National Library of Energy BETA

Sample records for reservoir repressuring extraction

  1. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  2. Heat extracted from the long term flow test in the Fenton Hill HDR reservoir

    SciTech Connect (OSTI)

    Kruger, Paul; Robinson, Bruce

    1994-01-20

    A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

  3. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014ResidentialRepressuring

  4. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172 3,009165,360IndustrialProcessedRepressuring

  5. Ohio Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew Field DiscoveriesElements)DecadeRepressuring

  6. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecade Year-0YearYearRepressuring (Million

  7. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecade Year-0YearYearRepressuring

  8. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 (Million3Repressuring

  9. Extracting maximum petrophysical and geological information from a limited reservoir database

    SciTech Connect (OSTI)

    Ali, M.; Chawathe, A.; Ouenes, A.

    1997-08-01

    The characterization of old fields lacking sufficient core and log data is a challenging task. This paper describes a methodology that uses new and conventional tools to build a reliable reservoir model for the Sulimar Queen field. At the fine scale, permeability measured on a fine grid with a minipermeameter was used in conjunction with the petrographic data collected on multiple thin sections. The use of regression analysis and a newly developed fuzzy logic algorithm led to the identification of key petrographic elements which control permeability. At the log scale, old gamma ray logs were first rescaled/calibrated throughout the entire field for consistency and reliability using only four modem logs. Using data from one cored well and the rescaled gamma ray logs, correlations between core porosity, permeability, total water content and gamma ray were developed to complete the small scale characterization. At the reservoir scale, outcrop data and the rescaled gamma logs were used to define the reservoir structure over an area of ten square miles where only 36 wells were available. Given the structure, the rescaled gamma ray logs were used to build the reservoir volume by identifying the flow units and their continuity. Finally, history-matching results constrained to the primary production were used to estimate the dynamic reservoir properties such as relative permeabilities to complete the characterization. The obtained reservoir model was tested by forecasting the waterflood performance and which was in good agreement with the actual performance.

  10. Other States Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecadeYearDecadeDecadeRepressuring (Million

  11. West Virginia Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation10,428CubicFeet)VirginiaRepressuring

  12. Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method 

    E-Print Network [OSTI]

    Lee, Byungtark

    2011-10-21

    In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under...

  13. Status of Norris Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

  14. Status of Cherokee Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  15. Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization

    SciTech Connect (OSTI)

    Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-06-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  16. SMALL, GEOLOGICALLY COMPLEX RESERVOIRS CAN BENEFIT FROM RESERVOIR SIMULATION

    SciTech Connect (OSTI)

    Richard E. Bennett

    2002-06-24

    The Cascade Sand zone of the Mission-Visco Lease in the Cascade Oil field of Los Angeles County, California, has been under water flood since 1970. Increasing water injection to increase oil production rates was being considered as an opportunity to improve oil recovery. However, a secondary gas cap had formed in the up-dip portion of the reservoir with very low gas cap pressures, creating concern that oil could be displaced into the gas cap resulting in the loss of recoverable oil. Therefore, injecting gas into the gas cap to keep the gas cap pressurized and restrict the influx of oil during water injection was also being considered. Further, it was recognized that the reservoir geology in the gas cap area is very complex with numerous folding and faulting and thus there are potential pressure barriers in several locations throughout the reservoir. With these conditions in mind, there were concerns regarding well to well continuity in the gas cap, which could interfere with the intended repressurization impact. Concerns about the pattern of gas flow from well to well, the possibilities of cycling gas without the desired increased pressure, and the possible loss of oil displaced into the gas cap resulted in the decision to conduct a gas tracer survey in an attempt to better define inter-well communication. Following the gas tracer survey, a reservoir model would be developed to integrate the findings of the gas tracer survey, known geologic and reservoir data, and historic production data. The reservoir model would be used to better define the reservoir characteristics and provide information that could help optimize the waterflood-gas injection project under consideration for efficient water and gas injection management to increase oil production. However, due to inadequate gas sampling procedures in the field and insufficiently developed laboratory analytical techniques, the laboratory was unable to detect the tracer in the gas samples taken. At that point, focus on, and an expansion of the scope of the reservoir simulation and modeling effort was initiated, using DOE's BOAST98 (a visual, dynamic, interactive update of BOAST3), 3D, black oil reservoir simulation package as the basis for developing the reservoir model. Reservoir characterization, modeling, and reservoir simulation resulted in a significant change in the depletion strategy. Information from the reservoir characterization and modeling effort indicate that in-fill drilling and relying on natural water influx from the aquifer could increase remaining reserves by 125,000 barrels of oil per well, and that up to 10 infill wells could be drilled in the field. Through this scenario, field production could be increased two to three times over the current 65 bopd. Based on the results of the study, permits have been applied for to drill a directional infill well to encounter the productive zone at a high angle in order to maximize the amount of pay and reservoirs encountered.

  17. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  18. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  19. Predicting reservoir sedimentation 

    E-Print Network [OSTI]

    Wooten, Stephanie

    1997-01-01

    Sediments accumulate in reservoirs and significantly decrease storage capacity. Predicting sedimentation is an important consideration in the design of new reservoir projects and in the management of existing reservoirs. Sedimentation rates may vary...

  20. Discrete Fracture Reservoir Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discrete Fracture Reservoir Simulation Shale Gas Flow Simulation Shale Gas Flow Simulation FRACGENNFFLOW, fractured reservoir modeling software developed by NETL's Geological and...

  1. Performance testing the Phase 2 HDR reservoir

    SciTech Connect (OSTI)

    Ponden, R.F.; Dreesen, D.S. ); Thomson, J.C. )

    1991-01-01

    The geothermal energy program at the Los Alamos National Laboratory is directed toward developing the Hot Dry Rock (HDR) technology as an alternate energy source. Positive results have been obtained in previous circulation tests of HDR reservoirs at the Laboratory's test site in Fenton Hill, New Mexico. There still remains however, the need to demonstrate that adequate geothermal energy can be extracted in an efficient manner to support commercial power production. This year, the Laboratory will begin a circulation test of its Phase 2, reservoir. The objectives of this test are to characterize steady-state power production and long-term reservoir performance. 6 refs., 2 figs., 3 tabs.

  2. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  3. Status of Wheeler Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  4. Reservoir technology - geothermal reservoir engineering research at Stanford. Fifth annual report, October 1, 1984-September 30, 1985

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

    1985-09-01

    The objective is to carry out research on geothermal reservoir engineering techniques useful to the geothermal industry. A parallel objective is the training of geothermal engineers and scientists. The research is focused toward accelerated development of hydrothermal resources through the evaluation of fluid reserves, and the forecasting of field behavior with time. Injection technology is a research area receiving special attention. The program is divided into reservoir definition research, modeling of heat extraction from fractured reservoirs, application and testing of new and proven reservoir engineering technology, and technology transfer. (ACR)

  5. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  6. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  7. Reservoir Operation in Texas 

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    1985-01-01

    to store and to release or withdraw for flood control and various conservation purposes. The report is intended to provide a comprehensive, indepth description of how reservoirs are operated in Texas...

  8. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01

    that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

  9. A reservoir management strategy for multilayered reservoirs in eastern Venezuela 

    E-Print Network [OSTI]

    Espinel Diaz, Arnaldo Leopoldo

    1998-01-01

    A reservoir management strategy has been developed for a field located in eastern Venezuela. The field contains deep, high pressure, multilayer reservoirs. A thorough formation evaluation was accomplished using the log data, core data, PVT data...

  10. Hydrocarbon Reservoir Parameter Estimation Using

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Hydrocarbon Reservoir Parameter Estimation Using Production Data and Time-Lapse Seismic #12;#12;Hydrocarbon Reservoir Parameter Estimation Using Production Data and Time-Lapse Seismic PROEFSCHRIFT ter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Recovery process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Field

  11. Predicting porosity in a Saudi Arabian carbonate reservoir using geologic constraints integrated with 3-D seismic and well data

    SciTech Connect (OSTI)

    Jeffery, R.; Thomsen, M. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01

    A method for predicting lateral changes in reservoir porosity using 3-D seismic Aptitudes, calibrated against the amplitude response versus porosity measured at a select number of wells, was implemented and applied to produce a porosity map of a Saudi Arabian carbonate reservoir. The technique relies on the uniform lithologic seismic response of an overlying anhydrite, and thus assigns variations in amplitudes at the reservoir level to changes in reservoir average porosity. Throughout the study area, reservoir porosity and acoustic impedance logs exhibit a firm linear relationship. As reservoir porosity increases, its acoustic impedance decreases, and the greater contrast with the overlying anhydrite translates into larger seismic amplitudes. Thus, we expect the reservoir`s relative amplitude response to also increase linearly with increasing porosity. A check on this hypothesis was provided by computing synthetic seismograms at several wells, and measuring the reservoir`s theoretical amplitude response versus porosity averaged over the producing zone within the reservoir. This trend supported a linear seismic amplitude to porosity transform. Upon verification of the technique`s applicability, the reservoirs amplitude response was extracted from the 3-D seismic volume in the vicinity of several wells. These were used in conjunction with porosities averaged ever the reservoir to derive the amplitude to porosity transform. This transform was used in converting the mapped reservoir amplitudes into variations in average porosities. The success ratio for predicting porosities in wells not used in the analysis was nearly perfect, and the map continues to correctly predict porosities in subsequently drilled wells.

  12. Modeling and Analysis of Reservoir Response to Stimulation by Water Injection 

    E-Print Network [OSTI]

    Ge, Jun

    2011-02-22

    The distributions of pore pressure and stresses around a fracture are of interest in conventional hydraulic fracturing operations, fracturing during water-flooding of petroleum reservoirs, shale gas, and injection/extraction operations in a...

  13. Pre-injection brine production for managing pressure in compartmentalized CO? storage reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO? storage that combines CO? injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO?. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO? injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO? injection directly informs reservoir managers about CO? storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be usedmore »directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less

  14. Applying reservoir characterization technology

    SciTech Connect (OSTI)

    Lake, L.W.

    1994-12-31

    While reservoir characterization is an old discipline, only within the last 10 years have engineers and scientists been able to make quantitative descriptions, due mostly to improvements in high-resolution computational power, sophisticated graphics, and geostatistics. This paper summarizes what has been learned during the past decade by using these technologies.

  15. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  16. Reservoir Outflow (RESOUT) Model 

    E-Print Network [OSTI]

    Purvis, Stuart Travis

    1988-01-01

    rating tables for a comprehensive range of outlet structure types and configurations, simulating a dam breach, routing a hydrograph through the reservoir, and performing drawdown analyses. The thesis describes the basic equations and computational... of Rating Curves Rating Curves for Uncontrolled Ogee Spillways Rating Curves for Uncontrolled Broad-crested Spillways Rating Curves for Spillway Gates Rating Curves for Drop Inlet Spillways Rating Curves for Outlet Works Breach Simulation Storage...

  17. All-optical Reservoir Computing

    E-Print Network [OSTI]

    Duport, François; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-01-01

    Reservoir Computing is a novel computing paradigm which uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  18. Discrete Fracture Reservoir Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory | National NuclearDiscoveringDiscrete Fracture Reservoir

  19. 120 GRC BULLETIN Reservoir Engineering

    E-Print Network [OSTI]

    Foulger, G. R.

    of The Geysers geothermal area. The production area is shaded grey. Red dots: seismometers with vertical sensors120 GRC BULLETIN Reservoir Engineering nergy production at geothermal areas causes physical changes Tool Use of Time-Dependent MEQ Tomography for Monitoring Producing Geothermal Reservoirs G. R. Foulger

  20. Water resources review: Ocoee reservoirs, 1990

    SciTech Connect (OSTI)

    Cox, J.P.

    1990-08-01

    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  1. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01

    Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

  2. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir...

  3. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  4. Hydrological and Geochemical Investigations of Selenium Behavior at Kesterson Reservoir

    E-Print Network [OSTI]

    Zawislanski, P.T.

    2010-01-01

    Ecological Characterization of Kesterson Reservoir. AnnualEcological Characterization of Kesterson Reservoir. Annual

  5. FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

  6. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect (OSTI)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

  7. Rock Physics Based Determination of Reservoir Microstructure for Reservoir Characterization 

    E-Print Network [OSTI]

    Adesokan, Hamid 1976-

    2013-01-09

    of pore shape distribution is needed to explain the often-encountered complex interrelationship between seismic parameters (e.g. seismic velocity) and the independent physical properties (e.g. porosity) of hydrocarbon reservoirs. However, our knowledge...

  8. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    reservoir engineering research program a t the University of Colorado is described. Physical characterization

  9. Reservoir characterization using wavelet transforms 

    E-Print Network [OSTI]

    Rivera Vega, Nestor

    2004-09-30

    Automated detection of geological boundaries and determination of cyclic events controlling deposition can facilitate stratigraphic analysis and reservoir characterization. This study applies the wavelet transformation, a recent advance in signal...

  10. Thermal extraction analysis of five Los Azufres production wells

    SciTech Connect (OSTI)

    Kruger, Paul; Quijano, Luis

    1995-01-26

    Thermal energy extraction from five wells supplying 5-MWe wellhead generators in three zones of the Los Azufres geothermal field has been examined from production and chemical data compiled over 14-years of operation. The data, as annual means, are useful in observing small-scale changes in reservoir performance with continuous production. The chemical components are chloride for quality control and the geothermometer elements for reservoir temperatures. The flowrate and fluid enthalpy data are used to calculate the thermal extraction rates. Integration of these data provides an estimate of the total energy extracted from the zone surrounding the well. The combined production and chemical geothermometer data are used to model the produced fluid as coming from just-penetrating wells for which the annual produced mass originates from a series of concentric hemispheric shells moving out into the reservoir. Estimates are made of the drawdown distance into the reservoir and the far-field conditions.

  11. Chickamauga reservoir embayment study - 1990

    SciTech Connect (OSTI)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  12. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    SciTech Connect (OSTI)

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  13. Abqaiq Hanifa reservoir: Geologic attributes controlling hydrocarbon production and water injection

    SciTech Connect (OSTI)

    Grover, G. Jr. (Saudi Aramco, Dhahran (Saudi Arabia))

    1993-09-01

    The Hanifa reservoir at Abqaiq field consists entirely of mudsupported (>90% matrix) limestones that were deposited in the deeper water interior of the Arabian Intrashelf basin. The Hanifa mudstones lack megascopic pore spaces; porosity is evidenced by high porosities (5-32%) within these fine-grained rocks, based on porosity logs and core-plug analyses, absence of visible pore spaces to account for these high pore volumes, and 2000x SEM images that show a crystal framework texture composed of micro-rhombic (clay-size) calcite crystals with 2 - 5 [mu]m-size pore spaces between these calcite crystals. Flow meters indicate that the reservoir is capable of producing/injecting large volumes of oil/water. But there is little stratigraphic predictability to the flow, and thin (2-10 ft) low porosity (<15%) intervals can contribute over 60% of the entire flow. These reservoir attributes, coupled with the low [open quotes]matrix[close quotes] permeabilities (0.1-10 md) of the reservoir indicate the presence of an apparent permeability that is controlling fluid flow. Core studies have revealed that this apparent permeability is in the form of high-angle fractures. These fractures are [le]1 mm wide, contain hydrocarbon residue and calcite cement, and many are in close association with high-amplitude stylolites, suggesting a genetic link between stylolitization and fracturing. Borehole imaging logs are critical for fracture location, abundance, orientation, and size. The Hanifa is separated from the giant Arab-D reservoir by over 450 ft of fine-grained carbonates of the Jubaila Formation. These two reservoirs, however, are in pressure-fluid communication via a network of fractures through the Jubaila carbonates. Reservoir communication and reservoir heterogeneity is a challenge to reservoir geologists and reservoir engineers in formulating a development plan, involving horizontal producer and injector wells, to extract the reserves within the Abqaiq Hanifa reservoir.

  14. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    SciTech Connect (OSTI)

    Laubach, S.E.; Marrett, R.; Rossen, W.; Olson, J.; Lake, L.; Ortega, O.; Gu, Y.; Reed, R.

    1999-01-01

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specific goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.

  15. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-09-01

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir`s capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  16. Fluid Circulation and Heat Extraction from Engineered Geothermal Reservoirs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint GeothermalSilver PeakWister| Open

  17. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

  18. Integration of well test analysis into naturally fractured reservoir simulation 

    E-Print Network [OSTI]

    Perez Garcia, Laura Elena

    2006-04-12

    Naturally fractured reservoirs (NFR) represent an important percentage of the worldwide hydrocarbon reserves and production. Reservoir simulation is a fundamental technique in characterizing this type of reservoir. Fracture ...

  19. A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS

    E-Print Network [OSTI]

    Anderson, C.

    2011-01-01

    FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

  20. THMC Modeling of EGS Reservoirs ? Continuum through Discontinuum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THMC Modeling of EGS Reservoirs Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs...

  1. A reservoir management plan

    SciTech Connect (OSTI)

    Allis, R.G.

    1989-06-16

    There are numerous documented cases of extraction of fluids from the ground causing surface subsidence. The cases include groundwater, oil and gas, as well as geothermal fluid withdrawal. A recent comprehensive review of all types of man-induced land subsidence was published by the Geological Survey of America. At the early stages of a geothermal power development project it is standard practice in most countries for an environmental impact report to be required. The possibility of geothermal subsidence has to be addressed, and usually it falls on the geophysicists and/or geologists to make some predictions. The advice given is vital for planning the power plant location and the borefield pipe and drain layout. It is not so much the vertical settlement that occurs with subsidence but the accompanying horizontal ground strains that can do the most damage to any man-made structure.

  2. Seismic modeling of complex stratified reservoirs 

    E-Print Network [OSTI]

    Lai, Hung-Liang

    2009-05-15

    Turbidite reservoirs in deep-water depositional systems, such as the oil fields in the offshore Gulf of Mexico and North Sea, are becoming an important exploration target in the petroleum industry. Accurate seismic reservoir characterization...

  3. Modeling well performance in compartmentalized gas reservoirs 

    E-Print Network [OSTI]

    Yusuf, Nurudeen

    2008-10-10

    for consolidated reservoir cases while synthetic data (generated by the model using known parameters) was used for unconsolidated reservoir cases. In both cases, the Compartmentalized Depletion Model was used to analyze data, and estimate the OGIP and Jg of each...

  4. Optimizing injected solvent fraction in stratified reservoirs 

    E-Print Network [OSTI]

    Moon, Gary Michael

    1993-01-01

    Waterflooding has become standard practice for extending the productive life of many solution gas drive reservoirs, but has the disadvantage of leaving a substantial residual oil volume in the reservoir. Solvent flooding has been offered as a...

  5. Modeling well performance in compartmentalized gas reservoirs 

    E-Print Network [OSTI]

    Yusuf, Nurudeen

    2009-05-15

    and performance characteristics of each compartment in such reservoirs given production data. A geomechanics model was developed using available correlation in the industry to estimate variable pore volume compressibility, reservoir compaction and permeability...

  6. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between micro-seismicity; reservoir flow and geomechanical characteristics. seismicghassmireservoirstimulation.pdf More Documents & Publications Analysis of...

  7. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01

    Krafla reservoir. Temperature, pressure and vapor saturationreservoirs because i·t does not residual immobile steam saturation

  8. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for Creation...

  9. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  10. Simulation of naturally fractured reservoirs

    SciTech Connect (OSTI)

    Saidi, A.M.

    1983-11-01

    A three-dimensional, three-phase reservoir simulator was developed to study the behavior of fully or partially fractured reservoirs. It is also demonstrated, that when a fractured reservoir is subject to a relatively large rate of pressure drop and/or it composed of relatively large blocks, the pseudo steady-state pressure concept gives large errors as compared with transient fromulation. In addition, when gravity drainage and imbibitum processes, which is the most important mechanism in the fractured reservoirs, are represented by a ''lumped parameter'' even larger errors can be produced in exchange flow between matrix and fractures. For these reasons, the matrix blocks are gridded and the transfer between matrix and fractures are calculated using pressure and diffusion transient concept. In this way the gravity drainage is also calculated accurately. As the matrix-fracture exchange flow depends on the location of each matrix grid relative to the GOC and/or WOC in fracture, the exchange flow equation are derived and given for each possible case. The differential equation describing the flow of water, oil, and gas within the matrix and fracture system, each of which may contain six unknowns, are presented. The two sets of equations are solved implicitly for pressure water, and gas stauration in both matrix and fractures. The first twenty two years of the history of Haft Kel field was successfully matched with this model and the results are included.

  11. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  12. Petroleum Engineering 310 Reservoir Fluids

    E-Print Network [OSTI]

    of oilfield brine properties: Salinity, Bubble Point, formation volume factor, density and solution gas water12 Petroleum Engineering 310 Reservoir Fluids Credit 4: (3-3) Required for Juniors Catalog: Gas Formation Volume Factor. Viscosity. Wet Gas Gravity and Isothermal Compressibility. 5. Definition

  13. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  14. Hydroelectric Reservoirs -the Carbon Dioxide and Methane

    E-Print Network [OSTI]

    Fischlin, Andreas

    Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

  15. Tenth workshop on geothermal reservoir engineering: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  16. Analysis of reservoir performance and forecasting for the eastern area of the C-2 Reservoir, Lake Maracaibo, Venezuela 

    E-Print Network [OSTI]

    Urdaneta Anez, Jackeline C

    2001-01-01

    for the entire reservoir that considers the new geological model developed during reservoir description. Furthermore, it provides PDVSA with a powerful tool for planning and reservoir management decisions, especially in the eastern area of the reservoir...

  17. Naturally fractured reservoirs contain a significant amount of the world oil reserves. A number of these reservoirs contain several

    E-Print Network [OSTI]

    Arbogast, Todd

    Summary Naturally fractured reservoirs contain a significant amount of the world oil reserves simulation of naturally fractured reservoirs is one of the most important, challenging, and computationally intensive problems in reservoir engineering. Parallel reservoir simulators developed for naturally fractured

  18. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  19. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    SciTech Connect (OSTI)

    Fowler, M.L.; Young, M.A.; Madden, M.P.

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  20. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    SciTech Connect (OSTI)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  1. 4. International reservoir characterization technical conference

    SciTech Connect (OSTI)

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  2. Natural Gas Used for Repressuring

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,222 2,389,991 2,480,107averagethe

  3. Natural Gas Used for Repressuring

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,222 2,389,991 2,480,107averagethe1-2015 Colorado NA

  4. Natural Gas Used for Repressuring

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172 3,009 2,8515,674,120Market83,8793,522,090

  5. Natural Gas Used for Repressuring

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172 3,009

  6. Computer Simulation of Reservoir Depletion and Oil Flow from the Macondo Well Following the Deepwater

    E-Print Network [OSTI]

    ................................................................................................................................................... 2 Reservoir Model ............................................................................................................................................. 7 Uncertainty Analysis........................................................................................................................................... 8 Tables Table 1. Reservoir and fluid properties used in the reservoir simulation model

  7. Research on improved and enhanced oil recovery in Illinois through reservoir characterization. [Quarterly technical report], December 28, 1991--March 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-04-01

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir`s capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  8. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  9. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect (OSTI)

    Parra, J.O.

    2001-01-26

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate magnetic resonance (MR) techniques and acoustic measurements to improve predictability of the pay zone in two hydrocarbon reservoirs. This was accomplished by extracting the fluid property parameters using MR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurements were compared with petrographic analysis results to determine the relative roles of petrographic elements such as porosity type, mineralogy, texture, and distribution of clay and cement in creating permeability heterogeneity.

  10. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect (OSTI)

    Parra, Jorge O.; Hackert, Chris L.; Collier, Hughbert A.; Bennett, Michael

    2002-01-29

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate NMR techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This is accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging are being linked with a balanced petrographical analysis of the core and theoretical model.

  11. Sedimentation in Shallow ReservoirsPoster n 21 Large shallow reservoirs of run-of-river

    E-Print Network [OSTI]

    Dalang, Robert C.

    Sedimentation in Shallow ReservoirsPoster n° 21 Large shallow reservoirs of run-of-river power plants on rivers with high suspended sediments are endangered by significant sedimentation. INTRODUCTION

  12. A better understanding of a Uinta Basin channelized analog reservoir through geostatistics and reservoir simulation 

    E-Print Network [OSTI]

    Robbana, Enis

    2002-01-01

    The Green River Formation is located in the Uinta basin of northeastern Utah. It contains several reservoirs that can be classified as lacustrine such as the Altamont-Bluebell and Red Wash. Lacustrine reservoirs are ...

  13. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    SciTech Connect (OSTI)

    Watney, W.L.

    1994-12-01

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas City limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.

  14. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of...

  15. 201202 Reservoir System Modeling Technologies Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Applied To The Columbia River - PSR Adjoint Modeling Framework for Real-Time Control of Water - Deltares Reservoir Operations Analysis in the Willamette Water 2100...

  16. International reservoir operations agreement helps NW fish &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or 503-230-5131 International reservoir operations agreement helps Northwest fish and power Portland, Ore. - The Bonneville Power Administration and the British Columbia...

  17. Assessing the relative permeability of heterogeneous reservoir...

    Office of Scientific and Technical Information (OSTI)

    susceptible to error and may lead to incorrect conclusions regarding displacement efficiency, wettability and reservoir performance. This paper focuses on new techniques for...

  18. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  19. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    with form History Characterization of geothermal reservoir crack patterns using shear-wave splitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  20. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  1. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect (OSTI)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-01-22

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  2. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-04-01

    Wave-induced variations of pore pressure in a partially-saturated reservoir result in oscillatory liquid flow. The viscous losses during this flow are responsible for wave attenuation. The same viscous effects determine the changes in the dynamic bulk modulus of the system versus frequency. These changes are necessarily linked to attenuation via the causality condition. We analytically quantify the frequency dependence of the bulk modulus of a partially saturated rock by assuming that saturation is patchy and then link these changes to the inverse quality factor. As a result, the P-wave attenuation is quantitatively linked to saturation and thus can serve as a saturation indicator.

  3. The verification of a semi-analytical reservoir simulator using a finite difference reservoir simulator 

    E-Print Network [OSTI]

    Dube, Hans Gerhardt

    1990-01-01

    of Cases Fundamental Difference Between the Reservoir Simulators. Data Sets. . General Process of Verification. . . . . . . . . . . . . . . 22 24 25 25 26 29 32 36 SINGLE LAYER, RADIAL FLOW DRAWDOWN CASES. . 38 viii Page Infinite Cylindrical... Drawdown Problems. . . . . . . . . . . . . 38 41 43 45 49 50 52 MULTIPLE LAYER RESERVOIR, RADIAL FLOW DRAWDOWN CASES. 63 Simulation of Multiple Layer Reservoirs. . . . . . Simulation Parameters. Constant Rate Drawdown Tests in an Infinite...

  4. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    SciTech Connect (OSTI)

    Clarkson, Christopher R

    2011-01-01

    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  5. Reservoir Characterization Research Laboratory Research Plans for 2013

    E-Print Network [OSTI]

    Texas at Austin, University of

    and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining Hydrocarbons Charles#12; Reservoir Characterization Research Laboratory Research Plans for 2013 Outcrop for heavy oil deposits within the Canadian Grosmont Formation. #12;iii Reservoir Characterization Research

  6. The Performance of Fractured Horizontal Well in Tight Gas Reservoir 

    E-Print Network [OSTI]

    Lin, Jiajing

    2012-02-14

    Horizontal wells have been used to increase reservoir recovery, especially in unconventional reservoirs, and hydraulic fracturing has been applied to further extend the contact with the reservoir to increase the efficiency of development...

  7. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir Dynamics...

  8. Geomechanical Development of Fractured Reservoirs During Gas Production 

    E-Print Network [OSTI]

    Huang, Jian

    2013-04-05

    Within fractured reservoirs, such as tight gas reservoir, coupled processes between matrix deformation and fluid flow are very important for predicting reservoir behavior, pore pressure evolution and fracture closure. To study the coupling between...

  9. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, Don; Koerner, Roy; Moos, Dan; Nguyen, John; Phillips, Chris; Tagbor, Kwasi; Walker, Scott

    1999-11-09

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  10. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  11. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  12. Geothermal reservoir insurance study. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-10-09

    The principal goal of this study was to provide analysis of and recommendations on the need for and feasibility of a geothermal reservoir insurance program. Five major tasks are reported: perception of risk by major market sectors, status of private sector insurance programs, analysis of reservoir risks, alternative government roles, and recommendations.

  13. GEOMECHANICAL MODELING AS A RESERVOIR CHARACTERIZATION TOOL

    E-Print Network [OSTI]

    GEOMECHANICAL MODELING AS A RESERVOIR CHARACTERIZATION TOOL AT RULISON FIELD, PICEANCE BASIN _______________ ____________________ Dr. Terence K. Young Department Head Department of Geophysics ii #12;ABSTRACT Geomechanics is a powerful reservoir characterization tool. Geomechanical modeling is used here to understand how the in

  14. Water resources review: Wheeler Reservoir, 1990

    SciTech Connect (OSTI)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  15. Economics of Developing Hot Stratigraphic Reservoirs

    SciTech Connect (OSTI)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  16. An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...

    Open Energy Info (EERE)

    Humeros Geothermal Reservoir (Mexico) Abstract An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed...

  17. Variations in dissolved gas compositions of reservoir fluids...

    Open Energy Info (EERE)

    reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions....

  18. Assessment of Latent Heat Reservoirs for Thermal Management of...

    Office of Scientific and Technical Information (OSTI)

    Assessment of Latent Heat Reservoirs for Thermal Management of QCW Laser Diodes Citation Details In-Document Search Title: Assessment of Latent Heat Reservoirs for Thermal...

  19. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect (OSTI)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Gas saturated reservoirs change reflection amplitudes significantly. The goal for the final project period was to systematically combine and document these various effects for use in deep water exploration and transfer this knowledge as clearly and effectively as possible.

  20. Bayesian Methods in Reservoir Operations: The Zambezi River Case

    E-Print Network [OSTI]

    West, Mike

    reservoirs in the Zambezi river: Lake Kariba and Cahora Bassa. KEYWORDS: Reservoir operations, Dynamic models, Multiattribute utility, Dynamic programming, Sensitivity analysis. 1 #12; 1 Reservoir operations Many reservoirs, uncertainty has been included, both explicitly (via probabilistic models and techniques) and implic­ itly (via

  1. Reservoir performance characterized in mature steam pattern

    SciTech Connect (OSTI)

    Miller, D.D.; McPherson, J.G.; Covington, T.E.

    1989-04-01

    A detailed reservoir description provided new insight in an investigation of a ten-year-old steam flood. Mobil Oil Corporation conducted this study of the Pleistocene upper Tulare sands in South Belridge field, located in the San Joaquin basin, Kern County, California. The study area is on the gently dipping (6/degrees/) southwestern flank of the South Belridge anticline. Wireline logs from 19 wells in a 10-ac (660 ft x 660 ft) pattern were correlated in detail. Seven post-steam conventional cores (1523 ft) aided (1) the evaluation of vertical and lateral steam-sweep efficiency, (2) evaluation of reservoir and fluid changes due to steam, (3) influence of lithofacies in reservoir quality, and (4) provided insight to the three-dimensional reservoir flow-unit geometries.

  2. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  3. Reservoir characterization using nonparametric regression techniques 

    E-Print Network [OSTI]

    Mathisen, Trond

    2000-01-01

    reservoirs, but a simple and computationally efficient correlation is developed using only commonly available well log responses. Accurate permeability correlations are essential to understand, forecast, manage, and control production operations...

  4. Estimating uncertainties in integrated reservoir studies 

    E-Print Network [OSTI]

    Zhang, Guohong

    2004-09-30

    existing methods. The integrated mismatch method tends to generate smaller ranges of uncertainty than many existing methods. When starting from nonoptimal reservoir models, in some cases the integrated mismatch method is able to bracket the true reserves...

  5. Study of induced seismicity for reservoir characterization

    E-Print Network [OSTI]

    Li, Junlun, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...

  6. Reservoir fracture characterizations from seismic scattered waves

    E-Print Network [OSTI]

    Fang, Xinding

    2012-01-01

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  7. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    and subsequent change t o a superheated steam state. Faust,for electric power of the superheated steam reservoir a ttwo-phase condition t o superheated steam. Knapp, R. M. and

  8. Pressure maintenance in a volatile oil reservoir 

    E-Print Network [OSTI]

    Schuster, Bruce Alan

    1989-01-01

    PRESSURE MAINTENANCE IN A VOLATILE OIL RESERVOIR A Thesis BRUCE ALAN SCHUSTER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1989 Major... Subject: Petroleum Engineering PRESSURE MAINTENANCE IN A VOLATILE OIL RESERVOIR A Thesis BRUCE ALAN SCHUSTER Approved as to style and content by: S. A. Holditch (Chair of Committee) W. J. Lee (Member) R. R, Berg (Member) , Jz W. D. Von Gonten...

  9. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-07-01

    In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.

  10. GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly

    E-Print Network [OSTI]

    GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing from tropical and boreal reservoirs are significant. In light of hydropower's potential role as a green to characterize carbon dioxide (CO2) and methane (CH4) emissions from hydropower reservoirs in the US Southeast

  11. The Potosi Reservoir Model 2013

    SciTech Connect (OSTI)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In the preceding, the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this topical report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48.3km x48.3km), while preserving all property modeling workflows and layering. This model was retained as the base case of Potosi Dynamic Model 2013a. The Potosi reservoir model was updated to take into account the new data from the verification well VW2 which was drilled in 2012. The new porosity and permeability modeling was performed to take into account the log data from the new well. Revisions of the 2010 modeling assumptions were also done on relative permeability, capillary pressures, formation water salinity, and the maximum allowable well bottomhole pressure. Dynamic simulations were run using the injection target of 3.2 MTPA for 30 years. This new dynamic model was named Potosi Dynamic Model 2013b. Due to the major uncertainties on the vugs permeability, two models were built; the Pessimistic and Optimistic Cases. The Optimistic Case assumes vugs permeability of 9,000 mD, which is analog to the vugs permeability identified in the pressure fall off test of a waste water injector in the Tuscola site, approx. 40 miles (64.4km) away from the IBDP area. The Pessimistic Case assumes that the vugs permeability is equal to the log data, which does not take into account the permeability from secondary porosity. The probability of such case is deemed low and could be treated as the worst case scenario, since the contribution of secondary porosity to the permeability is neglected and the loss circulation events might correspond to a much higher permeability. It is considered important, however, to identify the range of possible reservoir performance since there are no rigorous data available for the vugs permeability. The Optimistic Case gives an average CO2 injection rate of 0.8 MTPA and cumulative injection of 26 MT in 30 years, which corresponds to 27% of the injection target. The injection rate is approx. 3.2 MTPA in the first year as the well is injecting into the surrounding vugs, and declines rapidly to 0.8 MTPA in year 4 once the surrounding vugs are full and the CO2 start to reach the matrix. This implies that according to this preliminary model, a minimum of four (4) wells could be required to achieve the injection target. This result is lower than the injectivity estimated in the Potosi Dynamic Model 2013a (43 MT in 30 years), since the permeability model applied in the Potosi Dynamic Model 2013b is more conservative. This revision was deemed necessary to treat the uncerta

  12. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    SciTech Connect (OSTI)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  13. HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON

    E-Print Network [OSTI]

    Julien, Pierre Y.

    HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

  14. Seismic imaging of reservoir flow properties: Resolving waterinflux and reservoir permeability

    SciTech Connect (OSTI)

    Vasco, D.W.; Keers, Henk

    2006-11-27

    Methods for geophysical model assessment, in particuale thecomputation of model parameter resolution, indicate the value and thelimitations of time-lapse data in estimating reservoir flow properties. Atrajectory-based method for computing sensitivities provides an effectivemeans to compute model parameter resolutions. We examine the commonsituation in which water encroaches into a resrvoir from below, as due tothe upward movement of an oil-water contact. Using straight-forwardtechniques we find that, by inclusing reflections off the top and bottomof a reservoir tens of meters thick, we can infer reservoir permeabilitybased upon time-lapse data. We find that, for the caseof water influxfrom below, using multiple time-lapse 'snapshots' does not necessarilyimprove the resolution of reservoir permeability. An application totime-lapse data from the Norne field illustrates that we can resolve thepermeability near a producing well using reflections from threeinterfaces associated with the reservoir.

  15. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  16. Pressure transient test analysis of vuggy naturally fractured carbonate reservoir: field case study 

    E-Print Network [OSTI]

    Ajayi, Babatunde Tolulope

    2009-06-02

    Well pressure transient analysis is widely used in reservoir management to obtain reservoir information needed for reservoir simulation, damage identification, well optimization and stimulation evaluation. The main objective ...

  17. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    E-Print Network [OSTI]

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-01-01

    change in reservoir pressure, water saturation, and CO 2 /? ? ) in reservoir pressure, fluid saturations, and theand water saturation within a reservoir without significant

  18. Permeability extraction: A sonic log inversion

    SciTech Connect (OSTI)

    Akbar, N.; Kim, J.J. [Saudi Aramco, Dhahran (Saudi Arabia)

    1994-12-31

    In this paper the authors provide the missing important link between permeability and acoustic velocities by generating a permeability-dependent synthetic sonic log in a carbonate reservoir. The computations are based on Akbar`s theory that relates wave velocity to frequency, rock properties (e.g., lithology, permeability, and porosity), and fluid saturation and properties (viscosity, density, and compressibility). An inverted analytical expression of the theory is used to extract permeability from sonic velocity. The synthetic sonic and the computed permeability are compared with the observed sonic log and with plug permeability, respectively. The results demonstrate, as predicted by theory, that permeability can be related directly to acoustic velocities.

  19. Eolian reservoir characteristics predicted from dune type

    SciTech Connect (OSTI)

    Kocurek, G.; Nielson, J.

    1985-02-01

    The nature of eolian-dune reservoirs is strongly influenced by stratification types (in decreasing order of quality: grain-flow, grain-fall, wind-ripple deposits) and their packaging by internal bounding surfaces. These are, in turn, a function of dune surface processes and migration behavior, allowing for predictive models of reservoir behavior. Migrating, simple crescentic dunes produce tabular bodies consisting mainly of grain-flow cross-strata, and form the best, most predictable reservoirs. Reservoir character improves as both original dune height and preserved set thickness increase, because fewer grain-fall deposits and a lower percentage of dune-apron deposits occur in the cross-strata, respectively. It is probable that many linear and star dunes migrate laterally, leaving a blanket of packages of wind ripple laminae reflecting deposition of broad, shifting aprons. This is distinct from models generated by freezing large portions of these dunes in place. Trailing margins of linear and star dunes are prone to reworking by sand-sheet processes that decrease potential reservoir quality. The occurrence of parabolic dunes isolated on vegetated sand sheets results in a core of grain-flow and grain-fall deposits surrounded by less permeable and porous deposits. Compound crescentic dunes, perhaps the most preservable dune type, may yield laterally (1) single sets of cross-strate, (2) compound sets derived from superimposed simple dunes, or (3) a complex of diverse sets derived from superimposed transverse and linear elements.

  20. Influence of Tributaries on Salinity of Amistad International Reservoir 

    E-Print Network [OSTI]

    Miyamoto, S.; Yuan, Fasong; Anand, Shilpa

    2006-01-01

    in the reservoir was computed as the difference between salt loading and unloading. The unloading components considered were outflow from the Reservoir, seepage losses, and salt storage in the stored water as well as in the bank of the Reservoir. Seepage losses... were estimated by multiplying the mean salinity of the Reservoir to the seepage losses estimated as a sum of the spring flow below the Reservoir. The salt storage in the reservoir bank was estimated as the evapotranspiration losses from the bank when...

  1. Apparatus for hydrocarbon extraction

    DOE Patents [OSTI]

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  2. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  3. Horizontal well applications in complex carbonate reservoirs

    SciTech Connect (OSTI)

    Rahman, M.; Al-Awami, H.

    1995-10-01

    Over the past four years, Saudi Aramco has drilled over eighty horizontal wells, onshore and offshore. It has successfully applied this technology to develop new reservoirs as well as enhance recovery from its mature fields. This paper presents the reservoir engineering aspects of `horizontal` and `high angle` wells drilled in a major offshore field in Saudi Arabia. It shows how horizontal wells have (a) increased the recovery of bypassed oil, (b) improved well productivity in tight reservoirs, (c) increased production from thin oil zones underlain by water, and (d) improved peripheral injection. The paper discusses the actual performance of the horizontal wells and compares them with offset conventional wells. It presents the results of logging and testing of these wells, and highlights actual field data on (a) relationship between productivity gain and horizontal length, (b) pressure loss along the horizontal wellbore, and (c) effect of heterogeneity on coning an inflow performance.

  4. An Intelligent Systems Approach to Reservoir Characterization

    SciTech Connect (OSTI)

    Shahab D. Mohaghegh; Jaime Toro; Thomas H. Wilson; Emre Artun; Alejandro Sanchez; Sandeep Pyakurel

    2005-08-01

    Today, the major challenge in reservoir characterization is integrating data coming from different sources in varying scales, in order to obtain an accurate and high-resolution reservoir model. The role of seismic data in this integration is often limited to providing a structural model for the reservoir. Its relatively low resolution usually limits its further use. However, its areal coverage and availability suggest that it has the potential of providing valuable data for more detailed reservoir characterization studies through the process of seismic inversion. In this paper, a novel intelligent seismic inversion methodology is presented to achieve a desirable correlation between relatively low-frequency seismic signals, and the much higher frequency wireline-log data. Vertical seismic profile (VSP) is used as an intermediate step between the well logs and the surface seismic. A synthetic seismic model is developed by using real data and seismic interpretation. In the example presented here, the model represents the Atoka and Morrow formations, and the overlying Pennsylvanian sequence of the Buffalo Valley Field in New Mexico. Generalized regression neural network (GRNN) is used to build two independent correlation models between; (1) Surface seismic and VSP, (2) VSP and well logs. After generating virtual VSP's from the surface seismic, well logs are predicted by using the correlation between VSP and well logs. The values of the density log, which is a surrogate for reservoir porosity, are predicted for each seismic trace through the seismic line with a classification approach having a correlation coefficient of 0.81. The same methodology is then applied to real data taken from the Buffalo Valley Field, to predict inter-well gamma ray and neutron porosity logs through the seismic line of interest. The same procedure can be applied to a complete 3D seismic block to obtain 3D distributions of reservoir properties with less uncertainty than the geostatistical estimation methods. The intelligent seismic inversion method should help to increase the success of drilling new wells during field development.

  5. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect (OSTI)

    Davies, D.K.; Vessell, R.K.; Doublet, L.E.

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  6. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  7. Seawater can damage Saudi sandstone oil reservoirs

    SciTech Connect (OSTI)

    Dahab, A.S. (King Saud Univ., Riyadh (SA))

    1990-12-10

    Experiments have shown that formation damage from waterflooding of the Aramco and Alkhafji sandstones of Saudi Arabia will not occur if the salinity of the injected brines is higher than 20% NaCl. Because the connate water in these reservoirs has a high salt content of up to 231,000 ppm, Saudi oil fields are almost always susceptible to formation damage when flooded with seawater (about 38,500 ppm). The productive behavior of a reservoir can be affected by clay crystals developed within rock pores.

  8. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for optimizing the recovery from naturally fractured reservoir systems. The next logical extension of this work is to apply the proposed methods to an actual field case study to provide information for verification and modification of the techniques and simulator. This report provides the details of the proposed techniques and summarizes the activities undertaken during the course of this project. Technology transfer activities were highlighted by a two-day technical conference held in Oklahoma City in June 2002. This conference attracted over 90 participants and included the presentation of seventeen technical papers from researchers throughout the United States.

  9. Feasibility of waterflooding Soku E7000 gas-condensate reservoir 

    E-Print Network [OSTI]

    Ajayi, Arashi

    2002-01-01

    We performed a simple 3D compositional reservoir simulation study to examine the possibility of waterflooding the Soku E7 gas-condensate reservoir. This study shows that water injection results in higher condensate recovery than natural depletion...

  10. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir

    Broader source: Energy.gov [DOE]

    Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir.

  11. Reservoir Simulation Used to Plan Diatomite Developement in Mountainous Region 

    E-Print Network [OSTI]

    Powell, Richard

    2012-10-19

    -10 md) and high viscosity (~220 cp) at the reservoir temperature. Cyclic steam injection has been widely used in diatomite reservoirs to take advantage of the diatomite rocks unique properties and lower the viscosity of the oil. Some companies used...

  12. Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33 

    E-Print Network [OSTI]

    Casey, Michael Chase

    2011-08-08

    This thesis integrated geology, geophysics, and petroleum engineering data to build a detailed reservoir characterization models for three gas pay sands in the Grand Isle 33 & 43 fields, offshore Louisiana. The reservoirs are Late Miocene in age...

  13. Integrated reservoir characterization for the Mazari oil field, Pakistan 

    E-Print Network [OSTI]

    Ashraf, Ejaz

    1994-01-01

    This thesis describes a field study performed on the Mazari oil field located in Sind province, Pakistan. We used an integrated reservoir characterization technique to incorporate the geological, petrophysical, and reservoir performance data...

  14. Modeling of Magnetic Nanoparticles Transport in Shale Reservoirs 

    E-Print Network [OSTI]

    An, Cheng

    2014-12-18

    stimulated reservoir volume (SRV) from induced fractures play a critical role in significantly increasing well productivity. In this project, a mathematical model for simulating nanoparticle transport in shale reservoirs was developed. The simulator includes...

  15. Evaluating human fecal contamination sources in Kranji Reservoir Catchment, Singapore

    E-Print Network [OSTI]

    Nshimyimana, Jean Pierre

    2010-01-01

    Singapore government through its Public Utilities Board is interested in opening Kranji Reservoir to recreational use. However, water courses within the Kranji Reservoir catchment contain human fecal indicator bacteria ...

  16. Optimal reservoir management using adaptive reduced-order models

    E-Print Network [OSTI]

    Alghareeb, Zeid M

    2015-01-01

    Reservoir management and decision-making is often cast as an optimization problem where we seek to maximize the field's potential recovery while minimizing associated operational costs. Two reservoir management aspects are ...

  17. Structural Reliability: Assessing the Condition and Reliability of Casing in Compacting Reservoirs 

    E-Print Network [OSTI]

    Chantose, Prasongsit

    2012-02-14

    Casing has a higher risk of failure in a compacting reservoir than in a typical reservoir. Casing fails when reservoir compaction induces compression and shear stresses onto it. They compact as reservoir pressure depletes during production. High...

  18. The Optimization of Well Spacing in a Coalbed Methane Reservoir 

    E-Print Network [OSTI]

    Sinurat, Pahala Dominicus

    2012-02-14

    , such as rank of the coal, coal composition, micropores structure, reservoir pressure, molecular properties of gas adsorbed on the internal surface of coal seam, and reservoir temperature3,7. An idealized model of coalbed methane reservoir consists of a... making process. The uncertainties include the coal density, permeability or gas content as parameters of coal properties. Each coalbed methane reservoir property will govern production performance in a certain degree. Some parameters strongly influence...

  19. Incorporating reservoir heterogeneity with geostatistics to investigate waterflood recoveries

    SciTech Connect (OSTI)

    Wolcott, D.S. ); Chopra, A.K. )

    1993-03-01

    This paper presents an investigation of infill drilling performance and reservoir continuity with geostatistics and a reservoir simulator. The geostatistical technique provides many possible realizations and realistic descriptions of reservoir heterogeneity. Correlation between recovery efficiency and thickness of individual sand subunits is shown. Additional recovery from infill drilling results from thin, discontinuous subunits. The technique may be applied to variations in continuity for other sandstone reservoirs.

  20. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  1. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  2. Evolution of analyzing reservoir simulation data

    SciTech Connect (OSTI)

    Phelps, R.E.; Huang, A.Y.

    1994-12-31

    Numerical Reservoir Simulation is routinely used by the petroleum producing companies world-wide as an engineering tool to efficiently manage their hydrocarbon reservoirs. The task of building models with a large number of grid-blocks is not easy, and to analyze the voluminous results produced by such models is even more difficult. This paper discusses the historical evolution of techniques used to analyze reservoir simulation data over the past decade. It outlines how the advancement of workstation technology and the introduction of X-Window System opened up an entirely new way of utilizing mainframe computing power and workstation graphical display capabilities, simultaneously. The paper also discusses Saudi Aramco`s experience in the development of sophisticated reservoir simulation post-processing packages. The need for direct communication between the programmer and end-users to facilitate a user-friendly package is emphasized. A practical example illustrating the benefit of these post-processing packages in the construction and history matching of a large model with approximately 52,000 cells is presented. Savings in manpower and computer resources using current technology are estimated.

  3. Evolution of analyzing reservoir simulation data

    SciTech Connect (OSTI)

    Phelps, R.E.; Huang, A.Y.

    1995-12-01

    Petroleum-producing companies world-wide routinely use numerical reservoir simulation as an engineering tool to manage their hydrocarbon reservoirs efficiently. The task of building models with a large number of gridblocks is not easy, and analyzing the voluminous results produced by such models is even more difficult. This paper discusses the historical evolution of techniques used to analyze reservoir simulation data over the past decade. It outlines how the advancement of workstation technology and the introduction of an X-Window system opened up an entirely new way of using mainframe computing power and workstation graphical display capabilities simultaneously. The paper also discusses Saudi Aramco`s experience in the development of sophisticated reservoir simulation postprocessing packages. The authors emphasize the need for direct communication between the programmer and end users to facilitate a user-friendly package. They present a practical example illustrating the benefit of these postprocessing packages in the construction and history matching of a large model with approximately 52,000 cells. They estimate savings in manpower and computer resources using current technology.

  4. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  5. Network Stochastic Programming for Valuing Reservoir Storage

    E-Print Network [OSTI]

    complicates the simultaneous optimization of hydropower for a multi-stage, multi-reservoir system. The expected value of hydropower must be simultaneously optimized over all time steps and scenarios. Previous stochastic programming model of the Tennessee River Basin converged rapidly to an upper bound on hydropower

  6. Underground natural gas storage reservoir management

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  7. A Reservoir Sampling Algorithm with Adaptive Estimation of Conditional Expectation

    E-Print Network [OSTI]

    Vucetic, Slobodan

    a reservoir with capacity to hold R examples, the simplest procedure [4] is to replace the t-th observed example from a stream with a randomly chosen reservoir example with probability min(1, R examples, other than the R examples included in the reservoir, are simply ignored. Manuscript received

  8. Petro-electric modeling for CSEM reservoir characterization and monitoring

    E-Print Network [OSTI]

    Key, Kerry

    saturation assuming a noncompacting isothermal reservoir. Time-lapse CSEM has been considered by severalPetro-electric modeling for CSEM reservoir characterization and monitoring Alireza Shahin1 , Kerry to highlight the applicability of this technique for reservoir monitoring. This work appraises the ability

  9. WestVirginiaUniversity SPE 65675 Reservoir Characterization

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    to measure effective porosity (MPHI) and irreducible water saturation (MBVI) in the reservoir rockWestVirginiaUniversity SPE 65675 SPE 65675 Reservoir Characterization Through Synthetic Logs Shahab cost effective way for reservoir characterization. · The methodology uses the available well log data

  10. APPLICATION OF NEW SEISMIC ATTRIBUTES TO RESERVOIR MONITORING

    E-Print Network [OSTI]

    APPLICATION OF NEW SEISMIC ATTRIBUTES TO RESERVOIR MONITORING by Tagir Galikeev #12;#12;ABSTRACT and to best conduct seismic inversion and adapt it to reservoir model building for volumetric computation and reservoir simulation. The author develops algorithms of the seismic attributes including frequency

  11. The Statistical Reservoir Model: calibrating faults and fractures, and predicting reservoir response to water flood

    E-Print Network [OSTI]

    geomechanics to have a significant influence on hydrocarbon production rates through changes in the effective 2004). Geomechanics not only predicts a reservoir response in the near field, but also at long range i

  12. Seismic Determination of Reservoir Heterogeneity: Application to the Characterization of Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Imhof, Matthias G.; Castle, James W.

    2003-03-12

    The objective of the project was to examine how seismic and geologic data could be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study was performed at West Coalinga Field in California.

  13. Type curve analysis for naturally fractured reservoirs (infinite-acting reservoir case): a new approach 

    E-Print Network [OSTI]

    Angel Restrepo, Juan Alejandro

    2000-01-01

    . The objectives of this work are as follows: First, we generated new type curves for the analysis of pressure drawdown and buildup tests performed in naturally fractured reservoirs. Next, we develop a systematic approach for the analysis and interpretation...

  14. Integrated Multi-Well Reservoir and Decision Model to Determine Optimal Well Spacing in Unconventional Gas Reservoirs 

    E-Print Network [OSTI]

    Ortiz Prada, Rubiel Paul

    2012-02-14

    Optimizing well spacing in unconventional gas reservoirs is difficult due to complex heterogeneity, large variability and uncertainty in reservoir properties, and lack of data that increase the production uncertainty. Previous methods are either...

  15. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01

    I. (2005), Geothermal Reservoir Characterization via Thermalfor characterization of fractured geothermal reservoirs. For

  16. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2002-10-08

    During this reporting period, research was continued on characterizing and modeling the behavior of naturally fractured reservoir systems. This report proposed a model to relate the seismic response to production data to determine crack spacing and aperture, provided details of tests of proposed models to obtain fracture properties from conventional well logs with actual field data, and verification of the naturally fractured reservoir simulator developed in this project.

  17. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  18. The effects of production rates and some reservoir parameters on recovery in a strong water drive gas reservoir 

    E-Print Network [OSTI]

    Soemarso, Christophorus

    1978-01-01

    THE EFFECTS OF PRODUCTION RATES AND SOME RESERVOIR PARAMETERS ON RECOVERY IN A STRONG WATER DRIVE GAS RESERVOIR A Thesis by CHRISTOPHORUS SOEMARSO Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject: Petroleum Engineering THE EFFECTS OF PRODUCTION RATES AND SOME RESERVOIR PARAMETERS ON RECOVERY IN A STRONG WATER DRIVE GAS RESERVOIR A Thesis by CHRISTOPHORUS SOEMARSO...

  19. Relation between facies, diagenesis, and reservoir quality of Rotliegende reservoirs in north Germany

    SciTech Connect (OSTI)

    David, F.; Gast, R.; Kraft, T. (BEB Erdgas Erdol GmbH, Hannover (Germany))

    1993-09-01

    In north Germany, the majority of Rotliegende gas fields is confined to an approximately 50 km-wide east-west-orientated belt, which is situated on the gently north-dipping flank of the southern Permian basin. Approximately 400 billion m[sup 3] of natural gas has been found in Rotliegende reservoir sandstones with average porosities of depths ranging from 3500 to 5000 m. Rotliegende deposition was controlled by the Autunian paleo-relief, and arid climate and cyclic transgressions of the desert lake. In general, wadis and large dunefields occur in the hinterland, sebkhas with small isolate dunes and shorelines define the coastal area, and a desert lake occurs to the north. The sandstones deposited in large dunefields contain only minor amounts of illite, anhydrite, and calcite and form good reservoirs. In contrast, the small dunes formed in the sebkha areas were affected by fluctuations of the desert lake groundwaters, causing the infiltration of detrital clay and precipitation of gypsum and calcite. These cements were transformed to illite, anhydrite, and calcite-II during later diagenesis, leading to a significant reduction of the reservoir quality. The best reservoirs occur in the shoreline sandstones because porosity and permeability were preserved by early magnesium-chlorite diagenesis. Since facies controls diagenesis and consequently reservoir quality, mapping of facies also indicates the distribution of reservoir and nonreservoir rocks. This information is used to identify play area and to interpret and calibrate three-dimensional seismic data.

  20. Using time-lapse seismics as a reservoir-monitoring tool, geophysics can help distinguish different reservoir pro-

    E-Print Network [OSTI]

    reservoir pro- duction scenarios. For example, Eiken et al. (2000) success- fully detected fluid-saturation life, oil saturation usually decreases, reservoir pressure declines, and gas breakout may occurUsing time-lapse seismics as a reservoir-monitoring tool, geophysics can help distinguish different

  1. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-04-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  2. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-03-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  3. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    the case of oil and extraction, consumption of natural gasGas, Crude Oil and Distillates NGLs consumption in CALEBOil and Gas Extraction (Mcf) Re-pressuring Lease Fuel Consumption

  4. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis; L. R. Graumann

    2003-03-31

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.

  5. Experimental production characteristics of anticlinal reservoirs 

    E-Print Network [OSTI]

    Williams, Charles David

    1959-01-01

    field examples showing the importance of gxavity dxain- age on oil reservoir, perfoxmance have been pubhshed. Among these are the Gook Ranch Field in Shackleford County, Texas, the Mile (5) Six Pool in Peru, the Elk Basin Tensleep Reservoiz in Wyom... through the kerosene until a pressure above the desired bubble point pressure was attained. Kerosene was then circulated through. the gas cap in the mixing cylinder with a Hills-McGanna proportlosing pump until no further pressure drop was noted...

  6. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  7. Full Reviews: Reservoir Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy gdr.openei.orgReservoir Characterization

  8. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."2nd Geo- pressured Geothermal Energy Conference, Austin,

  9. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  10. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. (Saudi Aramco, Dhahran (Saudi Arabia))

    1996-01-01

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  11. Effects of diagenesis on reservoir quality within two Cypress reservoirs in the Illinois basin

    SciTech Connect (OSTI)

    Scott, B.D.; McGee, K.R.; Seyler, B. (Illinois State Geological Survey, Champaign (United States))

    1991-08-01

    One billion bbl of oil have been produced from the Chesterian Cypress Formation in the Illinois basin. These heterogeneous reservoirs may consist of deltaic, marine-reworked deltaic, and/or reworked marine sandstone within mixed siliciclastic-carbonate environments. Thin section, x-ray diffraction, and scanning electron microscopy coupled with energy dispersive x-ray analysis indicate that the effects of diagenesis play a significant role in reservoir quality of Mattoon and Parkersburg fields in Illinois. Five separate Cypress sandstones may be present at Mattoon field (Coles County), a predominantly stratigraphic trap, produces from three distinct Cypress strata. In these fields, reservoir quality is reduced when quartz overgrowths and later stage, blocky mosaic ferroan-calcite cement occlude pore throats. Authigenic clay minerals occur as pore-lining particles that inhibit fluid-flow. Clay minerals preset are illite, mixed-layered illite/smectite, chlorite, and kaolinite. Reservoir quality is enhanced through dissolution of early ferroan-calcite cement, dissolution of detrital feldspar, and microfracturing. Completion, stimulation, and production programs within the heterogeneous Cypress sandstone reservoirs would be improved by recognition of mineral relationships and diagenetic overprints. Developments programs may need to include the use of clay stabilizers in mud clean-out acid treatments.

  12. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Matthias G. Imhof; James W. Castle

    2005-02-01

    The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. Throughout the project, however, we learned that this strategy was impractical because the different data and model are complementary instead of competitive. For the complex Coalinga field, we found that a thorough understanding of the reservoir evolution through geologic times provides the necessary framework which ultimately allows integration of the different data and techniques.

  13. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Matthias G. Imhof; James W. Castle

    2005-02-01

    The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. We learned, however, that this strategy was impractical. The different data and tools need to be integrated from the beginning because they are all interrelated. This report describes a new approach to geostatistical modeling and presents an integration of geology and geophysics to explain the formation of the complex Coalinga reservoir.

  14. Potosi Reservoir Modeling; History and Recommendations

    SciTech Connect (OSTI)

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO?) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from two projects: the US DOE-funded Illinois Basin–Decatur Project being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois, as well as data from the Illinois – Industrial Carbon Capture and Sequestration (IL-ICCS) project funded through the American Recovery and Reinvestment Act. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the Verification Well 1 (VW1) and the Injection Well (CCS1), structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for the Potosi Formation. The intention was for two million tonnes per annum (MTPA) of CO? to be injected for 20 years into the Potosi Formation. In 2013, updated reservoir models for the Cambrian Potosi Formation were evaluated. The data included formation tops from mud logs, well logs from the CCS1, VW1, and Verification Well 2 (VW2) wells, structural and stratigraphic formation from a larger 3D seismic survey, and field data from several waste water injection wells for Potosi Formation. The objective is to simulate the injection of CO? at a rate 3.5 million tons per annum (3.2 million tonnes per annum [MTPA]) for 30 years 106 million tons (96 MT total) into the Potosi Formation. The Potosi geomodeling efforts have evolved from using data from a single well in 2010 to the inclusion of data from three wells in 2013 which largely leverage the porosity and permeability logs plus knowledge of lost circulation zones. The first Potosi model (Potosi Geobody Model 2010) attempted to use the available seismic inversion data to inform the geomodel and predict vugular zones in advance of drilling VW1. Lost circulation zones in VW1 came in as the geologists predicted. The model was not implemented in subsequent simulation work. To date, reservoir models used for flow simulation work have relied predominately on Gaussian distributed properties (porosity and permeability) and have employed a single injection well. Potosi Model 2013b incorporated the new VW2 logs, and exhibited an extra level of sophistication by delineating the vugular intervals. This method added further realism that likely represents the best reservoir approximation to date. Where the 2010 reservoir models were 10 by 10 mi (16 by 16 km) in area, the 2013 models were expanded in size to 30 by 30 mi (48 by 48 km). The latest reservoir simulations show that a minimum of four injectors might be required to meet target injection rates. Still, there is data that requires further scrutiny and modeling methodologies that require testing for the Potosi Formation. This work is currently ongoing, and the next phase of the reservoir modeling intends to implement valuable data like porosity derived from seismic inversion, seismically derived geobodies, or a combination of both to further define vugular zones and the porosity distribution within the Potosi Formation. Understanding the dual porosity, dual permeability character of the Potosi remains the greatest challenge in representing this formation. Further analysis of the FMI* fullbore formation microimager data may aid in assessing this uncertainty. The Potosi Formation is indeed an interesting formation, and recommendations to further characterize it are included in the following list: - Data acquisition to identify the vugs permeability, distribution, and interconnectivity could b

  15. Information extraction system

    DOE Patents [OSTI]

    Lemmond, Tracy D; Hanley, William G; Guensche, Joseph Wendell; Perry, Nathan C; Nitao, John J; Kidwell, Paul Brandon; Boakye, Kofi Agyeman; Glaser, Ron E; Prenger, Ryan James

    2014-05-13

    An information extraction system and methods of operating the system are provided. In particular, an information extraction system for performing meta-extraction of named entities of people, organizations, and locations as well as relationships and events from text documents are described herein.

  16. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

  17. A Simple, Fast Method of Estimating Fractured Reservoir Geometry...

    Open Energy Info (EERE)

    Fractured Reservoir Geometry from Tracer Tests Abstract A simple method of estimating flow geometry and pore geometry from conservative tracer tests in single phase geothermal...

  18. Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...

    Open Energy Info (EERE)

    Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of Tracer-Determined Residence Time Distributions Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  19. Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code...

    Office of Scientific and Technical Information (OSTI)

    Conference: Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code Comparison Study Citation Details In-Document Search Title: Flow and Thermal Behavior of an EGS...

  20. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01

    and Pruess, K. , Analysis of injection testing of geothermalreservoirs: Geothermal Resoures Council, Vol. 4. , (into a fractured geothermal reservoir: Transactions, Vol. 4,

  1. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Salt Cavern...

  2. Base Technologies and Tools for Supercritical Reservoirs Geothermal...

    Open Energy Info (EERE)

    Base Technologies and Tools for Supercritical Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Base Technologies and...

  3. Geothermal Reservoir Temperatures Estimated from the Oxygen Isotope...

    Open Energy Info (EERE)

    Geothermal Reservoir Temperatures Estimated from the Oxygen Isotope Compositions of Dissolved Sulfate and Water from Hot Springs and Shallow Drillholes Jump to: navigation, search...

  4. Geothermal reservoir temperatures estimated from the oxygen isotope...

    Open Energy Info (EERE)

    Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search...

  5. Evaluation of testing and reservoir parameters in geothermal...

    Open Energy Info (EERE)

    to library Conference Proceedings: Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Abstract Evaluating the Raft River and...

  6. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in...

  7. Borehole geophysics evaluation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Borehole geophysics...

  8. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    E-Print Network [OSTI]

    Brown, V.

    2013-01-01

    help in distinguishing oil sand from anisotropic shale.shale and a homogeneous oil filled sand, respectively. Thefrom water to oil within reservoir sands, as demonstrated by

  9. Passive injection: A strategy for mitigating reservoir pressurization...

    Office of Scientific and Technical Information (OSTI)

    Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Citation Details In-Document Search Title:...

  10. 5641_FrozenReservoirs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is no information available describing the behavior of a rockicelight oil system at low pressure. This information, along with a robust reservoir model, is needed to...

  11. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    and reservoir volume were investigated and compared to previous circulation tests. Chemical tracers can be used to measure the volume of flow paths in hydrologic systems....

  12. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    Gasoline and Diesel Fuel Update (EIA)

    Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production...

  13. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground...

  14. Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms 

    E-Print Network [OSTI]

    Gibbs, Trevor Howard

    2011-08-08

    saturation and believed to be a volumetric reservoir with no water drive. The reservoir temperature is at 275 deg F. The gas gravity, relative density to air, is 0.68, and the permeability of the gas reservoir is 0.1 md. Case-specific differences... PLACEMENT OPTIMIZATION IN GAS RESERVOIRS USING GENETIC ALGORITHMS A Thesis by TREVOR HOWARD GIBBS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  15. Sustainability of Shear-Induced Permeability for EGS Reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sustainabilitypeer2013.pdf More Documents & Publications The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs Development of an...

  16. ,"New Mexico Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  17. ,"Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  18. Collection and Analysis of Reservoir Data from Testing and Operation...

    Open Energy Info (EERE)

    geothermal field. Intera used a 2-D simulator to predict temperatures, pressures over 30 years and movement of dissolved solids in the reservoir. Data collected during...

  19. FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR...

    Open Energy Info (EERE)

    FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  20. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Technologies Project Type Topic 2 Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more...

  1. Migratory Passerine Birds as Reservoirs of Lyme Borreliosis in Europe

    E-Print Network [OSTI]

    2006-01-01

    and Borrelia afzelii in Europe. Microbiology. 2004;150:1741–International. Birds in Europe: population estimates, trendsReservoirs of Lyme Borreliosis in Europe Pär Comstedt,* Sven

  2. Effects of uncertainty in rock-physics models on reservoir parameter estimation using marine seismic AVA and CSEM data

    E-Print Network [OSTI]

    Chen, Jinsong; Dickens, Thomas

    2008-01-01

    random functions of reservoir water saturation and porosity,models We relate reservoir water saturation S w and porosityexponent Saturation exponent Reservoir brine resistivity (W-

  3. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W.

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  4. Natural Gas Used for Repressuring (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    8 2009 2010 2011 2012 2013 View History U.S. 3,638,622 3,522,090 3,431,587 3,365,313 3,277,588 3,331,456 1936-2013 Federal Offshore Gulf of Mexico 1,105 432 110 3,084 4,014 2,832...

  5. Natural Gas Used for Repressuring (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1973-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2015 Alabama NA NA NA NA NA NA 1991-2015 Alaska NA NA NA NA NA NA 1991-2015 Arizona NA NA NA NA...

  6. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY,ProvedFeet)ThousandDecade

  7. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY,ProvedFeet)ThousandDecadeYear

  8. Alaska Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas and GasThousandDecade

  9. Alaska Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas and

  10. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas

  11. Arkansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural

  12. Arkansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear Jan Feb Mar Apr May Jun Jul

  13. California Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15 Jun-15 Jul-15 Aug-15Decade

  14. California Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15 Jun-15 Jul-15

  15. Colorado Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovCubic

  16. Colorado Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovCubicYear Jan Feb Mar Apr

  17. Florida Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May Jun JulProved2009

  18. Florida Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May Jun JulProved2009Year Jan

  19. Illinois Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Feb MarMay-15 Jun-15 Jul-15

  20. Indiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecade Year-0 Year-1 Year-2

  1. Indiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecade Year-0 Year-1 Year-2Year Jan Feb

  2. Kansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecadeFuel ConsumptionThousandDecade Year-0

  3. Kansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecadeFuel ConsumptionThousandDecade

  4. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand Cubic Feet)

  5. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand Cubic Feet)Year Jan Feb Mar

  6. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear Jan FebFuelThousandDecade Year-0

  7. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear Jan FebFuelThousandDecade

  8. Maryland Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0Year Jan Feb5.79 6.50 7.38 8.78

  9. Maryland Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0Year Jan Feb5.79 6.50 7.38 8.78Year

  10. Michigan Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 152009 2010 2011

  11. Michigan Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 152009 2010 2011Year Jan Feb

  12. Mississippi Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522 35Feet)2009 2010 2011Decade

  13. Mississippi Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522 35Feet)2009 2010

  14. Missouri Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19Fuel ConsumptionThousandDecade Year-0

  15. Missouri Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19Fuel ConsumptionThousandDecade

  16. Montana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) Decade Year-0 Year-13.56

  17. Montana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) Decade Year-0 Year-13.56Year

  18. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172 3,009165,360IndustrialProcessed

  19. Nevada Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year Jan Feb (Million Cubic Feet)NA NADecade

  20. Nevada Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year Jan Feb (Million Cubic Feet)NA

  1. Ohio Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew Field DiscoveriesElements)Decade

  2. Oregon Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecadeYear JanElements) Gas4.00

  3. Oregon Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecadeYear JanElements) Gas4.00Year Jan

  4. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNewMajorInput(Million Cubic Feet)NA NAinYear

  5. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNewMajorInput(Million Cubic Feet)NA

  6. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 (Million3

  7. Texas Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 (Million CubicDecade Year-0

  8. Texas Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 (Million CubicDecade Year-0Year

  9. Utah Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation ResultsYear Jan FebCubicDecade Year-0

  10. Utah Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation ResultsYear Jan FebCubicDecade

  11. Virginia Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation (Million Cubic Feet) VirginiaNAYear

  12. Virginia Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation (Million Cubic Feet) VirginiaNAYearYear

  13. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecade Year-0 Year-1

  14. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecade Year-0

  15. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.

  16. Magic Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New York:Magic Reservoir

  17. Seismic Determination of Reservoir Heterogeneity: Application to the Characterization of Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Imhof, Matthias G.; Castle, James W.

    2003-03-12

    The objective of the project was to examine how seismic and geologic data could be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. Performed a theoretical and numerical study to examine which subsurface features the surface seismic method actually resolves.

  18. Integrated reservoir study of the 8 reservoir of the Green Canyon 18 field 

    E-Print Network [OSTI]

    Aniekwena, Anthony Udegbunam

    2004-11-15

    ?????????????????????????... 20 Permeability Determination ???????????????????. 22 Relative Permeability and Capillary Pressure Data ?????????????.? 23 PVT Data ??????????????????????????????. 25 Production and Pressure History Data ???????????????????. 26... ???????????.??. 24 5. Key PVT parameters used ??????????????????????????.??. 25 6. Summary of production forecasts under four different development scenarios ?????.??? 56 7. Reservoir data sheet ???????????????????????????????.. 57 8. Gas...

  19. New Insight into Integrated Reservoir Management using Top-Down, Intelligent Reservoir Modeling

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    geological models base on stochastic modeling techniques for HM and production forecasting ­ This model Modeling · A large volume of data that is representative of the reservoir behavior in both space and time is generated · Fusing a large number of discrete data and single-well models into a cohesive and continuous

  20. Predicting spatial distribution of critical pore types and their influence on reservoir quality, Canyon (Pennsylvanian) Reef reservoir, Diamond M field, Texas 

    E-Print Network [OSTI]

    Fisher, Aaron Jay

    2007-04-25

    to develop a ranking scheme for reservoir quality based on good, intermediate, and poor flow units at field scale. Ultimately slice maps of reservoir quality at a 10 ft interval for a 150 ft section of the Canyon Reef reservoir were developed. These reservoir...

  1. Twentieth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    None

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  2. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-29

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.

  3. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    SciTech Connect (OSTI)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

    2003-09-01

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

  4. Reservoir characterization, performance monitoring of waterflooding and development opportunities in Germania Spraberry Unit. 

    E-Print Network [OSTI]

    Hernandez Hernandez, Erwin Enrique

    2005-08-29

    of the reservoir under waterflooding, and controlled surveillance to improve field performance. This research should serve as a guide for future work in reservoir simulation and reservoir management and can be used to evaluate various scenarios for additional...

  5. DISTRIBUTION AND MOVEMENT OF JUVENILE SALMON IN BROWNLEE RESERVOIR, 1962-65

    E-Print Network [OSTI]

    , shitllow, 'Unst.ratified pond when t.he reservoir is full. Juvenile salmon enter the reservoir from the Snake and Powder Rivers en route to the sea, When Brownlee Reservoir was completed, de- tailed knowledge

  6. Improved Upscaling & Well Placement Strategies for Tight Gas Reservoir Simulation and Management 

    E-Print Network [OSTI]

    Zhou, Yijie

    2013-07-29

    , with opportunities for improved reservoir simulation & management, such as simulation model design, well placement. Our work develops robust and efficient strategies for improved tight gas reservoir simulation and management. Reservoir simulation models are usually...

  7. Applications of Level Set and Fast Marching Methods in Reservoir Characterization 

    E-Print Network [OSTI]

    Xie, Jiang

    2012-10-19

    and fractured reservoirs, particularly for unconventional reservoirs with multistage hydraulic fractures. We first generalize the concept to heterogeneous reservoirs and provide an efficient tool to calculate drainage volume using fast marching methods...

  8. Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks 

    E-Print Network [OSTI]

    Ogbechie, Joachim Nwabunwanne

    2012-02-14

    Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

  9. Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs 

    E-Print Network [OSTI]

    Ma, Xiaodan

    2013-12-10

    Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

  10. IMPROVED RESERVOIR CHARACTERIZATION AND SIMULATION OF A MATURE FIELD USING AN INTEGRATED APPROACH

    E-Print Network [OSTI]

    Teh, Woan Jing

    2012-05-31

    of the reservoir model. In this study, the systematic assignment of reservoir properties with optimal utilization of very limited data has ensured that the fluid movement through the heterogeneous reservoir rock in a mature field is appropriately established...

  11. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    DOE Patents [OSTI]

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  12. A Hierarchical Multiscale Approach to History Matching and Optimization for Reservoir Management in Mature Fields 

    E-Print Network [OSTI]

    Park, Han-Young

    2012-10-19

    Reservoir management typically focuses on maximizing oil and gas recovery from a reservoir based on facts and information while minimizing capital and operating investments. Modern reservoir management uses history-matched simulation model...

  13. New inflow performance relationships for gas condensate reservoirs 

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30

    - similar to the Vogel IPR trends (the Vogel (quadratic) rate-pressure profile is generally presumed for the case of a solution gas-drive reservoir system). However, in the case of a gas-condensate reservoir system, the coefficients in the quadratic...

  14. Water Quality of a Reservoir Used for Reclaimed Water Storage

    E-Print Network [OSTI]

    Dixon, Peter S; Scherfig, Jan

    1981-01-01

    off from upper Santiago Creek and Colorado River water fromSantiago Reservoir (by this time a blend of surface run-off and Colorado RiverSantiago Reservoir, the inputs are derived from direct surface run-off and Colorado River

  15. A Variable Cell Model for Simulating Gas Condensate Reservoir Performance

    E-Print Network [OSTI]

    Al-Majed, Abdulaziz Abdullah

    , SPE-~~~ SPE 21428 A Variable Cell Model for Simulating Gas Condensate Reservoir Performance A of depletion performance of gas condensate reservoirs report the existence of a A variable cell model for simulating gas relatively high, near-constant, oil saturation in condensate reeervoir performance has been

  16. RESERVOIR SIMULATION USING MIXED METHODS, A MODIFIED METHOD CHARACTERISTICS,

    E-Print Network [OSTI]

    Russell, Thomas F.

    RESERVOIR SIMULATION USING MIXED METHODS, A MODIFIED METHOD CHARACTERISTICS, AND LOCAL GRID Mathematical models for reservoir ow are governed by partial di#11;erential equations whose solution may v is the total Darcy velocity, p the total uid pressure [6], S denotes the saturation of water

  17. MULTIGRID METHODS FOR FULLY IMPLICIT OIL RESERVOIR J. Molenaar

    E-Print Network [OSTI]

    MULTIGRID METHODS FOR FULLY IMPLICIT OIL RESERVOIR SIMULATION J. Molenaar TWI, Delft University and water in reservoir rock. This displacement process is modeled by two basic equations (see e.g. [1, and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved

  18. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    SciTech Connect (OSTI)

    Brown, V.; Hoversten, G.M.; Key, K.; Chen, J.

    2011-10-01

    A combination of 1D and 3D forward and inverse solutions is used to quantify the sensitivity and resolution of conventional controlled source electromagnetic (CSEM) data collected using a horizontal electric dipole source to transverse electrical anisotropy located in a deep-water exploration reservoir target. Since strongly anisotropic shale layers have a vertical resistivity that can be comparable to many reservoirs, we examine how CSEM can discriminate confounding shale layers through their characteristically lower horizontal resistivity. Forward modeling demonstrates that the sensitivity to reservoir level anisotropy is very low compared to the sensitivity to isotropic reservoirs, especially when the reservoir is deeper than about 2 km below the seabed. However, for 1D models where the number of inversion parameters can be fixed to be only a few layers, both vertical and horizontal resistivity of the reservoir can be well resolved using a stochastic inversion. We find that the resolution of horizontal resistivity increases as the horizontal resistivity decreases. We show that this effect is explained by the presence of strong horizontal current density in anisotropic layers with low horizontal resistivity. Conversely, when the reservoir has a vertical to horizontal resistivity ratio of about 10 or less, the current density is vertically polarized and hence has little sensitivity to the horizontal resistivity. Resistivity anisotropy estimates from 3D inversion for 3D targets suggest that resolution of reservoir level anisotropy for 3D targets will require good a priori knowledge of the background sediment conductivity and structural boundaries.

  19. Reservoirs in Georgia: Meeting Water Supply Needs While

    E-Print Network [OSTI]

    Radcliffe, David

    listed in the National Inventory of Dams 2 2. Impoundments in a portion of the Upper Oconee River watershed 2 3. Water level fluctuations before and after construction of the Allatoona Dam 5 4. The series an overview of the number of reservoirs in Georgia and their impacts. Dams and reservoirs differ marked

  20. The imbibition process of waterflooding in naturally fractured reservoirs 

    E-Print Network [OSTI]

    Huapaya Lopez, Christian A.

    2005-02-17

    -1 THE IMBIBITION PROCESS OF WATERFLOODING IN NATURALLY FRACTURED RESERVOIRS A Thesis by CHRISTIAN HUAPAYA LOPEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2003 Major Subject: Petroleum Engineering ii THE IMBIBITION PROCESS OF WATERFLOODING IN NATURALLY FRACTURED RESERVOIRS A Thesis by CHRISTIAN HUAPAYA LOPEZ...

  1. SEDIMENTATION OF THE PANAMA CANAL RESERVOIR: COSMOGENIC NUCLIDE

    E-Print Network [OSTI]

    Nichols, Kyle K.

    SEDIMENTATION OF THE PANAMA CANAL RESERVOIR: COSMOGENIC NUCLIDE ESTIMATES OF BACKGROUND SEDIMENT, the reservoir to the Panama Canal. In addition to water, the headwater basins supply sediment that reduces the background rates of sediment generation in a tropical montane environment. Development of the headwaters

  2. TRITIUM EXTRACTION FACILITY ALARA

    SciTech Connect (OSTI)

    Joye, BROTHERTON

    2005-04-19

    The primary mission of the Tritium Extraction Facility (TEF) is to extract tritium from tritium producing burnable absorber rods (TPBARs) that have been irradiated in a commercial light water reactor and to deliver tritium-containing gas to the Savannah River Site Facility 233-H. The tritium extraction segment provides the capability to deliver three (3) kilograms per year to the nation's nuclear weapons stockpile. The TEF includes processes, equipment and facilities capable of production-scale extraction of tritium while minimizing personnel radiation exposure, environmental releases, and waste generation.

  3. Polyacidic multiloading metal extractants 

    E-Print Network [OSTI]

    Gordon, R. J.; Campbell, J.; Henderson, D.K.; Henry, D. C. R.; Swart, R. M.; Tasker, P. A.; White, F. J.; Wood, J. L.; Yellowlees, L. J

    2008-01-01

    Novel polynucleating, di- and tri-acidic ligands have been designed to increase the molar and mass transport efficiencies for the recovery of base metals by solvent extraction.

  4. Fission Product Extraction Process

    ScienceCinema (OSTI)

    None

    2013-05-28

    A new INL technology can simultaneously extract cesium and strontium for reuse. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  5. Application of the transient, isochronal p/z plotting method to multilayered reservoirs 

    E-Print Network [OSTI]

    Dandekar, Rashmin Ramesh

    1992-01-01

    of the crossflow reservoir cases was lower than the error for the corresponding commingled reservoir cases. The error in gas- The error in gas-in-place estimates in all of the crossflow reservoir cases was lower than the error for the corresponding commingled... reservoir cases. The ermr in gas- in-place estimate decreases with increasing permeability contrast. The behavior can be attributed to the fact that crossflow reservoir behavior is similar to the behavior of homogeneous reservoir after the passage...

  6. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    . While geomechanics in conventional reservoir simulator is often governed by change in pore addresses the modelling of the geomechanical effects induced by reservoir production and reinjection, the optimum production rate and the reservoir performance, reservoir geomechanics tries to capture rock

  7. Computational Intelligence for Deepwater Reservoir Depositional Environments Interpretation

    E-Print Network [OSTI]

    Yu, Tina; Clark, Julian; Sullivan, Morgan; 10.1016/j.jngse.2011.07.014

    2013-01-01

    Predicting oil recovery efficiency of a deepwater reservoir is a challenging task. One approach to characterize a deepwater reservoir and to predict its producibility is by analyzing its depositional information. This research proposes a deposition-based stratigraphic interpretation framework for deepwater reservoir characterization. In this framework, one critical task is the identification and labeling of the stratigraphic components in the reservoir, according to their depositional environments. This interpretation process is labor intensive and can produce different results depending on the stratigrapher who performs the analysis. To relieve stratigrapher's workload and to produce more consistent results, we have developed a novel methodology to automate this process using various computational intelligence techniques. Using a well log data set, we demonstrate that the developed methodology and the designed workflow can produce finite state transducer models that interpret deepwater reservoir depositional...

  8. Energy transport between two pure-dephasing reservoirs

    E-Print Network [OSTI]

    T. Werlang; D. Valente

    2014-08-21

    A pure-dephasing reservoir acting on an individual quantum system induces loss of coherence without energy exchange. When acting on composite quantum systems, dephasing reservoirs can lead to a radically different behavior. Transport of energy between two pure-dephasing markovian reservoirs is predicted in this work. They are connected through a chain of coupled sites. The baths are kept in thermal equilibrium at distinct temperatures. Quantum coherence between sites is generated in the steady-state regime and results in the underlying mechanism sustaining the effect. A quantum model for the reservoirs is a necessary condition for the existence of stationary energy transport. A microscopic derivation of the non-unitary system-bath interaction is employed, valid in the ultrastrong inter-site coupling regime. The model assumes that each site-reservoir coupling is local.

  9. High resolution reservoir geological modelling using outcrop information

    SciTech Connect (OSTI)

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  10. Transient well testing in two-phase geothermal reservoirs

    SciTech Connect (OSTI)

    Aydelotte, S.R.

    1980-03-01

    A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

  11. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  12. Equilibrium composition between liquid and clathrate reservoirs on Titan

    E-Print Network [OSTI]

    Mousis, Olivier; Lunine, Jonathan I; Sotin, Christophe

    2015-01-01

    Hundreds of lakes and a few seas of liquid hydrocarbons have been observed by the Cassini spacecraft to cover the polar regions of Titan. A significant fraction of these lakes or seas could possibly be interconnected with subsurface liquid reservoirs of alkanes. In this paper, we investigate the interplay that would happen between a reservoir of liquid hydrocarbons located in Titan's subsurface and a hypothetical clathrate reservoir that progressively forms if the liquid mixture diffuses throughout a preexisting porous icy layer. To do so, we use a statistical-thermodynamic model in order to compute the composition of the clathrate reservoir that forms as a result of the progressive entrapping of the liquid mixture. This study shows that clathrate formation strongly fractionates the molecules between the liquid and the solid phases. Depending on whether the structure I or structure II clathrate forms, the present model predicts that the liquid reservoirs would be mainly composed of either propane or ethane, r...

  13. Chickamauga Reservoir 1992 fisheries monitoring cove rotenone results

    SciTech Connect (OSTI)

    Kerley, B.L.

    1993-06-01

    The Tennessee Valley Authority (TVA) is required by the National Pollutant Discharge Elimination System (NPDES) Permit for Sequoyah Nuclear Plant (SQN) to conduct and report annually a nonradiological operational monitoring program to evaluate potential effects of SQN on Chickamauga Reservoir. This monitoring program was initially designed to identify potential changes in water quality and biological communities in Chickamauga Reservoir resulting from operation of SQU. Chickamauga Reservoir cove rotenone sampling has also been conducted as part of the preoperational monitoring program for Watts Bar Nuclear Plant (WBN) to evaluate the combined effects of operating two nuclear facilities on one reservoir once WBU becomes operational. The purpose of this report is to present results of cove rotenone sampling conducted on Chickamauga Reservoir in 1992.

  14. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    SciTech Connect (OSTI)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the reservoir.

  15. Numerical modeling of water injection into vapor-dominated geothermal reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

  16. Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and...

  17. Ninth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S.

    1983-12-15

    The attendance at the Workshop was similar to last year's with 123 registered participants of which 22 represented 8 foreign countries. A record number of technical papers (about 60) were submitted for presentation at the Workshop. The Program Committee, therefore, decided to have several parallel sessions to accommodate most of the papers. This format proved unpopular and will not be repeated. Many of the participants felt that the Workshop lost some of its unique qualities by having parallel sessions. The Workshop has always been held near the middle of December during examination week at Stanford. This timing was reviewed in an open discussion at the Workshop. The Program Committee subsequently decided to move the Workshop to January. The Tenth Workshop will be held on January 22-24, 1985. The theme of the Workshop this year was ''field developments worldwide''. The Program Committee addressed this theme by encouraging participants to submit field development papers, and by inviting several international authorities to give presentations at the Workshop. Field developments in at least twelve countries were reported: China, El Salvador, France, Greece, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, the Philippines, and the United States. There were 58 technical presentations at the Workshop, of which 4 were not made available for publication. Several authors submitted papers not presented at the Workshop. However, these are included in the 60 papers of these Proceedings. The introductory address was given by Ron Toms of the U.S. Department of Energy, and the banquet speaker was A1 Cooper of Chevron Resources Company. An important contribution was made to the Workshop by the chairmen of the technical sessions. Other than Stanford Geothermal Program faculty members, they included: Don White (Field Developments), Bill D'Olier (Hydrothermal Systems), Herman Dykstra (Well Testing), Karsten Pruess (Well Testing), John Counsil (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

  18. Engineering Atomic Quantum Reservoirs for Photons

    E-Print Network [OSTI]

    Susanne Pielawa; Luiz Davidovich; David Vitali; Giovanna Morigi

    2010-04-06

    We present protocols for creating entangled states of two modes of the electromagnetic field, by using a beam of atoms crossing microwave resonators. The atoms are driven by a transverse, classical field and pump correlated photons into (i) two modes of a cavity and (ii) the modes of two distant cavities. The protocols are based on a stochastic dynamics, characterized by random arrival times of the atoms and by random interaction times between atoms and cavity modes. The resulting effective model yields a master equation, whose steady state is an entangled state of the cavity modes. In this respect, the atoms act like a quantum reservoir, pulling the cavity modes into an entangled, Einstein-Podolski-Rosen (EPR) state, whose degree of entanglement is controlled by the intensity and the frequency of the transverse field. This scheme is robust against stochastic fluctuations in the atomic beam, and it does not require atomic detection nor velocity selection.

  19. Atomic Rydberg Reservoirs for Polar Molecules

    E-Print Network [OSTI]

    Zhao, Bo; Pupillo, Guido; Zoller, Peter

    2011-01-01

    We discuss laser dressed dipolar and Van der Waals interactions between atoms and polar molecules, so that a cold atomic gas with laser admixed Rydberg levels acts as a designed reservoir for both elastic and inelastic collisional processes. The elastic scattering channel is characterized by large elastic scattering cross sections and repulsive shields to protect from close encounter collisions. In addition, we discuss a dissipative (inelastic) collision where a spontaneously emitted photon carries away (kinetic) energy of the collision partners, thus providing a significant energy loss in a single collision. This leads to the scenario of rapid thermalization and cooling of a molecule in the mK down to the \\mu K regime by cold atoms.

  20. Engineering Atomic Quantum Reservoirs for Photons

    E-Print Network [OSTI]

    Pielawa, Susanne; Vitali, David; Morigi, Giovanna

    2010-01-01

    We present protocols for creating entangled states of two modes of the electromagnetic field, by using a beam of atoms crossing microwave resonators. The atoms are driven by a transverse, classical field and pump correlated photons into (i) two modes of a cavity and (ii) the modes of two distant cavities. The protocols are based on a stochastic dynamics, characterized by random arrival times of the atoms and by random interaction times between atoms and cavity modes. The resulting effective model yields a master equation, whose steady state is an entangled state of the cavity modes. In this respect, the atoms act like a quantum reservoir, pulling the cavity modes into an entangled, Einstein-Podolski-Rosen (EPR) state, whose degree of entanglement is controlled by the intensity and the frequency of the transverse field. This scheme is robust against stochastic fluctuations in the atomic beam, and it does not require atomic detection nor velocity selection.

  1. Atomic Rydberg Reservoirs for Polar Molecules

    E-Print Network [OSTI]

    Bo Zhao; Alexander Glätzle; Guido Pupillo; Peter Zoller

    2011-12-18

    We discuss laser dressed dipolar and Van der Waals interactions between atoms and polar molecules, so that a cold atomic gas with laser admixed Rydberg levels acts as a designed reservoir for both elastic and inelastic collisional processes. The elastic scattering channel is characterized by large elastic scattering cross sections and repulsive shields to protect from close encounter collisions. In addition, we discuss a dissipative (inelastic) collision where a spontaneously emitted photon carries away (kinetic) energy of the collision partners, thus providing a significant energy loss in a single collision. This leads to the scenario of rapid thermalization and cooling of a molecule in the mK down to the \\mu K regime by cold atoms.

  2. Gypsy Field project in reservoir characterization

    SciTech Connect (OSTI)

    Castagna, John P.; Jr., O'Meara, Daniel J.

    2000-01-12

    The overall objective of this project was to use extensive Gypsy Field Laboratory and data as a focus for developing and testing reservoir characterization methods that are targeted at improved recovery of conventional oil. This report describes progress since project report DOE/BC/14970-7 and covers the period June 1997-September 1998 and represents one year of funding originally allocated for the year 1996. During the course of the work previously performed, high resolution geophysical and outcrop data revealed the importance of fractures at the Gypsy site. In addition, personnel changes and alternative funding (OCAST and oil company support of various kinds) allowed the authors to leverage DOE contributions and focus more on geophysical characterization.

  3. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  4. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  5. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Integration of borehole imaging data with available open-hole log, core, and well-test data from horizontal and vertical wells allowed for the distribution of fracture parameters, including fracture density, aperture, porosity, and permeability throughout a geocellular model. Analysis of over 5000 fractures showed that changes in lithology, grain size, and/or bed thickness do not correlate with changes in fracture densities. Review of P- and S-wave log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. Fracture permeabilities compare favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix- related permeability contrasts sharply with highly variable and relatively high (ER 50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  6. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  7. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1998-01-26

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period October - December 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  8. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management.

    SciTech Connect (OSTI)

    Koerner, R.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1997-10-21

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1997 and to report all technical data and findings as specified in the `Federal Assistance Reporting Checklist`. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques.

  9. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker.

    1998-01-26

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period October - December 1997 and to report all technical data and findings as specified in the Federal Assistance Reporting Checklist . The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  10. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1998-04-22

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1998 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  11. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management.

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nauyen, John; Moos, Dan; Tagbor, Kwasi

    1997-07-28

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period April - June 1997 and to report all technical data and findings as specified in the `Federal Assistance Reporting Checklist`. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques.

  12. A project management approach to the integrated reservoir characterization process

    SciTech Connect (OSTI)

    Tsingas, C.; Tyraskis, P.A.

    1995-12-31

    The ultimate goal of an Exploration and Production (E&P) organization is to increase reserves and optimize production in a cost effective manner. Efficient reservoir management requires in depth knowledge of reservoir properties and their distribution within the field. Saudi Aramco`s Exploration organization formed a multi-disciplinary team in order to develop an Integrated Reservoir Characterization Process Model (IRCPM). The IRCPM team produced a quantitative multi-disciplinary model of existing work, data and technology in order to optimize resources and minimize costs during reservoir characterization projects. The activities describing this generic, relational and dynamic model were input into project management software. An extensive analysis from the perspective of organizations, work flow and deliverables was performed, employing various project management concepts and tools. A thorough understanding of the interactions among various disciplines was identified, as well. The ability to incorporate the necessary software/hardware data acquisition, processing, interpretation, integration and management during the reservoir characterization process, resulted in serving to highlight both bridges and barriers in the flow of information and resources. The application of the IRCPM to a specific reservoir characterization process, showed that it can have a direct, positive impact on Saudi Aramco`s core mission - the more efficient production of hydrocarbons - through increasing efficiency of the reservoir projects to which it is applied.

  13. Putting integrated reservoir characterization into practice - in house training

    SciTech Connect (OSTI)

    Wright, F.M. Jr.; Best, D.A.; Clarke, R.T.

    1997-08-01

    The need for even more efficient reservoir characterization and management has forced a change in the way Mobil Oil provides technical support to its production operations. We`ve learned that to be successful, a good understanding of the reservoir is essential. This includes an understanding of the technical and business significance of reservoir heterogeneities at different stages of field development. A multi-disciplinary understanding of the business of integrated reservoir characterization is essential and to facilitate this understanding, Mobil has developed a highly successful {open_quotes}Reservoir Characterization Field Seminar{close_quotes}. Through specific team based case studies that incorporate outcrop examples and data the program provides participants the opportunity to explore historic and alternative approaches to reservoir description, characterization and management. We explore appropriate levels and timing of data gathering, technology applications, risk assessment and management practices at different stages of field development. The case studies presented throughout the course are a unique element of the program which combine real life and hypothetical problem sets that explore how different technical disciplines interact, the approaches to a problem solving they use, the assumptions and uncertainties contained in their contributions and the impact those conclusions may have on other disciplines involved in the overall reservoir management process. The team building aspect of the course was an added bonus.

  14. A study of Kg/Ko values from reservoir performance 

    E-Print Network [OSTI]

    Young, Gerald Sewall

    1957-01-01

    factor at current pressure, barrels reservoir oil per barrel stook tank oil bo = forjsation volune factor at original yressure, barrels reservoir oil per barrel stock tank oil TABLE 3 VOLUEETRIC CALCULATIOEE POR FIELD?A? R-r (36V9 - ISO~ ( ~0 026... absolute. This study was concluded when the average reservoir pressure had decU. ned to 4, , 3Q, pounds per square inch absolute. This pressure deoline was accompanied by the production sf 566, 137 barrels of stock tank oil and 2, ling, 310 standar4 MCF...

  15. The Potosi Reservoir Model 2013c, Property Modeling Update

    SciTech Connect (OSTI)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from this project as well as two other separately funded projects: the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium (MGSC) in Macon County, Illinois, and the Illinois Industrial Carbon Capture and Sequestration (ICCS) project funded through the American Recovery and Reinvestment Act. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the Verification Well #1 (VW1) and the Injection Well (CCS1), structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. The intention was for 2.2 million tons per annum (2 million tonnes per annum [MTPA]) of CO2 to be injected for 20 years. In the Task Error! Reference source not found., the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010") was re-run using a new injection scenario of 3.5 million tons per annum (3.2 MTPA) for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. The models size was insufficient to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 by 30 mi (48 by 48 km), while preserving all property modeling workflows and layering. This model was retained as the base case. In the preceding Task [1], the Potosi reservoir model was updated to take into account the new data from the Verification Well #2 (VW2) which was drilled in 2012. The porosity and permeability modeling was revised to take into account the log data from the new well. Revisions of the 2010 modeling assumptions were also done on relative permeability, capillary pressures, formation water salinity, and the maximum allowable well bottomhole pressure. Dynamic simulations were run using the injection target of 3.5 million tons per annum (3.2 MTPA) for 30 years. This dynamic model was named Potosi Dynamic Model 2013b. In this Task, a new property modeling workflow was applied, where seismic inversion data guided the porosity mapping and geobody extraction. The static reservoir model was fully guided by PorosityCube interpretations and derivations coupled with petrophysical logs from three wells. The two main assumptions are: porosity features in the PorosityCube that correlate with lost circulation zones represent vugular zones, and that these vugular zones are laterally continuous. Extrapolation was done carefully to populate the vugular facies and their corresponding properties outside the seismic footprint up to the boundary of the 30 by 30 mi (48 by 48 km) model. Dynamic simulations were also run using the injection target of 3.5 million tons per annum (3.2 MTPA) for 30 years. This new dynamic model was named Potosi Dynamic Model 2013c. Reservoir simulation with the latest model gives a cumulative injection of 43 million tons (39 MT) in 30 years with a single well, which corresponds to 40% of the injection target. The injection rate is approx. 3.2 MTPA in the first six months as the well is injecting into the surrounding vugs, and declines rapidly to 1.8 million tons per annum (1.6 MTPA) in year 3 once the surrounding vugs are full and the CO2 start to reach the matrix. After, the injection rate declines gradually to 1.2 million tons per annum (1.1 MTPA) in year 18 and stays consta

  16. Geochemical analysis of reservoir continuity and connectivity, Arab-D and Hanifa Reservoirs, Abqaiq Field, Saudia Arabia

    SciTech Connect (OSTI)

    Mahdi, A.A.; Grover, G. [Saudi Aramco, Dhahran (Saudi Arabia); Hwang, R. [Chevron Petroleum Technology Co., La Habra, CA (United States)] [and others

    1995-08-01

    Organic geochemistry and its integration with geologic and reservoir engineering data is becoming increasingly utilized to assist geologists and petroleum engineers in solving production related problems. In Abqaiq Field of eastern Saudi Arabia, gas chromatographic analysis (FSCOT) of produced oils from the Arab-D and Hanifa reservoirs was used to evaluate vertical and lateral continuity within and between these reservoirs. Bulk and molecular properties of produced Arab-D oils do not vary significantly over the 70 km length and 10 km width of the reservoir. Hanifa oils, however, do reflect two compositionally distinct populations that are hot in lateral communication, compatible with the occurrence of a large oil pool in the southern part of the field, and a separate, and smaller northern accumulation. The Arab-D and underlying Hanifa oil pools are separated by over 450 feet of impermeable carbonates of the Jubaila Formation, yet the Southern Hanifa pool and the Arab-D have been in pressure communication since onset of Hanifa production in 1954. Recent borehole imaging and core data from horizontal Hanifa wells confirmed the long suspected occurrence of fractures responsible for fluid transmissibility within the porous (up to 35%) but tight (<10md matrix K) Hanifa reservoir, and between the Hanifa and Arab-D. The nearly identical hydrocarbon composition of oils from the Arab-D and southern Hanifa pool provided the final confirmation of fluid communication between the two reservoirs, and extension of a Hanifa fracture-fault network via the Jubaila Formation. This work lead to acquisition of 3-D seismic to image and map the fracture-fault system. The molecular fingerprinting approach demonstrated that produced oils can be used to evaluate vertical and lateral reservoir continuity, and at Abqaiq Field confirmed, in part, the need to produce the Hanifa reservoir via horizontal wells to arrest the reservoir communication that occurs with existing vertical wells.

  17. The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: Develop Improved Methods For Maintaining Permeable Fracture Volumes In EGS Reservoirs.

  18. Seismic low-frequency effects from oil-saturated reservoir zones

    E-Print Network [OSTI]

    Goloshubin, Gennady M.; Korneev, Valeri A.; Vingalov, Vjacheslav M.

    2002-01-01

    and gas saturation changes in underground reservoirs. Whilereservoir for the cases of oil and water saturation.

  19. Numerical modeling of water injection into vapor-dominated geothermal reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    reaches the saturation temperature at prevailing reservoirsaturation profiles at different times in the top reservoir

  20. Nineteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1994-01-20

    PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Xianfa Deng who coordinated the meeting arrangements for the Workshop. Roland N. Home Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  1. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W.

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate the audiovisual equipment and to Michael Riley who coordinated the meeting arrangements for a second year. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  2. Liquid chromatographic extraction medium

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  3. Liquid chromatographic extraction medium

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  4. Efficient Double-Beam Characterization for Fractured Reservoir

    E-Print Network [OSTI]

    Zheng, Yingcai

    We proposed an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. Based on the diffraction theory, the scattered wave ...

  5. Exploration model for possible geothermal reservoir, Coso Hot...

    Open Energy Info (EERE)

    reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and Jarzabek (1977). Gravity data collected by the USGS (Isherwood and Plouff, 1978) was plotted and compared with...

  6. Geothermal Resource-Reservoir Investigations Based On Heat Flow...

    Open Energy Info (EERE)

    Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. Simulation of naturally fractured reservoirs using empirical transfer function 

    E-Print Network [OSTI]

    Tellapaneni, Prasanna Kumar

    2004-09-30

    This research utilizes the imbibition experiments and X-ray tomography results for modeling fluid flow in naturally fractured reservoirs. Conventional dual porosity simulation requires large number of runs to quantify transfer function parameters...

  8. Assessment of Flood Control Capabilities for Alternative Reservoir Storage Allocations 

    E-Print Network [OSTI]

    Demirel, Mustafa

    2015-05-21

    Reservoir operation and storage allocation are important duties for agencies and water management professionals in Texas and elsewhere responsible for supplying water for municipal, industrial, and agricultural uses, hydroelectric power generation...

  9. Stress-dependent permeability on tight gas reservoirs 

    E-Print Network [OSTI]

    Rodriguez, Cesar Alexander

    2005-02-17

    People in the oil and gas industry sometimes do not consider pressure-dependent permeability in reservoir performance calculations. It basically happens due to lack of lab data to determine level of dependency. This thesis attempts to evaluate...

  10. Optimum Reservoir Operation for Flood Control and Conservation Purposes 

    E-Print Network [OSTI]

    Wurbs, Ralph A.; Cabezas, L. Morris; Tibbets, Michael N.

    1985-01-01

    space available for storing flood waters. Conservation purposes include municipal, industrial, and agricultural water supply, hydroelectric power, recreation, and instream flow maintenance. Common practice is to operate a reservoir only for conservation...

  11. Three dimensional geologic modeling of a fractured reservoir, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T.; Grover, G.A. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-11-01

    A geological assessment of a large carbonate reservoir in Saudi Arabia shows that it is a Type 2 fractured reservoir in which fractures provide the essential permeability. Intercrystalline microporosity, found within the basinally deposited mudstones and wackestones, is the dominant porosity type. Near-vertical, east-west-oriented extension fractures are preferentially localized in low-to-moderate porosities associated with stylolites. Porosity/fracture density relationships, combined with the results of structural curvature mapping, yielded a 3-dimensional model of fracture density. Fracture permeability and fracture porosity distributions were generated by integrating fracture density modeling results with average fracture aperture information derived from well test data. Dramatic differences exist between matrix- and fracture-related porosity, permeability models that help explain observed production behavior within the field. These models are being used by reservoir and simulation engineers for daily reservoir management, history matching, and long-term development drilling planning.

  12. Comparative Evaluation of Generalized River/Reservoir System Models 

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    2005-01-01

    modeling systems that simulate the storage, flow, and diversion of water in a system of reservoirs and river reaches. Generalized means that a computer modeling system is designed for application to a range of concerns dealing with river basin systems...

  13. Hydroacoustic Estimates of Fish Density Distributions in Cougar Reservoir, 2011

    SciTech Connect (OSTI)

    Ploskey, Gene R.; Zimmerman, Shon A.; Hennen, Matthew J.; Batten, George W.; Mitchell, T. D.

    2012-09-01

    Day and night mobile hydroacoustic surveys were conducted once each month from April through December 2011 to quantify the horizontal and vertical distributions of fish throughout Cougar Reservoir, Lane County, Oregon.

  14. Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement

    SciTech Connect (OSTI)

    Dershowitz, William S.; Curran, Brendan; Einstein, Herbert; LaPointe, Paul; Shuttle, Dawn; Klise, Kate

    2002-07-26

    The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.

  15. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  16. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project will provide the first ever formal evaluation of fracture and fracture flow evolution in an EGS reservoir following a hydraulic stimulation.

  17. Problems of fluid flow in a deformable reservoir 

    E-Print Network [OSTI]

    Diyashev, Ildar

    2006-04-12

    This research is focused on development and enhancement of the model of fluid flow in a formation with stress-dependent permeability. Several typical axi-symmetrical problems of fluid flow in a multi-layered reservoir with ...

  18. Acidizing of Sandstone Reservoirs Using HF and Organic Acids 

    E-Print Network [OSTI]

    Yang, Fei

    2012-10-19

    Mud acid, which is composed of HCl and HF, is commonly used to remove the formation damage in sandstone reservoirs. However, many problems are associated with HCl, especially at high temperatures. Formic-HF acids have served as an alternative...

  19. Analyzing aquifer driven reservoirs using a computer-oriented approach 

    E-Print Network [OSTI]

    Flumerfelt, Raymond William

    1996-01-01

    A new computer-oriented approach for analyzing aquifer driven reservoirs incorporates both geological and historical pressure data to determine original hydrocarbons-in-place and to forecast production. This new approach does not rely entirely...

  20. Static Reservoir Model Upgridding and Design of User Interface 

    E-Print Network [OSTI]

    Du, Song

    2011-02-22

    and challenging topic demanding much more effort in the reservoir simulation field. We proposed a modified static coarsening algorithm that has better performance without introducing extra computation cost. This algorithm combines adjacent layers based on static...

  1. AN ADVISORY SYSTEM FOR THE DEVELOPMENT OF UNCONVENTIONAL GAS RESERVOIRS 

    E-Print Network [OSTI]

    Wei, Yunan

    2010-01-16

    With the rapidly increasing demand for energy and the increasing prices for oil and gas, the role of unconventional gas reservoirs (UGRs) as energy sources is becoming more important throughout the world. Because of high risks and uncertainties...

  2. A reservoir management study of a mature oil field 

    E-Print Network [OSTI]

    Peruzzi, Tave

    1995-01-01

    An integrated geological, petrophysical and reservoir engineering review was performed for a mature, producing oil field. Like many older fields, important data are missing or were not collected. The techniques used in this thesis may be applied...

  3. Alaska Crude Oil + Lease Condensate New Reservoir Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's...

  4. Application of horizontal wells in steeply dipping reservoirs 

    E-Print Network [OSTI]

    Lopez Navarro, Jose David

    1995-01-01

    and the anisotropy of permeability (kv/kh ratio) are the dominant parameters affecting the oil recovery. For thin reservoirs, the location of the horizontal injector will not significantly affect the oil recovery. Simultaneous gas and water injection through...

  5. The Role of Acidizing in Proppant Fracturing in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Densirimongkol, Jurairat

    2010-10-12

    Today, optimizing well stimulation techniques to obtain maximum return of investment is still a challenge. Hydraulic fracturing is a typical application to improve ultimate recovery from oil and gas reservoirs. Proppant fracturing has become one...

  6. Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: to develop a 3-D numerical model for simulating mode I; II; and III (tensile; shear; and tearing propagation of multiple fractures using the virtual multi-dimensional internal bond (VMIB); to predict geothermal reservoir stimulation.

  7. Geomechanical Reservoir Model Calibration and Uncertainty Assessment from Microseismic Data 

    E-Print Network [OSTI]

    Tarrahi, Mohammadali

    2015-05-04

    Hydraulic stimulation of low permeability rocks in unconventional reservoirs has been observed to trigger microearthquakes (MEQs). Triggering of the MEQ events has been linked to the pore pressure, temperature, and in-situ ...

  8. Analysis of Water Flowback Data in Gas Shale Reservoirs 

    E-Print Network [OSTI]

    Aldaif, Hussain

    2014-09-24

    Properties of both shale gas reservoirs and hydraulic fractures are usually estimated by analyzing hydrocarbon production data while water data is typically ignored. This study introduces a new method to estimate the effective fracture volume...

  9. 1. Introduction Obtaining valid reservoir fluid samples is

    E-Print Network [OSTI]

    Williams, John M.

    in other areas such as core flooding work. Phase behaviour data are vital for reservoir simulation, tubular and analysis projects; work on industry standards documentation; and evaluation of quality issues relating

  10. Seismic characterization of fractured reservoirs using 3D double beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    2012-01-01

    We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

  11. Seismic characterization of fractured reservoirs by focusing Gaussian beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    Naturally fractured reservoirs occur worldwide, and they account for the bulk of global oil production. The most important impact of fractures is their influence on fluid flow. To maximize oil production, the characterization ...

  12. 3-D Seismic Methods For Geothermal Reservoir Exploration And...

    Open Energy Info (EERE)

    3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: 3-D Seismic Methods For...

  13. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    SciTech Connect (OSTI)

    Stephen C. Ruppel

    2005-02-01

    Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.

  14. Flood control reservoir operations for conditions of limited storage capacity 

    E-Print Network [OSTI]

    Rivera Ramirez, Hector David

    2005-02-17

    -1 FLOOD CONTROL RESERVOIR OPERATIONS FOR CONDITIONS OF LIMITED STORAGE CAPACITY A Dissertation by HECTOR DAVID RIVERA RAMIREZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2004 Major Subject: Civil Engineering FLOOD CONTROL RESERVOIR OPERATIONS FOR CONDITIONS OF LIMITED STORAGE CAPACITY A Dissertation by HECTOR DAVID RIVERA...

  15. Permeability prediction and drainage capillary pressure simulation in sandstone reservoirs 

    E-Print Network [OSTI]

    Wu, Tao

    2005-02-17

    -1 PERMEABILITY PREDICTION AND DRAINAGE CAPILLARY PRESSURE SIMULATION IN SANDSTONE RESERVOIRS A Dissertation by TAO WU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of DOCTOR OF PHILOSOPHY December 2004 Major Subject: Geology PERMEABILITY PREDICTION AND DRAINAGE CAPILLARY PRESSURE SIMULATION IN SANDSTONE RESERVOIRS A Dissertation by TAO WU Submitted to Texas A&M University in partial...

  16. Analysis of a geopressured gas reservoir using solution plot method 

    E-Print Network [OSTI]

    Hussain, Syed Muqeedul

    1992-01-01

    ANALYSIS OF A GEOPRESSURED GAS RESERVOIR USING SOLUTION PLOT METHOD A Thesis by SYED MUQEEDUL HUSSAIN Submitted to the Office of Cuaduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1992 Major Subject: Petroleum Engineering ANALYSIS OF A GEOPRESSURED GAS RESERVOIR USING SOLUTION PLOT METHOD A Thesis by SYED MUQEEDUL HUSSAIN Approved as to style and content by: S. W. Poston (Chair of Committee) R. R. Berg...

  17. Use of east Texas reservoirs by wintering bald eagles 

    E-Print Network [OSTI]

    Russell, Sandra Joy

    1982-01-01

    USE OF EAST TEXAS RESERVOIRS BY WINTERING BALD EAGLES A Thesis SANDRA JOY RUSSELL Submitted to the Graduate College of Texas ABM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject...: Wildlife and Fisheries Sciences USE OF EAST TEXAS RESERVOIRS BY WINTERING BALD EAGLES A Thesis by SANDRA JOY RUSSELL Approved as to style and content by: Chairman of Committee Member Member Me er Head of Department May 1982 ABSTRACT Use of East...

  18. Recreation land policies of Texas river authorities operating reservoirs 

    E-Print Network [OSTI]

    Ruesink, Lou Ellen

    1979-01-01

    RECREATION LAND POLICIES OF TEXAS RIVER AUTHORITIES OPERATING RESERVOIRS A Thesis by LOU ELLEN RUESINK Submitted to the Graduate College of Texas A1IM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1979 Major Subject: Recreation and Resources Developmenr. RECREATION LAND POLICIES OF TEXAS RIVER AUTHORITIES OPERATING RESERVOIRS A Thesis by LOU ELLEN RUESINK Approved as to sty1e and content by: (Chairman of o ittee) (Member...

  19. Recovery of oil from fractured reservoirs by gas displacement 

    E-Print Network [OSTI]

    Unneberg, Arild

    1974-01-01

    RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNE BE RG Submitted to the Graduate College of Texas AlkM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974... Major Subject: Petroleum Engineering RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNEBERG Approved as, to style and content by: . ( y (Chairman of Cornrnittee) (Head of Depar nt) / (Membe r) (Member) M b...

  20. US production of natural gas from tight reservoirs

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  1. Reservoir characterization using experimental design and response surface methodology 

    E-Print Network [OSTI]

    Parikh, Harshal

    2004-09-30

    ....????.??........2 1.2 Identification of Most Likely Reservoir Scenario ..????...?...5 1.3 Uncertainty Analysis of Reservoir Modeling Parameters ............ 7 II EVALUATING UNCERTAINTIES IN IDENTIFICATION OF LOCATION AND TRANSMISSIBILITY... ???.........44 3.3.2 Results and Conclusions......?????????......48 3.4 Pixel-Based Model ???..????????????????....49 3.4.1 Identification and Uncertainty Analysis?????? 52 3.4.2 Results and Conclusions.......?????????......57 3.5 Discussion...

  2. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  3. Simulation of paraffin damage due to natural cooling in reservoirs 

    E-Print Network [OSTI]

    Peddibhotla, Sriram

    1993-01-01

    in the reservoir. Suitable modifications were made to model the paraffin precipitation due to natural cooling. The mechanisms which were modeled include (1) reduction in paraffin solubility due to evolution of dissolved gas and due to temperature changes, (2... independently, after which they were incorporated into a reservoir simulator. Then cases were run to simulate field conditions. Natural cooling is the temperature drop due to the gas leaving solution. The simulation results indicate that natural cooling...

  4. A reservoir engineer characterization of the Austin Chalk trend 

    E-Print Network [OSTI]

    Chen, Her-Yuan

    1985-01-01

    A RESERVOIR ENGINEER CHARACTERIZATION OF THE AUSTIN CHALK TREND A Thesis by HER-YUAN CHEN Submitted to the Graduate College of Texas ALM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1985... Major Subject: Petroleum Engineering A RESERVOIR ENGINEER CHARACTERIZATION OF THE AUSTIN CHALK TREND A Thesis by HER-YUAN CHEN Approved as to style and content by; Steven W. Poston (Chairman of Committee) hing H. Wu (Member) Robert R. Serg...

  5. Analyzing aquifers associated with gas reservoirs using aquifer influence functions 

    E-Print Network [OSTI]

    Targac, Gary Wayne

    1988-01-01

    ANALYZING AQUIFERS ASSOCIATED WITH GAS RESERVOIRS USING AQUIFER INFLUENCE FUNCTIONS A Thesis by GARY WAYNE TARGAC Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE V z May 1988 z V z z I- Major Subject: Petroleum Engineering ANALYZING AQUIFERS ASSOCIATED WITH GAS RESERVOIRS USING AQUIFER INFLUENCE FUNCTIONS A Thesis by GARY WAYNE TARGAC Approved as to style and content by: (Chair of Committ R...

  6. Computed microtomography of reservoir core samples

    SciTech Connect (OSTI)

    Coles, M.E.; Muegge, E.L.; Spanne, P.; Jones, K.W.

    1995-03-01

    X-ray computed tomography (CT) is often utilized to evaluate and characterize structural characteristics within reservoir core material systems. Generally, medical CT scanners have been employed because of their availability and ease of use. Of interest lately has been the acquisition of three-dimensional, high resolution descriptions of rock and pore structures for characterization of the porous media and for modeling of single and multiphase transport processes. The spatial resolution of current medical CT scanners is too coarse for pore level imaging of most core samples. Recently developed high resolution computed microtomography (CMT) using synchrotron X-ray sources is analogous to conventional medical CT scanning and provides the ability to obtain three-dimensional images of specimens with a spatial resolution on the order of micrometers. Application of this technique to the study of core samples provides two- and three-dimensional high resolution description of pore structure and mineral distributions. Pore space and interconnectivity is accurately characterized and visualized. Computed microtomography data can serve as input into pore-level simulation techniques. A generalized explanation of the technique is provided, with comparison to conventional CT scanning techniques and results. Computed microtomographic results of several sandstone samples are presented and discussed. Bulk porosity values and mineralogical identification were obtained from the microtomograms and compared with gas porosity and scanning electron microscope results on tandem samples.

  7. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; Dwasi Tagbor; John Nguygen; Roy Koerner; Scott Walker

    1997-04-10

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  8. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-04-01

    West Carney Field produces from Hunton Formation. All the wells produce oil, water and gas. The main objective of this study is to understand the unique behavior observed in the field. This behavior includes: (1) Decrease in WOR over time; (2) Decrease in GOR at initial stages; (3) High decline rates of oil and gas; and (4) strong hydrodynamic connectivity between wells. This report specifically addresses two issues relevant to our understanding of the West Carney reservoir. By using core and log data as well as fluorescence information, we demonstrate that our hypothesis of how the reservoir is formed is consistent with these observations. Namely, oil migrated in water wet reservoir, over time, oil changed the wettability of some part of the reservoir, oil eventually leaked to upper formations prompting re-introduction of water into reservoir. Because of change in wettability, different pore size distributions responded differently to water influx. This hypothesis is consistent with fluorescence and porosity data, as we explain it in this quarterly report. The second issue deals with how to best calculate connected oil volume in the reservoir. The log data does not necessarily provide us with relevant information regarding oil in place. However, we have developed a new material balance technique to calculate the connected oil volume based on observed pressure and production data. By using the technique to four different fields producing from Hunton formation, we demonstrate that the technique can be successfully applied to calculate the connected oil in place.

  9. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    SciTech Connect (OSTI)

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.; Jordan, O.T.; Ana, F.X.M.S.; Bodvarsson, G.S.; Doughty, C.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water front away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.

  10. Pressure Responses of a Vertically Hydraulic Fractured Well in a Reservoir with Fractal Structure

    E-Print Network [OSTI]

    Razminia, Kambiz; Torres, Delfim F M

    2015-01-01

    We obtain an analytical solution for the pressure-transient behavior of a vertically hydraulic fractured well in a heterogeneous reservoir. The heterogeneity of the reservoir is modeled by using the concept of fractal geometry. Such reservoirs are called fractal reservoirs. According to the theory of fractional calculus, a temporal fractional derivative is applied to incorporate the memory properties of the fractal reservoir. The effect of different parameters on the computed wellbore pressure is fully investigated by various synthetic examples.

  11. Rate-decline Relations for Unconventional Reservoirs and Development of Parametric Correlations for Estimation of Reservoir Properties 

    E-Print Network [OSTI]

    Askabe, Yohanes 1985-

    2012-10-24

    Time-rate analysis and time-rate-pressure analysis methods are available to estimate reserves and study flow performance of wells in unconventional gas reservoirs. However, these tools are often incorrectly used or the analysis can become difficult...

  12. The integration of seismic anisotropy and reservoir performance data for characterization of naturally fractured reservoirs using discrete feature network models 

    E-Print Network [OSTI]

    Will, Robert A.

    2004-09-30

    This dissertation presents the development of a method for quantitative integration of seismic (elastic) anisotropy attributes with reservoir performance data as an aid in characterization of systems of natural fractures ...

  13. Reservoir Simulation and Evaluation of the Upper Jurassic Smackover Microbial Carbonate and Grainstone-Packstone Reservoirs in Little Cedar Creek Field, Conecuh County, Alabama 

    E-Print Network [OSTI]

    Mostafa, Moetaz Y

    2013-04-25

    .......................................................................... 59 x LIST OF TABLES Page TABLE 1—PVT Samples for The Grainstone –Packstone... Reservoir Fluid ................................. 23 TABLE 2 — PVT Samples for The Microbial Boundstone Reservoir Fluid ................................. 25 1 INTRODUCTION The Little Cedar Creek Field...

  14. A reservoir engineering characterization of the north study area of the C2/VLE-305 reservoir, Lamar Field, Lake Maracaibo, Venezuela 

    E-Print Network [OSTI]

    Padron Cabral, Ricardo Javier

    1994-01-01

    Reservoir charactefimtion is the key to successful oil field development programs. The recovery efficiency of any reservoir is influenced by its heterogeneities, particularly the distributions of porosity and permeability. ...

  15. Top-Down Intelligent Reservoir Models, Integrating Reservoir Engineering with AI&DM Extended Abstract, 2009 AAPG Annual Conventions, Denver Colorado

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 Top-Down Intelligent Reservoir Models, Integrating Reservoir Engineering with AI&DM Extended Abstract, 2009 AAPG Annual Conventions, Denver Colorado TOP-DOWN INTELLIGENT RESERVOIR MODELING (TDIRM and the history matched model is used to strategize field development in order to improve recovery. Top

  16. Grid-Based Surrogate Reservoir Modeling (SRM) for Fast Track Analysis of Numerical Reservoir Simulation Models at the Grid block Level

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    capability of being able to replicate the pressure and saturation distribution throughout the reservoirSPE 153844 Grid-Based Surrogate Reservoir Modeling (SRM) for Fast Track Analysis of Numerical Reservoir Simulation Models at the Grid block Level Shahab D. Mohaghegh, West Virginia University

  17. Eleventh workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R. (Stanford Geothermal Program)

    1986-01-23

    The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

  18. Fluvial-deltaic heavy oil reservoir, San Joaquin basin

    SciTech Connect (OSTI)

    Miller, D.D.; McPherson, J.G.; Covington, T.E.

    1989-03-01

    Unconsolidated arkosic sands deposited in a fluvial-deltaic geologic setting comprise the heavy oil (13/degree/ API gravity) reservoir at South Belridge field. The field is located along the western side of the San Joaquin basin in Kern County, California. More than 6000 closely spaced and shallow wells are the key to producing the estimated 1 billion bbl of ultimate recoverable oil production. Thousands of layered and laterally discontinuous reservoir sands produce from the Pleistocene Tulare Formation. The small scale of reservoir geometries is exploited by a high well density, required for optimal heavy oil production. Wells are typically spaced 200-500 ft (66-164 m) apart and drilled to 1000 ft (328 m) deep in the 14-mi/sup 2/ (36-km/sup 2/) producing area. Successful in-situ combustion, cyclic steaming, and steamflood projects have benefited from the shallow-depth, thick, layered sands, which exhibit excellent reservoir quality. The fundamental criterion for finding another South Belridge field is to realize the extraordinary development potential of shallow, heavy oil reservoirs, even when an unspectacular discovery well is drilled. The trap is a combination of structural and stratigraphic mechanisms plus influence from unconventional fluid-level and tar-seal traps. The depositional model is interpreted as a braid delta sequence that prograded from the nearby basin-margin highlands. A detailed fluvial-deltaic sedimentologic model establishes close correlation between depositional lithofacies, reservoir geometries, reservoir quality, and heavy oil producibility. Typical porosity is 35% and permeability is 3000 md.

  19. Data Integration for the Generation of High Resolution Reservoir Models

    SciTech Connect (OSTI)

    Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

    2009-01-07

    The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

  20. Extracting the Eliashberg Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy8)highlightsNewExtracellularExtractingExtracting

  1. Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir

    E-Print Network [OSTI]

    Gherardi, Fabrizio

    2008-01-01

    under different reservoir gas saturation initial conditions.to initial reservoir gas saturation has been explored, anddone for initial reservoir gas saturations varying from 0.1

  2. Maquoketa paleotopography key to reservoirs in western Illinois

    SciTech Connect (OSTI)

    Whitaker, S.T.; Ledbetter, J.C.

    1996-08-12

    Shallow Silurian reservoirs in western Illinois have been a primary target for exploration since the late 1950s. It was not until the discovery and development of Buckhorn Consolidated field in the early 1980s, however, that significant drilling efforts for Silurian reservoirs were focused on western Illinois. At Buckhorn, 1.7 million bbl of oil have been produced from a basal Silurian dolomite at about 650 ft. Drawn by inexpensive drilling and available acreage, hundreds of operators flocked to western Illinois to try their luck. By the late 1980s, however, exploration efforts in western Illinois were curtailed due to the failure to locate additional significant reservoirs. Much of this failure was due to the lack of a suitable geologic model that could be used to explain the reason for reservoir development and thereby guide exploration efforts. An article by Whitaker and Howard in 1995 presented a geologic model explaining Silurian reservoir development and stratigraphic entrapment of oil at Buckhorn Consolidated field were formed as Silurian dolomite in-filled a shallow paleovalley cut into the underlying Ordovician Maquoketa shale. Some companies have recently initiated new exploration efforts in the area using this model. This paper discusses the efforts and results of several of these new areas.

  3. Twelfth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J.

    1987-01-22

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, specially Jim Lovekin. The Twelfth Workshop was supported by the Geothermal Technology Division of the U. S. Department of Energy through Contract Nos. DE-AS03-80SF11459 and DE-AS07- 84ID12529. We deeply appreciate this continued support. January 1987 Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jesus Rivera

  4. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W.

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones, Yasmin Gulamani, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, especially Jeralyn Luetkehans. The Thirteenth Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract No. DE-AS07-84ID12529. We deeply appreciate this continued support. Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jean W. Cook

  5. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drillings. Annual technical progress report, June 13, 1996 to June 12, 1998

    SciTech Connect (OSTI)

    Nevans, Jerry W.; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill

    1999-04-27

    Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, does not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations. Other technologies, such as inter-well injection tracers and magnetic flow conditioners, can also aid in the efficient evaluation and operation of both injection and producing wells. The purpose of this project was to demonstrate useful and cost effective methods of exploitation of the shallow shelf carbonate reservoirs of the Permian Basin located in West Texas.

  6. A reservoir for inverse power law decoherence of a qubit

    E-Print Network [OSTI]

    Filippo Giraldi; Francesco Petruccione

    2011-01-24

    The exact dynamics of a Jaynes-Cummings model for a qubit interacting with a continuous distribution of bosons, characterized by a special form of the spectral density, is evaluated analytically. The special reservoir is designed to induce anomalous decoherence, resulting in an inverse power law relaxation, of power 3/2, over an evaluated long time scale. If compared to the exponential-like relaxation obtained from the original Jaynes-Cummings model for Lorentzian-type spectral density functions, decoherence is strongly suppressed. The special reservoir exhibits an upper band edge frequency coinciding with the qubit transition frequency. Known theoretical models of photonic band gap media suitable for the realization of the designed reservoir are proposed.

  7. A reservoir for inverse power law decoherence of a qubit

    E-Print Network [OSTI]

    Giraldi, Filippo

    2010-01-01

    The exact dynamics of a Jaynes-Cummings model for a qubit interacting with a continuous distribution of bosons, characterized by a special form of the spectral density, is evaluated analytically. The special reservoir is designed to induce anomalous decoherence, resulting in an inverse power law relaxation, of power $3/2$, over an evaluated long time scale. If compared to the exponential-like relaxation obtained from the original Jaynes-Cummings model for Lorentzian-type spectral density functions, decoherence is strongly suppressed. The special reservoir exhibits an upper band edge frequency coinciding with the qubit transition frequency. Known theoretical models of photonic band gap media suitable for the realization of the designed reservoir are proposed.

  8. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  9. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fernandez, Carlos A.

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  10. Seismic and Rockphysics Diagnostics of Multiscale Reservoir Textures

    SciTech Connect (OSTI)

    Gary Mavko

    2005-07-01

    This final technical report summarizes the results of the work done in this project. The main objective was to quantify rock microstructures and their effects in terms of elastic impedances in order to quantify the seismic signatures of microstructures. Acoustic microscopy and ultrasonic measurements were used to quantify microstructures and their effects on elastic impedances in sands and shales. The project led to the development of technologies for quantitatively interpreting rock microstructure images, understanding the effects of sorting, compaction and stratification in sediments, and linking elastic data with geologic models to estimate reservoir properties. For the public, ultimately, better technologies for reservoir characterization translates to better reservoir development, reduced risks, and hence reduced energy costs.

  11. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fernandez, Carlos A.

    2013-09-25

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  12. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  13. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University The Triassic sandstone reservoirs of the Paris Basin (France) have attractive geothermal potential for district heating. However, previous exploitations of these reservoirs have revealed re-injection problems

  14. Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine plot

    E-Print Network [OSTI]

    Daley, T.M.

    2011-01-01

    and the reservoir properties (CO 2 saturation distribution).residual CO 2 saturation and the associated reservoir CO 2reservoir model (top) with zoom of central portion showing predicted CO 2 saturation

  15. Dynamics of entropic measurement-induced nonlocality in structured reservoirs

    E-Print Network [OSTI]

    Ming-Liang Hu; Heng Fan

    2012-02-03

    We propose the entropic measurement-induced nonlocality (MIN) as the maximal increment of von Neumann entropy induced by the locally non-disturbing measurement, and study behaviors of it both in the independent and common structured reservoirs. We present schemes for preserving the MIN, and show that for certain initial states the MIN, including the quantum correlations, can even be enhanced by the common reservoir. Additionally, we also show that the different measures of MIN may give different qualitative characterizations of nonlocal properties, i.e., it is rather measure dependent than state dependent.

  16. Dynamics of entropic measurement-induced nonlocality in structured reservoirs

    E-Print Network [OSTI]

    Hu, Ming-Liang

    2012-01-01

    We propose the entropic measurement-induced nonlocality (MIN) as the maximal increment of von Neumann entropy induced by the locally non-disturbing measurement, and study behaviors of it both in the independent and common structured reservoirs. We present schemes for preserving the MIN, and show that for certain initial states the MIN, including the quantum correlations, can even be enhanced by the common reservoir. Additionally, we also show that the different measures of MIN may give different qualitative characterizations of nonlocal properties, i.e., it is rather measure dependent than state dependent.

  17. Sudden change of geometric quantum discord in finite temperature reservoirs

    E-Print Network [OSTI]

    Ming-Liang Hu; Jian Sun

    2015-04-10

    We investigate sudden change (SC) behaviors of the distance-based measures of geometric quantum discords (GQDs) for two non-interacting qubits subject to the two-sided and the one-sided thermal reservoirs. We found that the GQDs defined by different distances exhibit different SCs, and thus the SCs are the combined result of the chosen discord measure and the property of a state. We also found that the thermal reservoir may generate states having different orderings related to different GQDs. These inherent differences of the GQDs reveal that they are incompatible in characterizing quantum correlations both quantitatively and qualitatively.

  18. Upscaling verticle permeability within a fluvio-aeolian reservoir

    SciTech Connect (OSTI)

    Thomas, S.D.; Corbett, P.W.M.; Jensen, J.L.

    1997-08-01

    Vertical permeability (k{sub v}) is a crucial factor in many reservoir engineering issues. To date there has been little work undertaken to understand the wide variation of k{sub v} values measured at different scales in the reservoir. This paper presents the results of a study in which we have modelled the results of a downhole well tester using a statistical model and high resolution permeability data. The work has demonstrates and quantifies a wide variation in k{sub v} at smaller, near wellbore scales and has implications for k{sub v} modelling at larger scales.

  19. Solid phase extraction membrane

    DOE Patents [OSTI]

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  20. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore »wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).« less

  1. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).

  2. Benefits and costs of brine extraction for increasing injection efficiency in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-01-01

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).

  3. Enhanced Oil Recovery in High Salinity High Temperature Reservoir by Chemical Flooding 

    E-Print Network [OSTI]

    Bataweel, Mohammed Abdullah

    2012-02-14

    that contain high concentrations of divalent cations without the need to recondition the reservoir by flooding it with less saline/ less hardness brines. This strategy was found ineffective in preparing the reservoir for chemical flooding. Surfactants used...

  4. FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat...

  5. Spectral SP: A New Approach to Mapping Reservoir Flow and Permeability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spectral SP: A New Approach to Mapping Reservoir Flow and Permeability Spectral SP: A New Approach to Mapping Reservoir Flow and Permeability Spectral SP: A New Approach to Mapping...

  6. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas - Near-Term, Class II

    SciTech Connect (OSTI)

    Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

    2001-10-30

    The focus of this project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent.

  7. Storage in California's Reservoirs and Snowpack in this Time of Drought

    E-Print Network [OSTI]

    Dettinger, Michael D.; Anderson, Michael L.

    2015-01-01

    drought year, reservoir storage may decline to levels thatJUNE 2015 Storage in California’s Reservoirs and Snowpack inwater and snow- pack storage conditions in California in

  8. THE INVESTIGATION OF FLUID PROPERTIES AND SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    E-Print Network [OSTI]

    exploration to define geologic features in the subsurface. Recent advancements in seismic exploration haveTHE INVESTIGATION OF FLUID PROPERTIES AND SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION INVESTIGATION OF FLUID PROPERTIES AND SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION", is hereby approved

  9. Identification of Pore Structure and Clay Content from Seismic Data within an Argillaceous Sandstone Reservoir 

    E-Print Network [OSTI]

    Schelstrate, Robert

    2014-08-11

    on the depositional environment. Increasing amounts of shale become a limiting factor in reservoir quality by creating baffles to fluid flow. Seismic inversion has been used to map reservoir properties such as lithology and porosity. Previous studies have established...

  10. Characterization of Thin-Bedded Reservoir in the Gulf of Mexico: An Integrated Approach. 

    E-Print Network [OSTI]

    Lalande, Severine

    2004-09-30

    complex but the quality of the reservoir is determined by connection and length of beds below the resolution of usual reflection data. Improved characterization is needed to improve development and production of these reservoirs. This study presents...

  11. Reservoir Characterization and Modeling of the Glorieta and the Clearfork Formations, Monahans Field, Permian Basin, Texas 

    E-Print Network [OSTI]

    Yeatman, Ryan Yeatman

    2012-10-19

    facies model, porosity model, and a siltstone model were generated in Petrel to better characterize the Monahans Field reservoir. Interbedded impermeable siltstone beds in Monahans Field partition the reservoir making oil production and water injection...

  12. Native California soils are selective reservoirs for multidrug-resistant bacteria

    E-Print Network [OSTI]

    Sachs, Joel

    Native California soils are selective reservoirs for multidrug-resistant bacteria Amanda C of antibiotic resistance in Bradyrhizobium (alphaproteobacteria). Bradyrhizobium are cosmopolitan bacteria bacteria can exhibit extensive antibiotic re- sistomes and act as reservoirs of important antibiotic

  13. BA, FERRONATO, GAMBOLATI AND TEATINI: ENSEMBLE SMOOTHING OF LAND SUBSIDENCE MEASUREMENTS FOR RESERVOIR GEOMECHANICAL CHARACTERIZATION

    E-Print Network [OSTI]

    Bau, Domenico A.

    FOR RESERVOIR GEOMECHANICAL CHARACTERIZATION 1 of 43 Ensemble Smoothing of Land Subsidence Measurements for Reservoir Geomechanical Characterization D. Baùa* , M. Ferronatob , G. Gambolatib and P. Teatinib Journal of Numerical and Analytical Methods in Geomechanics #12;BAÙ, FERRONATO, GAMBOLATI AND TEATINI

  14. Streamline-based simulation of water injection in naturally fractured reservoirs 

    E-Print Network [OSTI]

    Al-Huthali, Ahmed

    2004-09-30

    The current streamline formulation is limited to single-porosity systems and is then not suitable for application to naturally fractured reservoirs. Describing the fluid transport in naturally fractured reservoirs has been ...

  15. Layered Pseudo-Steady-State Models for tight commingled gas reservoirs 

    E-Print Network [OSTI]

    El-Banbi, Ahmed

    1995-01-01

    Analysis of commingled reservoirs from limited data can be a challenge to most conventional reservoir engineering tools. The purpose of this research is to find an effective and easy technique that can be used to estimate ...

  16. Analysis of stress sensitivity and its influence on oil production from tight reservoirs

    E-Print Network [OSTI]

    Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

    2008-01-01

    low-permeability tight oil reservoirs are inadvisable to be developed under large pressurelow permeability cores Effect of Stress Sensitivity on Oil Production During oil production from tight oil reservoirs, in addition to pressure

  17. Microbial risk assessment for recreational use of the Kranji Reservoir, Singapore

    E-Print Network [OSTI]

    Dixon, Cameron Chaffee

    2009-01-01

    The Public Utilities Board of Singapore is responsible for management of the Kranji drinking water reservoir and wishes to open the reservoir for recreational water use as part of their "Active, Beautiful, and Clean Waters ...

  18. Application of Fast Marching Method in Shale Gas Reservoir Model Calibration 

    E-Print Network [OSTI]

    Yang, Changdong

    2013-07-26

    and reservoir heterogeneity but also is time consuming. In this thesis, we propose and apply an efficient technique, fast marching method (FMM), to analyze the shale gas reservoirs. Our proposed approach stands midway between analytic techniques and numerical...

  19. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity

    Broader source: Energy.gov [DOE]

    This project will develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics; finite element modeling; geo-statistical concepts to establish relationships between micro-seismicity; reservoir flow and geomechanical characteristics.

  20. Socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin, West Texas 

    E-Print Network [OSTI]

    Jagoe, Bryan Keith

    1994-01-01

    This investigative study presents results on the socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin. The amount of incremental oil and gas production from infill drilling in 37 carbonate reservoir units...

  1. Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test 

    E-Print Network [OSTI]

    Romero Lugo, Jose 1985-

    2012-10-24

    Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process is to increase the conductivity of the reservoir by the creation of fractures...

  2. Visual display of reservoir parameters affecting enhanced oil recovery. Quarterly report, July 1995--September 1995

    SciTech Connect (OSTI)

    Wood, J.R.

    1995-10-01

    Research continued on reservoir characterization. An atlas of thin section petrology of reservoir samples from the Southern San Joaquin Basin was acquired. One-dimensional modeling activities were initiated. Results of a modeling study of Elk Hills is described.

  3. Thermo-Poroelastic Modeling of Reservoir Stimulation and Microseismicity Using Finite Element Method with Damage Mechanics 

    E-Print Network [OSTI]

    Lee, Sang Hoon

    2012-02-14

    Stress and permeability variations around a wellbore and in the reservoir are of much interest in petroleum and geothermal reservoir development. Water injection causes significant changes in pore pressure, temperature, ...

  4. Application of geostatistical reservoir description for maximizing waterflood infill drilling recovery from La Cira Field, Colombia 

    E-Print Network [OSTI]

    Cubillos Gutierrez, Helber

    1995-01-01

    One of the prospective ways to increase the oil production is to maximize the oil recovery from mature oil fields. In this study we apply an integrated approach that combines geostatistical reservoir description and reservoir ...

  5. Impact of Reservoir Evaporation and Evaporation Suppression on Water Supply Capabilities 

    E-Print Network [OSTI]

    Ayala, Rolando A

    2013-04-01

    Reservoir storage is essential for developing dependable water supplies and is a major component of the river system water budget. The storage contents of reservoirs fluctuate greatly with variations in water use and climatic conditions that range...

  6. Reservoir characterization in an underground gas storage field using joint inversion of flow and geodetic data

    E-Print Network [OSTI]

    Bottazzi, F.

    Characterization of reservoir properties like porosity and permeability in reservoir models typically relies on history matching of production data, well pressure data, and possibly other fluid-dynamical data. Calibrated ...

  7. A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs 

    E-Print Network [OSTI]

    Yan, Bicheng

    2013-07-15

    The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control...

  8. Bacteria attenuation modeling and source identification in Kranji Catchment and Reservoir

    E-Print Network [OSTI]

    Kerigan, Kathleen B

    2009-01-01

    This study was performed to determine the bacterial loading of Kranji Catchment and Reservoir and how this will affect planned recreational use of Kranji Reservoir. Field and laboratory work was conducted in Singapore ...

  9. Data quality enhancement in oil reservoir operations : an application of IPMAP

    E-Print Network [OSTI]

    Lin, Paul Hong-Yi

    2012-01-01

    This thesis presents a study of data quality enhancement opportunities in upstream oil and gas industry. Information Product MAP (IPMAP) methodology is used in reservoir pressure and reservoir simulation data, to propose ...

  10. Application of the Continuous EUR Method to Estimate Reserves in Unconventional Gas Reservoirs 

    E-Print Network [OSTI]

    Currie, Stephanie M.

    2010-10-12

    for unconventional gas reservoirs using a rate-time analysis approach. This work offers a coherent process to reduce the uncertainty in reserves estimation for unconventional gas reservoirs by quantifying "upper" and "lower" limits of EUR prior to the onset...

  11. Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs 

    E-Print Network [OSTI]

    Limpasurat, Akkharachai

    2011-10-21

    This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer economics. Substantial heat that has accumulated within reservoir rock and its...

  12. Simulation study to investigate development options for a super-heavy oil reservoir 

    E-Print Network [OSTI]

    Diaz Franco, Jose Manuel

    2001-01-01

    A reservoir simulation study was performed on a heavy oil reservoir with the main objective of evaluating possible development options beyond the existing cold production method. The 206-acre area simulated - part of a significantly larger oil...

  13. Production Performance Modeling Through Integration of Reservoir and Production Network with Asphaltene Deposition 

    E-Print Network [OSTI]

    Valbuena Olivares, Ernesto

    2015-05-05

    This study proposes the development of a new integrated reservoir-network compositional simulator with asphaltene modeling in production pipelines. Reservoir and network simulators are developed with a fully-implicit formulation, allowing stand...

  14. Seismic characterization of reservoirs with variable fracture spacing by double focusing Gaussian beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    2013-01-01

    Fractured reservoirs account for a majority of the oil production worldwide and often have low recovery rate. Fracture characterization is important in building reservoir flow models for enhanced oil recovery. Information ...

  15. Genetic pore typing as a means of characterizing reservoir flow units: san andres, sunflower field, terry country, texas 

    E-Print Network [OSTI]

    Humbolt, Aubrey Nicole

    2009-05-15

    Carbonate reservoirs are characteristically heterogeneous in reservoir quality and performance owing to the variety of processes that influence pore formation. Additionally, porosity and permeability do not conform to ...

  16. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    E-Print Network [OSTI]

    Vasco, D.W.

    2008-01-01

    uid saturation prediction in a multicomponent reservoir,Reservoir monitoring and characterization using geodetic data Landro, M. , 2001, Discrimination between pressure and ?uid saturation

  17. Innovative Drying and Nutrients Extraction

    E-Print Network [OSTI]

    to the extraction process. This method evaporates the water from the products but also drives off up to 70 percent dimethyl ether to extract the water from the material. The new process does not require the addition of heat to evaporate the water during the extraction process. Dimethyl ether has a lower heat

  18. CHEM333: Experiment 2: Extraction

    E-Print Network [OSTI]

    Taber, Douglass

    CHEM­333: Experiment 2: Extraction: Prelab Assignment: Read chapter 4. In this lab you will perform an extraction (Chapter 4; Experiment B). Extraction is one of the easiest purification methods in the organic are insoluble in neutral/acidic water but are soluble in basic water. Follow the protocol and make sure that you

  19. Fracture Density Estimation Using Spectral Analysis of Reservoir Reflections: A Numerical Modeling Approach

    E-Print Network [OSTI]

    Pearce, Fred

    2003-01-01

    We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir

  20. Large Releases from CO2 Storage Reservoirs: A Discussion of Natural Analogs, FEPS, and Modeling Needs

    E-Print Network [OSTI]

    Birkholzer, J.; Pruess, K.; Lewicki, J.L.; Rutqvist, J.; Tsang, C-F.; Karimjee, A.

    2008-01-01

    migration away from the primary storage reservoir, towards shallow depthsextend from depth to surface. During upward migration, CO 2

  1. Large releases from CO2 storage reservoirs: Analogs, scenarios, and modeling needs

    E-Print Network [OSTI]

    Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Rutqvist, Jonny; Tsang, Chin-Fu; Karimjee, Anhar

    2006-01-01

    migration away from the primary storage reservoir, towards shallow depthsextend from depth to surface. During upward migration, CO 2

  2. Society of Petroleum Engineers Staggered In Time Coupling of Reservoir Flow Simulation and Geomechanical Defor-

    E-Print Network [OSTI]

    Minkoff, Susan E.

    ) the flow of oil, gas, and water fluid phases in the reservoir while the lat- ter has been specialized

  3. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

  4. Targeted Pressure Management During CO2 Sequestration: Optimization of Well Placement and Brine Extraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco

    2014-12-31

    Large-scale pressure increases resulting from carbon dioxide (CO2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement and injection/ extractionmore »control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing ‘Area of Review’, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.« less

  5. Gradient-based Methods for Production Optimization of Oil Reservoirs

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Gradient-based Methods for Production Optimization of Oil Reservoirs Eka Suwartadi Doctoral Thesis at NTNU, 2012:104 Printed by NTNU-Trykk #12;To my wife and my parents 3 #12;4 #12;Summary Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis

  6. JOHN W. SNEDDEN RESEARCH INTERESTS: Sequence Stratigraphy, sedimentology, reservoir development

    E-Print Network [OSTI]

    Yang, Zong-Liang

    , Shale Gas, Light Tight Oil). CERTIFIED PETROLEUM GEOLOGIST #5279 AWARDS AND KEY PROFESSIONAL SOCIETY/6, p. 1099-1109. Snedden, J.W., and D.G. Kersey, 1982, Depositional environments and gas production stratigraphic model, 1Y1 Reservoir, Biafra Member, Oso Field, Nigeria: Nigerian Association of Petroleum

  7. Evaluation of field development plans using 3-D reservoir modelling

    SciTech Connect (OSTI)

    Seifert, D.; Lewis, J.J.M.; Newbery, J.D.H.

    1997-08-01

    Three-dimensional reservoir modelling has become an accepted tool in reservoir description and is used for various purposes, such as reservoir performance prediction or integration and visualisation of data. In this case study, a small Northern North Sea turbiditic reservoir was to be developed with a line drive strategy utilising a series of horizontal producer and injector pairs, oriented north-south. This development plan was to be evaluated and the expected outcome of the wells was to be assessed and risked. Detailed analyses of core, well log and analogue data has led to the development of two geological {open_quotes}end member{close_quotes} scenarios. Both scenarios have been stochastically modelled using the Sequential Indicator Simulation method. The resulting equiprobable realisations have been subjected to detailed statistical well placement optimisation techniques. Based upon bivariate statistical evaluation of more than 1000 numerical well trajectories for each of the two scenarios, it was found that the wells inclinations and lengths had a great impact on the wells success, whereas the azimuth was found to have only a minor impact. After integration of the above results, the actual well paths were redesigned to meet external drilling constraints, resulting in substantial reductions in drilling time and costs.

  8. Fourier's Law for a Harmonic Crystal with Selfconsistent Stochastic Reservoirs

    E-Print Network [OSTI]

    Roma "La Sapienza", Università di

    Fourier's Law for a Harmonic Crystal with Self­consistent Stochastic Reservoirs Federico Bonetto. The corresponding heat cur­ rent satisfies Fourier's law with a finite positive thermal conductivity which can also words: Fourier's law; harmonic crystal; non­equilibrium systems; ther­ modynamic limit; Green

  9. Friday, March 17, 2006 SOLAR NEBULA AND PLANETARY RESERVOIRS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    into Nearby Protoplanetary Disks [#2348] The one-time presence of 60 Fe in our solar system implies it formedFriday, March 17, 2006 SOLAR NEBULA AND PLANETARY RESERVOIRS 8:30 a.m. Amphitheater Chairs: F. J Heterogeneity Associated with Mixing and Transport in the Solar Nebula [#1066] Spatial heterogeneity

  10. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2005-02-01

    Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

  11. Shale Oil Production Performance from a Stimulated Reservoir Volume 

    E-Print Network [OSTI]

    Chaudhary, Anish Singh

    2011-10-21

    RF Recovery factor at 30 years, percent So Oil saturation, fraction Sorg Residual oil saturation at connate gas saturation, fraction Sgc Critical gas saturation, fraction Sw Water saturation, fraction viii SRV Stimulated reservoir volume PVT.................... 24 Table 3: PVT properties of oil used for Eagle Ford oil window well setup .................... 24 Table 4: Relative permeability end points for fracture and matrix.................................. 25...

  12. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  13. Continuous Model Updating and Forecasting for a Naturally Fractured Reservoir 

    E-Print Network [OSTI]

    Almohammadi, Hisham

    2013-07-26

    . Such capabilities allow for a paradigm change in which reservoir management can be looked at as a strategy that enables a semi-continuous process of model updates and decision optimizations instead of being periodic or reactive. This is referred to as closed...

  14. THE EARTH TIDE EFFECTS ON PETROLEUM RESERVOIRS Preliminary Study

    E-Print Network [OSTI]

    Stanford University

    THE EARTH TIDE EFFECTS ON PETROLEUM RESERVOIRS Preliminary Study A THESIS SUBMITTED ON THE STRESS-STRAIN THEORY AND THE EARTH TIDE MECHANISM 4 2.1 Stress-Strain Theory 4 2.2 General Information on Tides 14 3. THE EFFECTS OF EARTH TIDES ON OPEN WELL-AQUIFER SYSTEMS: STATE OF THE ART 22 3.1 Static

  15. Physical Controls on Methane Ebullition from Reservoirs and Lakes

    E-Print Network [OSTI]

    Johnson, Cari

    of methane production and flux in aquatic sediments has important geochemical, geotechnical, and global; Anselmann and Crutzen, 1989; and Reeburgh et al., 1993). Because methane has the potential to con- tributePhysical Controls on Methane Ebullition from Reservoirs and Lakes JENNIFER JOYCE PAUL W. JEWELL

  16. Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes

    SciTech Connect (OSTI)

    Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev

    2007-12-31

    Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.

  17. Seismic anisotropy in exploration and reservoir characterization: An overview

    E-Print Network [OSTI]

    Tsvankin, Ilya

    range of seismic methods. In particular, vertical and tilted transverse isotropy are currently treated vertical-seis- mic-profiling VSP surveys, moveout inversion of wide-azi- muth data, amplitudeSeismic anisotropy in exploration and reservoir characterization: An overview Ilya Tsvankin1

  18. Comparison between Gulf of Mexico and Mediterranean Offshore Reservoirs 

    E-Print Network [OSTI]

    Tang, Jiawei

    2014-12-15

    ........................................................... 6 Figure 3. Expected reservoir pressure behavior ................................................................. 6 Figure 4. Water depth vs subsea depth ............................................................................. 11 Figure 5.... Formation age vs total depth and water depth .................................................. 12 Figure 6. Pressure vs total depth and water depth ............................................................ 14 Figure 7. Pressure vs subsea depth...

  19. Seismic petrophysics: An applied science for reservoir geophysics

    E-Print Network [OSTI]

    Seismic petrophysics: An applied science for reservoir geophysics WAYNE D. PENNINGTON, Michigan a number of seismic attributes, using either prestack or poststack data, or even both in combination's intuition and, per- haps, wishful thinking, as a guide. This short paper introduces a new term "seismic

  20. STATISTICAL APPLICATIONS TO QUANTITATIVE SEISMIC RESERVOIR CHARACTERIZATION AND MONITORING AT WEST PEARL QUEEN

    E-Print Network [OSTI]

    STATISTICAL APPLICATIONS TO QUANTITATIVE SEISMIC RESERVOIR CHARACTERIZATION AND MONITORING AT WEST to characterize reservoirs from seismic data more quantitatively. This thesis describes a methodology to quantify in the reservoir characterization and monitoring of CO2 sequestration at West Pearl Queen Field, ear Hobbs, New

  1. Bayes Linear Uncertainty Analysis for Oil Reservoirs Based on Multiscale Computer Experiments

    E-Print Network [OSTI]

    Oakley, Jeremy

    of the input parameters for a reservoir model. Therefore, an uncertainty analysis for the model often proceedsBayes Linear Uncertainty Analysis for Oil Reservoirs Based on Multiscale Computer Experiments for the efficient management of the reservoir. In a Bayesian analysis, all of our uncertainties are incorporated

  2. Reservoir Simulation and Uncertainty Analysis of Enhanced CBM Production Using Artificial Neural Networks

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    -cellular model (reservoir parameters), uncertainty analysis becomes an important task that is required for makingSPE 125959 Reservoir Simulation and Uncertainty Analysis of Enhanced CBM Production Using the foundation of any reservoir simulation), comprehensive analysis and uncertainty quantification of ECBM and CO

  3. PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric reservoirs

    E-Print Network [OSTI]

    Cole, Jonathan J.

    LETTERS PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric * Hydroelectric reservoirs cover an area of 3.4 × 105 km2 and comprise about 20% of all reservoirs. In addition dioxide and methane from hydroelectric reservoirs, on the basis of data from 85 globally distributed

  4. PRELIMINARY INVESTIGATION AND DESIGN CONSIDERATIONS FOR THE REHABILITATION OF TRASH SCREEN AT JOR RESERVOIR

    E-Print Network [OSTI]

    Julien, Pierre Y.

    reservoir was constructed to assure flow regulation for the Woh hydroelectric power station, as well. Description of Jor Reservoir Jor reservoir was constructed to assure flow regulation for the Woh hydroelectric earthfill dams namely Jor Dam and Jor Saddle Dam which forms part of the Batang Padang Hydroelectric Scheme

  5. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    July 2010 SPE 139101 Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky O. Grujic, S.D. Mohaghegh, G. Bromhal The research Huron Shale · Data Preparation · Conventional Reservoir Simulation vs. Top Down Reservoir Modeling · Top

  6. Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data

    SciTech Connect (OSTI)

    Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild; Liu, Ning

    2003-03-10

    The goal of this project was to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem was necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management.

  7. FORAGE FISH POPULATIONS AND GROWTH OF MUSKELLUNGE IN A SOUTH DAKOTA POWER PLANT COOLING RESERVOIR

    E-Print Network [OSTI]

    FORAGE FISH POPULATIONS AND GROWTH OF MUSKELLUNGE IN A SOUTH DAKOTA POWER PLANT COOLING RESERVOIR POWER PLANT COOLING RESERVOIR This thesis is approved as a creditable and independent investigation estimates of the 4 major forage fishes in Big Stone Power Plant cooling reservoir, South Dakota, 1 July Page

  8. FEEDING ECOLOGY OF FISHES IN A SOUTH DAKOTA POWER PLANT COOLING RESERVOIR

    E-Print Network [OSTI]

    FEEDING ECOLOGY OF FISHES IN A SOUTH DAKOTA POWER PLANT COOLING RESERVOIR BY ROBERT J. KRSKA, JR OF FISHES IN A SOUTH DAKOTA POWER PLANT COOLING RESERVOIR This thesis is approved as a creditable Power Plant cooling reservoir, South Dakota................................................10 2. Mean

  9. INTEGRATION OF ROCK PHYSICS AND RESERVOIR SIMULATION FOR THE INTERPRETATION OF TIME-LAPSE

    E-Print Network [OSTI]

    INTEGRATION OF ROCK PHYSICS AND RESERVOIR SIMULATION FOR THE INTERPRETATION OF TIME-LAPSE SEISMIC is 15% to 20%, and should be detected in the time-lapse seismic data. Through interpretation of P This thesis research integrates reservoir simulation with time-lapse (4D) seismic monitoring of reservoir

  10. Provenance Collection in Reservoir Management Workflow Environments Fan Sun, Jing Zhao

    E-Print Network [OSTI]

    Hwang, Kai

    in reservoir engineering applications. Data provenance is metadata that pertains to the history of the data information from application logs in the domain of reservoir engineering. In doing so, we address challenges due to: 1) the lack of a workflow orchestration framework in reservoir engineering and 2

  11. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Not Available

    1990-06-25

    The Illinois Department of Energy and Natural Resources through a Memorandum of Understanding with the US Department of Energy has commenced a research program in Improved and Enhanced Oil Recovery from Illinois Reservoirs Through Reservoir Characterization.'' The program will include studies on mineralogy, petrography of reservoir rock, database management, engineering assessment, seismic studies and acoustic logs, and mapping. 8 figs. (CBS)

  12. OBJECT ORIENTED PROGRAMMING TECHNIQUES AND FAC METHOD IN NUMERICAL RESERVOIR SIMULATION \\Lambda

    E-Print Network [OSTI]

    the reservoir. Combining the need for an accurate approximation of these moving features with the needOBJECT ORIENTED PROGRAMMING TECHNIQUES AND FAC METHOD IN NUMERICAL RESERVOIR SIMULATION \\Lambda in numerical simulation of flow through hydrocarbon reservoirs within limitations in computing time and memory

  13. Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale

    E-Print Network [OSTI]

    Hubbard, Susan

    in this study was on developing a systematic approach to understand and monitor bioclogging at the reservoir). In this study, we created a realistic reservoir model from a heterogeneous gas reservoir in the Southern and phase changes can be attributed to porosity reduction. Our studies suggest that the IP signals provide

  14. Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: W. Scott Phillips

    E-Print Network [OSTI]

    Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: A Review W. Scott or production of fluids can induce microseismic events in hydrocarbon and geothermal reservoirs. By deploying Patterns in Reservoirs Key Words: induced microseismicity, geothermal, oil and gas, fluid flow, location

  15. Spring Movements of Paddlefish in a Prairie Reservoir System Craig P. Paukert3

    E-Print Network [OSTI]

    Paddlefish (Polyodon spathula) movements and habitat use were monitored in the Keystone Reservoir System. Paddlefish in the Keystone Reservoir system appear to have adapted to the high spring water temperatures combine to make Keystone Reservoir in northcentral Oklahoma. Paddlefish populations have diminished

  16. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    SciTech Connect (OSTI)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.

  17. Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact

    E-Print Network [OSTI]

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

    2006-01-01

    an initial reservoir fluid composition reflecting saturationfluid saturation with respect to calcite in the reservoir.

  18. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01

    years to improve water extraction methods, develop numericalreactions during water extraction, redox processes were notAranyossy, J.F. , 2001. Extraction of water and solutes from

  19. THMC Modeling of EGS Reservoirs – Continuum through Discontinuum Representations. Capturing Reservoir Stimulation, Evolution and Induced Seismicity

    SciTech Connect (OSTI)

    Elsworth, Derek; Izadi, Ghazal; Gan, Quan; Fang, Yi; Taron, Josh; Sonnenthal, Eric

    2015-07-28

    This work has investigated the roles of effective stress induced by changes in fluid pressure, temperature and chemistry in contributing to the evolution of permeability and induced seismicity in geothermal reservoirs. This work has developed continuum models [1] to represent the progress or seismicity during both stimulation [2] and production [3]. These methods have been used to resolve anomalous observations of induced seismicity at the Newberry Volcano demonstration project [4] through the application of modeling and experimentation. Later work then focuses on the occurrence of late stage seismicity induced by thermal stresses [5] including the codifying of the timing and severity of such responses [6]. Furthermore, mechanistic linkages between observed seismicity and the evolution of permeability have been developed using data from the Newberry project [7] and benchmarked against field injection experiments. Finally, discontinuum models [8] incorporating the roles of discrete fracture networks have been applied to represent stimulation and then thermal recovery for new arrangements of geothermal wells incorporating the development of flow manifolds [9] in order to increase thermal output and longevity in EGS systems.

  20. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2004-10-01

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.