible remaining reserves in the gas cap. 15 refs., 24 figs., 2 tabs.

  4. Case history of pressure maintenance by gas injection in the 26R gravity drainage reservoir

    SciTech Connect (OSTI)

    Wei, M.H.; Yu, J.P.; Moore, D.M.; Ezekwe, N. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); Querin, M.E. [USDOE Naval Petroleum Reserves in California, Tupman, CA (United States); Williams, L.L. [Chevron U.S.A., Inc., San Francisco, CA (United States)

    1992-02-01T23:59:59.000Z

    This paper is a field case history on the performance of the 26R Reservoir. This is a gravity drainage reservoir under pressure maintenance by crestal gas injection. The 26R Reservoir is a highly layered Stevens turbidite sandstone. The reservoir is located in the Naval Petroleum Reserve No. 1 (NPR{number_sign}1) in Elk Hills, Kern County, California. The 26R Reservoir is contained within the steeply dipping southwestern limb of the 31S Anticline. The reservoir had an initial oil column of 1800 feet. Original oil-in-place (OOIP) was estimated at 424 million barrels. Pressure maintenance by crestal gas injection was initiated immediately after production began in October 1976. The total volume of gas injected is about 586 BCF. This exceeds one reservoir pore volume. Reservoir pressure has declined from 3030 psi to 2461 psi. This pressure decline believe to be due to migration of injected gas into the overlaying shale reservoirs. Under the gas injection pressure maintenance strategy, reserves are estimated to be approximately 212 million barrels. Reservoir studies have concluded that the aquifer at the base of the reservoir has been relatively inactive. Well recompletions, deepenings, and horizontal wells are used to improve oil recovery. An aggressive program of controlling gas production began in the mid 1980`s by the installation of multiple packers and sleeves. As the gas-oil contact (GOC) has dropped, sand intervals have subsequently been isolated behind packers. A cased hole logging program was recently undertaken to identify possible remaining reserves in the gas cap. 15 refs., 24 figs., 2 tabs.

  5. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect (OSTI)

    P. K. Pande

    1998-10-29T23:59:59.000Z

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  6. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  7. Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40% of natural gas production and about 35% of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in darcies.)

  8. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2002-03-31T23:59:59.000Z

    The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  9. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fernandez, Carlos A.

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  10. A Comprehensive Evaluation of Reservoir Inflow and Wellbore Behavior in Intelligent Wells

    E-Print Network [OSTI]

    Zarea, Marwan Annas H.

    2011-10-21T23:59:59.000Z

    production, and maximizing recovery and capital-expenditure efficiency while minimizing operating costs (Robinson 2003). Some applications of this technology include managing production where there are significant variations among laterals in reservoir... from individual laterals or zones according to the reservoir management plan. Therefore, there is no uniform design that can be generalized for all control valves. The multi-position and infinite variable ICVs consist of a number of inflow ports...

  11. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2005-02-01T23:59:59.000Z

    Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

  12. The recovery of oil from carbonate reservoirs by fluid injection

    E-Print Network [OSTI]

    Coleman, Dwayne Marvin

    1954-01-01T23:59:59.000Z

    Hole 70 Neasured and Calculated Productivities Obtained on Wells Completed Through Perforations 39 Cumulative Oil Recovery Versus Total Water and Oil Throughf low for Stratified Reservoirs- lj. O Cumulative Oil Recovery Versus Total Water and Oil... index meas- ured on the wells is equal to ths productivity index estimated from cores, In reviewing the published work on the oil recovery by water in]ec- tion to be expected from non-oolitic carbonate formations, dependable methods of prediction...

  13. US Geological Survey publications on western tight gas reservoirs

    SciTech Connect (OSTI)

    Krupa, M.P.; Spencer, C.W.

    1989-02-01T23:59:59.000Z

    This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

  14. C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production...

  15. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-10-01T23:59:59.000Z

    This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity increases, the remaining oil saturation decreases. This is evident from log and core analysis. (5) Using a compositional simulator, we are able to reproduce the important reservoir characteristics by assuming a two layer model. One layer is high permeability region containing water and the other layer is low permeability region containing mostly oil. The results are further verified by using a dual porosity model. Assuming that most of the volatile oil is contained in the matrix and the water is contained in the fractures, we are able to reproduce important reservoir performance characteristics. (6) Evaluation of secondary mechanisms indicates that CO{sub 2} flooding is potentially a viable option if CO{sub 2} is available at reasonable price. We have conducted detailed simulation studies to verify the effectiveness of CO{sub 2} huff-n-puff process. We are in the process of conducting additional lab tests to verify the efficacy of the same displacement. (7) Another possibility of improving the oil recovery is to inject surfactants to change the near well bore wettability of the rock from oil wet to water wet. By changing the wettability, we may be able to retard the water flow and hence improve the oil recovery as a percentage of total fluid produced. If surfactant is reasonably priced, other possibility is also to use huff-n-puff process using surfactants. Laboratory experiments are promising, and additional investigation continues. (8) Preliminary economic evaluation indicates that vertical wells outperform horizontal wells. Future work in the project would include: (1) Build multi-well numerical model to reproduce overall reservoir performance rather than individual well performance. Special emphasis will be placed on hydrodynamic connectivity between wells. (2) Collect data from adjacent Hunton reservoirs to validate our understanding of what makes it a productive reservoir. (3) Develop statistical methods to rank various reservoirs in Hunton formation. This will allow us to evaluate other Hunton formations based on old well logs, and determine, apriori, if

  16. Integrated Multi-Well Reservoir and Decision Model to Determine Optimal Well Spacing in Unconventional Gas Reservoirs

    E-Print Network [OSTI]

    Ortiz Prada, Rubiel Paul

    2012-02-14T23:59:59.000Z

    of Gething D Formation for the study area in UGR?s integrated reservoir study, meters sstvd (subsea true vertical depth). N ? S yellow dashed line indicates a section in the North to South direction shown on Figure 10. ................................ 31... curve analysis performed on simulated production. The figure represents a typical gas production rate vs. time. The figure shows to, the transition point from hyperbolic to exponential decline. . 78 Figure 50 Schematic decision tree...

  17. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2002-09-30T23:59:59.000Z

    The main objectives of the proposed study are as follows: (1) To understand and evaluate an unusual primary oil production mechanism which results in decreasing (retrograde) oil cut (ROC) behavior as reservoir pressure declines. (2) To improve calculations of initial oil in place so as to determine the economic feasibility of completing and producing a well. (3) To optimize the location of new wells based on understanding of geological and petrophysical properties heterogeneities. (4) To evaluate various secondary recovery techniques for oil reservoirs producing from fractured formations. (5) To enhance the productivity of producing wells by using new completion techniques. These objectives are important for optimizing field performance from West Carney Field located in Lincoln County, Oklahoma. The field, which was discovered in 1980, produces from Hunton Formation in a shallow-shelf carbonate reservoir. The early development in the field was sporadic. Many of the initial wells were abandoned due to high water production and constraints in surface facilities for disposing excess produced water. The field development began in earnest in 1995 by Altex Resources. They had recognized that production from this field was only possible if large volumes of water can be disposed. Being able to dispose large amounts of water, Altex aggressively drilled several producers. With few exceptions, all these wells exhibited similar characteristics. The initial production indicated trace amount of oil and gas with mostly water as dominant phase. As the reservoir was depleted, the oil cut eventually improved, making the overall production feasible. The decreasing oil cut (ROC) behavior has not been well understood. However, the field has been subjected to intense drilling activity because of prior success of Altex Resources. In this work, we will investigate the primary production mechanism by conducting several core flood experiments. After collecting cores from representative wells, we will study the wettability of the rock and simulate the depletion behavior by mimicking such behavior under controlled lab conditions.

  18. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Integration of borehole imaging data with available open-hole log, core, and well-test data from horizontal and vertical wells allowed for the distribution of fracture parameters, including fracture density, aperture, porosity, and permeability throughout a geocellular model. Analysis of over 5000 fractures showed that changes in lithology, grain size, and/or bed thickness do not correlate with changes in fracture densities. Review of P- and S-wave log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. Fracture permeabilities compare favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix- related permeability contrasts sharply with highly variable and relatively high (ER 50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  19. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska

    SciTech Connect (OSTI)

    Glenn, R.K.; Allen, W.W.

    1992-12-01T23:59:59.000Z

    The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  20. Ranking of Texas reservoirs for application of carbon dioxide miscible displacement

    SciTech Connect (OSTI)

    Ham, J

    1996-04-01T23:59:59.000Z

    Of the 431 reservoirs screened, 211 projected revenue that exceeded cost, ie, were profitable. Only the top 154 reservoirs, however, showed a profit greater than 30%. The top 10 reservoirs predicted a profit of at least 80%. Six of the top ten were Gulf Coast sandstones. The reservoirs are representative of the most productive discoveries in Texas; they account for about 72% of the recorded 52 billion barrels oil production in the State. Preliminary evaluation in this study implied that potential production from CO{sub 2}-EOR could be as much as 4 billion barrels. In order to enhance the chances of achieving this, DOE should consider a targeted outreach program to the specific independent operators controlling the leases. Development of ownership/technical potential maps and an outreach program should be initiated to aid this identification.

  1. Comparative Evaluation of Generalized River/Reservoir System Models

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

  2. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01T23:59:59.000Z

    injection into a fractured reservoir system. A reservoirIn the case of fractured reservoirs, Equations (25) and (26)c ww q a >> For fractured reservoirs, the former expression

  3. The Carpenteria reservoir redevelopment project

    SciTech Connect (OSTI)

    Kendall, R.P.; Whitney, E.M.; Krogh, K.E. [Los Alamos National Lab., NM (United States); Coombs, S. [Pacific Operators Offshore, Inc., Carpinteria, CA (United States); Paul, R.G. [Dept. of the Interior (United States); Voskanian, M.M. [California State Lands Commission, Sacramento, CA (United States); Ershaghi, I. [University of Southern California, Los Angeles, CA (United States)

    1997-08-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop a simulation-based reservoir management system that could be used to guide the redevelopment of the Carpenteria Offshore Field, which is located just seven miles from Santa Barbara. The system supports geostatistical and geological modeling and reservoir forecasting. Moreover, it is also a shared resource between the field operator, Pacific Operators Offshore, and the mineral owners, the U.S. Department of the Interior and the State of California.

  4. Interdisciplinary study of reservoir compartments and heterogeneity. Final report, October 1, 1993--December 31, 1996

    SciTech Connect (OSTI)

    Van Kirk, C.

    1998-01-01T23:59:59.000Z

    A case study approach using Terry Sandstone production from the Hambert-Aristocrat Field, Weld County, Colorado was used to document the process of integration. One specific project goal is to demonstrate how a multidisciplinary approach can be used to detect reservoir compartmentalization and improve reserve estimates. The final project goal is to derive a general strategy for integration for independent operators. Teamwork is the norm for the petroleum industry where teams of geologists, geophysicists, and petroleum engineers work together to improve profits through a better understanding of reservoir size, compartmentalization, and orientation as well as reservoir flow characteristics. In this manner, integration of data narrows the uncertainty in reserve estimates and enhances reservoir management decisions. The process of integration has proven to be iterative. Integration has helped identify reservoir compartmentalization and reduce the uncertainty in the reserve estimates. This research report documents specific examples of integration and the economic benefits of integration.

  5. Niobrara gas play: exploration and development of a low-pressure, low-permeability gas reservoir

    SciTech Connect (OSTI)

    Brown, C.A.; Crafton, J.W.; Golson, J.G.

    1982-12-01T23:59:59.000Z

    An integrated interdisciplinary exploration/exploitation strategy contributed to the successful economic development of the Niobrara gas play, located in eastern Colorado, northwestern Kansas, and western Nebraska. The exploration, development, production, and evaluation data suggest that (1) Niobrara chalk reservoirs have exceptionally high porosities but very low permeabilities, (2) individual reservoirs are low-relief, highly faulted structural traps characterized consistently by extensive water-transition zones, (3) the reservoirs contain biogenic gas (the Niobrara acts as its own source rock,) (4) an exploration fairway can be defined if porosity, permeability, and pressure are correlated with paleodepth, (5) optimal logging, completion, stimulation, and producing methods are readily definable, (6) reservoir performance is predicted adequately by numerical simulation, and (7) infill drilling on 160-acre spacing will allow better reservoir drainage.

  6. Modeling well performance in compartmentalized gas reservoirs 

    E-Print Network [OSTI]

    Yusuf, Nurudeen

    2008-10-10T23:59:59.000Z

    for consolidated reservoir cases while synthetic data (generated by the model using known parameters) was used for unconsolidated reservoir cases. In both cases, the Compartmentalized Depletion Model was used to analyze data, and estimate the OGIP and Jg of each...

  7. Modeling well performance in compartmentalized gas reservoirs 

    E-Print Network [OSTI]

    Yusuf, Nurudeen

    2009-05-15T23:59:59.000Z

    for consolidated reservoir cases while synthetic data (generated by the model using known parameters) was used for unconsolidated reservoir cases. In both cases, the Compartmentalized Depletion Model was used to analyze data, and estimate the OGIP and Jg of each...

  8. Modeling well performance in compartmentalized gas reservoirs

    E-Print Network [OSTI]

    Yusuf, Nurudeen

    2008-10-10T23:59:59.000Z

    Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

  9. Modeling well performance in compartmentalized gas reservoirs

    E-Print Network [OSTI]

    Yusuf, Nurudeen

    2009-05-15T23:59:59.000Z

    Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

  10. IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2

    SciTech Connect (OSTI)

    Timothy R. Carr; Don W. Green; G. Paul Willhite

    2000-04-30T23:59:59.000Z

    This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small independent producer to identify efficiently candidate reservoirs and also to predict the performance of horizontal well applications.

  11. Improved oil recovery in mature fields through reservoir characterization and management

    SciTech Connect (OSTI)

    Leetaru, H.E. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-09-01T23:59:59.000Z

    The Illinois basin is mature with respect to hydrocarbon exploitation in the Pennsylvanian and Mississippian strata. Available subsurface data for the basin commonly are 30 to 50 yr old and of lower quality than today's state-of-the-art data. Recent evaluation of two geologically similar Illinois oil fields shows how the application of new concepts and technologies to the old data can be used to improve oil recovery. Boyd and King fields, located in Jefferson County, Illinois, produce from the Mississippian Aux Vases formation, a unit that was deposited in nearshore mixed siliciclastic-carbonate environments. Prospective areas for further development were delineated by conventional reservoir-characterization methods. Three-dimensional modeling was used to enhance visualization of the lateral and vertical heterogeneity of these reservoirs. At King field, mixing of intercalated siliciclastic-carbonate facies causes significant reservoir heterogeneity; numerous compartments have been bypassed by the existing waterflood. Targeted infill drilling of additional producing and injector wells should recover 1-2 million bbl of additional hydrocarbons. At Boyd field, delineation of areas that contain bypassed oil is more difficult because many of the wells have not penetrated the entire reservoir. An additional problem is that almost all of the production from the original Aux Vases wells was severely inhibited by backflow from a higher pressured, shallower reservoir with which it is commingled. In this type of field, reservoir management must focus on isolating the Aux Vases, producing intervals and deepening individual wells through the entire reservoir. The study of these two fields suggests that detailed geologic characterization of the internal reservoir architecture is not enough. Effective reservoir characterization for improved oil recovery must include both reservoir geology and an understanding of previous reservoir management techniques.

  12. THMC Modeling of EGS Reservoirs ? Continuum through Discontinuum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs Continuum through...

  13. Optimization Online - Managing Hydroelectric Reservoirs over an ...

    E-Print Network [OSTI]

    Pierre-Luc Carpentier

    2013-07-07T23:59:59.000Z

    Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss ...

  14. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01T23:59:59.000Z

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  15. Naturally fractured reservoirs contain a significant amount of the world oil reserves. A number of these reservoirs contain several

    E-Print Network [OSTI]

    Arbogast, Todd

    Summary Naturally fractured reservoirs contain a significant amount of the world oil reserves simulation of naturally fractured reservoirs is one of the most important, challenging, and computationally intensive problems in reservoir engineering. Parallel reservoir simulators developed for naturally fractured

  16. A general-purpose, geochemical reservoir simulator

    SciTech Connect (OSTI)

    Liu, X.; Ortoleva, P.

    1996-12-31T23:59:59.000Z

    A geochemical simulator for the analysis of coupled reaction and transport processes is presented. The simulator is based on the numerical solution of the equations of coupled multi-phase fluid flow, species transport, energy balance and rock/fluid reactions. It also accounts for the effects of grain growth/dissolution and the alteration of porosity and permeability due to mineral reactions. The simulator can be used to analyze core floods, single-well scenarios and multiple production/injection well systems on the reservoir scale. Additionally, the simulator provides two flow options: the Darcy law for fluid flow in porous media and the Brinkman law that subsumes both free and porous medium flows. The simulator was tested using core acidizing data and results were in good agreement with laboratory observations. The simulator was applied to analyze matrix acidizing treatments for a horizontal well. The evolution of the skin factor was predicted and the optimal volume of acid required to remove the near-wellbore damage was determined. Reactive fluid infiltration was shown to lead to reaction-front fingering under certain conditions. Viscosity contrast in multiphase flow could also result in viscous fingering. Examples in this study also address these nonlinear fingering phenomena. A waterflood on the reservoir scale was analyzed and simulation results show that scale formation during waterfloods can occur far beyond injection wells. Two cases of waste disposal by deep well injection were evaluated and our simulation results were consistent with field measured data.

  17. STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES

    E-Print Network [OSTI]

    Stanford University

    STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES Paul Kruger and Henry J . Ramey, Jr . . . . . . . . . . . . . . . . . . . . . . 61 Mass Transfer i n Porous and Fractured Media . . . . . . . . . 61 Heat Transfer i n Fractun3d Rock . . . . . . . . . . . . . . . 67 Geothermal Reservoir Phy.Sica1 PIodels . . . . . . . . . . . . 73 RAD3N I N GEOTHERMAL RESERVOIRS

  18. Reservoir Characterization Using Intelligent Seismic Inversion

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    reservoir performance. Field Development #12;- Issues about the data and problems regarding data analysis characterization studies. - Inverse modeling of reservoir properties from the seismic data is known as seismic inversion. SEISMIC LOGS #12;1. Does a relationship exist between seismic data and reservoir characteristics

  19. Kansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan FebNov-14 Dec-14

  20. Kansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan FebNov-14 Dec-14Year Jan

  1. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet)

  2. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet)Year Jan Feb Mar Apr May

  3. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 02,208,9204.49 4.65 4.15

  4. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 02,208,9204.49 4.65 4.15Year

  5. Maryland Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.05.03 5.68 4.61 5.60

  6. Maryland Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.05.03 5.68 4.61 5.60Year Jan

  7. Michigan Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan2009 2010 2011Decade

  8. Michigan Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan2009 2010

  9. Mississippi Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet) PriceLiquids, Proved2009Decade

  10. Mississippi Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet) PriceLiquids,

  11. Missouri Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousand CubicDecade Year-0

  12. Missouri Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousand CubicDecade

  13. Montana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade03 4.83 4.53 4.34

  14. Montana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade03 4.83 4.53 4.34Year Jan

  15. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.DecadeFuel2009 2010 2011Year

  16. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.DecadeFuel2009 2010

  17. California Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel ConsumptionNov-14 Dec-14

  18. California Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel ConsumptionNov-14 Dec-14Year Jan Feb

  19. Colorado Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)2008 2009 2010Decade

  20. Colorado Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)2008 2009 2010DecadeYear

  1. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) YearThousandDecade

  2. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet) YearThousandDecadeYear

  3. Alaska Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  4. Alaska Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  5. Arkansas Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year% ofInputYear(Million

  6. Arkansas Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year% ofInputYear(MillionYear Jan

  7. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic2009 2010Decade

  8. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic2009

  9. Texas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul Aug Sep2009 2010 2011Decade

  10. Texas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul Aug Sep2009 2010

  11. Utah Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion CubicYear Jan2008

  12. Utah Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion CubicYear Jan2008Year Jan Feb

  13. Virginia Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1 Year-2 (MillionDecade

  14. Virginia Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1 Year-2 (MillionDecadeYear Jan Feb

  15. Natural Gas Used for Repressuring (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996)200971 andEIA1-2015 Colorado

  16. Florida Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May2009 2010Decade

  17. Florida Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May2009 2010DecadeYear

  18. Indiana Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal2009 2010 2011 2012 2013 2014Year Jan Feb

  19. Indiana Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal2009 2010 2011 2012 2013 2014Year Jan FebYear

  20. Natural Gas Used for Repressuring (Summary)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,1958 20098 2009

  1. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet)2009

  2. Nevada Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecadeand2009 2010Decade

  3. Nevada Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecadeand2009

  4. Ohio Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9 20102009 2010 2011

  5. Oregon Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan Feb

  6. Oregon Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan FebYear Jan Feb Mar Apr May Jun

  7. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand CubicFuel Consumption (Million2008Year

  8. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    SciTech Connect (OSTI)

    Laubach, S.E.; Marrett, R.; Rossen, W.; Olson, J.; Lake, L.; Ortega, O.; Gu, Y.; Reed, R.

    1999-01-01T23:59:59.000Z

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specific goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.

  9. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07T23:59:59.000Z

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  10. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  11. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  12. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    SciTech Connect (OSTI)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01T23:59:59.000Z

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  13. Deep geothermal reservoirs evolution: from a modeling perspective BRGM, 3 Avenue Claude Guillemin, BP 36009 -45060 Orlans Cedex 2, France

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Deep geothermal reservoirs evolution: from a modeling perspective S. Lopez1 1 BRGM, 3 Avenue Claude deep geothermal reservoirs evolution and management based on examples ranging from direct use of geothermal heat to geothermal electricity production. We will try to focus on French experiences

  14. PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012

    E-Print Network [OSTI]

    Boyer, Edmond

    derived from natural brines circulating within a deep fractured granite reservoir. Such scalingPROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University as a self-cleaning of the fracture network during geothermal production. In parallel, many research works

  15. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    /cm2 sec up to 10-7 g/cm2 sec. The thermal evolution was calculated for up to 30,000 years. The deep and the performance of reservoir was predicted for 30 years production. Depths of the reservoir are assumed from 0 province about 30 Km southwest of Semarang, Indonesia as shown in Figure 1, is still undeveloped geothermal

  16. Depositional Environment, Reservoir Properties, and EOR Potential of an Incised-valley-fill Sandstone, Pleasant Prairie Oilfield, Haskell County, Kansas

    E-Print Network [OSTI]

    Senior, Peter

    2012-12-31T23:59:59.000Z

    of modeled original oil in place to production data suggests inaccuracy of reservoir models at the scale of individual well drainage areas. Waterflooding of the reservoir has proven successful for >10 years, and remaining oil in place ranges from 7.8&ndash...

  17. This paper was prepared for presentation at the 2002 Naturally Fractured Reservoir Conference held in Oklahoma City, 34 June 2003.

    E-Print Network [OSTI]

    Schechter, David S.

    This paper was prepared for presentation at the 2002 Naturally Fractured Reservoir Conference held reservoir developed at the late 1940's with a history of low productivity and low recovery. It has been shown over the years that conventional waterflooding is highly ineffective in this field due

  18. The utility of continual reservoir description: An example from Bindley Field, Western Kansas

    SciTech Connect (OSTI)

    Johnson, R.A. (Energy Foundation Inc., Lakewood, CO (United States)); Budd, D.A. (Univ. of Colorado, Boulder, CO (United States))

    1994-05-01T23:59:59.000Z

    Continual revision of geologic reservoir description is an important component of reservoir management. New data should be incorporated into existing reservoir models in light of evolving geologic concepts. Revisions may have significant impacts on the approach and success of reservoir management strategies. A reevaluation of Bindley field (Mississippian), Hodgeman County, Kansas, serves as an illustration of this process. Prior study of this field suggested that the reservoir interval is comprised of a single, relatively uniform facies (bryozoan dolomite) having no apparent internal structure. A waterflood attempt based on this concept of reservoir architecture resulted in minimal response. A revised model of reservoir architecture and petrophysics resulted from integration of new core data, a new stratigraphic correlation scheme, updated well production histories, and capillary pressure data. The revised geologic model reveals specific methods to improve primary recovery and rectify the poor waterflood performance. These methods include selective perforation of all oil-saturated type I flow units to optimize primary recovery and remedial waterflood design to assure continuity of fluid flow between injection and production wells. 19 refs., 20 figs., 2 tabs.

  19. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOE Patents [OSTI]

    1984-08-14T23:59:59.000Z

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  20. Geothermal reservoir at Tatapani Geothermal field, Surguja district, Madhya Pradesh, IN

    SciTech Connect (OSTI)

    Pitale, U.L.; Sarolkar, P.B.; Rawat, H.S.; Shukia, S.N.

    1996-01-24T23:59:59.000Z

    The Tatapani Geothermal field, located on the Son-Narmada mega lineament is one of the most intense geothermal manifestation, with hot spring temperature of 98°c. in Central India. 21 Exploratory and thermal gradient boreholes followed by 5 production wells for proposed 300 KWe binary cycle power plant, have revealed specific reservoir parameters of shallow geothermal reservoir of 110°c in upper 350 m of geothermal system and their possible continuation to deeper reservoir of anticipated temperature of 160 ± 10°c. Testing of five production wells done by Oil and Natural Gas Corporation concurrently with drilling at different depths and also on completion of drilling, have established feeder zones of thermal water at depth of 175-200 m, 280-300 m, maximum temperature of 112.5°c and bottom hole pressure of 42 kg/cm². Further interpretation of temperature and pressure profiles, injection test, well head discharges and chemical analysis data has revealed thermal characteristics of individual production wells and overall configuration of .thermal production zones with their permeability, temperature, and discharge characteristics in the shallow thermal reservoir area. Well testing data and interpretation of reservoir parameters therefrom, for upper 350 m part of geothermal system and possible model of deeper geothermal reservoir at Tatapani have been presented in the paper.

  1. 4. International reservoir characterization technical conference

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  2. Pressure maintenance in a volatile oil reservoir

    E-Print Network [OSTI]

    Schuster, Bruce Alan

    1989-01-01T23:59:59.000Z

    . . 40 Cumulative Gas Produced vs. Time - Variable Well Spacing and Injection Pattern 75 76 INTRODUCTION In a typical basin, most shallow oil field can be classified as black oil reservoirs. Phase changes which occur in black oil reservoirs can... of the reservoir fluid. Black oil reservoirs produce oil at low to moderate gas oil ratios generally less than 2, 000 SCF/STB, with stock-tank oil gravities less than 45' API. These reservoirs are also identifled by having formation volume factors less than 2...

  3. Research on improved and enhanced oil recovery in Illinois through reservoir characterization. [Quarterly technical report], December 28, 1991--March 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-04-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir`s capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  4. Master Thesis Modelling and Production Optimisation

    E-Print Network [OSTI]

    Master Thesis Modelling and Production Optimisation of Oil Reservoirs Dariusz Lerch Danmarks in a straightforward manner. Handling mentioned requirements in case of production optimisation of oil reservoirs, direct collocation approach in order to optimise oil production under water-flooding in a natural subsur

  5. Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  6. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2004-10-01T23:59:59.000Z

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.

  7. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.

    SciTech Connect (OSTI)

    Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

    2009-05-11T23:59:59.000Z

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.

  8. Effect of connate water on miscible displacement of reservoir oil by flue gas

    E-Print Network [OSTI]

    Maxwell, H. D.

    1960-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE Au gus t, 19 60 Major Subject: PETROLEUM ENGINEERING EFFECT OF CONNATE WATER ON MISCIBLE DISPLACEMENT OF RESERVOIR OIL BY FLUE GAS A Thesis H. D. MAXWELL, JR. Approved as to style and content by: haxrman of ommitte... of the petroleum industry there has been a continually increasing search for more economical and more efficient methods for increasing the primary recovery from an oil reservoir. Better production practices, including pressure maintenance programs using both...

  9. Characterization of Thin-Bedded Reservoir in the Gulf of Mexico: An Integrated Approach.

    E-Print Network [OSTI]

    Lalande, Severine

    2004-09-30T23:59:59.000Z

    of Petroleum Geologists. 2 Macintyrei sequence. The younger reservoirs (Trim A and Trim B) in the Trimosina sequence (0.8-0.3 Ma) are middle Pleistocene. Producing operations started in May 1987. As of October 1999, Green Canyon 18 reservoirs had produced 70... ................................................................................................................................58 viii LIST OF FIGURES FIGURE Page 1. Green Canyon cumulative productions from 1987 to 1999 ...................................2 2. Northern Gulf of Mexico map showing the outer continental shelf leasing areas. GC-Green Canyon. The star indicates...

  10. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect (OSTI)

    Castle, James W.; Molz, Fred J.; Brame, Scott; Current, Caitlin J.

    2003-02-07T23:59:59.000Z

    Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

  11. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect (OSTI)

    Castle, James W.; Molz, Fred J.

    2003-02-07T23:59:59.000Z

    Improved prediction of interwell reservoir heterogeneity is needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

  12. Olig sand, shallow oil zone, Elk Hills Field, Kern County, California: General reservoir study

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Olig Sand Reservoirs, classified as part of the Shallow Oil Zone, were studied and evaluated. The reservoirs are located in Section 30R, T30S, R23E and Section 24Z, T30S, R22E, M.D.B. and M., all in Elk Hills Oil Field, Naval Petroleum Reserve No. 1, Kern County, California. The three productive reservoirs studied cover an area of 255 acres, and originally contained 3311 MMCF of gas condensate in 4292 acre-feet of sand. The main reservoir, Fault Block I in Section 30R, has been on production since 1982 and is largely depleted. The reservoirs around wells 324-30R and 385-24Z should still be in a virgin state. They can be depleted either through those wells, when their service as Stevens Zone producers is completed, or by twin well replacements drilled specifically as Olig Sand completions. Thirty-six exhibits have been included to present basic data and study results in a manner that will enhance the readers's understanding of the reservoirs. These exhibits include six maps in the M-series, six sections in the S-Series, and fourteen figures in the F-Series, as well as ten tables. The Appendix includes miscellaneous basic data such as well logs, core analyses, pressure measurements, and well tests. The Calculations Section of the report develops and explains the analytical methods used to define well productivity, determine reserves, and schedule future production of those reserves. Although no MER recommendations have been made for these gas condensate reservoirs, recommended depletion schemes and schedules are presented. These schemes include one eventual recompletion and one new well to maximize present worth of these reservoirs which carry proved reserves of 289 MMCF and probable reserves of 853 MMCF, effective August 1, 1986. In addition, potential future testing is earmarked for wells 322-30R and 344-30R. 11 refs., 14 figs., 10 tabs.

  13. Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah

    SciTech Connect (OSTI)

    Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.; Bereskin, S. Robert; Deo, Milind D.

    2002-12-02T23:59:59.000Z

    The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

  14. Niobrara gas play: exploration and development of a low pressure, low permeability gas reservoir

    SciTech Connect (OSTI)

    Brown, C.A.; Crafton, J.W.; Golson, J.G.

    1981-01-01T23:59:59.000Z

    The Niobrara Gas Play in eastern Colorado, northwestern Kansas and western Nebraska is an exemplary model for developing an integrated interdisciplinary exploration and exploitation strategy. This paper demonstrates a method to incorporate all types of analyses including geology and gas origin, petrology, drilling and completion, log interpretation, fracture stimulation and producing methods. Together these analyses are integrated into a rigorous reservoir study using mathematical simulation to evaluate well productivity and reservoir performance. 9 refs.

  15. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    SciTech Connect (OSTI)

    Reid B. Grigg; Robert K. Svec; Zheng-Wen Zeng; Liu Yi; Baojun Bai

    2003-05-01T23:59:59.000Z

    A three-year contract for the project, DOE Contract No. DE-FG26-01BC15364, ''Improving CO{sub 2} Efficiency for Recovering Oil in Heterogeneous Reservoirs,'' was awarded and started on September 28, 2001. This project examines three major areas in which CO2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. This report discusses the activity during the six-month period covering October 1, 2002 through March 31, 2003 that covers the first and second fiscal quarters of the project's second year. During these two quarters of the project we have been working in several areas: reservoir fluid/rock interactions and their relationships to changing injectivity, and surfactant adsorption on quarried core and pure component granules, foam stability, and high flow rate effects. We also had a very productive project review in Midland, Texas. A paper on CO{sub 2}-brine-reservoir rock interaction was presented and included in the proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, 5-8 February, 2003. Papers have been accepted for the Second Annual Conference on Carbon Sequestration in Alexandria, VA in May, the Society of Core Analysis meeting in Pau, France in September, and two papers for the SPE Annual Meeting in Denver, CO in October.

  16. Evaluation of electromagnetic stimulation of Texas heavy oil reservoirs

    E-Print Network [OSTI]

    Doublet, Louis Edward

    1988-01-01T23:59:59.000Z

    . By determining the ~ir and fluid properties that were most important, empirical estimation equations for both ~ and wellbore power were developed. A large number of producing scenarios were evaluated for the sensitivity study. All the cases were simulated... oil deposits of Texas was made in order to find candidates for the EMH process. 3. An empirical heated oil production rate estimation equation was used to evaluate economically viable reservoirs. A single well, single phase, two...

  17. Predicting horizontal well performance in solution-gas drive reservoirs

    E-Print Network [OSTI]

    Plahn, Sheldon Von

    1986-01-01T23:59:59.000Z

    of 48 reservoir simulation runs Tl". e simulation runs encompassed a wide rar ge of PVT properties, relative perrnieability characteristics, roc} properties, and well configui ations These type curves can be used to estimate future production..., and formation thickness to drainage radius were constants of 500 and 0. 067 respectively Landrum et al, presented a diagram which could be used to deter mine the ratio of pi oductivities between horizontal and vei tical wells for the specific conditions mer...

  18. A manual for evaluation and exploitation of carbonate reservoirs 

    E-Print Network [OSTI]

    Cordova, Pedro Luis

    1992-01-01T23:59:59.000Z

    . . . 58 . . . 69 TABLE OF CONTENTS (Continued) Page 5. 1 Pressure Transient Analysis. 5. 1. 1 Homogeneous Reservon Model . 5. 1. 1. 1 Pressure Buildup Tests . . . . . 5. 1. 1. 2 Drawdown Tests. . . 72 . . . 72 . . . . 79 5. 1. 2 Dual...-Porosity Reservoir Model. 5. 1. 2. 1 Pseudosteady-State Model 5. 1. 2. 2 Transient Matrix Flow Model. . . . . . . . . 83 5. 2 Production Analysis . 5. 2, 1 Decline Curves. 5. 2. 2 Decline Curve Analysis Using Type Curves. . . . 5. 3 Drillstem Test . . . . 95...

  19. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Wayne D. Pennington

    2002-09-29T23:59:59.000Z

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  20. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01T23:59:59.000Z

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  1. Sixth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1980-12-18T23:59:59.000Z

    INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

  2. Berea Sandstone reservoirs in Ashland and Medina Counties, Ohio

    SciTech Connect (OSTI)

    Hillebrand, L.B.; Coogan, A.H.

    1984-12-01T23:59:59.000Z

    The Berea Sandstone is one of the better known rock formations in Ohio. It occurs at shallow depths throughout a broad belt in central Ohio and crops out to the north and west of these counties. In Ashland and Medina Counties, the Berea may be divided into two separately identifiable units. The upper unit, called the blanket Berea in outcrop, is approximately equivalent to the cap Berea in the subsurface. The second unit, which lies below the cap Berea varies considerably in its thickness. The traditional, long-standing, and generally accepted view is that the Berea Sandstone was deposited in Ashland and Medina Counties in southward-flowing river channels. More recent drilling in these counties has demonstrated that these sand channels are not continuous, but are isolated sandstone bodies in which petroleum has accumulated. The reservoir capacity of the Berea is between 8 and 22% with an average porosity of 15%. The sandstone consists of loosely cemented, medium to fine-grained quartz with only rare shale breaks below the cap Berea. In Ashland and Medina Counties, Berea wells generally produce oil. Initial production in this area ranges between 1 or 2 bbl and to 40 BOPD after treatment. Reservoirs in the Berea Sandstone generally are productive where the sandstones are thick. They are also productive where the sandstone is thinner, but high on structure. Although a high structural position is preferred, the critical consideration is the thickness of the sandstone body and the reservoir geometry.

  3. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect (OSTI)

    Hanks, Catherine

    2012-12-31T23:59:59.000Z

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940’s and was severely weathered. The composition of this ‘dead’ Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

  4. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01T23:59:59.000Z

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  5. Mitigation of reservoir souring -- Decision process

    SciTech Connect (OSTI)

    Kalpakci, B.; Magri, N.F.; Ravenscroft, P.D.; McTeir, M.D.K.; Arf, G.T.

    1995-11-01T23:59:59.000Z

    In this paper a general H{sub 2}S decision strategy, describing the types of information which should be gathered and decisions to be made addressing an existing H{sub 2}S problem, or new field development is presented. Taking H{sub 2}S into consideration in initial facility design, types of monitoring of H{sub 2}S that should be carried out during field development and exploitation will be discussed. The usefulness of computer phase modeling, including equation of state calculations, to determine H{sub 2}S concentrations in all phases from reservoir through the production stream will also be described. From quantification of the souring problem it can then be decided if, and where in the production stream, the use of sulfide scavengers is required. A laboratory based testing procedure will be presented, along with experimental data. In addition to consideration of the basic chemistry, results of an industry survey will be presented on the best applications for commercial sulfide scavenging products.

  6. Ninth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S. (Stanford Geothermal Program)

    1983-12-15T23:59:59.000Z

    The attendance at the Workshop was similar to last year's with 123 registered participants of which 22 represented 8 foreign countries. A record number of technical papers (about 60) were submitted for presentation at the Workshop. The Program Committee, therefore, decided to have several parallel sessions to accommodate most of the papers. This format proved unpopular and will not be repeated. Many of the participants felt that the Workshop lost some of its unique qualities by having parallel sessions. The Workshop has always been held near the middle of December during examination week at Stanford. This timing was reviewed in an open discussion at the Workshop. The Program Committee subsequently decided to move the Workshop to January. The Tenth Workshop will be held on January 22-24, 1985. The theme of the Workshop this year was ''field developments worldwide''. The Program Committee addressed this theme by encouraging participants to submit field development papers, and by inviting several international authorities to give presentations at the Workshop. Field developments in at least twelve countries were reported: China, El Salvador, France, Greece, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, the Philippines, and the United States. There were 58 technical presentations at the Workshop, of which 4 were not made available for publication. Several authors submitted papers not presented at the Workshop. However, these are included in the 60 papers of these Proceedings. The introductory address was given by Ron Toms of the U.S. Department of Energy, and the banquet speaker was A1 Cooper of Chevron Resources Company. An important contribution was made to the Workshop by the chairmen of the technical sessions. Other than Stanford Geothermal Program faculty members, they included: Don White (Field Developments), Bill D'Olier (Hydrothermal Systems), Herman Dykstra (Well Testing), Karsten Pruess (Well Testing), John Counsil (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

  7. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas -- Near-Term -- Class 2

    SciTech Connect (OSTI)

    Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

    1999-07-08T23:59:59.000Z

    This report describes progress during the third year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and mid-continent. The project introduced a number of potentially useful technologies, and demonstrated these technologies in actual oil field operations. Advanced technology was tailored specifically to the scale appropriate to the operations of Kansas producers. An extensive technology transfer effort is ongoing. Traditional technology transfer methods (e.g., publications and workshops) are supplemented with a public domain relational database and an online package of project results that is available through the Internet. The goal is to provide the independent complete access to project data, project results and project technology on their desktop. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). The value of cost-effective techniques for reservoir characterization and simulation at Schaben Field were demonstrated to independent operators. All major operators at Schaben have used results of the reservoir management strategy to locate and drill additional infill locations. At the Schaben Demonstration Site, the additional locations resulted in incremental production increases of 200 BOPD from a smaller number of wells.

  8. Fractured reservoir discrete feature network technologies. Annual report, March 7, 1996--February 28, 1997

    SciTech Connect (OSTI)

    Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.

    1998-01-01T23:59:59.000Z

    This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.

  9. Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs

    E-Print Network [OSTI]

    Wang, Yilin

    2009-05-15T23:59:59.000Z

    fluid cleanup is a complex problem, that can be influenced by many parameters such as the fluid system used, treatment design, flowback procedures, production strategy, and reservoir conditions. Residual polymer in the fracture can reduce the effective...

  10. A virtual company concept for reservoir management

    SciTech Connect (OSTI)

    Martin, F.D. [Dave Martin and Associates, Inc. (United States); Kendall, R.P.; Whitney, E.M. [Los Alamos National Lab., NM (United States)

    1998-12-31T23:59:59.000Z

    This paper describes how reservoir management problems were pursued with a virtual company concept via the Internet and World Wide Web. The focus of the paper is on the implementation of virtual asset management teams that were assembled with small independent oil companies. The paper highlights the mechanics of how the virtual team transferred data and interpretations, evaluated geological models of complex reservoirs, and used results of simulation studies to analyze various reservoir management strategies.

  11. Quantum discord dynamics in structured reservoirs

    E-Print Network [OSTI]

    Z. -K. Su; S. -J. Jiang

    2011-05-25T23:59:59.000Z

    The non-Markovian master equations are derived to study quantum discord dynamics of two qubits coupled to a common reservoir and two independent reservoirs, respectively. We compare the dynamics under different parameters, such as reservoir spectra and resonant parameters, at high temperature and at zero temperature. The results indicate that the dynamics at these two extreme temperatures share similar characters, as well as differences.

  12. Modeling, History Matching, Forecasting and Analysis of Shale Reservoirs Performance Using Artificial Intelligence

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    matching, forecasting and analyzing oil and gas production in shale reservoirs. In this new approach and analysis of oil and gas production from shale formations. Examples of three case studies in Lower Huron and New Albany shale formations (gas producing) and Bakken Shale (oil producing) is presented

  13. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    on Geothermal Resource Assessment and Reservoir EngineeriWorkshop on Geothermal Resources Assessment and ReserooirWorkshop on Geothermal Resources Assessment an ervoi r Engi

  14. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of...

  15. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of...

  16. Safety of Dams and Reservoirs Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act regulates dams and associated reservoirs to protect health and public safety and minimize adverse consequences associated with potential dam failure. The act describes the responsibilities...

  17. International reservoir operations agreement helps NW fish &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or 503-230-5131 International reservoir operations agreement helps Northwest fish and power Portland, Ore. - The Bonneville Power Administration and the British Columbia...

  18. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation Of Chemical...

  19. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismicity This project will develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics; finite element modeling;...

  20. Geothermal: Sponsored by OSTI -- Methodologies for Reservoir...

    Office of Scientific and Technical Information (OSTI)

    Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  1. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    i s maintain reservoir pressu found t o be f a i r l yPrieto. , Correlation of pressu temperature trends w i t h

  2. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

  3. The verification of a semi-analytical reservoir simulator using a finite difference reservoir simulator 

    E-Print Network [OSTI]

    Dube, Hans Gerhardt

    1990-01-01T23:59:59.000Z

    of Cases Fundamental Difference Between the Reservoir Simulators. Data Sets. . General Process of Verification. . . . . . . . . . . . . . . 22 24 25 25 26 29 32 36 SINGLE LAYER, RADIAL FLOW DRAWDOWN CASES. . 38 viii Page Infinite Cylindrical... Drawdown Problems. . . . . . . . . . . . . 38 41 43 45 49 50 52 MULTIPLE LAYER RESERVOIR, RADIAL FLOW DRAWDOWN CASES. 63 Simulation of Multiple Layer Reservoirs. . . . . . Simulation Parameters. Constant Rate Drawdown Tests in an Infinite...

  4. New Insight into Integrated Reservoir Management using Top-Down, Intelligent Reservoir Modeling

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    ;Introduction · Can be used as an alternative to traditional reservoir simulation ­ Cost ­ Man Power · May · Time and resources required : Only a small fraction performing a conventional reservoir simulation is basis for estimation of initial and remaining hydrocarbons volumes in the reservoir. · Results obtained

  5. A synthesis of the "Ecological Effects of Reservoir Operations at Blue Mesa Reservoir" Project

    E-Print Network [OSTI]

    A synthesis of the "Ecological Effects of Reservoir Operations at Blue Mesa Reservoir" Project June 2005 #12;2 RECLAMATION A synthesis of the "Ecological Effects of Reservoir Operations at Blue Mesa), happy angler with a nice catch of kokanee (B. Johnson), CSU students doing vertical gill net survey (B

  6. Syntectonic hydrocarbon migration and accumulation in Miley Reservoir, Rincon field, Ventura County, California

    SciTech Connect (OSTI)

    Nelson, D.E.; Harrison, R.A.

    1987-05-01T23:59:59.000Z

    The Miley reservoir of the Rincon field is located in the Central Transverse Ranges of southern California on a structural high that borders the Santa Barbara Channel. The east-west-trending Rincon and Ventura anticlines are part of a major oil-productive trend containing the Rincon, San Miguelito, and Ventura Avenue fields, which have estimated ultimate recovery of 1.7 billion BOE. Hydrocarbon accumulations in the multiple and stacked reservoirs within these three fields are controlled by the complex interplay of late Pleistocene folding and reverse fault development. The detailed interpretation reported here combines reservoir performance data with subsurface structural geology and sequential tectonic development to provide a new understanding of the relationship of migration barriers to oil accumulation and production. The Miley reservoir is an axial- and fault-controlled accumulation on the eastern terminus of the Rincon anticline. It is located in a structural saddle formed by the doubly plunging Rincon and Ventura anticlinal trend. Three operative trapping mechanisms confine oil pools: (1) axial accumulations associated with reverse fault closures; (2) traps on the hanging wall of dip-slip reverse faults; and (3) a permeability barrier developed in response to flexural slip folding. Oil trapped within the Rincon-Miley reservoir was primarily generated beneath the Santa Barbara Channel and migrated up the south flank of the anticlinal trend. Four stages of structural development and hydrocarbon migration, encompassing the last 700,000 years, have implications for the enhanced development of reservoirs on this anticlinal trend.

  7. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky

    SciTech Connect (OSTI)

    Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

    2010-07-01T23:59:59.000Z

    In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

  8. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-04-01T23:59:59.000Z

    Wave-induced variations of pore pressure in a partially-saturated reservoir result in oscillatory liquid flow. The viscous losses during this flow are responsible for wave attenuation. The same viscous effects determine the changes in the dynamic bulk modulus of the system versus frequency. These changes are necessarily linked to attenuation via the causality condition. We analytically quantify the frequency dependence of the bulk modulus of a partially saturated rock by assuming that saturation is patchy and then link these changes to the inverse quality factor. As a result, the P-wave attenuation is quantitatively linked to saturation and thus can serve as a saturation indicator.

  9. Aux Vases Sandstone diagenesis: Implications for hydrocarbon recovery from southern Illinois reservoirs

    SciTech Connect (OSTI)

    Seyler, B.D.; Beaty, D.S.; Huff, B.G. (Illinois State Geological Survey, Champaign (United States))

    1991-03-01T23:59:59.000Z

    The Aux Vases Sandstone (Mississippian) is a problematic yet productive reservoir in the Illinois basin. The Aux Vases Formation was deposited in a mixed siliciclastic-carbonate offshore environment. Hydrocarbon reservoirs are dominantly elongate sandstone bodies interpreted as subtidal facies within a prograding tidally influenced deposystem. Oil saturated zones, in most cases, are composed of fine-grained, cross-bedded, friable, feldspathic quartz sandstone. Resistivity logs, even from productive wells, are typically characterized by unusually low resistivities (2-4 ohms) that lead to high calculated water saturations. X-ray diffraction, SEM/EDS, and thin section studies were used to analyze diagenetic processes that may affect hydrocarbon production in several Aux Vases reservoirs. Diagenetic processes common to the field studied include: (1) early calcite cementation occluding primary porosity and inhibiting compaction, (2) dissolution of feldspar grains to form authigenic clay, (3) dissolution of early calcite cement, (4) diagenesis of detrital clay minerals into new authigenic clay minerals, and (5) multiple stages of quartz overgrowths that reduce porosity. Commonly used drilling and completion practices may adversely affect reservoir quality by reacting with diagenetic products. Loosening of the fine mineral fraction that causes migration of fines and swelling of expandable clay minerals are examples of this type of damage. Knowledge of reservoir mineralogy and diagenesis may influence drilling and completion practices and affect selection of secondary and tertiary recovery methods.

  10. Visual display of reservoir parameters affecting enhanced oil recovery

    SciTech Connect (OSTI)

    Wood, J.R.

    1996-04-30T23:59:59.000Z

    This project consists of two parts. In Part 1, well logs, other well data, drilling, and production data for the Pioneer Field in the southern San Joaquin Valley of California were obtained, assembled, and input to a commercial relational database manager. These data are being used in PC-based geologic mapping, evaluation, and visualization software programs to produce 2-D and 3-D representations of the reservoir geometry, facies and subfacies, stratigraphy, porosity, oil saturation, and other measured and model parameters. Petrographic and petrophysical measurements made on samples from Pioneer Field, including core, cuttings and liquids, are being used to calibrate the log suite. In Part 2, these data sets are being used to develop algorithms to correlate log response to geologic and engineering measurements. Rock alteration due to interactions with hot fluids are being quantitatively modeled and used to predict the reservoir response if the rock were subjected to thermally enhanced oil recovery (TEOR).

  11. Integrated reservoir management in the Carpinteria Offshore Field

    SciTech Connect (OSTI)

    Whitney, E.M.; Pawar, R.J.; Kendall, R.P.

    1998-12-31T23:59:59.000Z

    The Carpinteria Offshore Field is located near Santa Barbara, California. The State of California owns the portion of the field nearest the coast, and the US Federal Government the portion of the field that lies beyond a statutory three-mile coastal water limit. This mature reservoir has yielded more than 100 million barrels of oil from five platforms in its 30 years of production. The US Department of Energy`s Los Alamos National Laboratory (managed by the University of California) has joined with the State Lands Commission of California, the US Department of Interior`s Minerals Management Service, and the independent operator of the field, Pacific Operators Offshore, Inc., in a unique collaboration to redevelop the field. The reservoir management strategy for the Carpinteria Field relies on a long-term investment in simulation tools and expertise. These technologies and expertise are available to all project participants through a virtual enterprise business model.

  12. Petrofacies analysis - the petrophysical tool for geologic/engineering reservoir characterization

    SciTech Connect (OSTI)

    Watney, W.L.; Guy, W.J.; Gerlach, P.M. [Kansas Geological Survey, Lawrence, KS (United States)] [and others

    1997-08-01T23:59:59.000Z

    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measures of a reservoir. The word {open_quotes}petrofacies{close_quotes} makes an explicit link between petroleum engineers concerns with pore characteristics as arbiters of production performance, and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information, where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations will be reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production such as bypassed pay behind pipe and in old exploration holes, or to assess zonation and continuity of the reservoir. Petrofacies analysis is applied in this example to distinguishing flow units including discrimination of pore type as assessment of reservoir conformance and continuity. The analysis is facilitated through the use of color cross sections and cluster analysis.

  13. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect (OSTI)

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20T23:59:59.000Z

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore); and (3) accurate approaches to account for the effects of reservoir heterogeneity and for the optimization of nonconventional well deployment. An overview of our progress in each of these main areas is as follows. A general purpose object-oriented research simulator (GPRS) was developed under this project. The GPRS code is managed using modern software management techniques and has been deployed to many companies and research institutions. The simulator includes general black-oil and compositional modeling modules. The formulation is general in that it allows for the selection of a wide variety of primary and secondary variables and accommodates varying degrees of solution implicitness. Specifically, we developed and implemented an IMPSAT procedure (implicit in pressure and saturation, explicit in all other variables) for compositional modeling as well as an adaptive implicit procedure. Both of these capabilities allow for efficiency gains through selective implicitness. The code treats cell connections through a general connection list, which allows it to accommodate both structured and unstructured grids. The GPRS code was written to be easily extendable so new modeling techniques can be readily incorporated. Along these lines, we developed a new dual porosity module compatible with the GPRS framework, as well as a new discrete fracture model applicable for fractured or faulted reservoirs. Both of these methods display substantial advantages over previous implementations. Further, we assessed the performance of different preconditioners in an attempt to improve the efficiency of the linear solver. As a result of this investigation, substantial improvements in solver performance were achieved.

  14. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR...

    Broader source: Energy.gov (indexed) [DOE]

    Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir...

  15. Reservoir Characterization Research Laboratory Research Plans for 2013

    E-Print Network [OSTI]

    Texas at Austin, University of

    and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining Hydrocarbons Charles#12; Reservoir Characterization Research Laboratory Research Plans for 2013 Outcrop for heavy oil deposits within the Canadian Grosmont Formation. #12;iii Reservoir Characterization Research

  16. UONPR No. 1 Elk Hills: 26R reservoir: Reservoir analysis, reserves and economics, and alternative exploitation strategies: Final technical report

    SciTech Connect (OSTI)

    Not Available

    1989-01-12T23:59:59.000Z

    The 26R Stevens Reservoir is located along the southern, west-central flank of the Elk Hills structure in western Kern County, California. In September 1988, the 26R Reservoir produced an average of 22,447 barrels of oil per day from 46 producing wells. The average producing gas-oil ratio was 5912 cubic feet per barrel and the average water cut was 8.4%. The 26R Reservoir was put on production in July 1976, and gas injection for the purpose of pressure maintenance was initiated soon thereafter in October 1976. In September 1988, injection was an average of 168,911 Mcf/D into nine wells, which was in keeping with the policy of injecting 110% of calculated withdrawals. Gas production and residue gas injection are at or near current plant capacity. The purpose of this report is, therefore, to determine if current policy of full pressure maintenance is still viable, or if there is another exploitation option which would better result in maximizing both recovery of hydrocarbons and economic return. 16 figs., 18 tabs.

  17. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10T23:59:59.000Z

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  18. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report

    SciTech Connect (OSTI)

    Glenn, R.K.; Allen, W.W.

    1992-12-01T23:59:59.000Z

    The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  19. Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery

    E-Print Network [OSTI]

    Huff, Breanna

    2014-08-31T23:59:59.000Z

    in the sampled location. Initial production of early wells ranged from 800 to 2,000 barrels of oil and 300,000 to 500,000 cubic meters of gas daily (Cooperative Refinery Association, 1949). The majority of wells, however, initially produced from 200 to 400... to 15 barrels (Cooperative Refinery Association, 1949). This decrease in productivity led to the undertaking of secondary methods to repressure the reservoir to enhance oil recovery. Water flooding of the Wellington field was initiated in February 1953...

  20. GEOMECHANICAL MODELING AS A RESERVOIR CHARACTERIZATION TOOL

    E-Print Network [OSTI]

    GEOMECHANICAL MODELING AS A RESERVOIR CHARACTERIZATION TOOL AT RULISON FIELD, PICEANCE BASIN _______________ ____________________ Dr. Terence K. Young Department Head Department of Geophysics ii #12;ABSTRACT Geomechanics is a powerful reservoir characterization tool. Geomechanical modeling is used here to understand how the in

  1. Geothermal Reservoir Evaluation Considering Fluid Adsorption

    E-Print Network [OSTI]

    Stanford University

    SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J, California #12;GEOTHERMAL RESERVOIR EVALUATION CONSIDERING FLUID ADSORPTION AND COMPOSITION A DISSERTATIONFtion phenomena is described. Then, t h e implications of adsorption on material balance calculations and on vel1

  2. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 2. Propagation of a hydraulic fracture Seth fracture and fault mechanics, fluid flow in fractured reservoirs, and geome- chanics in nonconventional the development of complex hydraulic fractures (HFs) that are commonly ob- served in the field and in experiments

  3. STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS

    E-Print Network [OSTI]

    Stanford University

    STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS Henry J. Ramey, Jr., and A. Louis C a p i l l a r i t y . . . . . . . . . . 28 RADON I N GEOTHEENAL RESERVOIRS . . . . . . . 33 HEAT AND MASS TRANSPORT I N FRACTURED ROCKS . . . . . . . . . . . . .35 Mathematical Models

  4. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  5. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

  6. Two-dimensional simulation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    of the Raft River geothermal reservoir and wells. (SINDA-3G program) Abstract Computer models describing both the transient reservoir pressure behavior and the time...

  7. Modeling CO2 Sequestration in a Saline Reservoir and Depleted...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling CO 2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO 2 Sequestration Potential of The Ozark Plateau Aquifer System,...

  8. Sustainability of Shear-Induced Permeability for EGS Reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study...

  9. Extreme Methane Emissions from a Swiss Hydropower Reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using

  10. A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS

    E-Print Network [OSTI]

    Anderson, C.

    2011-01-01T23:59:59.000Z

    Paper SPE 7681, Soc. Petrol. Eng. Fifth Symp. on ReservoirPaper SPE 7679, Soc. Petrol. Eng. Fifth Symp. on Reservoir

  11. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...

    Broader source: Energy.gov (indexed) [DOE]

    model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanicalhydrologicthermal model of reservoir....

  12. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir

    Broader source: Energy.gov (indexed) [DOE]

    fluid injection into a tight reservoir on the edges of a hydrothermal field * Use seismic data to constrain geomechanicalhydrologicthermal model of reservoir * Model for...

  13. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    E-Print Network [OSTI]

    Brown, V.

    2013-01-01T23:59:59.000Z

    the field data to accurately model potential reservoirs andreservoir scale electrical anisotropy from marine CSEM datathe reservoir target can be determined from seismic data or

  14. Aligned vertical fractures, HTI reservoir symmetry, and Thomsen seismic anisotropy parameters

    E-Print Network [OSTI]

    Berryman, James G.

    2008-01-01T23:59:59.000Z

    seismic parameters for fractured reservoirs when the crackin a naturally fractured gas reservoir, The Leading Edge,

  15. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    SciTech Connect (OSTI)

    Roland N. Horne, Kewen Li, Mohammed Alaskar, Morgan Ames, Carla Co, Egill Juliusson, Lilja Magnusdottir

    2012-06-30T23:59:59.000Z

    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  16. Approaches to identifying reservoir heterogeneity and reserve growth opportunities from subsurface data: The Oficina Formation, Budare field, Venezuela

    SciTech Connect (OSTI)

    Hamilton, D.S.; Raeuchle, S.K.; Holtz, M.H. [Bureau of Economic Geology, Austin, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    We applied an integrated geologic, geophysical, and engineering approach devised to identify heterogeneities in the subsurface that might lead to reserve growth opportunities in our analysis of the Oficina Formation at Budare field, Venezuela. The approach involves 4 key steps: (1) Determine geologic reservoir architecture; (2) Investigate trends in reservoir fluid flow; (3) Integrate fluid flow trends with reservoir architecture; and (4) Estimate original oil-in-place, residual oil saturation, and remaining mobile oil, to identify opportunities for reserve growth. There are three main oil-producing reservoirs in the Oficina Formation that were deposited in a bed-load fluvial system, an incised valley-fill, and a barrier-strandplain system. Reservoir continuity is complex because, in addition to lateral facies variability, the major Oficina depositional systems were internally subdivided by high-frequency stratigraphic surfaces. These surfaces define times of intermittent lacustrine and marine flooding events that punctuated the fluvial and marginal marine sedimentation, respectively. Syn and post depositional faulting further disrupted reservoir continuity. Trends in fluid flow established from initial fluid levels, response to recompletion workovers, and pressure depletion data demonstrated barriers to lateral and vertical fluid flow caused by a combination of reservoir facies pinchout, flooding shale markers, and the faults. Considerable reserve growth potential exists at Budare field because the reservoir units are highly compartment by the depositional heterogeneity and structural complexity. Numerous reserve growth opportunities were identified in attics updip of existing production, in untapped or incompletely drained compartments, and in field extensions.

  17. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-01-01T23:59:59.000Z

    The main objectives of the proposed study are as follows: (1) To understand and evaluate an unusual primary oil production mechanism which results in decreasing (retrograde) oil cut (ROC) behavior as reservoir pressure declines. (2) To improve calculations of initial oil in place so as to determine the economic feasibility of completing and producing a well. (3) To optimize the location of new wells based on understanding of geological and petrophysical properties heterogeneities. (4) To evaluate various secondary recovery techniques for oil reservoirs producing from fractured formations. (5) To enhance the productivity of producing wells by using new completion techniques. These objectives are important for optimizing field performance from West Carney Field located in Lincoln County, Oklahoma. The field, which was discovered in 1980, produces from Hunton Formation in a shallow-shelf carbonate reservoir. The early development in the field was sporadic. Many of the initial wells were abandoned due to high water production and constraints in surface facilities for disposing excess produced water. The field development began in earnest in 1995 by Altex Resources. They had recognized that production from this field was only possible if large volumes of water can be disposed. Being able to dispose large amounts of water, Altex aggressively drilled several producers. With few exceptions, all these wells exhibited similar characteristics. The initial production indicated trace amount of oil and gas with mostly water as dominant phase. As the reservoir was depleted, the oil cut eventually improved, making the overall production feasible. The decreasing oil cut (ROC) behavior has not been well understood. However, the field has been subjected to intense drilling activity because of prior success of Altex Resources. In this work, we will investigate the primary production mechanism by conducting several core flood experiments. After collecting cores from representative wells, we will study the wettability of the rock and simulate the depletion behavior by mimicking such behavior under controlled lab conditions. The overall project goal would be to validate our hypothesis and to determine the best method to exploit reservoirs exhibiting ROC behavior. To that end, we have completed the Budget Period I and have fulfilled many of the objectives. We have developed a viable model to explain the reservoir mechanism and have been able to develop a correlation between core and log data so that we can extend our analysis to other, yet unexploited, regions. In Budget Period II, we will continue to drill several additional, geologically targeted wells. Depending on the depositional system, these wells can be either vertical or horizontal wells. We will closely examine the secondary recovery techniques to improve the ultimate recovery from this field. In the mean time, we will continue to refine our geological and petrophysical model so that we can extend our approach to other adjacent fields. In the Budget Period III, we will monitor the field performance and revise and refine our models to further optimize the performance.

  18. Extracting maximum petrophysical and geological information from a limited reservoir database

    SciTech Connect (OSTI)

    Ali, M.; Chawathe, A.; Ouenes, A. [New Mexico Institute of Mining and Technology, Socorro, NM (United States)] [and others

    1997-08-01T23:59:59.000Z

    The characterization of old fields lacking sufficient core and log data is a challenging task. This paper describes a methodology that uses new and conventional tools to build a reliable reservoir model for the Sulimar Queen field. At the fine scale, permeability measured on a fine grid with a minipermeameter was used in conjunction with the petrographic data collected on multiple thin sections. The use of regression analysis and a newly developed fuzzy logic algorithm led to the identification of key petrographic elements which control permeability. At the log scale, old gamma ray logs were first rescaled/calibrated throughout the entire field for consistency and reliability using only four modem logs. Using data from one cored well and the rescaled gamma ray logs, correlations between core porosity, permeability, total water content and gamma ray were developed to complete the small scale characterization. At the reservoir scale, outcrop data and the rescaled gamma logs were used to define the reservoir structure over an area of ten square miles where only 36 wells were available. Given the structure, the rescaled gamma ray logs were used to build the reservoir volume by identifying the flow units and their continuity. Finally, history-matching results constrained to the primary production were used to estimate the dynamic reservoir properties such as relative permeabilities to complete the characterization. The obtained reservoir model was tested by forecasting the waterflood performance and which was in good agreement with the actual performance.

  19. Visual display of reservoir parameters affecting enhanced oil recovery

    SciTech Connect (OSTI)

    Wood, J.R.

    1996-01-27T23:59:59.000Z

    This project will provide a detailed example, based on a field trial, of how to evaluate a field for EOR operations utilizing data typically available in an older field which has under gone primary development. The approach will utilize readily available, affordable PC-based computer software and analytical services. This study will illustrate the steps involved in: (1) setting up a relational database to store geologic, well-log, engineering, and production data, (2) integration of data typically available for oil and gas fields with predictive models for reservoir alteration, and (3) linking these data and models with modern computer software to provide 2-D and 3-D visualizations of the reservoir and its attributes. The techniques are being demonstrated through a field trial on a reservoir, Pioneer Field, a field that produces from the Monterey Formation, which is a candidate for thermal EOR. Technical progress is summarized for the following tasks: (1) project administration and management; (2) data collection; (3) data analysis and measurement; (4) modeling; and (5) technology transfer.

  20. Horizontal wells enhance development of thin offshore gas reservoirs

    SciTech Connect (OSTI)

    Gidman, B. [Chevron USA, Lafayette, LA (United States); Hammons, L.R.B.; Paulk, M.D. [Baker Hughes INTEQ, Lafayette, LA (United States)

    1995-03-01T23:59:59.000Z

    Horizontal wells in clastic rocks can reduce water coning problems and increase production rates as much as six-fold. They are now practical to drill for developing Gulf of Mexico gas reservoirs that may be less than 10 ft thick. In 1991, Chevron USA began exploring the feasibility of developing thin gas reservoirs in western Gulf of Mexico (GOM) fields. A critical element that needed to be addressed was the minimum target thickness that is geologically and operationally practical to drill with current horizontal well technology. Chevron`s first GOM horizontal well spudded in February 1992. The target was 31 ft of net effective gas on water in a massive Pleistocene sand at 1,700 ft TVD. Chevron spudded a second horizontal well in the same field during June 1993. This well was geosteered into a 19-ft gas sand with no immediate water contact at 1,650 ft TVD. The entire 1,000-ft horizontal section was interpreted as gas from the MWD tool response. A spinner survey was not run in this hole. At 19 MMcfd of gas, this well also proved to be a major economic success because of its low cost. After the second completion, Chevron`s next proposed well targeted a gas reservoir with a maximum thickness of only 7 ft.

  1. Journal of Water Resources Planning and Management, Vol. 125, No. 3, pp. 143-153, May/June 1999 Some Derived Operating Rules for Reservoirs

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    1 Journal of Water Resources Planning and Management, Vol. 125, No. 3, pp. 143-153, May/June 1999 for reservoirs in series and in parallel for water supply, flood control, hydropower, water quality-term operation for hydropower production and energy storage. For reservoirs in parallel, additional new special

  2. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    Green, D.W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite G.P.

    1999-10-29T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

  3. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-11-03T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

  4. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    SciTech Connect (OSTI)

    Watney, W.L.

    1994-12-01T23:59:59.000Z

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas City limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.

  5. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    SciTech Connect (OSTI)

    Perri, Pasquale R.; Cooney, John; Fong, Bill; Julander, Dale; Marasigan, Aleks; Morea, Mike; Piceno, Deborah; Stone, Bill; Emanuele, Mark; Sheffield, Jon; Wells, Jeff; Westbrook, Bill; Karnes, Karl; Pearson, Matt; Heisler, Stuart

    2000-04-24T23:59:59.000Z

    The primary objective of this project was to conduct advanced reservoir characterization and modeling studies in the Antelope Shale of the Bureau Vista Hills Field. Work was subdivided into two phases or budget periods. The first phase of the project focused on a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work would then be used to evaluate how the reservoir would respond to enhanced oil recovery (EOR) processes such as of CO2 flooding. The second phase of the project would be to implement and evaluate a CO2 in the Buena Vista Hills Field. A successful project would demonstrate the economic viability and widespread applicability of CO2 flooding in siliceous shale reservoirs of the San Joaquin Valley.

  6. Post Waterflood C02 Miscible Flood in Light Oil Fluvial-Dominated Deltaic Reservoirs

    SciTech Connect (OSTI)

    John Augustine

    1998-01-13T23:59:59.000Z

    Only one well remains in production in the Port Neches CO2 project; Kuhn #14. Production from this project is approaching economic limit and the project is nearing termination at this point. The work over to return Kuhn #38 to production failed and the well is currently shut in. All produced CO2 is currently being reinjected in the reservoir. The CO2 recycled volume is 2 MMCFD.

  7. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, March 13--June 12, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The eighteen 10-acre infill wells which were drilled as part of the field demonstration portion of the project are all currently in service with no operational problems. These wells consist of fourteen producing wells and four injection wells. The producing wells are currently producing a total of approximately 650 bopd, down from a peak rate of 900 bopd. Unit production is currently averaging approximately 3,000 bopd, 12,000 bwpd and 18,000 bwipd. The paper describes progress in core analysis, reservoir surveillance, well stimulation, validation of reservoir characterization (includes thin section analyses, depositional environments, and paleontologic analysis), material balance decline curve analysis, and validation of reservoir simulation (includes geostatistical and deterministic).

  8. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in Frio Fluvial-Deltaic Sandstone Reservoirs of South Texas

    SciTech Connect (OSTI)

    McRae, L.E.; Holtz, M.H.; Knox, P.R.

    1995-07-01T23:59:59.000Z

    The Frio Fluvial-Deltaic Sandstone Play of South Texas is one example of a mature play where reservoirs are being abandoned at high rates, potentially leaving behind significant unrecovered resources in untapped and incompletely drained reservoirs. Nearly 1 billion barrels of oil have been produced from Frio reservoirs since the 1940`s, yet more than 1.6 BSTB of unrecovered mobile oil is estimated to remain in the play. Frio reservoirs of the South Texas Gulf Coast are being studied to better characterize interwell stratigraphic heterogeneity in fluvial-deltaic depositional systems and determine controls on locations and volumes of unrecovered oil. Engineering data from fields throughout the play trend were evaluated to characterize variability exhibited by these heterogeneous reservoirs and were used as the basis for resource calculations to demonstrate a large additional oil potential remaining within the play. Study areas within two separate fields have been selected in which to apply advanced reservoir characterization techniques. Stratigraphic log correlations, reservoir mapping, core analyses, and evaluation of production data from each field study area have been used to characterize reservoir variability present within a single field. Differences in sandstone depositional styles and production behavior were assessed to identify zones with significant stratigraphic heterogeneity and a high potential for containing unproduced oil. Detailed studies of selected reservoir zones within these two fields are currently in progress.

  9. North Sabine Lake field: complex deposition and reservoir morphology of lower Hackberry (Oligocene), southwest Louisiana

    SciTech Connect (OSTI)

    Eubanks, L.G.

    1987-10-01T23:59:59.000Z

    Gas and condensate production at the North Sabine Lake field is from sands of the Hackberry wedge of the Oligocene Frio Formation. These lower Hackberry sands were deposited in a preexisting submarine canyon. Multiple sand bodies are present, and five patterns of sand deposition are recognized from SP logs: (1) incised channel fill, (2) braided fan channel, (3) intermediate suprafan, (4) proximal suprafan, and (5) overbank. Although three faults surround the field, the primary trapping mechanism is stratigraphic. The development and production history of the field indicate that many small sand lenses have coalesced to form a single large reservoir; however, differences in permeability have caused variations in water influx and in the levels of gas-water contacts. Sand lenses that are not connected to the larger reservoir are of limited size and have produced small amounts of hydrocarbon. Development of the field has been complicated by casing damage probably caused by reservoir compaction. 11 figures, 2 tables.

  10. Ourcrop characterization of sandstone heterogeneity in Carboniferous reservoirs, Black Warrior basin, Alabama

    SciTech Connect (OSTI)

    Pashin, J.C.; Osborne, E.W.; Rindsberg, A.K.

    1991-08-01T23:59:59.000Z

    Where production is currently declining, improved recovery strategies, such as waterflooding, injection, strategic well placement, and infill drilling may be used to increase production of liquid hydrocarbons from reservoir sandstone in the Black Warrior basin. Characterizing reservoir heterogeneity provides information regarding how those strategies can best be applied, and exceptional exposures of asphaltic sandstone in north Alabama enable first-hand observation of such heterogeneity. This report identifies heterogeneity in Carboniferous strata of the Black Warrior basin on the basis of vertical variations, lithofacies analysis. Results of lithofacies analysis and depositional modeling were synthesized with existing models of sandstone heterogeneity to propose methods which may improve hydrocarbon recovery in Carboniferous sandstone reservoirs of the Black Warrior basin. 238 refs., 89 figs. 2 tabs.

  11. Nineteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1994-01-20T23:59:59.000Z

    PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Xianfa Deng who coordinated the meeting arrangements for the Workshop. Roland N. Home Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  12. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term, Class I

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Reynolds, Rodney R.; McCune, A. Dwayne; Michnick, Michael J.; Walton, Anthony W.; Watney, W. Lynn

    2000-06-08T23:59:59.000Z

    This project involved two demonstration projects, one in a Marrow reservoir located in the southwestern part of the state and the second in the Cherokee Group in eastern Kansas. Morrow reservoirs of western Kansas are still actively being explored and constitute an important resource in Kansas. Cumulative oil production from the Morrow in Kansas is over 400,000,000 bbls. Much of the production from the Morrow is still in the primary stage and has not reached the mature declining state of that in the Cherokee. The Cherokee Group has produced about 1 billion bbls of oil since the first commercial production began over a century ago. It is a billion-barrel plus resource that is distributed over a large number of fields and small production units. Many of the reservoirs are operated close to the economic limit, although the small units and low production per well are offset by low costs associated with the shallow nature of the reservoirs (less than 1000 ft. deep).

  13. Heterogeneity in Mississippi oil reservoirs, Black Warrior basin, Alabama: An overview

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Irvin, G.D. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1993-09-01T23:59:59.000Z

    Four Mississippian sandstone units produce oil in the Black Warrior basin of Alabama: (1) Lewis; (2) Carter; (3) Millerella, and (4) Gilmer. Reservoir geometries differ for each producing interval, reflecting variation in depositional style during the evolution of a foreland basin. Widespread strike-elongate bodies of Lewis sandstone with complex internal geometry were deposited during destruction of the Fort Payne-Tuscumbia carbonate ramp and represent inception of the foreland basin and initial forebulge migration. Synorogenic Carter sandstone is part of the first major deltaic foreland basin fill and accounts for more than 80% of oil production in the basin. Millerella sandstone was deposited as transgressive sand patches during the final stages of delta destruction. Gilmer sandstone occurs as imbricate sandstone lenses deposited in a constructive shoal-water delta and is part of the late relaxational basin fill. Interaction of siliciclastic sediment with ancestral and active carbonate ramps was a primary control on facies architecture and reservoir heterogeneity. Patterns of injection and reservoir fluid production, as well as field- to basin-scale depositional, petrological, petrophysical and geostatistical modeling reveal microscopic to megascopic controls on reservoir heterogeneity and hydrocarbon producibility. At a megascopic scale, isolation or continuity of reservoir bodies is a function of depositional topography and the degree of marine reworking of genetically coherent sandstone bodies. These factors result in amalgamated reservoir bodies or in compartments that may remain uncontacted or unconnected during field development. Within producing fields, segmentation of amalgamated sandstone bodies into individual lenses, grain size variations, depositional barriers, and diagenetic baffles further compartmentalize reservoirs, increase tortuosity of fluid flow, and affect sweep efficiency during improved recovery operations.

  14. Measurement of Lake Roosevelt Biota in Relation to Reservoir Operations; 1992 Annual Report.

    SciTech Connect (OSTI)

    Griffith, Janelle R.; McDowell, Amy C.

    1996-01-01T23:59:59.000Z

    The purpose of this research project is to collect data to model resident fish requirements for Lake Roosevelt as part of the Bonneville Power Administration (BPA), Bureau of Reclamation (BoR), and U.S. Army Corps of Engineer`s (ACE) System Operation Review. The System Operation Review (SOR) is a tri-agency team functioning to review the use and partitioning of Columbia Basin waters. User groups of the Columbia have been defined as power, irrigation, flood control, anadromous fish, resident fish, wildlife, recreation, water quality, navigation, and cultural resources. Once completed the model will predict biological responses to different reservoir operation strategies. The model being developed for resident fish is based on Montana Department of Fish, Wildlife, and Parks model for resident fish requirements within Hungry Horse and Libby Reservoirs. While the Montana model predicts fish growth based on the impacts of reservoir operation and flow conditions on primary and secondary production levels, the Lake Roosevelt model will also factor in the affects of water retention time on zooplankton production levels and fish entrainment. Major components of the Lake Roosevelt model include: (1) quantification of impacts to zooplankton, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; (2) quantification of number, distribution, and use of fish food organisms in the reservoir by season; (3) determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and (4) quantification of entrainment levels of fish as related to reservoir operations and water retention times. This report contains the results of the resident fish system operation review program for Lake Roosevelt from January through December 1992.

  15. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2006-2007 Annual Progress Report.

    SciTech Connect (OSTI)

    Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

    2009-05-11T23:59:59.000Z

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide resident fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program is also designed to maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was very unproductive this year as a fishery. Fish morphometric and water quality data indicate that the turbidity is severely impacting trout survival. Lake Billy Shaw was very productive as a fishery and received good ratings from anglers. Mountain View was also productive and anglers reported a high number of quality sized fish. Water quality (specifically dissolved oxygen and temperature) is the main limiting factor in our fisheries.

  16. Lower Cretaceous and Upper Jurassic oil reservoirs of the updip basement structure play: Southwest Alabama

    SciTech Connect (OSTI)

    Mink, R.M.; Mancini, E.A. [Geological Survey of Alabama, Tuscaloosa, AL (United States)

    1995-10-01T23:59:59.000Z

    Exploration for Lower Cretaceous and Upper Jurassic reservoirs associated with updip basement structures currently is the most active exploratory oil play in Alabama. High initial flow rates, on the order of hundreds to thousands of barrels of oil per day, are commonly encountered at depths between 8,200 and 14,500 feet. Fifty-one fields have been established and 25 million barrels of oil have been produced from these fields developed in Lower Cretaceous Hosston and Upper Jurassic Haynesville, Smackover, and Norphlet reservoirs. Production from Smackover carbonates began at Toxey field in 1967 and from Haynesville sandstones at Frisco City field in 1986. As of September 1994, Smackover wells averaged 88 barrels of oil per day and Haynesville wells averaged 284 barrels of oil per day. In 1994, production was established in the Norphlet at North Excel field and in the Hosston at Pleasant Home field. Reservoirs in the updip basement structure play cluster in three distinct areas; (1) a western area on the Choctaw ridge complex, (2) a central area on the Conecuh ridge complex, and (3) an eastern area in the Conecuh embayment. Reservoir lithologies include Smackover limestones and dolostones and Hosston, Haynesville, Smackover, and Norphlet sandstones. Hydrocarbon traps are structural or combination traps where reservoirs occur on the flanks or over the crests of basement palohighs. An understanding of the complex reservoir properties and trap relationships is the key to successful discovery and development of Lower Cretaceous and Upper Jurassic oil reservoirs of the updip basement structure play of southwest Alabama.

  17. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Final report, September 29, 1993--September 30, 1996

    SciTech Connect (OSTI)

    Weiss, W.W.; Buckley, J.S.; Ouenes, A.

    1997-05-01T23:59:59.000Z

    The goal of this three-year project was to provide a quantitative definition of reservoir heterogeneity. This objective was accomplished through the integration of geologic, geophysical, and engineering databases into a multi-disciplinary understanding of reservoir architecture and associated fluid-rock and fluid-fluid interactions. This interdisciplinary effort integrated geological and geophysical data with engineering and petrophysical results through reservoir simulation to quantify reservoir architecture and the dynamics of fluid-rock and fluid-fluid interactions. An improved reservoir description allows greater accuracy and confidence during simulation and modeling as steps toward gaining greater recovery efficiency from existing reservoirs. A field laboratory, the Sulimar Queen Unit, was available for the field research. Several members of the PRRC staff participated in the development of improved reservoir description by integration of the field and laboratory data as well as in the development of quantitative reservoir models to aid performance predictions. Subcontractors from Stanford University and the University of Texas at Austin (UT) collaborated in the research and participated in the design and interpretation of field tests. The three-year project was initiated in September 1993 and led to the development and application of various reservoir description methodologies. A new approach for visualizing production data graphically was developed and implemented on the Internet. Using production data and old gamma rays logs, a black oil reservoir model that honors both primary and secondary performance was developed. The old gamma ray logs were used after applying a resealing technique, which was crucial for the success of the project. In addition to the gamma ray logs, the development of the reservoir model benefitted from an inverse Drill Stem Test (DST) technique which provided initial estimates of the reservoir permeability at different wells.

  18. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2005-07-01T23:59:59.000Z

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we continue to describe the use of surfactant to alter the wettability of the rock. By altering the wettability, we should be able to change the water-gas ratio in the reservoir and, hence, improve the productivity from the well. In our Engineering and Geological Analysis section, we present our rock typing analysis work which combines the geological data with engineering data to develop a unique rock characteristics description. The work demonstrates that it is possible to incorporate geological description in engineering analysis so that we can come up with rock types which have unique geological characteristics, as well as unique petrophysical characteristics. Using this rock typing scheme, we intend to develop a detailed reservoir description in our next quarterly report.

  19. The verification of a semi-analytical reservoir simulator using a finite difference reservoir simulator

    E-Print Network [OSTI]

    Dube, Hans Gerhardt

    1990-01-01T23:59:59.000Z

    reduction in CPU time and computer memory, when compared to using finite difference reservoir simulators and mainframe computers, to solve the same problem. Development of Computers The advances that have been made in computing power and the improved...THE VERIFICATION OF A SEMI-ANALYTICAL RESERVOIR SIMULATOR USING A FINITE DIFFERENCE RESERVOIR SIMULATOR A Thesis by HANS GERHARDT DUBE Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment of the requirements...

  20. Characterization and reservoir evaluation of a hydraulically fractured, shaly gas reservoir

    E-Print Network [OSTI]

    Santiago Molina, Cesar Alfonso

    1991-01-01T23:59:59.000Z

    the possibility of replacing average reservoir pressures for short-term pressure data to evaluate gas reserves. Petrophysical properties derived from logs (shale content and porosity) were found to correlate very well. A correlation between average porosity..., Shaly Gas Reservoir. ( December 1991 ) Cesar Alfonso Santiago Molina, Ingeniero de Petroleos, Universidad Nacional de Colombia; Chair of Advisory Committee: Dr. Steven W. Poston Shale content in reservoir rocks affect their petrophysical properties...

  1. Reservoir characterization of the Clough area, Barnett Shale, Wise County, Texas. Topical report, January-July 1995

    SciTech Connect (OSTI)

    Hill, N.C.; Lancaster, D.E.

    1995-07-01T23:59:59.000Z

    The objective of this work was to learn more about the reservoir characteristics in the Barnett Shale. Specifically, from an analysis of pressure, production, interference, and fracture treatment data in three Mitchell Energy Corporation Cough area wells, the authors can infer the relationship between the induced hydraulic fractures and the natural fracture system in the reservoir. The authors are learning something about drainage area size, shape, and orientation.

  2. Application of integrated reservoir management and reservoir characterization to optimize infill drilling

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  3. Reservoir characterization of the Ribeira Grande (Azores) field

    SciTech Connect (OSTI)

    Mete, L. (Aquater, Spa, Italy); Rivera-Rodriguez, J.

    1982-01-01T23:59:59.000Z

    A description is made of the geothermal system located at the Ribeira Grande area in San Miguel Island at Azores. To date, three deep wells have been drilled, two of them are considered to be productive and the other one, although capable of production, has been used as an observation well due to completion problems. One of the wells is presently connected to a 3 MW-portable power plant. A series of tests, including both production and well testing, have been conducted in order to provide a reservoir characterization of the system. Several injection falloff, two rate and multiple rate tests have been carried out, as well as a preliminary interference-type test. A description of results obtained is provided.

  4. Dams and Reservoirs Safety Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Dams and Reservoirs Safety Act provides for the certification and inspection of dams in South Carolina and confers regulatory authority on the Department of Health and Environmental Control....

  5. Study of induced seismicity for reservoir characterization

    E-Print Network [OSTI]

    Li, Junlun, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...

  6. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  7. Reservoir fracture characterizations from seismic scattered waves

    E-Print Network [OSTI]

    Fang, Xinding

    2012-01-01T23:59:59.000Z

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  8. Salinity routing in reservoir system modeling

    E-Print Network [OSTI]

    Ha, Mi Ae

    2007-04-25T23:59:59.000Z

    in several major river basins in Texas and neighboring states. WRAP is the river/reservoir system simulation model incorporated in the Water Availability Modeling (WAM) System applied by agencies and consulting firms in Texas in planning and water right...

  9. Estimating uncertainties in integrated reservoir studies

    E-Print Network [OSTI]

    Zhang, Guohong

    2004-09-30T23:59:59.000Z

    To make sound investment decisions, decision makers need accurate estimates of the uncertainties present in forecasts of reservoir performance. In this work I propose a method, the integrated mismatch method, that incorporates the misfit...

  10. Determination of mechanical properties of reservoir rock

    E-Print Network [OSTI]

    Barnett, Ashley

    1993-01-01T23:59:59.000Z

    Apparatus, experimental procedure, and methodology have been developed to determine the mechanical response of reservoir rock. The apparatus is capable of subjecting cylindrical core specimens to triaxial stress states and temperatures...

  11. Continuous variable entanglement dynamics in structured reservoirs

    E-Print Network [OSTI]

    R. Vasile; S. Olivares; M. G. A. Paris; S. Maniscalco

    2009-10-13T23:59:59.000Z

    We address the evolution of entanglement in bimodal continuous variable quantum systems interacting with two independent structured reservoirs. We derive an analytic expression for the entanglement of formation without performing the Markov and the secular approximations and study in details the entanglement dynamics for various types of structured reservoirs and for different reservoir temperatures, assuming the two modes initially excited in a twin-beam state. Our analytic solution allows us to identify three dynamical regimes characterized by different behaviors of the entanglement: the entanglement sudden death, the non-Markovian revival and the non-secular revival regimes. Remarkably, we find that, contrarily to the Markovian case, the short-time system-reservoir correlations in some cases destroy quickly the initial entanglement even at zero temperature.

  12. Coarse scale simulation of tight gas reservoirs 

    E-Print Network [OSTI]

    El-Ahmady, Mohamed Hamed

    2004-09-30T23:59:59.000Z

    It is common for field models of tight gas reservoirs to include several wells with hydraulic fractures. These hydraulic fractures can be very long, extending for more than a thousand feet. A hydraulic fracture width is ...

  13. GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly

    E-Print Network [OSTI]

    GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing from tropical and boreal reservoirs are significant. In light of hydropower's potential role as a green to characterize carbon dioxide (CO2) and methane (CH4) emissions from hydropower reservoirs in the US Southeast

  14. Reservoir cross-over in entanglement dynamics

    E-Print Network [OSTI]

    L. Mazzola; S. Maniscalco; K. -A. Suominen; B. M. Garraway

    2009-08-28T23:59:59.000Z

    We study the effects of spontaneous emission on the entanglement dynamics of two qubits interacting with a common Lorentzian structured reservoir. We assume that the qubits are initially prepared in a Bell-like state. We focus on the strong coupling regime and study the entanglement dynamics for different regions of the spontaneous emission decay parameter. This investigation allows us to explore the cross-over between common and independent reservoirs in entanglement dynamics.

  15. Finite temperature reservoir engineering and entanglement dynamics

    E-Print Network [OSTI]

    S. Fedortchenko; A. Keller; T. Coudreau; P. Milman

    2014-05-29T23:59:59.000Z

    We propose experimental methods to engineer reservoirs at arbitrary temperature which are feasible with current technology. Our results generalize to mixed states the possibility of quantum state engineering through controlled decoherence. Finite temperature engineered reservoirs can lead to the experimental observation of thermal entanglement --the appearance and increase of entanglement with temperature-- to the study of the dependence of finite time disentanglement and revival with temperature, quantum thermodynamical effects, among many other applications, enlarging the comprehension of temperature dependent entanglement properties.

  16. Numerical simulation of sandstone reservoir models

    E-Print Network [OSTI]

    Gross, Stephen Joseph

    1983-01-01T23:59:59.000Z

    . Case 3 - Alternatin h1 h and low ermeabilities Waterflood performance of the Case 3 reservoir is shown in Figures 19 and 20. The process 1s practically rate insensitive for both the high and low viscosity ratio cases because of the ex istence... The results of the water flood study indicate that lower rates result i n higher waterflood oil recoveries from heterogeneous reservoirs, particularly where high oil-water viscosity ratios exist. These results support the conclusions of Jordan et. al...

  17. 3-DIMENSIONAL GEOMECHANICAL MODELING OF A TIGHT GAS RESERVOIR, RULISON FIELD, PICEANCE BASIN, COLORADO

    E-Print Network [OSTI]

    3-DIMENSIONAL GEOMECHANICAL MODELING OF A TIGHT GAS RESERVOIR, RULISON FIELD, PICEANCE BASIN, COLORADO by Kurtis R. Wikel #12;ii #12;iii ABSTRACT An integrated 3-dimensional geomechanical model have used the predictive geomechanical model to compare production and effective stress change

  18. Gypsy field project in reservoir characterization. Quarterly report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    O`Meara, D.J. Jr.

    1995-01-01T23:59:59.000Z

    The overall objective of this project is to use the extensive Gypsy Field laboratory and data set as a focus for developing and testing reservoir characterization methods that are targeted at improved recovery of conventional oil. The Gypsy Field laboratory consists of coupled outcrop and subsurface sites which have been characterized to a degree of detail not possible in a production operation.

  19. Altering Wettability in Gas Condensate Sandstone Reservoirs for Gas Mobillity Improvement

    E-Print Network [OSTI]

    Fernandez Martinez, Ruth Gabriela

    2012-07-16T23:59:59.000Z

    ). ...................................................................... 7 Fig. 6-Productivity Index (PI) vs. reservoir pressure of the Arun Field, showing a sharp drop with decreasing pressure. (Afidick et al. 1994). ................................... 8 Fig. 7-BX1 pressure drop vs. time in Britannia Field, where... for untreated Berea sandstone cores. ................................... 30 Fig. 16-Gas relative permeability of untreated rocks at the endpoints. ............................ 31 Fig. 17-BR1 Liquid Imbibitions...

  20. Simulation study to investigate development options for a super-heavy oil reservoir

    E-Print Network [OSTI]

    Diaz Franco, Jose Manuel

    2001-01-01T23:59:59.000Z

    accumulation - lies about 3000 ft. ss. and has a gross thickness of 560 ft. The simulated area contains 120 MMSTB oil of 9° API gravity with in situ viscosity of 6,000 cp. Production began in 1992 with the reservoir being drained by one vertical well, one...