Sample records for reservoir integrated student

  1. Estimating uncertainties in integrated reservoir studies

    E-Print Network [OSTI]

    Zhang, Guohong

    2004-09-30T23:59:59.000Z

    To make sound investment decisions, decision makers need accurate estimates of the uncertainties present in forecasts of reservoir performance. In this work I propose a method, the integrated mismatch method, that incorporates the misfit...

  2. Integrated reservoir management doubles Nigerian field reserves

    SciTech Connect (OSTI)

    Akinlawon, Y.; Nwosu, T.; Satter, A.; Jespersen, R.

    1996-10-01T23:59:59.000Z

    An integrated alliance across disciplines, companies and countries enabled Texaco to conduct a comprehensive reservoir analysis of the North Apoi/Funiwa field in Nigeria. Recommendations implemented in 3 months doubled the book reserves of this mature field. The paper discusses the objectives, the integration of organizations, reservoir analysis, and conclusions. The conclusions made from the integrated study are: (1) 3-D seismic data dramatically improved reservoir description. (2) OOIP is considerably more than the booked values and reserves additions are substantial. (3) Significant value has been added to TOPCON`s assets as a result of teamwork and a multidisciplinary approach to evaluating the reservoirs and optimizing the scenarios for reservoir management. (4) Teamwork and integration of professionals, data, technology and tools was critical to the projects success. (5) The study set an example for effective and expeditious technology transfer and applications. (6) Partnering of TOPCON, DPR, NAPIMS, EPTD and SSI resulted in a quick cycle time and set an excellent example of integration and alliance.

  3. Integral cesium reservoir: Design and transient operation

    SciTech Connect (OSTI)

    Smith, J.N. Jr.; Horner, M.H.; Begg, L.L. [General Atomics, San Diego, CA (United States); Wrobleski, W.J. [Westinghouse Electric Corp., West Mifflin, PA (United States). Bettis Atomic Power Lab.

    1995-01-01T23:59:59.000Z

    An electrically heated thermionic converter has been designed built and successfully tested in air (Homer et.al., 1995). One of the unique features of this converter was an integral cesium reservoir thermally coupled to the emitter. The reservoir consisted of fifteen cesiated graphite pins located in pockets situated in the emitter lead with thermal coupling to the emitter, collector and the emitter terminal; there were no auxiliary electric heaters on the reservoir. Test results are described for conditions in which the input thermal power to the converter was ramped up and down between 50% and 100% of full power in times as short as 50 sec, with data acquisition occurring every 12 sec. During the ramps the emitter and collector temperature profiles. the reservoir temperature and the electric output into a fixed load resistor are reported. The converter responded promptly to the power ramps without excessive overshoot and with no tendency to develop instabilities. This is the rust demonstration of the performance of a cesium-graphite integral reservoir in a fast transient

  4. Integrated reservoir study of the 8 reservoir of the Green Canyon 18 field

    E-Print Network [OSTI]

    Aniekwena, Anthony Udegbunam

    2004-11-15T23:59:59.000Z

    The move into deeper waters in the Gulf of Mexico has produced new opportunities for petroleum production, but it also has produced new challenges as different reservoir problems are encountered. This integrated reservoir characterization effort has...

  5. Petrophysics -The Integration of Reservoir Geosciences Date: 8th -11th September 2014

    E-Print Network [OSTI]

    Levi, Ran

    & Integrated Petrophyiscs and Uncertainty Management Date: 2nd - 7th February 2015 Reservoir SurveillancePetrophysics - The Integration of Reservoir Geosciences Date: 8th - 11th September 2014 Integrating Petrophysics and Seismic Data for Reservoir Characterisation GL55518 Reservoir Surveillance

  6. Application of integrated reservoir management and reservoir characterization to optimize infill drilling

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  7. Streamline-based production data integration in naturally fractured reservoirs

    E-Print Network [OSTI]

    Al Harbi, Mishal H.

    2005-08-29T23:59:59.000Z

    Streamline-based models have shown great potential in reconciling high resolution geologic models to production data. In this work we extend the streamline-based production data integration technique to naturally fractured reservoirs. We use a...

  8. An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs...

    Open Energy Info (EERE)

    Method For Exploration Of Gas Hydrate Reservoirs In Marine Areas Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Integrated Study Method For...

  9. An approach to integrated assessement of reservoir siltation: the Joaqun Costa reservoir as a case study Hydrology and Earth System Sciences, 8(6), 11931199 (2004) EGU

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An approach to integrated assessement of reservoir siltation: the Joaquín Costa reservoir as a case to integrated assessement of reservoir siltation: the Joaquín Costa reservoir as a case study A. Navas1 , B of the main environments in the reservoir. Records of known flood events and of reservoir management data have

  10. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect (OSTI)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  11. Petrophysics -The Integration of Reservoir Geosciences Date: 22nd -25th September 2014

    E-Print Network [OSTI]

    Levi, Ran

    & Integrated Petrophyiscs and Uncertainty Management Date: 2nd - 7th March 2015 Reservoir SurveillancePetrophysics - The Integration of Reservoir Geosciences Date: 22nd - 25th September 2014 Analysis GL5517 Integrating Petrophysics and Seismic Data for Reservoir Characterisation GL55518 Reservoir

  12. A project management approach to the integrated reservoir characterization process

    SciTech Connect (OSTI)

    Tsingas, C.; Tyraskis, P.A.

    1995-12-31T23:59:59.000Z

    The ultimate goal of an Exploration and Production (E&P) organization is to increase reserves and optimize production in a cost effective manner. Efficient reservoir management requires in depth knowledge of reservoir properties and their distribution within the field. Saudi Aramco`s Exploration organization formed a multi-disciplinary team in order to develop an Integrated Reservoir Characterization Process Model (IRCPM). The IRCPM team produced a quantitative multi-disciplinary model of existing work, data and technology in order to optimize resources and minimize costs during reservoir characterization projects. The activities describing this generic, relational and dynamic model were input into project management software. An extensive analysis from the perspective of organizations, work flow and deliverables was performed, employing various project management concepts and tools. A thorough understanding of the interactions among various disciplines was identified, as well. The ability to incorporate the necessary software/hardware data acquisition, processing, interpretation, integration and management during the reservoir characterization process, resulted in serving to highlight both bridges and barriers in the flow of information and resources. The application of the IRCPM to a specific reservoir characterization process, showed that it can have a direct, positive impact on Saudi Aramco`s core mission - the more efficient production of hydrocarbons - through increasing efficiency of the reservoir projects to which it is applied.

  13. Putting integrated reservoir characterization into practice - in house training

    SciTech Connect (OSTI)

    Wright, F.M. Jr.; Best, D.A.; Clarke, R.T. [Mobile Exploration and Producing Technical Center, Dallas, TX (United States)

    1997-08-01T23:59:59.000Z

    The need for even more efficient reservoir characterization and management has forced a change in the way Mobil Oil provides technical support to its production operations. We`ve learned that to be successful, a good understanding of the reservoir is essential. This includes an understanding of the technical and business significance of reservoir heterogeneities at different stages of field development. A multi-disciplinary understanding of the business of integrated reservoir characterization is essential and to facilitate this understanding, Mobil has developed a highly successful {open_quotes}Reservoir Characterization Field Seminar{close_quotes}. Through specific team based case studies that incorporate outcrop examples and data the program provides participants the opportunity to explore historic and alternative approaches to reservoir description, characterization and management. We explore appropriate levels and timing of data gathering, technology applications, risk assessment and management practices at different stages of field development. The case studies presented throughout the course are a unique element of the program which combine real life and hypothetical problem sets that explore how different technical disciplines interact, the approaches to a problem solving they use, the assumptions and uncertainties contained in their contributions and the impact those conclusions may have on other disciplines involved in the overall reservoir management process. The team building aspect of the course was an added bonus.

  14. Data Integration for the Generation of High Resolution Reservoir Models

    SciTech Connect (OSTI)

    Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

    2009-01-07T23:59:59.000Z

    The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

  15. Petrophysics -The Integration of Reservoir Geosciences Date: 20th -23rd October 2014

    E-Print Network [OSTI]

    Levi, Ran

    & Integrated Petrophyiscs and Uncertainty Management Date: 21st - 26th March 2015 Reservoir SurveillancePetrophysics - The Integration of Reservoir Geosciences Date: 20th - 23rd October 2014 and Core Analysis GL5517 Integrating Petrophysics and Seismic Data for Reservoir Characterisation GL55518

  16. INTEGRATION OF ROCK PHYSICS AND RESERVOIR SIMULATION FOR THE INTERPRETATION OF TIME-LAPSE

    E-Print Network [OSTI]

    INTEGRATION OF ROCK PHYSICS AND RESERVOIR SIMULATION FOR THE INTERPRETATION OF TIME-LAPSE SEISMIC is 15% to 20%, and should be detected in the time-lapse seismic data. Through interpretation of P This thesis research integrates reservoir simulation with time-lapse (4D) seismic monitoring of reservoir

  17. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995

    SciTech Connect (OSTI)

    Pande, P.K.

    1996-11-01T23:59:59.000Z

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  18. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect (OSTI)

    P. K. Pande

    1998-10-29T23:59:59.000Z

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  19. Integrated reservoir characterization for the Mazari oil field, Pakistan

    E-Print Network [OSTI]

    Ashraf, Ejaz

    1994-01-01T23:59:59.000Z

    evaluated reservoir performance potential using the production history, well tests and cased-hole well log surveys. Suggestions for reservoir management activities in conjunction with the evaluation of the reservoir performance are discussed in detail...

  20. Integrated Dynamic Optimization and Control in Reservoir Engineering using Locally Identified Linear Models

    E-Print Network [OSTI]

    Van den Hof, Paul

    on dynamic real-time optimization (D- RTO) of waterflooding strategies in petroleum reservoirs haveIntegrated Dynamic Optimization and Control in Reservoir Engineering using Locally Identified, the used large-scale, nonlinear, physics-based reservoir models suffer from vast parametric uncertainty

  1. New Insight into Integrated Reservoir Management using Top-Down, Intelligent Reservoir Modeling

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    ;Introduction Can be used as an alternative to traditional reservoir simulation Cost Man Power May Time and resources required : Only a small fraction performing a conventional reservoir simulation is basis for estimation of initial and remaining hydrocarbons volumes in the reservoir. Results obtained

  2. Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33

    E-Print Network [OSTI]

    Casey, Michael Chase

    2011-08-08T23:59:59.000Z

    several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand...

  3. Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33

    E-Print Network [OSTI]

    Casey, Michael Chase

    2011-08-08T23:59:59.000Z

    several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand...

  4. Integrated reservoir characterization: Improvement in heterogeneities stochastic modelling by integration of additional external constraints

    SciTech Connect (OSTI)

    Doligez, B.; Eschard, R. [Institut Francais du Petrole, Rueil Malmaison (France); Geffroy, F. [Centre de Geostatistique, Fontainebleau (France)] [and others

    1997-08-01T23:59:59.000Z

    The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.

  5. Top-Down Intelligent Reservoir Models, Integrating Reservoir Engineering with AI&DM Extended Abstract, 2009 AAPG Annual Conventions, Denver Colorado

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 Top-Down Intelligent Reservoir Models, Integrating Reservoir Engineering with AI&DM Extended Abstract, 2009 AAPG Annual Conventions, Denver Colorado TOP-DOWN INTELLIGENT RESERVOIR MODELING (TDIRM and the history matched model is used to strategize field development in order to improve recovery. Top

  6. Integrated seismic study of naturally fractured tight gas reservoirs

    SciTech Connect (OSTI)

    Mavko, G.M.; Nur, A.

    1993-12-31T23:59:59.000Z

    Reflection seismic methods are, and will continue to be, the key geophysical tool for imaging these heterogeneities in the subsurface of the earth. However, in spite of great advances in field acquisition techniques and computer processing power, the primary product of conventional seismic work is still only the spatial pattern of reflectivity, which is a measure of velocity variations. Most of the amplitude information goes unused. Although fracture zones may have a reflectivity signature, more often they will not, because of steeply dipping angles, limited offset range in the acquisition, a subtle impedance mismatch, or too thin a fractured zone relative to the wavelength. In fact, there is probably no single seismic attribute that will always tell us what we need to know about fracture zones. Our objective, in the project, is to integrate the principles of rock physics into a quantitative interpretation scheme that exploits the broader spectrum of fracture zone signatures: anomalous compressional and shear wave velocities; Q and velocity dispersion; increased velocity anisotropy amplitude variation with offset (AVO) response. Our goal is to incorporate four key elements: Acquisition and processing of seismic reflection field data. Theoretical studies of the anisotropic signatures of fractured rocks. Laboratory measurements of seismic velocity, velocity anisotropy, and attenuation in reservoir and cap rocks. Integration and interpretation of seismic, well log, and laboratory data, incorporating forward modeling.

  7. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  8. Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  9. Integration of 3-D seismic data with reservoir modeling of a stratigraphically complex reservoir, central Saudi Arabia

    SciTech Connect (OSTI)

    Simms, S.C. (Saudi Aramco, Dhahran (Saudi Arabia))

    1993-09-01T23:59:59.000Z

    A 425-km[sup 2], three-dimensional (3-D) seismic survey was shot in 1992 over one of the recently discovered oil fields in central Saudi Arabia. The primary objective of this survey was to provide stratigraphic control within a complex fluvial reservoir. The Permian age reservoir is a multistory, multilateral sequence of sandstones interbedded with nonproductive mudstones and siltstones. The seismic data were integrated with well control from over 50 wells to produce a 3-D geologic model of the reservoir. Numerous examples of the seismic and well data are presented in this case history. Stratigraphic cross sections through the wells illustrate that the complex nature of the reservoir and seismic sections through these wells show good correlation between seismic character and stratigraphy. Meandering channels and massive siltstone/mudstone bodies are clearly visible on seismic horizon slices and time slices. Faulting is evident on both seismic section at times slices. Acoustic impedance sections produced from both forward and inverse modeling of the seismic data are compared with geologic models of porosity and lithology based on well control alone. Good correlation between acoustic impedance and porosity/lithology allow the use of the seismic data to guide the model between well locations. A geostatistical approach was used to interpolate between well control using the inverted seismic as [open quotes]soft data.[close quotes] 3-D visualization of the geological model illustrates increasing complexity from well control only to an integrated model.

  10. An Integrated Well Performance Study for Shale Reservoir Systems - Application to the Marcellus Shale

    E-Print Network [OSTI]

    Riser, Landon Jess

    2013-11-15T23:59:59.000Z

    In this work we focus on the integration of two independent analyses, time-rate analysis and model-based production analysis, as an approach to resolve the uncertainty in estimating ultimate recovery (EUR) for wells in unconventional reservoirs...

  11. Integrated Analysis and Application of Reservoir Models to Early Permian Detrital Carbonate Deposits, Midland Basin, Texas

    E-Print Network [OSTI]

    Johnston, Travis Wayne 1987-

    2012-11-01T23:59:59.000Z

    A 3-D seismic volume, wireline logs and core data were integrated to determine the spatial distribution of porous reservoirs within the Wolfcampian-Leonardian detrital carbonate slope and basin strata in Glasscock County, Texas. A 3-D seismic...

  12. Recovery Act: Understanding the Impact of CO{sub 2} Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology

    SciTech Connect (OSTI)

    Fouke, Bruce

    2013-03-31T23:59:59.000Z

    An integrated research and teaching program was developed to provide cross-?disciplinary training opportunities in the emerging field of carbon capture and storage (CCS) for geobiology students attending the University of Illinois Urbana-?Champaign (UIUC). Students from across the UIUC campus participated, including those from the departments of Geology, Microbiology, Biochemistry, Civil and Environmental Engineering, Animal Sciences and the Institute for Genomic Biology. The project took advantage of the unique opportunity provided by the drilling and sampling of the large-?scale Phase III CCS demonstration Illinois Basin -? Decatur Project (IBDP) in the central Illinois Basin at nearby Decatur, Illinois. The IBPD is under the direction of the Illinois State Geological Survey (ISGS, located on the UIUC campus) and the Midwest Geological Sequestration Consortium (MGSC). The research component of this project focused on the subsurface sampling and identification of microbes inhabiting the subsurface Cambrian-?age Mt. Simon Sandstone. In addition to formation water collected from the injection and monitoring wells, sidewall rock cores were collected and analyzed to characterize the cements and diagenetic features of the host Mt. Simon Sandstone. This established a dynamic geobiological framework, as well as a comparative baseline, for future studies of how CO2 injection might affect the deep microbial biosphere at other CCS sites. Three manuscripts have been prepared as a result of these activities, which are now being finalized for submission to top-?tier international peer-?reviewed research journals. The training component of this project was structured to ensure that a broad group of UIUC students, faculty and staff gained insight into CCS issues. An essential part of this training was that the UIUC faculty mentored and involved undergraduate and graduate students, as well as postdocs and research scientists, at all stages of the project in order to develop CCS-?focused classroom and field courses, as well as seminars. This program provided an excellent opportunity for participants to develop the background necessary to establish longer-?term research in CCS-?related geology and microbial ecology. Further, the program provided an ongoing dynamic platform to foster long-?term collaboration with the regional ISGS and MGSC sequestration partnership, while offering hands-?on, applied learning experiences.

  13. Integrated Multi-Well Reservoir and Decision Model to Determine Optimal Well Spacing in Unconventional Gas Reservoirs

    E-Print Network [OSTI]

    Ortiz Prada, Rubiel Paul

    2012-02-14T23:59:59.000Z

    of Gething D Formation for the study area in UGR?s integrated reservoir study, meters sstvd (subsea true vertical depth). N ? S yellow dashed line indicates a section in the North to South direction shown on Figure 10. ................................ 31... curve analysis performed on simulated production. The figure represents a typical gas production rate vs. time. The figure shows to, the transition point from hyperbolic to exponential decline. . 78 Figure 50 Schematic decision tree...

  14. Integrated reservoir management in the Carpinteria Offshore Field

    SciTech Connect (OSTI)

    Whitney, E.M.; Pawar, R.J.; Kendall, R.P.

    1998-12-31T23:59:59.000Z

    The Carpinteria Offshore Field is located near Santa Barbara, California. The State of California owns the portion of the field nearest the coast, and the US Federal Government the portion of the field that lies beyond a statutory three-mile coastal water limit. This mature reservoir has yielded more than 100 million barrels of oil from five platforms in its 30 years of production. The US Department of Energy`s Los Alamos National Laboratory (managed by the University of California) has joined with the State Lands Commission of California, the US Department of Interior`s Minerals Management Service, and the independent operator of the field, Pacific Operators Offshore, Inc., in a unique collaboration to redevelop the field. The reservoir management strategy for the Carpinteria Field relies on a long-term investment in simulation tools and expertise. These technologies and expertise are available to all project participants through a virtual enterprise business model.

  15. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  16. AN INTEGRATED APPROACH TO CHARACTERIZING BYPASSED OIL IN HETEROGENEOUS AND FRACTURED RESERVOIRS USING PARTITIONING TRACERS

    SciTech Connect (OSTI)

    Akhil Datta-Gupta

    2003-08-01T23:59:59.000Z

    We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have adopted an integrated approach whereby we combine data from multiple sources to minimize the uncertainty and non-uniqueness in the interpreted results. For partitioning interwell tracer tests, these are primarily the distribution of reservoir permeability and oil saturation distribution. A novel approach to multiscale data integration using Markov Random Fields (MRF) has been developed to integrate static data sources from the reservoir such as core, well log and 3-D seismic data. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, the behavior of partitioning tracer tests in fractured reservoirs is investigated using a dual-porosity finite-difference model.

  17. Performance modeling of an integral, self-regulating cesium reservoir for the ATI-TFE

    SciTech Connect (OSTI)

    Thayer, K.L.; Ramalingam, M.L. (UES, In., 4401 Dayton-Xenia Road, Dayton, Ohio 45432-1894 (United States)); Young, T.J. (Aerospace Power Division, Wright Laboratory/POOC, Wright-Patterson AFB, Ohio 45433-6563 (United States))

    1993-01-20T23:59:59.000Z

    This work covers the performance modeling of an integral metal-matrix cesium-graphite reservoir for operation in the Advanced Thermionic Initiative-Thermionic Fuel Element (ATI-TFE) converter configuration. The objectives of this task were to incorporate an intercalated cesium-graphite reservoir for the 3C[sub 24]Cs[r arrow]2C[sub 36]Cs+Cs[sub (g)] two phase equilibrium reaction into the emitter lead region of the ATI-TFE. A semi two-dimensional, cylindrical TFE computer model was used to obtain thermal and electrical converter output characteristics for various reservoir locations. The results of this study are distributions for the interelectrode voltage, output current density, and output power density as a function of axial position along the TFE emitter. This analysis was accomplished by identifying an optimum cesium pressure for three representative pins in the ATI driverless'' reactor core and determining the corresponding position of the graphite reservoir in the ATI-TFE lead region. The position for placement of the graphite reservoir was determined by performing a first-order heat transfer analysis of the TFE lead region to determine its temperature distribution. The results of this analysis indicate that for the graphite reservoirs investigated the 3C[sub 24]Cs[r arrow]2C[sub 36]Cs+Cs[sub (g)] equilibrium reaction reservoir is ideal for placement in the TFE emitter lead region. This reservoir can be directly coupled to the emitter, through conduction, to provide the desired cesium pressure for optimum performance. The cesium pressure corresponding to the optimum converter output performance was found to be 2.18 torr for the ATI core least power TFE, 2.92 torr for the average power TFE, and 4.93 torr for the maximum power TFE.

  18. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect (OSTI)

    Parra, J.O.

    2001-01-26T23:59:59.000Z

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate magnetic resonance (MR) techniques and acoustic measurements to improve predictability of the pay zone in two hydrocarbon reservoirs. This was accomplished by extracting the fluid property parameters using MR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurements were compared with petrographic analysis results to determine the relative roles of petrographic elements such as porosity type, mineralogy, texture, and distribution of clay and cement in creating permeability heterogeneity.

  19. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect (OSTI)

    Parra, Jorge O.; Hackert, Chris L.; Collier, Hughbert A.; Bennett, Michael

    2002-01-29T23:59:59.000Z

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate NMR techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This is accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging are being linked with a balanced petrographical analysis of the core and theoretical model.

  20. Integration of dynamic data into reservoir description using streamline approaches

    E-Print Network [OSTI]

    He, Zhong

    2004-11-15T23:59:59.000Z

    -suited for large-scale field applications. We can account for realistic field conditions, such as gravity, and changing field conditions, arising from infill drilling, pattern conversion, and recompletion, etc., during the integration of two-phase production data...

  1. INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO

    SciTech Connect (OSTI)

    F. Jerry Lucia

    2002-01-31T23:59:59.000Z

    This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock-fabric flow layers is described, (5) Clear Fork fractures are described and geomechanical modeling of fractures is investigated, and (6) most importantly, new statistical methods are developed for scaleup of petrophysical properties from the core to the layer scale and for retaining stratigraphic layering in simulation models.

  2. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    John Rogers

    2011-12-31T23:59:59.000Z

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

  3. Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs

    E-Print Network [OSTI]

    Ma, Xiaodan

    2013-12-10T23:59:59.000Z

    Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

  4. Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs

    E-Print Network [OSTI]

    Ma, Xiaodan

    2013-12-10T23:59:59.000Z

    Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

  5. IMPROVED RESERVOIR CHARACTERIZATION AND SIMULATION OF A MATURE FIELD USING AN INTEGRATED APPROACH

    E-Print Network [OSTI]

    Teh, Woan Jing

    2012-05-31T23:59:59.000Z

    Reservoir characterization involves various studies which comprises assimilation and interpretation of representative reservoir rock and fluid data for a simulation model under varying recovery mechanisms. The main challenge in reservoir simulation...

  6. Research Integrity A Guide for Research Postgraduate Students

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    that all members of the HKU research family are well versed in research integrity. This booklet is intendedResearch Integrity A Guide for Research Postgraduate Students at The University of Hong Kong A publication of the Graduate School #12;Research Integrity: A Guide for Research Postgraduate Students

  7. An integrated approach to characterize reservoir connectivity to improve waterflood infill drilling recovery

    E-Print Network [OSTI]

    Malik, Zaheer Ahmad

    1993-01-01T23:59:59.000Z

    Infill drilling can significantly improve reservoir interwell connectivity in heterogeneous reservoirs, thereby enhances the waterflood recovery. This study defines and investigates the Hydraulic Interwell Connectivity (HIC) concept to characterize...

  8. Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data

    SciTech Connect (OSTI)

    Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild; Liu, Ning

    2003-03-10T23:59:59.000Z

    The goal of this project was to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem was necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management.

  9. An Integrated Study of the Grayburg/San Andres Reservoir, Foster and South Cowden Fields, Ector County, Texas, Class II

    SciTech Connect (OSTI)

    Trentham, Robert C.; Weinbrandt, Richard; Robinson, William C.; Widner, Kevin

    2001-05-03T23:59:59.000Z

    The objectives of the project were to: (1) Thoroughly understand the 60-year history of the field. (2) Develop a reservoir description using geology and 3D seismic. (3) Isolate the upper Grayburg in wells producing from multiple intervals to stop cross flow. (4) Re-align and optimize the upper Grayburg waterflood. (5) Determine well condition, identify re-frac candidates, evaluate the effectiveness of well work and obtain bottom hole pressure data for simulation utilizing pressure transient testing field wide. (6) Quantitatively integrate all the data to guide the field operations, including identification of new well locations utilizing reservoir simulation.

  10. Model Development to Establish Integrated Operational Rule Curves for Hungry Horse and Libby Reservoirs - Montana, 1996 Final Report.

    SciTech Connect (OSTI)

    Marotz, Brian; Althen, Craig; Gustafson, Daniel

    1996-01-01T23:59:59.000Z

    Hungry Horse and Libby dams have profoundly affected the aquatic ecosystems in two major tributaries of the Columbia River by altering habitat and water quality, and by imposing barriers to fish migration. In 1980, the U.S. Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, designed in part to balance hydropower development with other natural resources in the Columbia System. The Act formed the Northwest Power Planning Council (Council) who developed a program to protect, mitigate and enhance fish and wildlife on the Columbia River and its tributaries. Pursuant to the Council`s Fish and Wildlife Program for the Columbia River System (1987), we constructed computer models to simulate the trophic dynamics of the reservoir biota as related to dam operation. Results were used to develop strategies to minimize impacts and enhance the reservoir and riverine fisheries, following program measures 903(a)(1-4) and 903(b)(1-5). Two FORTRAN simulation models were developed for Hungry Horse and Libby reservoirs located in northwestern Montana. The models were designed to generate accurate, short-term predictions specific to two reservoirs and are not directly applicable to other waters. The modeling strategy, however, is portable to other reservoir systems where sufficient data are available. Reservoir operation guidelines were developed to balance fisheries concerns in the headwaters with anadromous species recovery actions in the lower Columbia (Biological Rule Curves). These BRCs were then integrated with power production and flood control to reduce the economic impact of basin-wide fisheries recovery actions. These Integrated Rule Curves (IRCs) were developed simultaneously in the Columbia Basin System Operation Review (SOR), the Council`s phase IV amendment process and recovery actions associated with endangered Columbia Basin fish species.

  11. Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas

    SciTech Connect (OSTI)

    Saibal Bhattacharya

    2005-08-31T23:59:59.000Z

    Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring data constraints afflicting mature Mississippian fields. A publicly accessible databank of representative petrophysical properties and relationships was developed to overcome the paucity of such data that is critical to modeling the storage and flow in these reservoirs. Studies in 3 Mississippian fields demonstrated that traditional reservoir models built by integrating log, core, DST, and production data from existing wells on 40-acre spacings are unable to delineate karst-induced compartments, thus making 3D-seismic data critical to characterize these fields. Special attribute analyses on 3D data were shown to delineate reservoir compartments and predict those with pay porosities. Further testing of these techniques is required to validate their applicability in other Mississippian reservoirs. This study shows that detailed reservoir characterization and simulation on geomodels developed by integrating wireline log, core, petrophysical, production and pressure, and 3D-seismic data enables better evaluation of a candidate field for horizontal infill applications. In addition to reservoir compartmentalization, two factors were found to control the economic viability of a horizontal infill well in a mature Mississippian field: (a) adequate reservoir pressure support, and (b) an average well spacing greater than 40-acres.

  12. A METHODOLOGY TO INTEGRATE MAGNETIC RESONANCE AND ACOUSTIC MEASUREMENTS FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Jorge O. Parra; Chris L. Hackert; Lorna L. Wilson

    2002-09-20T23:59:59.000Z

    The work reported herein represents the third year of development efforts on a methodology to interpret magnetic resonance and acoustic measurements for reservoir characterization. In this last phase of the project we characterize a vuggy carbonate aquifer in the Hillsboro Basin, Palm Beach County, South Florida, using two data sets--the first generated by velocity tomography and the second generated by reflection tomography. First, we integrate optical macroscopic (OM), scanning electron microscope (SEM) and x-ray computed tomography (CT) images, as well as petrography, as a first step in characterizing the aquifer pore system. This pore scale integration provides information with which to evaluate nuclear magnetic resonance (NMR) well log signatures for NMR well log calibration, interpret ultrasonic data, and characterize flow units at the field scale between two wells in the aquifer. Saturated and desaturated NMR core measurements estimate the irreducible water in the rock and the variable T{sub 2} cut-offs for the NMR well log calibration. These measurements establish empirical equations to extract permeability from NMR well logs. Velocity and NMR-derived permeability and porosity relationships integrated with velocity tomography (based on crosswell seismic measurements recorded between two wells 100 m apart) capture two flow units that are supported with pore scale integration results. Next, we establish a more detailed picture of the complex aquifer pore structures and the critical role they play in water movement, which aids in our ability to characterize not only carbonate aquifers, but reservoirs in general. We analyze petrography and cores to reveal relationships between the rock physical properties that control the compressional and shear wave velocities of the formation. A digital thin section analysis provides the pore size distributions of the rock matrix, which allows us to relate pore structure to permeability and to characterize flow units at the core and borehole scales. Vp, density, porosity, and permeability logs are integrated with crosswell reflection data to produce impedance, permeability, and porosity images. These images capture three flow units that are characterized at the pore and borehole scales. The upper flow units are thin, continuous beds, and the deeper flow unit is thicker and heterogeneous. NMR well log calibration data and thin section analysis demonstrate that interwell region permeability is controlled mainly by micropores and macropores, which represent the flow unit matrices of the confined aquifer. Reflection image-derived impedance provides lateral detail and the depth of the deeper confining unit. The permeable regions identified in both parts of this phase of the study are consistent with the hydrological results of high water production being monitored between two wells in the South Florida aquifer. Finally, we describe the two major methodologies developed to support the aquifer characterization efforts--(1) a method to estimate frequency-dependent scattering attenuation based on the volume fraction and typical size of vugs or karsts, and (2) a method to more accurately interpret NMR well logs by taking into account the diffusion of magnetization between large and small pores. For the first method, we take the exact vug structure from x-ray CT scans of two carbonate cores and use 3-D finite difference modeling to determine the P-wave scattering attenuation in these cores at ultrasonic frequencies. In spite of the sharp contrast in medium properties between cavity and rock and the violation of the small perturbation assumption, the computed scattering attenuation is roughly comparable to that predicted by various random medium scattering theories. For the second method, we investigate how the diffusion of magnetization between macropores and micropores influences NMR log interpretation through 2D simulation of magnetization diffusion in realistic macropore geometries derived from digital images of thin sections. In most cases, our simulations show that the resulting simulate

  13. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Final report, September 29, 1993--September 30, 1996

    SciTech Connect (OSTI)

    Weiss, W.W.; Buckley, J.S.; Ouenes, A.

    1997-05-01T23:59:59.000Z

    The goal of this three-year project was to provide a quantitative definition of reservoir heterogeneity. This objective was accomplished through the integration of geologic, geophysical, and engineering databases into a multi-disciplinary understanding of reservoir architecture and associated fluid-rock and fluid-fluid interactions. This interdisciplinary effort integrated geological and geophysical data with engineering and petrophysical results through reservoir simulation to quantify reservoir architecture and the dynamics of fluid-rock and fluid-fluid interactions. An improved reservoir description allows greater accuracy and confidence during simulation and modeling as steps toward gaining greater recovery efficiency from existing reservoirs. A field laboratory, the Sulimar Queen Unit, was available for the field research. Several members of the PRRC staff participated in the development of improved reservoir description by integration of the field and laboratory data as well as in the development of quantitative reservoir models to aid performance predictions. Subcontractors from Stanford University and the University of Texas at Austin (UT) collaborated in the research and participated in the design and interpretation of field tests. The three-year project was initiated in September 1993 and led to the development and application of various reservoir description methodologies. A new approach for visualizing production data graphically was developed and implemented on the Internet. Using production data and old gamma rays logs, a black oil reservoir model that honors both primary and secondary performance was developed. The old gamma ray logs were used after applying a resealing technique, which was crucial for the success of the project. In addition to the gamma ray logs, the development of the reservoir model benefitted from an inverse Drill Stem Test (DST) technique which provided initial estimates of the reservoir permeability at different wells.

  14. Report Title: Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data

    E-Print Network [OSTI]

    Reynolds, Albert C.

    of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil the volume of data that can potentially provide information on reservoir architecture and fluid distributions the distribution of geologic facies as an indicator random field, making use of the tools of geostatistics as well

  15. Quantifying the Permeability Heterogeneity of Sandstone Reservoirs in Boonsville Field, Texas by Integrating Core, Well Log and 3D Seismic Data

    E-Print Network [OSTI]

    Song, Qian

    2013-04-29T23:59:59.000Z

    the permeability heterogeneity of the target reservoir by integrating core, well log and 3D seismic data. A set of permeability coefficients, variation coefficient, dart coefficient, and contrast coefficient, was defined in this study to quantitatively identify...

  16. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2002-09-25T23:59:59.000Z

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.

  17. Facies and Porosity Distribution by the Integration of Rockphysics Analysis and Seismic Inversion in Siliciclastic Reservoirs

    E-Print Network [OSTI]

    Palacios Serrano, Diego G

    2014-12-15T23:59:59.000Z

    Seismic inversion approach has been applied with a moderate success in some siliciclastic reservoirs in Oriente Basin characterized by their prominent lateral facies variations. Different types of facies with different ...

  18. Integrated reservoir study of the Monument Northwest field: a waterflood performance evaluation

    E-Print Network [OSTI]

    Nduonyi, Moses Asuquo

    2008-10-10T23:59:59.000Z

    methodology for a deterministic approach. The data history of the wells in the field beginning from spud date were gathered and analyzed into information necessary for building an upscaled reservoir model of the field. Means of increasing production...

  19. Integrated reservoir study of the Monument Northwest field: a waterflood performance evaluation

    E-Print Network [OSTI]

    Nduonyi, Moses Asuquo

    2009-05-15T23:59:59.000Z

    methodology for a deterministic approach. The data history of the wells in the field beginning from spud date were gathered and analyzed into information necessary for building an upscaled reservoir model of the field. Means of increasing production...

  20. Characterization of Thin-Bedded Reservoir in the Gulf of Mexico: An Integrated Approach.

    E-Print Network [OSTI]

    Lalande, Severine

    2004-09-30T23:59:59.000Z

    of Petroleum Geologists. 2 Macintyrei sequence. The younger reservoirs (Trim A and Trim B) in the Trimosina sequence (0.8-0.3 Ma) are middle Pleistocene. Producing operations started in May 1987. As of October 1999, Green Canyon 18 reservoirs had produced 70... ................................................................................................................................58 viii LIST OF FIGURES FIGURE Page 1. Green Canyon cumulative productions from 1987 to 1999 ...................................2 2. Northern Gulf of Mexico map showing the outer continental shelf leasing areas. GC-Green Canyon. The star indicates...

  1. An Integrated Study of the Grayburg/San Andres Reservoir, Foster and South Cowden Fields, Ector County, Texas

    SciTech Connect (OSTI)

    Robinson, William C.; Trentham, Robert C.; Widner, Kevin; Wienbrandt, Richard

    1999-06-22T23:59:59.000Z

    A project to recover economic amounts of oil from a very mature oil field is being conducted by Laguna Petroleum Corporation of Midland, Texas, with partial funding from a U. S. Department of Energy grant to study shallow carbonate rock reservoirs. The objectives of the project are to use modern engineering methods to optimize oil field management and to use geological and geophysical data to recover untapped potential within the petroleum reservoirs. The integration of data and techniques from these disciplines has yielded results greater than those achievable without their cooperation. The cost of successfully accomplishing these goals is to be low enough for even small independent operators to afford. This article is a report describing accomplishments for the fiscal year 1997-1998.

  2. Integrated reservoir management for the long term - the Carpinteria Offshore Field

    SciTech Connect (OSTI)

    Whitney, E.M.; Brickey, M.R.; Coombs, S.E. [and others

    1997-05-01T23:59:59.000Z

    The Carpinteria Offshore Field, Santa Barbara, California, has produced more than 100 million barrels of oil to date. This mature field has continued operations in an economically and politically challenging environment that finally resulted in the abandonment of the field`s California State leases by the lease holder. The abandoned leases, together with adjoining federal leases are now operated by an independent producer. Los Alamos National Laboratory has joined with that independent operator, Pacific Operators Offshore, and with the State Lands Commission of California and the Minerals Management Service, in a unique collaborative effort to redevelop the mature field. This project is a part of a larger umbrella project, the Advanced Reservoir Management Project (ARM), that is designed to demonstrate the worth of advanced computational tools and state of the art methods for independent oil and gas producers. The Carpinteria Reservoir Redevelopment project takes a long-term view of reservoir management - as a result, our management plan includes a continuing investment in time and technology in order to better understand the reservoir. In particular, we have completed an extensive reservoir characterization and geological modeling effort that has created a self-consistent model, satisfying geophysical, geological, and engineering data constraints. We have begun the engineering-intensive flow simulation phase of the project using the current geological description of the reservoir, and are confident that our careful efforts in geological modeling will result in a reasonable reservoir flow model. Dynamic documents exist that are used by participants to stay abreast of developments on the project.

  3. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2001-09-14T23:59:59.000Z

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization is progressing. Data on reservoir production rate and pressure history at Appleton and Vocation Fields have been tabulated, and porosity data from core analysis has been correlated with porosity as observed from well log response. Data integration is on schedule, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database for reservoir characterization, modeling and simulation for the reef and carbonate shoal reservoirs for each of these fields.

  4. A new approach to integrate seismic and production data in reservoir models

    SciTech Connect (OSTI)

    Ouenes, A.; Chawathe, A.; Weiss, W. [New Mexico Tech, Socorro, NM (United States)] [and others

    1997-08-01T23:59:59.000Z

    A great deal of effort is devoted to reducing the uncertainties in reservoir modeling. For example, seismic properties are used to improve the characterization of interwell properties by providing porosity maps constrained to seismic impedance. Another means to reduce uncertainties is to constrain the reservoir model to production data. This paper describes a new approach where the production and seismic data are simultaneously used to reduce the uncertainties. In this new approach, the primary geologic parameter that controls reservoir properties is identified. Next, the geophysical parameter that is sensitive to the dominant geologic parameter is determined. Then the geology and geophysics are linked using analytic correlations. Unfortunately, the initial guess resulted in a reservoir model that did not match the production history. Since the time required for trial and error matching of production history is exorbitant, an automatic history matching method based on a fast optimization method was used to find the correlating parameters. This new approach was illustrated with an actual field in the Williston Basin. Upscalling problems do not arise since the scale is imposed by the size of the seismic bin (66m, 219 ft) which is the size of the simulator gridblocks.

  5. Integration of Geology, Rock-Physics, Logs, and Pre-stack Seismic for Reservoir Porosity Estimation

    E-Print Network [OSTI]

    Al Muhaidib, Abdulaziz

    2011-01-01T23:59:59.000Z

    The main objective of this paper is to obtain reservoir properties, such as porosity, both at the well locations and in the inter-well regions from seismic data and well logs. The seismic and well-log datasets are from an ...

  6. Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonaradian Age) Reservoirs, West Texas and New Mexico

    SciTech Connect (OSTI)

    Lucia, F. Jerry; Laubach, Stephen E.

    2001-05-08T23:59:59.000Z

    The objective of this report is to characterize fracture porosity and distribution in the Wasson Clear Fork reservoir and to determine the effects of fractures on well performance. The approach is to measure fracture attributes in an analog outcrop, to develop models of fracture spacing and aperture, and to apply this information to the South Wasson Clear Fork reservoir.

  7. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Annual report, September 29, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1996-04-01T23:59:59.000Z

    The purpose of this project is to conduct a variety of laboratory and field tests and utilize all the geological, geophysical, and engineering information to develop a mathematical model of the reservoir by the use of global optimization methods. This interdisciplinary effort will integrate advanced geoscience and reservoir engineering concepts to quantify interwell reservoir heterogeneity and the dynamics of fluid-rock and fluid-fluid interactions. The reservoir characterization includes geological methods (outcrop and reservoir rock studies), geophysical methods (interwell acoustic techniques), and other reservoir/hydrologic methodologies including analyses of pressure transient data, core studies, and tracer tests. The field testing is being conducted at the Sulimar Queen Unit with related laboratory testing at the PRRC on samples from the Sulimar site and Queen sandstone outcrops. The aim is to (1) characterize and quantify lithologic heterogeneity, (2) mathematically quantify changes in the heterogeneity at various scales, (3) integrate the wide variety of data into a model that is jointly constrained by the interdisciplinary interpretive effort, and (4) help optimize petroleum recovery efficiencies.

  8. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-09-25T23:59:59.000Z

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.

  9. AN INTEGRATED APPROACH TO CHARACTERIZING BYPASSED OIL IN HETEROGENEOUS AND FRACTURED RESERVOIRS USING PARTITIONING TRACERS

    SciTech Connect (OSTI)

    Akhil Datta-Gupta

    2004-08-01T23:59:59.000Z

    We explore the use of efficient streamline-based simulation approaches for modeling and analysis partitioning interwell tracer tests in heterogeneous and fractured hydrocarbon reservoirs. The streamline approach is generalized to model water injection in naturally fractured reservoirs through the use of a dual media approach. The fractures and matrix are treated as separate continua that are connected through a transfer function, as in conventional finite difference simulators for modeling fractured systems. A detailed comparison with a commercial finite difference simulator shows very good agreement. Furthermore, an examination of the scaling behavior of the computation time indicates that the streamline approach is likely to result in significant savings for large-scale field applications. We also propose a novel approach to history matching finite-difference models that combines the advantage of the streamline models with the versatility of finite-difference simulation. In our approach, we utilize the streamline-derived sensitivities to facilitate history matching during finite-difference simulation. The use of finite-difference model allows us to account for detailed process physics and compressibility effects. The approach is very fast and avoids much of the subjective judgments and time-consuming trial-and-errors associated with manual history matching. We demonstrate the power and utility of our approach using a synthetic example and two field examples. Finally, we discuss several alternative ways of using partitioning interwell tracer tests (PITTs) in oil fields for the calculation of oil saturation, swept pore volume and sweep efficiency, and assess the accuracy of such tests under a variety of reservoir conditions.

  10. Predicting porosity in a Saudi Arabian carbonate reservoir using geologic constraints integrated with 3-D seismic and well data

    SciTech Connect (OSTI)

    Jeffery, R.; Thomsen, M. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    A method for predicting lateral changes in reservoir porosity using 3-D seismic Aptitudes, calibrated against the amplitude response versus porosity measured at a select number of wells, was implemented and applied to produce a porosity map of a Saudi Arabian carbonate reservoir. The technique relies on the uniform lithologic seismic response of an overlying anhydrite, and thus assigns variations in amplitudes at the reservoir level to changes in reservoir average porosity. Throughout the study area, reservoir porosity and acoustic impedance logs exhibit a firm linear relationship. As reservoir porosity increases, its acoustic impedance decreases, and the greater contrast with the overlying anhydrite translates into larger seismic amplitudes. Thus, we expect the reservoir`s relative amplitude response to also increase linearly with increasing porosity. A check on this hypothesis was provided by computing synthetic seismograms at several wells, and measuring the reservoir`s theoretical amplitude response versus porosity averaged over the producing zone within the reservoir. This trend supported a linear seismic amplitude to porosity transform. Upon verification of the technique`s applicability, the reservoirs amplitude response was extracted from the 3-D seismic volume in the vicinity of several wells. These were used in conjunction with porosities averaged ever the reservoir to derive the amplitude to porosity transform. This transform was used in converting the mapped reservoir amplitudes into variations in average porosities. The success ratio for predicting porosities in wells not used in the analysis was nearly perfect, and the map continues to correctly predict porosities in subsequently drilled wells.

  11. An Integrated Approach to Characterizing Bypassed Oil in Heterogeneous and Fractured Reservoirs Using Partitioning Tracers

    SciTech Connect (OSTI)

    Akhil Datta-Gupta

    2006-12-31T23:59:59.000Z

    We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have investigated the relative merits of the traditional history matching ('amplitude inversion') and a novel travel time inversion in terms of robustness of the method and convergence behavior of the solution. We show that the traditional amplitude inversion is orders of magnitude more non-linear and the solution here is likely to get trapped in local minimum, leading to inadequate history match. The proposed travel time inversion is shown to be extremely efficient and robust for practical field applications. The streamline approach is generalized to model water injection in naturally fractured reservoirs through the use of a dual media approach. The fractures and matrix are treated as separate continua that are connected through a transfer function, as in conventional finite difference simulators for modeling fractured systems. A detailed comparison with a commercial finite difference simulator shows very good agreement. Furthermore, an examination of the scaling behavior of the computation time indicates that the streamline approach is likely to result in significant savings for large-scale field applications. We also propose a novel approach to history matching finite-difference models that combines the advantage of the streamline models with the versatility of finite-difference simulation. In our approach, we utilize the streamline-derived sensitivities to facilitate history matching during finite-difference simulation. The use of finite-difference model allows us to account for detailed process physics and compressibility effects. The approach is very fast and avoids much of the subjective judgments and time-consuming trial-and-errors associated with manual history matching. We demonstrate the power and utility of our approach using a synthetic example and two field examples. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, we discuss several alternative ways of using partitioning interwell tracer tests (PITTs) in oil fields for the calculation of oil saturation, swept pore volume and sweep efficiency, and assess the accuracy of such tests under a variety of reservoir conditions.

  12. Training Students to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO{sub 2} Sequestration Prediction, Simulation, and Monitoring

    SciTech Connect (OSTI)

    Bowen, Brenda

    2013-09-30T23:59:59.000Z

    The objective of this project was to expose and train multiple students in geological tools that are essential to reservoir characterization and geologic sequestration including but not limited to advanced petrological methods, mineralogical methods, and geochemical methods; core analysis, and geophysical well-log interpretation. These efforts have included training of multiple students through geologically based curriculum and research using advanced petrological, mineralogical, and geochemical methods. In whole, over the last 3+ years, this award has supported 5,828 hours of student research, supporting the work of several graduate and undergraduate students. They have all received training directly related to ongoing CO{sub 2} sequestration demonstrations. The students have all conducted original scientific research on topics related to understanding the importance of lithological, textural, and compositional variability in formations that are being targeted as CO{sub 2} sequestration reservoirs and seals. This research was linked to the Mount Simon Sandstone reservoir and overlying Eau Claire Formation seal in the Illinois Basin- a system where over one million tons of CO{sub 2} are actively being injected with the first large-scale demonstration of anthropogenic CO{sub 2} storage in the U.S. Student projects focused specifically on 1) reservoir porosity characterization and evaluation, 2) petrographic, mineralogical, and geochemical evidence of fluid-related diagenesis in the caprock, 3) textural changes in reservoir samples exposed to experimental CO{sub 2} + brine conditions, 4) controls on spatial heterogeneity in composition and texture in both the reservoir and seal, 5) the implications of small-scale fractures within the reservoir, and 6) petrographic and stable isotope analyses of carbonates in the seal to understand the burial history of the system. The student-led research associated with this project provided real-time and hands-on experience with a relevant CO{sub 2} system, provided relevant information to the regional partnerships who are working within these formations, and provides more broadly applicable understanding and method development for other carbon capture and storage systems.

  13. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, April 1, 1993--June 31, 1993

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1993-07-26T23:59:59.000Z

    This was the seventh quarter of the contract. During this quarter we (1) continued the large task of processing the seismic data, (2) collected additional geological information to aid in the interpretation, (3) tied the well log data to the seismic via generation of synthetic seismograms, (4) began integrating regional structural information and fracture trends with our observations of structure in the study area, (5) began constructing a velocity model for time-to-depth conversion and subsequent AVO and raytrace modeling experiments, and (6) completed formulation of some theoretical tools for relating fracture density to observed elastic anisotropy. The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. A basemap is presented with the seismic lines being analyzed for this project plus locations of 13 wells that we are using to supplement the analysis. The arrows point to two wells for which we have constructed synthetic seismograms.

  14. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, March 13--June 12, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The eighteen 10-acre infill wells which were drilled as part of the field demonstration portion of the project are all currently in service with no operational problems. These wells consist of fourteen producing wells and four injection wells. The producing wells are currently producing a total of approximately 650 bopd, down from a peak rate of 900 bopd. Unit production is currently averaging approximately 3,000 bopd, 12,000 bwpd and 18,000 bwipd. The paper describes progress in core analysis, reservoir surveillance, well stimulation, validation of reservoir characterization (includes thin section analyses, depositional environments, and paleontologic analysis), material balance decline curve analysis, and validation of reservoir simulation (includes geostatistical and deterministic).

  15. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07T23:59:59.000Z

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

  16. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-02-25T23:59:59.000Z

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

  17. Development of an Advanced Approach for Next Generation, High Resolution, Integrated Reservoir Characterization

    SciTech Connect (OSTI)

    Scott R. Reeves

    2003-08-01T23:59:59.000Z

    During this reporting period work on Task 4: Develop Integrated Engineering Model was completed, incorporating the results from Log Clustering. A series of Topical Reports were prepared on Seismic Data Processing, Rock Physics modeling, Log Clustering, and the Integrated Engineering Model. These Topical Reports have been submitted to the test site field operator for review before submission to NETL staff in Tulsa. Work continues on development of the Broadband Seismic Transform Function.

  18. TopTop--Down Intelligent ReservoirDown Intelligent Reservoir Modeling (TDIRM)Modeling (TDIRM)

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Reservoir ModelingModeling In top-down modeling we start from production data and try to deduce a pictureTopTop--Down Intelligent ReservoirDown Intelligent Reservoir Modeling (TDIRM)Modeling (TDIRM) A NEW APPROACH IN RESERVOIR MODELING BY INTEGRATING CLASSIC RESERVOIR ENGINEERING WITH ARTIFICIAL INTELLIGENCE

  19. Academic Integrity Office (AIO), Syracuse University, August 2014 Topics for Engaging Students in Discussion of Academic Integrity Expectations

    E-Print Network [OSTI]

    Doyle, Robert

    Academic Integrity Office (AIO), Syracuse University, August 2014 Topics for Engaging Students in Discussion of Academic Integrity Expectations 1. Giving students opportunities to hone their citation skills, paraphrase and quote from a source as well as relevant citation standards in each case. a. If writing

  20. Academic Integrity Office (AIO), Syracuse University, August 2014 Topics for Engaging Students in Discussion of Academic Integrity Expectations

    E-Print Network [OSTI]

    Doyle, Robert

    @syr.edu. We will be posting additional articles on our website over the course of the academic year. #12;Academic Integrity Office (AIO), Syracuse University, August 2014 Topics for Engaging Students in Discussion of Academic Integrity Expectations 1. Why do students (and others) cheat? Is college cheating

  1. Integrated seismic study of naturally fractured tight gas reservoirs. Final report, September 1991--January 1995

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1995-01-01T23:59:59.000Z

    The approach in this project has been to integrate the principles of rock physics into a quantitative processing and interpretation scheme that exploits, where possible, the broader spectrum of fracture zone signatures: (1) anomalous compressional and shear wave velocity; (2) Q and velocity dispersion; (3) increased velocity anisotropy; (4) amplitude vs. offset (AVO) response, and (5) variations in frequency content. As part of this the authors have attempted to refine some of the theoretical rock physics tools that should be applied in any field study to link the observed seismic signatures to the physical/geologic description of the fractured rock. The project had 3 key elements: (1) rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, (2) acquisition and processing of seismic reflection field data, and (3) interpretation of seismic and well log data. The study site is in a producing field operated by Amoco and Arco at the southern boundary of the Powder River basin in Wyoming. During the winter of 1992--1993 the authors collected about 50 km of 9-component reflection seismic data and obtained existing log data from several wells in the vicinity. The paper gives background information on laboratory studies, seismic field studies of fracture anisotropy, and the problem of upscaling from the laboratory to the field. It discusses fluid effects on seismic anisotropy and a method for predicting stress-induced seismic anisotropy. Then results from the field experiment are presented and discussed: regional geologic framework and site description; seismic data acquisition; shear wave data and validation; and P-wave data analysis. 106 refs., 52 figs.

  2. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, June 13--September 12, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The eighteen 10-acre infill wells which were drilled as part of the field demonstration portion of the project are all currently in service with no operational problems. These wells consist of fourteen producing wells and four injection wells. The producing wells are currently producing a total of approximately 500 bopd, down from a peak rate of 900 bopd. Unit production is currently averaging approximately 2,800 bopd, 12,000 bwpd and 17,000 bwipd. The paper describes progress on core analysis, gas-oil/oil-gas permeability tests, water-oil/oil-water permeability tests, water-gas permeability tests, electrical resistivity measurements, capillary pressure tests, reservoir surveillance, and paleontologic analysis.

  3. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect (OSTI)

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02T23:59:59.000Z

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  4. Integrated reservoir fracturing and completion study to maximize productivity of individual Niobrara wells in Yuma County, Colorado

    SciTech Connect (OSTI)

    Blauer, R.E.; Brady, B.D.; Holcomb, D.L.; Robinson, F.L.

    1996-12-31T23:59:59.000Z

    Consistently and continuously applied fracturing, reservoir and production engineering used to increase recovery from a marginal production low-permeability and low-pressure dry-gas reservoir has approximately doubled the initial production rate and the estimated ultimate recovery expected from new wells. The on-going costs of the additional engineering and technology to sustain the increased productivity of this reservoir is a few cents per MCF. As a result, new wells can be drilled and produced economically, the selection criteria for acceptable infill and exploration locations is greatly expanded, and proven gas reserves for both the new wells and the region are increased. Significant performance improvement can be achieved using a minimum number of wells, consistently collected data, and continuous review of performance changes caused by completion procedures changes. Exploitation optimization is an evolutionary process, not a one time study.

  5. -Reservoir Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-91 - Reservoir Technology - Geothermal Reservoir Engineering Research at Stanford Principal in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California #12;TABLE OF CONTENTS Page ...PREFACE................................................................................ 20 3.4 Thermal Stress Effects on Thermal Conductivity .................................... 27 #12

  6. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report for the period: 7/1/93--9/31/93

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1993-10-23T23:59:59.000Z

    The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical paths of production. During this eighth quarter of the seismic study of this area, work continued in processing seismic data, collecting additional geological information to aid in the interpretation, and integrating regional structural information and fracture trends with observations of structure in the study area.

  7. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1994-01-29T23:59:59.000Z

    This was the ninth quarter of the contract. During this quarter we (1) continued processing the seismic data, (2) collected additional logs to aid in the interpretation, and (3)began modeling some of the P-wave amplitude anomalies that we see in the data. The study area is located at the southern end of the powder river Basin in Converse county in east-central Wyoming. It is a low permeability fractured site, with both has and oil present. Reservoirs are highly compartmentalized due tot he low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara; a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier, a tight sandstone lying directly below the Niobrara, brought into contract with it by an unconformity.

  8. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1994-04-29T23:59:59.000Z

    The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara, a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock; and the Frontier, a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. This was the tenth quarter of the contract. During this quarter the investigators (1) continued processing the seismic data, and (2) continued modeling some of the P-wave amplitude anomalies that we see in the data.

  9. An Integrated Study of the Grayberg/San andres Reservoir, Foster and South Cowden Fields, Ector County, Texas

    SciTech Connect (OSTI)

    None

    1997-02-27T23:59:59.000Z

    The characteristics of seismic- derived porosity maps have been further qualified by geologic and production relationships not previously explained nor their significance recognized. Patterns of seismic- derived porosity in the upper Grayburg compare accurately to geologic well data and to historic oil production in section 36. Areas of economic reservoir seem to be separated hydrodynamically, based on the porosity distribution and related differences of gas- to- oil ratio values. Porosity values east of the current limit of the seismic inversion model (where the current seismic data quality is poor) have been estimated for the Grayburg zones, to be used in the next production model run. Production data for that area are being requested from offset operators. When those data become available, they will be included in a revised engineering model will be made to match the production history and to simulate the effect of waterflood efforts. The mapping of porosity of the upper Grayburg zones from the seismic data was completed during the third quarter of 1997, with further qualification of the results done during the fourth quarter. The cross- plots of well log- determined porosity versus seismic velocity have shown a strong linear relationship useful for calibrating the conversion of velocity to porosity. Maps of porosity for the A, B, and C zones are being tested against geological and engineering data. Complexity of reservoir demonstrated in those maps has exposed the need to include significantly more geologic and production data in the area around section 36 in order to create a proper model for the Grayburg reservoir in section 36.

  10. Students' difficulties with integration in electricity Dong-Hai Nguyen and N. Sanjay Rebello

    E-Print Network [OSTI]

    Zollman, Dean

    Students' difficulties with integration in electricity Dong-Hai Nguyen and N. Sanjay Rebello Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA (Received 30 January 2011 physics experience when solving problems involving integration in the context of electricity. We conducted

  11. A synthesis of the "Ecological Effects of Reservoir Operations at Blue Mesa Reservoir" Project

    E-Print Network [OSTI]

    A synthesis of the "Ecological Effects of Reservoir Operations at Blue Mesa Reservoir" Project June 2005 #12;2 RECLAMATION A synthesis of the "Ecological Effects of Reservoir Operations at Blue Mesa), happy angler with a nice catch of kokanee (B. Johnson), CSU students doing vertical gill net survey (B

  12. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, October 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Nur, A.

    1993-01-21T23:59:59.000Z

    This was the fifth quarter of the contract. During this quarter we (1) got approval for the NEPA requirements related to the field work, (2) placed the subcontract for the field data acquisition, (3) completed the field work, and (4) began processing the seismic data. As already reported, the field data acquisition was at Acomo`s Powder River Basin site in southeast Wyoming. This is a low permeability fractured site, with both gas and oil present. The reservoir is highly compartmentalized, due to the low permeability, with the fractures providing the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. The fractures are thought to lie in a roughly northwest-southeast trend, along the strike of a flexure, which forms one of the boundaries of the basin.

  13. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1993-04-26T23:59:59.000Z

    During this quarter we (1) received the last of the field tapes and survey information for the seismic field data acquisition which was finished at the very end of the previous quarter, (2) began the large task of processing the seismic data, (3) collected well logs and other informination to aid in the interpretation, and (4) initiated some seismic modeling studies. As already reported, the field data acquisition was at Amoco`s Powder River Basin site in southeast Wyoming. This is a low permeability fractured site, with both gas and oil present. The reservoir is highly compartmentalized, due to the low permeability, with the fractures providing the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. The fractures are thought to lie in a roughly northwest-southeast trend, along the strike of a flexure, which forms one of the boundaries of the basin.

  14. TRITIUM RESERVOIR STRUCTURAL PERFORMANCE PREDICTION

    SciTech Connect (OSTI)

    Lam, P.S.; Morgan, M.J

    2005-11-10T23:59:59.000Z

    The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.

  15. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect (OSTI)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01T23:59:59.000Z

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

  16. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    SciTech Connect (OSTI)

    Clarkson, Christopher R [ORNL

    2011-01-01T23:59:59.000Z

    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  17. C 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. An Autonomic Reservoir Framework for the Stochastic Optimization

    E-Print Network [OSTI]

    Bangerth, Wolfgang

    on reservoir management. However, the determination of optimal well locations is both challenging) optimization algorithm, coupled with the Integrated Parallel Accurate Reservoir Simulator (IPARS, autonomic Grid middleware, stochastic optimization, optimal well placement, reservoir management 1

  18. Improving Reservoir Management from an Ecological Perspective JOHN TERANCE HICKEY

    E-Print Network [OSTI]

    Lund, Jay R.

    i Improving Reservoir Management from an Ecological Perspective By JOHN TERANCE HICKEY B.S. (SUNY and future water resource challenges. Water managers are asked that reservoir operations provide additional opportunities. These and other interests share reservoir reoperation as a common solution often integrated

  19. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach, progress report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Kerr, D.R., Thompson, L.G., Shenoi, S.

    1993-10-01T23:59:59.000Z

    The basis of this research is to apply novel techniques from Artificial Intelligence and Expert Systems in capturing, integrating and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. The ultimate goal is to design and implement a single powerful expert system for use by small producers and independents to efficiently exploit reservoirs. The main challenge of the proposed research is to automate the generation of detailed reservoir descriptions honoring all the available `soft` and `hard` data that ranges from qualitative and semi-quantitative geological interpretations to numeric data obtained from cores, well tests, well logs and production statistics. In this sense, the proposed research project is multidisciplinary. It involves significant amounts of information exchange between researchers in geology, geostatistics, and petroleum engineering. Computer science (and artificial intelligence) provides the means to effectively acquire, integrate and automate the key expertise in the various disciplines in a reservoir characterization expert system. Additional challenges are the verification and validation of the expert system, since much of the interpretation of the experts is based on extended experience in reservoir characterization. The overall project plan to design the system to create integrated reservoir descriptions begins by initially developing an Al-based methodology for producing large- scale reservoir descriptions generated interactively from geology and well test data. Parallel to this task is a second task that develops an Al-based methodology that uses facies-biased information to generate small-scale descriptions of reservoir properties such as permeability and porosity. The third task involves consolidation and integration of the large-scale and small-scale methodologies to produce reservoir descriptions honoring all the available data. The final task will be technology transfer. With this plan, we have carefully allocated and sequenced the activities involved in each of the tasks to promote concurrent progress towards the research objectives. Moreover, the project duties are divided among the faculty member participants. Graduate students will work in teams with faculty members. The results of the integration are not merely limited to obtaining better characterizations of individual reservoirs. They have the potential to significantly impact and advance the discipline of reservoir characterization itself.

  20. animal reservoir hosts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND SIMULATION OF A MATURE FIELD USING AN INTEGRATED APPROACH University of Kansas - KU ScholarWorks Summary: Reservoir characterization involves various studies...

  1. ageologic storage reservoir: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND SIMULATION OF A MATURE FIELD USING AN INTEGRATED APPROACH University of Kansas - KU ScholarWorks Summary: Reservoir characterization involves various studies...

  2. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    SciTech Connect (OSTI)

    Scott R. Reeves

    2007-09-30T23:59:59.000Z

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a relational model to predict porosity and permeability profiles from well logs at each well location, and a 3D geostatistical variogram to generate the reservoir characterization over the reservoir volume of interest. A reservoir simulation model was built based upon this characterization and history-matched without making significant changes to it, thus validating the procedure. While not the same procedure as originally planned, the procedure ultimately employed proved successful and demonstrated that the general concepts proposed (i.e., data mining and advanced pattern recognition methods) have the flexibility to achieve the reservoir characterization objectives sought even with imperfect or incomplete data.

  3. Volume 4: Characterization of representative reservoirs -- Gulf of Mexico field, U-8 reservoir

    SciTech Connect (OSTI)

    Koperna, G.J. Jr.; Johnson, H.R. [BDM Federal, Inc., McLean, VA (United States); Salamy, S.P.; Reeves, T.K. [BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sawyer, W.K. [Mathematical and Computer Services, Inc., Danville, VA (United States); Kimbrell, W.C.; Schenewerk, P.A. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Petroleum Engineering

    1998-07-01T23:59:59.000Z

    A reservoir study was performed using a publicly available black oil simulator to history match and predict the performance of a Gulf of Mexico reservoir. The first objective of this simulation study was to validate the Black Oil Applied Simulation Tool version three for personal computers (BOAST3-PC) model to ensure the integrity of the simulation runs. Once validation was completed, a field history match for the Gulf of Mexico U-8 oil reservoir was attempted. A verbal agreement was reached with the operator of this reservoir to blindcode the name and location of the reservoir. In return, the operator supplied data and assistance in regards to the technical aspects of the research. On the basis of the best history match, different secondary recovery techniques were simulated as a predictive study for enhancing the reservoir productivity.

  4. Reservoir Simulation and Evaluation of the Upper Jurassic Smackover Microbial Carbonate and Grainstone-Packstone Reservoirs in Little Cedar Creek Field, Conecuh County, Alabama

    E-Print Network [OSTI]

    Mostafa, Moetaz Y

    2013-04-25T23:59:59.000Z

    This thesis presents an integrated study of mature carbonate oil reservoirs (Upper Jurassic Smackover Formation) undergoing gas injection in the Little Cedar Creek Field located in Conecuh County, Alabama. This field produces from two reservoirs...

  5. Integration

    E-Print Network [OSTI]

    Koschorke, Albrecht; Musanovic, Emina

    2013-01-01T23:59:59.000Z

    Integration By Albrecht Koschorkeby Emina Musanovic [Integration (from Lat. integrare, toa social unity. Social integration is distinct from systemic

  6. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY; APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Matthias G. Imhof; James W. Castle

    2003-11-01T23:59:59.000Z

    The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

  7. Naturally fractured reservoirs: Optimized E and P strategies using a reaction-transport-mechanical simulator in an integrated approach. Annual report, 1996--1997

    SciTech Connect (OSTI)

    Hoak, T.; Jenkins, R. [Science Applications International Corp., McLean, VA (United States); Ortoleva, P.; Ozkan, G.; Shebl, M.; Sibo, W.; Tuncay, K. [Laboratory for Computational Geodynamics (United States); Sundberg, K. [Phillips Petroleum Company (United States)

    1998-07-01T23:59:59.000Z

    The methodology and results of this project are being tested using the Andector-Goldsmith Field in the Permian Basin, West Texas. The study area includes the Central Basin Platform and the Midland Basin. The Andector-Goldsmith Field lies at the juncture of these two zones in the greater West Texas Permian Basin. Although the modeling is being conducted in this area, the results have widespread applicability to other fractured carbonate and other reservoirs throughout the world.

  8. Annual Meeting 2004 Prestack seismic data reduces uncertainty in the appraisal of dynamic reservoir behavior

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    reservoir behavior Omar J. Varela and Carlos Torres-Verdín* The U. of Texas at Austin Summary Integrated of petrophysical and fluid parameters. The benefit of data integration is the generation of reliable reservoir geostatistical techniques. Introduction Accurate and efficient reservoir management requires geological models

  9. Application of geostatistical reservoir description for maximizing waterflood infill drilling recovery from La Cira Field, Colombia

    E-Print Network [OSTI]

    Cubillos Gutierrez, Helber

    1995-01-01T23:59:59.000Z

    One of the prospective ways to increase the oil production is to maximize the oil recovery from mature oil fields. In this study we apply an integrated approach that combines geostatistical reservoir description and reservoir ...

  10. Well Performance Analysis for Low to Ultra-low Permeability Reservoir Systems

    E-Print Network [OSTI]

    Ilk, Dilhan

    2010-10-12T23:59:59.000Z

    to evaluate well performance in unconventional (i.e., low to ultra-low permeability) reservoir systems. The specific tasks achieved in this work include the following: ? Integrated Diagnostics and Analysis of Production Data in Unconventional Reservoirs: We...

  11. Application of geostatistical reservoir description for maximizing waterflood infill drilling recovery from La Cira Field, Colombia

    E-Print Network [OSTI]

    Cubillos Gutierrez, Helber

    1995-01-01T23:59:59.000Z

    One of the prospective ways to increase the oil production is to maximize the oil recovery from mature oil fields. In this study we apply an integrated approach that combines geostatistical reservoir description and reservoir simulation to evaluate...

  12. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  13. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN with primary contributions in the area of decision support for reservoir planning and management Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project

  14. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    SciTech Connect (OSTI)

    Chisholm, Ian

    1989-12-01T23:59:59.000Z

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  15. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  16. Integrated Visual Arts and Language Arts: Perceptions of Students and Teachers in a Middle School Classroom

    E-Print Network [OSTI]

    Cornelius, Angela Merced

    2012-10-19T23:59:59.000Z

    The overarching problems to which this study responds are the inadequacies of a traditional language arts curriculum for underserved middle school students and the ways such curricula fall short in providing these students viable means to succeed...

  17. Reservoir management using streamline simulation

    E-Print Network [OSTI]

    Choudhary, Manoj Kumar

    2000-01-01T23:59:59.000Z

    of information and sparsity of data. Quantifying this uncertainty in terms of reservoir performance forecast poses a major reservoir management challenge. One solution to this problem is flow simulation of a large number of these plausible reservoir descriptions...

  18. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    upon the available reservoir data. If the latter data a r eThe use of measured data in reservoir engineering simulationdata on the condition of the well and the static reservoir

  19. Greentree Reservoir Management Matthew J. Gray

    E-Print Network [OSTI]

    Gray, Matthew

    1 Greentree Reservoir Management Matthew J. Gray University of Tennessee Hardwood Bottomlands in Openings Guy Baldassarre Should Manage for Forest Openings >1 acre #12;4 Other Important Functions Bottomline on Bottomlands Hardwood bottomlands are critical ecosystems that play an integral role

  20. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Matthias G. Imhof; James W. Castle

    2005-02-01T23:59:59.000Z

    The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. We learned, however, that this strategy was impractical. The different data and tools need to be integrated from the beginning because they are all interrelated. This report describes a new approach to geostatistical modeling and presents an integration of geology and geophysics to explain the formation of the complex Coalinga reservoir.

  1. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31T23:59:59.000Z

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for optimizing the recovery from naturally fractured reservoir systems. The next logical extension of this work is to apply the proposed methods to an actual field case study to provide information for verification and modification of the techniques and simulator. This report provides the details of the proposed techniques and summarizes the activities undertaken during the course of this project. Technology transfer activities were highlighted by a two-day technical conference held in Oklahoma City in June 2002. This conference attracted over 90 participants and included the presentation of seventeen technical papers from researchers throughout the United States.

  2. Interdisciplinary study of reservoir compartments and heterogeneity. Final report, October 1, 1993--December 31, 1996

    SciTech Connect (OSTI)

    Van Kirk, C.

    1998-01-01T23:59:59.000Z

    A case study approach using Terry Sandstone production from the Hambert-Aristocrat Field, Weld County, Colorado was used to document the process of integration. One specific project goal is to demonstrate how a multidisciplinary approach can be used to detect reservoir compartmentalization and improve reserve estimates. The final project goal is to derive a general strategy for integration for independent operators. Teamwork is the norm for the petroleum industry where teams of geologists, geophysicists, and petroleum engineers work together to improve profits through a better understanding of reservoir size, compartmentalization, and orientation as well as reservoir flow characteristics. In this manner, integration of data narrows the uncertainty in reserve estimates and enhances reservoir management decisions. The process of integration has proven to be iterative. Integration has helped identify reservoir compartmentalization and reduce the uncertainty in the reserve estimates. This research report documents specific examples of integration and the economic benefits of integration.

  3. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL

  4. Reservoir Protection (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Oklahoma Water Resource Board has the authority to make rules for the control of sanitation on all property located within any reservoir or drainage basin. The Board works with the Department...

  5. Reservoir Operation in Texas

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    management of the surface water resources of the various river basins of the state. The operation of these essential water control facilities is examined in this report. Reservoir operation is viewed here from the perspective of deciding how much water...

  6. An Intelligent Systems Approach to Reservoir Characterization

    SciTech Connect (OSTI)

    Shahab D. Mohaghegh; Jaime Toro; Thomas H. Wilson; Emre Artun; Alejandro Sanchez; Sandeep Pyakurel

    2005-08-01T23:59:59.000Z

    Today, the major challenge in reservoir characterization is integrating data coming from different sources in varying scales, in order to obtain an accurate and high-resolution reservoir model. The role of seismic data in this integration is often limited to providing a structural model for the reservoir. Its relatively low resolution usually limits its further use. However, its areal coverage and availability suggest that it has the potential of providing valuable data for more detailed reservoir characterization studies through the process of seismic inversion. In this paper, a novel intelligent seismic inversion methodology is presented to achieve a desirable correlation between relatively low-frequency seismic signals, and the much higher frequency wireline-log data. Vertical seismic profile (VSP) is used as an intermediate step between the well logs and the surface seismic. A synthetic seismic model is developed by using real data and seismic interpretation. In the example presented here, the model represents the Atoka and Morrow formations, and the overlying Pennsylvanian sequence of the Buffalo Valley Field in New Mexico. Generalized regression neural network (GRNN) is used to build two independent correlation models between; (1) Surface seismic and VSP, (2) VSP and well logs. After generating virtual VSP's from the surface seismic, well logs are predicted by using the correlation between VSP and well logs. The values of the density log, which is a surrogate for reservoir porosity, are predicted for each seismic trace through the seismic line with a classification approach having a correlation coefficient of 0.81. The same methodology is then applied to real data taken from the Buffalo Valley Field, to predict inter-well gamma ray and neutron porosity logs through the seismic line of interest. The same procedure can be applied to a complete 3D seismic block to obtain 3D distributions of reservoir properties with less uncertainty than the geostatistical estimation methods. The intelligent seismic inversion method should help to increase the success of drilling new wells during field development.

  7. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01T23:59:59.000Z

    that well blocks must geothermal reservoir studies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

  8. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    o f Energy from Fractured Geothermal Reservoirs. Dal las:well behavior, fractured matrix reservoir behavior, wellEnergy from Fractured Geothermal Reservoirs." Society of ~

  9. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01T23:59:59.000Z

    Garg, 1978, Reservoir Engineering Data: Wai.akei Geothermalof the reservoir engineer because production data are alwaysGeothermal Reservoirs IV. DATA PROCESSING . Data

  10. A reservoir management strategy for multilayered reservoirs in eastern Venezuela

    E-Print Network [OSTI]

    Espinel Diaz, Arnaldo Leopoldo

    1998-01-01T23:59:59.000Z

    A reservoir management strategy has been developed for a field located in eastern Venezuela. The field contains deep, high pressure, multilayer reservoirs. A thorough formation evaluation was accomplished using the log data, core data, PVT data...

  11. Identification and quantification of fracture behavior through reservoir simulation

    SciTech Connect (OSTI)

    Cline, S. [Univ. of Oklahoma, Oklahoma City, OK (United States)]|[Hefner Corporation, Oklahoma City, OK (United States)

    1995-08-01T23:59:59.000Z

    This study demonstrated the use of reservoir simulation as a tool for quantifying and describing the relative significance of fracture and matrix flow units to overall reservoir storage capacity and transmissibility in a field development example. A high matrix porosity Pennsylvanian age sandstone oil reservoir, that is currently undergoing the early stages of secondary recovery by waterflood, was studied. Unexpected early water breakthrough indicated the presence of a high directional permeability fracture system superimposed on the high porosity matrix system. To further understand the reservoir behavior, improve field performance and to quantify the relative contributions of fracture and matrix units to permeability and storage capacity, a reservoir simulation and characterization project was initiated. Well test, well log, tracer and geologic data were integrated into the simulation project. The integrated study indicated that the fractures exhibited high directional permeability but low storage capacity relative to the matrix portion of the reservoir. Although fractures heavily influenced overall fluid flow behavior, they did not contain large storage capacity. The system had a low calculated fracture intensity index. Reservoir simulation enabled the quantification of the relative importance of the two flow systems which in turn had a large impact on total reserves estimates and production forecasting. Simulation results indicated a need to realign injector and producer patterns which improved production rates and ultimate recovery.

  12. Lake and Reservoir Management, 25:364376, 2009 C Copyright by the North American Lake Management Society 2009

    E-Print Network [OSTI]

    García-Berthou, Emili

    Lake and Reservoir Management, 25:364­376, 2009 C Copyright by the North American Lake Management Quality (EQ) of the reservoirs was assessed by integrating values of total chlorophyll a, cyanophyta classification of a set of Mediterranean reservoirs applying the EU Water Framework Directive: A reasonable

  13. The Integrative Application Study on Solar Energy Technology Used In a Student Dormitory

    E-Print Network [OSTI]

    Xue, Y.; Wang, C.

    2006-01-01T23:59:59.000Z

    wind. The solar chimney has windows on the side to provide light to the corridor. It also has wire netting on the top to stop the birds. 3.4 Photovoltaic System The student dorm also adopts high effective exactitude following type Photovoltaic... System to follow the movement of the sun accurately so that the Photovoltaic battery board always upright to the sun ray. The efficiency is twice higher than fixed Photovoltaic system. Under the same electricity need, the usage of the Photovoltaic...

  14. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01T23:59:59.000Z

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  15. Applying reservoir characterization technology

    SciTech Connect (OSTI)

    Lake, L.W.

    1994-12-31T23:59:59.000Z

    While reservoir characterization is an old discipline, only within the last 10 years have engineers and scientists been able to make quantitative descriptions, due mostly to improvements in high-resolution computational power, sophisticated graphics, and geostatistics. This paper summarizes what has been learned during the past decade by using these technologies.

  16. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    SciTech Connect (OSTI)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30T23:59:59.000Z

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the reservoir.

  17. Integration of Nontraditional Isotopic Systems Into Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water-Rock Interaction, and Impacts of Water Chemistry on Reservoir Sustainability Integration of Nontraditional Isotopic Systems Into Reaction-Transport Models of EGS For...

  18. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  19. Interdisciplinary study of reservoir compartments. Quarterly technical progress report, July 1, 1994--September 30, 1994

    SciTech Connect (OSTI)

    Van Kirk, C.W.

    1994-10-28T23:59:59.000Z

    This DOE research project was established to document the integrated team approach for solving reservoir engineering problems. A field study integrating the disciplines of geology, geophysics, and petroleum engineering will be the mechanism for documenting the integrated approach. This is an area of keen interest to the oil and gas industry. The goal will be to provide tools and approaches that can be used to detect reservoir compartments, reach a better reserve estimate, and improve profits early in the life of a field.

  20. Three dimensional geologic modeling of a fractured reservoir, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T.; Grover, G.A. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-11-01T23:59:59.000Z

    A geological assessment of a large carbonate reservoir in Saudi Arabia shows that it is a Type 2 fractured reservoir in which fractures provide the essential permeability. Intercrystalline microporosity, found within the basinally deposited mudstones and wackestones, is the dominant porosity type. Near-vertical, east-west-oriented extension fractures are preferentially localized in low-to-moderate porosities associated with stylolites. Porosity/fracture density relationships, combined with the results of structural curvature mapping, yielded a 3-dimensional model of fracture density. Fracture permeability and fracture porosity distributions were generated by integrating fracture density modeling results with average fracture aperture information derived from well test data. Dramatic differences exist between matrix- and fracture-related porosity, permeability models that help explain observed production behavior within the field. These models are being used by reservoir and simulation engineers for daily reservoir management, history matching, and long-term development drilling planning.

  1. Students--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer SolarStructureChallengeNuclear, 2015

  2. Reservoir Outflow (RESOUT) Model

    E-Print Network [OSTI]

    Purvis, Stuart Travis

    1988-01-01T23:59:59.000Z

    rating tables for a comprehensive range of outlet structure types and configurations, simulating a dam breach, routing a hydrograph through the reservoir, and performing drawdown analyses. The thesis describes the basic equations and computational... of Rating Curves Rating Curves for Uncontrolled Ogee Spillways Rating Curves for Uncontrolled Broad-crested Spillways Rating Curves for Spillway Gates Rating Curves for Drop Inlet Spillways Rating Curves for Outlet Works Breach Simulation Storage...

  3. Interdisciplinary study of reservoir compartments. [Quarterly report, April 1, 1994--June 30, 1994

    SciTech Connect (OSTI)

    Van Kirk, C.W.; Thompson, R.S.

    1994-07-26T23:59:59.000Z

    This DOE research project was established to document the integrated team approach for solving reservoir engineering problems. A field study integrating the disciplines of geology, geophysics, and petroleum engineering will be the mechanism for documenting the integrated approach. This is an area of keen interest to the oil and gas industry. The goal will be to provide tools and approaches that can be used to detect reservoir compartments, reach a better reserve estimate, and improve profits early in the life of a field. Progress reports are presented for the following tasks: reservoir selection and data gathering; outcrop/core/log analysis/ and correlations, internal architecture description; seismic analysis; and permeability experimental work.

  4. Applying Semantic Web Techniques to Reservoir Engineering: Challenges and Experiences from Event Modeling

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    (Integrated Asset Management [1] [2]) integrates information and application of various tasks in reservoir presented in this paper is an initial step towards a vision of integrated field event management, that uses, Event Ontology, Integrated Asset Management, Oilfield Industry, Rule Based Reasoning. I. INTRODUCTION

  5. Interactive Visualization of Oil Reservoir Data Sang Yun Lee, Kwang-Wu Lee, Ulrich Neumann

    E-Print Network [OSTI]

    Shahabi, Cyrus

    data of interest using com- puter-based information systems [8]. In our experience in an oil companyInteractive Visualization of Oil Reservoir Data Sang Yun Lee, Kwang-Wu Lee, Ulrich Neumann first prototype based on to the following requirements from our project: - Integrate oil reservoir

  6. Application of artifical intelligence to reservoir characterization: An interdisciplinary approach. Annual report, October 1993--October 1994

    SciTech Connect (OSTI)

    Kelkar, B.G.; Gamble, R.F.; Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    1995-07-01T23:59:59.000Z

    This basis of this research is to apply novel techniques from Artificial Intelligence and Expert Systems in capturing, integrating and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. The ultimate goal is to design and implement a single powerful expert system for use by small producers and independents to efficiently exploit reservoirs.

  7. Geochemical analysis of reservoir continuity and connectivity, Arab-D and Hanifa Reservoirs, Abqaiq Field, Saudia Arabia

    SciTech Connect (OSTI)

    Mahdi, A.A.; Grover, G. [Saudi Aramco, Dhahran (Saudi Arabia); Hwang, R. [Chevron Petroleum Technology Co., La Habra, CA (United States)] [and others

    1995-08-01T23:59:59.000Z

    Organic geochemistry and its integration with geologic and reservoir engineering data is becoming increasingly utilized to assist geologists and petroleum engineers in solving production related problems. In Abqaiq Field of eastern Saudi Arabia, gas chromatographic analysis (FSCOT) of produced oils from the Arab-D and Hanifa reservoirs was used to evaluate vertical and lateral continuity within and between these reservoirs. Bulk and molecular properties of produced Arab-D oils do not vary significantly over the 70 km length and 10 km width of the reservoir. Hanifa oils, however, do reflect two compositionally distinct populations that are hot in lateral communication, compatible with the occurrence of a large oil pool in the southern part of the field, and a separate, and smaller northern accumulation. The Arab-D and underlying Hanifa oil pools are separated by over 450 feet of impermeable carbonates of the Jubaila Formation, yet the Southern Hanifa pool and the Arab-D have been in pressure communication since onset of Hanifa production in 1954. Recent borehole imaging and core data from horizontal Hanifa wells confirmed the long suspected occurrence of fractures responsible for fluid transmissibility within the porous (up to 35%) but tight (<10md matrix K) Hanifa reservoir, and between the Hanifa and Arab-D. The nearly identical hydrocarbon composition of oils from the Arab-D and southern Hanifa pool provided the final confirmation of fluid communication between the two reservoirs, and extension of a Hanifa fracture-fault network via the Jubaila Formation. This work lead to acquisition of 3-D seismic to image and map the fracture-fault system. The molecular fingerprinting approach demonstrated that produced oils can be used to evaluate vertical and lateral reservoir continuity, and at Abqaiq Field confirmed, in part, the need to produce the Hanifa reservoir via horizontal wells to arrest the reservoir communication that occurs with existing vertical wells.

  8. CO{sub 2} Injectivity, Storage Capacity, Plume Size, and Reservoir and Seal Integrity of the Ordovician St. Peter Sandstone and the Cambrian Potosi Formation in the Illnois Basin

    SciTech Connect (OSTI)

    Hannes Leetaru; Alan Brown; Donald Lee; Ozgur Senel; Marcia Coueslan

    2012-05-01T23:59:59.000Z

    The Cambro-Ordovician strata of the Illinois and Michigan Basins underlie most of the states of Illinois, Indiana, Kentucky, and Michigan. This interval also extends through much of the Midwest of the United States and, for some areas, may be the only available target for geological sequestration of CO{sub 2}. We evaluated the Cambro-Ordovician strata above the basal Mt. Simon Sandstone reservoir for sequestration potential. The two targets were the Cambrian carbonate intervals in the Knox and the Ordovician St. Peter Sandstone. The evaluation of these two formations was accomplished using wireline data, core data, pressure data, and seismic data from the USDOE-funded Illinois Basin ?? Decatur Project being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. Interpretations were completed using log analysis software, a reservoir flow simulator, and a finite element solver that determines rock stress and strain changes resulting from the pressure increase associated with CO{sub 2} injection. Results of this research suggest that both the St. Peter Sandstone and the Potosi Dolomite (a formation of the Knox) reservoirs may be capable of storing up to 2 million tonnes of CO{sub 2} per year for a 20-year period. Reservoir simulation results for the St. Peter indicate good injectivity and a relatively small CO{sub 2} plume. While a single St. Peter well is not likely to achieve the targeted injection rate of 2 million tonnes/year, results of this study indicate that development with three or four appropriately spaced wells may be sufficient. Reservoir simulation of the Potosi suggest that much of the CO{sub 2} flows into and through relatively thin, high permeability intervals, resulting in a large plume diameter compared with the St. Peter.

  9. Fluid Flow Simulation in Fractured Reservoirs

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2002-01-01T23:59:59.000Z

    The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

  10. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    results w i t h other reservoir data. Ramey [1974] definesone-dimen- sional data on reservoir drainage which has beenC. R. , Goodwill D. Data t o Reservoir Engine H. Application

  11. Reservoir permeability from seismic attribute analysis

    E-Print Network [OSTI]

    Goloshubin, G.

    2008-01-01T23:59:59.000Z

    of the reservoir permeability based on seismic and log data.seismic reservoir response based on well and 3D seismic datadata analysis we suggest seismic imaging of the reservoir

  12. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31T23:59:59.000Z

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  13. Reservoir characterization and development opportunities in Jacob Field, South-Central Texas

    E-Print Network [OSTI]

    Hernandez Depaz, Mirko Joshoe

    2004-09-30T23:59:59.000Z

    the study, determine the oil potential, and make recommendations to improve production. Since no previous reservoir study was performed in this field, the original oil in place and the current status of depletion was unknown. Therefore a complete integrated...

  14. Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems

    E-Print Network [OSTI]

    Freeman, Craig Matthew

    2013-11-25T23:59:59.000Z

    in the rate and pressure data. Integration of the compositional shift analysis of this work with modern production analysis is used to infer reservoir properties. This work extends the current understanding of flow behavior and well performance for shale...

  15. Reservoir Characterization of Upper Devonian Gordon Sandstone, Jacksonburg, Stringtown Oil Field, Northwestern West Virginia

    SciTech Connect (OSTI)

    Ameri, S.; Aminian, K.; Avary, K.L.; Bilgesu, H.I.; Hohn, M.E.; McDowell, R.R.; Patchen, D.L.

    2002-05-21T23:59:59.000Z

    The purpose of this work was to establish relationships among permeability, geophysical and other data by integrating geologic, geophysical and engineering data into an interdisciplinary quantification of reservoir heterogeneity as it relates to production.

  16. Reservoir Characterization and Waterflood Performance Evaluation of Granite Wash Formation, Anadarko Basin

    E-Print Network [OSTI]

    Nilangekar, Akshay Anand

    2014-05-08T23:59:59.000Z

    set of field data was provided by the operator and other necessary parameters were obtained through publicly available field studies and literature. The final objective is implementing advanced reservoir simulation to integrate well log data, PVT data...

  17. Twentieth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    None

    1995-01-26T23:59:59.000Z

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  18. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    reservoir crack patterns using shear-wave splitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Characterization of geothermal reservoir...

  19. Hydrological and Geochemical Investigations of Selenium Behavior at Kesterson Reservoir

    E-Print Network [OSTI]

    Zawislanski, P.T.

    2010-01-01T23:59:59.000Z

    Ecological Characterization of Kesterson Reservoir. AnnualEcological Characterization of Kesterson Reservoir. Annual

  20. TEXAS A&M UNIVERSITY Reservoir Geophysics Program

    E-Print Network [OSTI]

    includes applications to clastic reservoirs, heavy oil reservoirs, gas/oil shale, gas hydrates. Basic

  1. Niobrara gas play: exploration and development of a low pressure, low permeability gas reservoir

    SciTech Connect (OSTI)

    Brown, C.A.; Crafton, J.W.; Golson, J.G.

    1981-01-01T23:59:59.000Z

    The Niobrara Gas Play in eastern Colorado, northwestern Kansas and western Nebraska is an exemplary model for developing an integrated interdisciplinary exploration and exploitation strategy. This paper demonstrates a method to incorporate all types of analyses including geology and gas origin, petrology, drilling and completion, log interpretation, fracture stimulation and producing methods. Together these analyses are integrated into a rigorous reservoir study using mathematical simulation to evaluate well productivity and reservoir performance. 9 refs.

  2. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha

  3. Rock Physics Based Determination of Reservoir Microstructure for Reservoir Characterization

    E-Print Network [OSTI]

    Adesokan, Hamid 1976-

    2013-01-09T23:59:59.000Z

    One of the most important, but often ignored, factors affecting the transport and the seismic properties of hydrocarbon reservoir is pore shape. Transport properties depend on the dimensions, geometry, and distribution of pores and cracks. Knowledge...

  4. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    reservoir engineering research program a t the University of Colorado is described. Physical characterization

  5. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 1. Damage fracturing Seth Busetti, Kyran mechanics, fluid flow in fractured reservoirs, and geomechanics in nonconventional reservoirs. Kyran Mish finite deformation of reservoir rocks. We present an at- tempt to eliminate the main limitations

  6. Cesium reservoir and interconnective components. Final test report: TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir.

  7. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect (OSTI)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01T23:59:59.000Z

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  8. Interdisciplinary study of reservoir compartments. Quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Van Kirk, C.W.

    1995-01-27T23:59:59.000Z

    This DOE research project was established to document the integrated team approach for solving reservoir engineering problems. A field study integrating the disciplines of geology, geophysics, and petroleum engineering will be the mechanism for documenting the integrated approach. This is an area of keen interest to the oil and gas industry. The goal will be to provide tools and approaches that can be used to detect reservoir compartments, reach a better reserve estimate, and improve profits early in the life of a field. Brief summaries are provided for the following six tasks: reservoir selection and data gathering; outcrop/core/log analysis/and correlations; internal architecture description; seismic analysis; detailed reservoir engineering evaluation; and permeability experimental work. Where appropriate reports by the research professors and the research assistants are included in the appendix.

  9. Reservoir characterization using wavelet transforms

    E-Print Network [OSTI]

    Rivera Vega, Nestor

    2004-09-30T23:59:59.000Z

    Automated detection of geological boundaries and determination of cyclic events controlling deposition can facilitate stratigraphic analysis and reservoir characterization. This study applies the wavelet transformation, a recent advance in signal...

  10. Niobrara gas play: exploration and development of a low-pressure, low-permeability gas reservoir

    SciTech Connect (OSTI)

    Brown, C.A.; Crafton, J.W.; Golson, J.G.

    1982-12-01T23:59:59.000Z

    An integrated interdisciplinary exploration/exploitation strategy contributed to the successful economic development of the Niobrara gas play, located in eastern Colorado, northwestern Kansas, and western Nebraska. The exploration, development, production, and evaluation data suggest that (1) Niobrara chalk reservoirs have exceptionally high porosities but very low permeabilities, (2) individual reservoirs are low-relief, highly faulted structural traps characterized consistently by extensive water-transition zones, (3) the reservoirs contain biogenic gas (the Niobrara acts as its own source rock,) (4) an exploration fairway can be defined if porosity, permeability, and pressure are correlated with paleodepth, (5) optimal logging, completion, stimulation, and producing methods are readily definable, (6) reservoir performance is predicted adequately by numerical simulation, and (7) infill drilling on 160-acre spacing will allow better reservoir drainage.

  11. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. [Quarterly report], April 1--June 30, 1995

    SciTech Connect (OSTI)

    Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    1995-09-01T23:59:59.000Z

    Objective is to apply artificial intelligence and expert systems to capturing, integrating, and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. Goal is to develop a single expert system for use by small producers and independents to efficiently exploit reservoirs.

  12. PACIFIC NORTHWEST NUTRIA PROGRAM SUMMARY 2013 In 2007 the Center for Lakes and Reservoirs and Aquatic Bioinvasions Research and Policy

    E-Print Network [OSTI]

    in numerous management activities. The Center for Lakes and Reservoirs-Aquatic Bioinvasions Research at several integrated pest management education workshops and helped launch a citizen bounty program in Polk1 PACIFIC NORTHWEST NUTRIA PROGRAM SUMMARY 2013 In 2007 the Center for Lakes and Reservoirs

  13. Evaluation of field development plans using 3-D reservoir modelling

    SciTech Connect (OSTI)

    Seifert, D.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom); Newbery, J.D.H. [Conoco, UK Ltd., Aberdeen (United Kingdom)] [and others

    1997-08-01T23:59:59.000Z

    Three-dimensional reservoir modelling has become an accepted tool in reservoir description and is used for various purposes, such as reservoir performance prediction or integration and visualisation of data. In this case study, a small Northern North Sea turbiditic reservoir was to be developed with a line drive strategy utilising a series of horizontal producer and injector pairs, oriented north-south. This development plan was to be evaluated and the expected outcome of the wells was to be assessed and risked. Detailed analyses of core, well log and analogue data has led to the development of two geological {open_quotes}end member{close_quotes} scenarios. Both scenarios have been stochastically modelled using the Sequential Indicator Simulation method. The resulting equiprobable realisations have been subjected to detailed statistical well placement optimisation techniques. Based upon bivariate statistical evaluation of more than 1000 numerical well trajectories for each of the two scenarios, it was found that the wells inclinations and lengths had a great impact on the wells success, whereas the azimuth was found to have only a minor impact. After integration of the above results, the actual well paths were redesigned to meet external drilling constraints, resulting in substantial reductions in drilling time and costs.

  14. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01T23:59:59.000Z

    the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

  15. GMINC - A MESH GENERATOR FOR FLOW SIMULATIONS IN FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01T23:59:59.000Z

    Flow in Naturally Fractured Reservoirs, Society of Petroleumfor Naturally Fractured Reservoirs, paper SPE-11688,Determining Naturally Fractured Reservoir Properties by Well

  16. Analysis of flow behavior in fractured lithophysal reservoirs

    E-Print Network [OSTI]

    Liu, Jianchun; Bodvarsson, G.S.; Wu, Yu-Shu

    2002-01-01T23:59:59.000Z

    R. , 1980. Naturally Fractured Reservoirs, Petroleum, Tulsa,bounded naturally fractured reservoirs. Soc. Pet. Eng. J.test in a naturally fractured reservoir. J. Pet. Tech. 1295

  17. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-01-01T23:59:59.000Z

    Heat Flow in Fractured Reservoirs, SPE Advanced TechnologyTransfer Area in Fractured Reservoirs Karsten Pruess 1 , Tonbehavior arises in fractured reservoirs. As cold injected

  18. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01T23:59:59.000Z

    Summary of reservoir engineering data: Wairakei Geothermaland new data important to geothermal reservoir engineeringdata and other information related to geothermal reservoir

  19. SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND

    E-Print Network [OSTI]

    Pritchett, J.W.

    2012-01-01T23:59:59.000Z

    W. , L. F. Rice "Reservoir Engineering Data: thermal Field,Summary of Reservoir Engineering Data: Wairakei GeothermalSUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL

  20. Hydrological and Geochemical Investigations of Selenium Behavior at Kesterson Reservoir

    E-Print Network [OSTI]

    Zawislanski, P.T.

    2010-01-01T23:59:59.000Z

    of Kesterson Reservoir, and supplements data provided in1991). The Reservoir-wide sampling data has been reviewed toinventory at Kesterson Reservoir. The data presented herein

  1. SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND

    E-Print Network [OSTI]

    Pritchett, J.W.

    2010-01-01T23:59:59.000Z

    W. , L. F. Rice "Reservoir Engineering Data: thermal Field,Summary of Reservoir Engineering Data: Wairakei GeothermalSUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL

  2. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01T23:59:59.000Z

    in data interpretation, and reservoir performance as relatedgeothermal reservoir, the acquisition of data on the v i s cfield data and for modeling reservoir performance. such

  3. A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS

    E-Print Network [OSTI]

    Anderson, C.

    2011-01-01T23:59:59.000Z

    FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

  4. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Integration of borehole imaging data with available open-hole log, core, and well-test data from horizontal and vertical wells allowed for the distribution of fracture parameters, including fracture density, aperture, porosity, and permeability throughout a geocellular model. Analysis of over 5000 fractures showed that changes in lithology, grain size, and/or bed thickness do not correlate with changes in fracture densities. Review of P- and S-wave log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. Fracture permeabilities compare favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix- related permeability contrasts sharply with highly variable and relatively high (ER 50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  5. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1993-01-28T23:59:59.000Z

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  6. A simulation-based reservoir management program

    SciTech Connect (OSTI)

    Voskanian, M.M. [California State Lands Commission, Sacramento, CA (United States); Kendall, R.P.; Whitney, E.M. [Los Alamos National Lab., NM (United States); Coombs, S. [Pacific Operators Offshore, Inc., Santa Barbara, CA (United States); Paul, R.G. [Minerals Management Service, Reston, VA (United States). Headquarters Office; Ershaghi, I. [Univ. of Southern California, Los Angeles, CA (United States)

    1996-05-01T23:59:59.000Z

    There are more than 5,200 independent oil and gas producers operating in the US today (based on current IPAA membership figures). These companies are playing an increasingly important role in production of hydrocarbons in California and elsewhere in the US. Pacific Operators Offshore, Inc., in a historic collaboration with its government royalty owners, the California State Lands Commission and the Minerals Management Service of the US Department of Interior, is attempting to redevelop the Carpinteria Offshore Field after two-and-a-half decades of production and partial abandonment by a previous operator. This paper will describe a project which focuses on the distribution of advanced reservoir management technologies (geological, petrophysical, and engineering) to independent producers like Pacific Operators Offshore, Inc. The evolving information highway, specifically the World Wide Web (WWW), serves as the distribution medium. The project to be described in this paper is an example of the implementation of a reservoir management tool which is supported by distributed databases, incorporates a shared computing environment, and integrates stochastic, geological, and engineering modeling.

  7. Ninth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S. (Stanford Geothermal Program)

    1983-12-15T23:59:59.000Z

    The attendance at the Workshop was similar to last year's with 123 registered participants of which 22 represented 8 foreign countries. A record number of technical papers (about 60) were submitted for presentation at the Workshop. The Program Committee, therefore, decided to have several parallel sessions to accommodate most of the papers. This format proved unpopular and will not be repeated. Many of the participants felt that the Workshop lost some of its unique qualities by having parallel sessions. The Workshop has always been held near the middle of December during examination week at Stanford. This timing was reviewed in an open discussion at the Workshop. The Program Committee subsequently decided to move the Workshop to January. The Tenth Workshop will be held on January 22-24, 1985. The theme of the Workshop this year was ''field developments worldwide''. The Program Committee addressed this theme by encouraging participants to submit field development papers, and by inviting several international authorities to give presentations at the Workshop. Field developments in at least twelve countries were reported: China, El Salvador, France, Greece, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, the Philippines, and the United States. There were 58 technical presentations at the Workshop, of which 4 were not made available for publication. Several authors submitted papers not presented at the Workshop. However, these are included in the 60 papers of these Proceedings. The introductory address was given by Ron Toms of the U.S. Department of Energy, and the banquet speaker was A1 Cooper of Chevron Resources Company. An important contribution was made to the Workshop by the chairmen of the technical sessions. Other than Stanford Geothermal Program faculty members, they included: Don White (Field Developments), Bill D'Olier (Hydrothermal Systems), Herman Dykstra (Well Testing), Karsten Pruess (Well Testing), John Counsil (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

  8. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Development of sulfonated carbon catalysts for integrated biodiesel production

    E-Print Network [OSTI]

    carbon catalysts for integrated biodiesel production Jidon Adrian Bin Janaun University of British of sulfonated carbon catalysts for integrated biodiesel production by Jidon Adrian Bin Janaun M.Sc. in Chemical security, climate change, and environmental protection attract the use of biodiesel as an alternative fuel

  9. Reservoir description and future development plans for the Unam/Mfem Fields, OML 67, Nigeria

    SciTech Connect (OSTI)

    Kofron, B.M.; Jenkinson, J.T.; Maxwell, G.S. [Mobil Exploration and Producing Technology Center, Dallas, TX (United States)] [and others

    1995-08-01T23:59:59.000Z

    The Unam/Mfem fields, which are currently produced from three platforms, are, located 25 km offshore (southeastern Nigeria) in water depths of 60 feet to 100 feet. Over 100 MMBO have been produced to date from both unconformity bounded and fault trap reservoirs in the Upper and Middle Biafra Sands. These structural and stratigraphic geometries define at least eleven different reservoirs that are not interconnected. STOIIP for all eleven reservoirs is estimated to exceed 900 MMBO based on a recently completed reservoir characterization study. A two year reservoir description study followed the acquisition of a 1991 3-D seismic survey and resulted in the drilling of six successful wells and two sidetracks. A 3-D model of reservoir geometries and fluid flow properties was generated by integrating geologic, geophysical, and reservoir engineering data. These diverse data sets were interpreted using a combination of workstations, software packages, and displays that included Landmark, IREX, wireline log and seismic correlation charts. A detailed stratigraphic zonation scheme with 28 zones was defined and correlated field wide and subregionally to build the reservoir framework. Twenty seismic horizons were created. More than 300 critical compute, generated grids were then used to calculate STOIIP volumes. This study led to the identification of new pay zones along with a much better understanding of the spatial distribution of all pays within the fields. A revised exploitation strategy has subsequently been proposed which calls for 5 new platforms and the drilling of 21 additional wells over the next few years.

  10. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    SciTech Connect (OSTI)

    Laubach, S.E.; Marrett, R.; Rossen, W.; Olson, J.; Lake, L.; Ortega, O.; Gu, Y.; Reed, R.

    1999-01-01T23:59:59.000Z

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specific goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.

  11. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  12. Comparative Evaluation of Generalized River/Reservoir System Models

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

  13. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01T23:59:59.000Z

    injection into a fractured reservoir system. A reservoirIn the case of fractured reservoirs, Equations (25) and (26)c ww q a >> For fractured reservoirs, the former expression

  14. The Carpenteria reservoir redevelopment project

    SciTech Connect (OSTI)

    Kendall, R.P.; Whitney, E.M.; Krogh, K.E. [Los Alamos National Lab., NM (United States); Coombs, S. [Pacific Operators Offshore, Inc., Carpinteria, CA (United States); Paul, R.G. [Dept. of the Interior (United States); Voskanian, M.M. [California State Lands Commission, Sacramento, CA (United States); Ershaghi, I. [University of Southern California, Los Angeles, CA (United States)

    1997-08-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop a simulation-based reservoir management system that could be used to guide the redevelopment of the Carpenteria Offshore Field, which is located just seven miles from Santa Barbara. The system supports geostatistical and geological modeling and reservoir forecasting. Moreover, it is also a shared resource between the field operator, Pacific Operators Offshore, and the mineral owners, the U.S. Department of the Interior and the State of California.

  15. Optimizing injected solvent fraction in stratified reservoirs

    E-Print Network [OSTI]

    Moon, Gary Michael

    1993-01-01T23:59:59.000Z

    Waterflooding has become standard practice for extending the productive life of many solution gas drive reservoirs, but has the disadvantage of leaving a substantial residual oil volume in the reservoir. Solvent flooding has been offered as a...

  16. Modeling well performance in compartmentalized gas reservoirs

    E-Print Network [OSTI]

    Yusuf, Nurudeen

    2008-10-10T23:59:59.000Z

    for consolidated reservoir cases while synthetic data (generated by the model using known parameters) was used for unconsolidated reservoir cases. In both cases, the Compartmentalized Depletion Model was used to analyze data, and estimate the OGIP and Jg of each...

  17. Modeling well performance in compartmentalized gas reservoirs

    E-Print Network [OSTI]

    Yusuf, Nurudeen

    2009-05-15T23:59:59.000Z

    for consolidated reservoir cases while synthetic data (generated by the model using known parameters) was used for unconsolidated reservoir cases. In both cases, the Compartmentalized Depletion Model was used to analyze data, and estimate the OGIP and Jg of each...

  18. Modeling well performance in compartmentalized gas reservoirs

    E-Print Network [OSTI]

    Yusuf, Nurudeen

    2008-10-10T23:59:59.000Z

    Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

  19. Modeling well performance in compartmentalized gas reservoirs

    E-Print Network [OSTI]

    Yusuf, Nurudeen

    2009-05-15T23:59:59.000Z

    Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

  20. The Effects of Music-Mathematics Integrated Curriculum and Instruction on Elementary Students Mathematics Achievement and Dispositions

    E-Print Network [OSTI]

    An, Song

    2012-07-16T23:59:59.000Z

    The purpose of the current research was to examine the effects of a sequence of classroom activities that integrated mathematics content with music elements aimed at providing teachers an alternative approach for teaching mathematics. Two classes...

  1. THMC Modeling of EGS Reservoirs ? Continuum through Discontinuum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs Continuum through...

  2. Optimization Online - Managing Hydroelectric Reservoirs over an ...

    E-Print Network [OSTI]

    Pierre-Luc Carpentier

    2013-07-07T23:59:59.000Z

    Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss...

  3. Naturally fractured reservoirs contain a significant amount of the world oil reserves. A number of these reservoirs contain several

    E-Print Network [OSTI]

    Arbogast, Todd

    Summary Naturally fractured reservoirs contain a significant amount of the world oil reserves simulation of naturally fractured reservoirs is one of the most important, challenging, and computationally intensive problems in reservoir engineering. Parallel reservoir simulators developed for naturally fractured

  4. RATE DECLINE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    RATE DECLINE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS A REPORT SUBMITTED TO THE DEPARTMENT analylsiis for constant pressure production in a naturally fractured reservoir is presented. The solution, the Warren and Root model which assumes fracturing is perfectly unifom, provides an upper bound of reservoir

  5. STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES

    E-Print Network [OSTI]

    Stanford University

    STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES Paul Kruger and Henry J . Ramey, Jr . . . . . . . . . . . . . . . . . . . . . . 61 Mass Transfer i n Porous and Fractured Media . . . . . . . . . 61 Heat Transfer i n Fractun3d Rock . . . . . . . . . . . . . . . 67 Geothermal Reservoir Phy.Sica1 PIodels . . . . . . . . . . . . 73 RAD3N I N GEOTHERMAL RESERVOIRS

  6. Tenth workshop on geothermal reservoir engineering: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-22T23:59:59.000Z

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  7. Reservoir Characterization Using Intelligent Seismic Inversion

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    reservoir performance. Field Development #12;- Issues about the data and problems regarding data analysis characterization studies. - Inverse modeling of reservoir properties from the seismic data is known as seismic inversion. SEISMIC LOGS #12;1. Does a relationship exist between seismic data and reservoir characteristics

  8. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07T23:59:59.000Z

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  9. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  10. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  11. Prevention of Reservoir Interior Discoloration

    SciTech Connect (OSTI)

    Arnold, K.F.

    2001-04-03T23:59:59.000Z

    Contamination is anathema in reservoir production. Some of the contamination is a result of welding and some appears after welding but existed before. Oxygen was documented to be a major contributor to discoloration in welding. This study demonstrates that it can be controlled and that some of the informal cleaning processes contribute to contamination.

  12. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    SciTech Connect (OSTI)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01T23:59:59.000Z

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  13. 4. International reservoir characterization technical conference

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  14. Pressure maintenance in a volatile oil reservoir

    E-Print Network [OSTI]

    Schuster, Bruce Alan

    1989-01-01T23:59:59.000Z

    . . 40 Cumulative Gas Produced vs. Time - Variable Well Spacing and Injection Pattern 75 76 INTRODUCTION In a typical basin, most shallow oil field can be classified as black oil reservoirs. Phase changes which occur in black oil reservoirs can... of the reservoir fluid. Black oil reservoirs produce oil at low to moderate gas oil ratios generally less than 2, 000 SCF/STB, with stock-tank oil gravities less than 45' API. These reservoirs are also identifled by having formation volume factors less than 2...

  15. Graduate Student and Postdoctoral Researcher openings in Computational Mechanics of Materials and Integrated Computational Materials Science & Engineering

    E-Print Network [OSTI]

    Ghosh, Somnath

    and Integrated Computational Materials Science & Engineering at Johns Hopkins University, Baltimore, USA.S. or M.S. in Mechanical Engineering, Civil Engineering, Materials Science & Engineering, Physics or any Computational Materials Science and Engineering (ICMSE) theme. The overarching goal is to overcome limitations

  16. Graduate Students Seminar Bloomfield 527 14:30 15:30 Integration of System Models into the Semantic Web

    E-Print Network [OSTI]

    Levit, Anna

    into the Semantic Web: Representation of OPM Models in RDF Format Shmuela Jacobs Supervisors: Prof's Dov Dori of a system. Semantic Web concepts offer opportunities for easier and more efficient collaboration between, structure, and behavior, into the Semantic Web. The research deals with the first integration stages

  17. Interdisciplinary study of reservoir compartments. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Van Kirk, C.W.; Thompson, R.S.

    1994-04-27T23:59:59.000Z

    This DOE research project was established to document the integrated team approach for solving reservoir engineering problems. A field study integrating the disciplines of geology, geophysics, and petroleum engineering will be the mechanism for documenting the integrated approach. This is an area of keen interest to the oil and gas industry The goal will be to provide tools and approaches that can be used to detect reservoir compartments, reach a better reserve estimate, and improve profits early in the life of a field. Brief summaries of the project status are presented for: reservoir selection and data gathering; outcrop/corel log analysis/and correlations; internal architecture description; seismic analysis; and permeability experimental work.

  18. Approaches to identifying reservoir heterogeneity and reserve growth opportunities from subsurface data: The Oficina Formation, Budare field, Venezuela

    SciTech Connect (OSTI)

    Hamilton, D.S.; Raeuchle, S.K.; Holtz, M.H. [Bureau of Economic Geology, Austin, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    We applied an integrated geologic, geophysical, and engineering approach devised to identify heterogeneities in the subsurface that might lead to reserve growth opportunities in our analysis of the Oficina Formation at Budare field, Venezuela. The approach involves 4 key steps: (1) Determine geologic reservoir architecture; (2) Investigate trends in reservoir fluid flow; (3) Integrate fluid flow trends with reservoir architecture; and (4) Estimate original oil-in-place, residual oil saturation, and remaining mobile oil, to identify opportunities for reserve growth. There are three main oil-producing reservoirs in the Oficina Formation that were deposited in a bed-load fluvial system, an incised valley-fill, and a barrier-strandplain system. Reservoir continuity is complex because, in addition to lateral facies variability, the major Oficina depositional systems were internally subdivided by high-frequency stratigraphic surfaces. These surfaces define times of intermittent lacustrine and marine flooding events that punctuated the fluvial and marginal marine sedimentation, respectively. Syn and post depositional faulting further disrupted reservoir continuity. Trends in fluid flow established from initial fluid levels, response to recompletion workovers, and pressure depletion data demonstrated barriers to lateral and vertical fluid flow caused by a combination of reservoir facies pinchout, flooding shale markers, and the faults. Considerable reserve growth potential exists at Budare field because the reservoir units are highly compartment by the depositional heterogeneity and structural complexity. Numerous reserve growth opportunities were identified in attics updip of existing production, in untapped or incompletely drained compartments, and in field extensions.

  19. NEUP Student Resources

    Broader source: Energy.gov [DOE]

    Through the Integrated University Program, The Department of Energy is awarding $5 million for 39 undergraduate scholarships and 31 graduate fellowships to students in nuclear energy-related...

  20. The utility of continual reservoir description: An example from Bindley Field, Western Kansas

    SciTech Connect (OSTI)

    Johnson, R.A. (Energy Foundation Inc., Lakewood, CO (United States)); Budd, D.A. (Univ. of Colorado, Boulder, CO (United States))

    1994-05-01T23:59:59.000Z

    Continual revision of geologic reservoir description is an important component of reservoir management. New data should be incorporated into existing reservoir models in light of evolving geologic concepts. Revisions may have significant impacts on the approach and success of reservoir management strategies. A reevaluation of Bindley field (Mississippian), Hodgeman County, Kansas, serves as an illustration of this process. Prior study of this field suggested that the reservoir interval is comprised of a single, relatively uniform facies (bryozoan dolomite) having no apparent internal structure. A waterflood attempt based on this concept of reservoir architecture resulted in minimal response. A revised model of reservoir architecture and petrophysics resulted from integration of new core data, a new stratigraphic correlation scheme, updated well production histories, and capillary pressure data. The revised geologic model reveals specific methods to improve primary recovery and rectify the poor waterflood performance. These methods include selective perforation of all oil-saturated type I flow units to optimize primary recovery and remedial waterflood design to assure continuity of fluid flow between injection and production wells. 19 refs., 20 figs., 2 tabs.

  1. Fractured reservoir discrete feature network technologies. Annual report, March 7, 1996--February 28, 1997

    SciTech Connect (OSTI)

    Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.

    1998-01-01T23:59:59.000Z

    This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.

  2. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-10-01T23:59:59.000Z

    This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity increases, the remaining oil saturation decreases. This is evident from log and core analysis. (5) Using a compositional simulator, we are able to reproduce the important reservoir characteristics by assuming a two layer model. One layer is high permeability region containing water and the other layer is low permeability region containing mostly oil. The results are further verified by using a dual porosity model. Assuming that most of the volatile oil is contained in the matrix and the water is contained in the fractures, we are able to reproduce important reservoir performance characteristics. (6) Evaluation of secondary mechanisms indicates that CO{sub 2} flooding is potentially a viable option if CO{sub 2} is available at reasonable price. We have conducted detailed simulation studies to verify the effectiveness of CO{sub 2} huff-n-puff process. We are in the process of conducting additional lab tests to verify the efficacy of the same displacement. (7) Another possibility of improving the oil recovery is to inject surfactants to change the near well bore wettability of the rock from oil wet to water wet. By changing the wettability, we may be able to retard the water flow and hence improve the oil recovery as a percentage of total fluid produced. If surfactant is reasonably priced, other possibility is also to use huff-n-puff process using surfactants. Laboratory experiments are promising, and additional investigation continues. (8) Preliminary economic evaluation indicates that vertical wells outperform horizontal wells. Future work in the project would include: (1) Build multi-well numerical model to reproduce overall reservoir performance rather than individual well performance. Special emphasis will be placed on hydrodynamic connectivity between wells. (2) Collect data from adjacent Hunton reservoirs to validate our understanding of what makes it a productive reservoir. (3) Develop statistical methods to rank various reservoirs in Hunton formation. This will allow us to evaluate other Hunton formations based on old well logs, and determine, apriori, if

  3. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1)

    SciTech Connect (OSTI)

    Watney, W.L.

    1992-01-01T23:59:59.000Z

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to link the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.

  4. Nineteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1994-01-20T23:59:59.000Z

    PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Xianfa Deng who coordinated the meeting arrangements for the Workshop. Roland N. Home Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  5. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

    1991-01-25T23:59:59.000Z

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate the audiovisual equipment and to Michael Riley who coordinated the meeting arrangements for a second year. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  6. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09T23:59:59.000Z

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  7. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01T23:59:59.000Z

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  8. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  9. forreading. Integrated Water Management for Environmental

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    : Environmental flows; Reservoir reoperation; Integrated water management; Adaptive management; Rio GrandeO nly forreading. D o notD ow nload. Integrated Water Management for Environmental Flows in the Rio the environment. This paper presents an integrated water management approach to meet current and future water

  10. Uncertainty Analysis of a Giant Oil Field in the Middle East Using Surrogate Reservoir Model Shahab D. Mohaghegh, West Virginia University

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    management. The underlying static models are the result of integrated efforts that usually includesUncertainty Analysis of a Giant Oil Field in the Middle East Using Surrogate Reservoir Model Shahab, and Maher Kenawy, ADCO ABSTRACT Simulation models are routinely used as a powerful tool for reservoir

  11. Improved energy recovery from geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1981-01-01T23:59:59.000Z

    The behavior of a liquid-dominated geothermal reservoir in response to production from different horizons is studied using numerical simulation methods. The Olkaria geothermal field in Kenya is used as an example where a two-phase vapor-dominated zone overlies the main liquid-dominated reservoir. The possibility of improving energy recovery from vapor-dominated reservoirs by tapping deeper horizons is considered.

  12. A virtual company concept for reservoir management

    SciTech Connect (OSTI)

    Martin, F.D. [Dave Martin and Associates, Inc. (United States); Kendall, R.P.; Whitney, E.M. [Los Alamos National Lab., NM (United States)

    1998-12-31T23:59:59.000Z

    This paper describes how reservoir management problems were pursued with a virtual company concept via the Internet and World Wide Web. The focus of the paper is on the implementation of virtual asset management teams that were assembled with small independent oil companies. The paper highlights the mechanics of how the virtual team transferred data and interpretations, evaluated geological models of complex reservoirs, and used results of simulation studies to analyze various reservoir management strategies.

  13. Quantum discord dynamics in structured reservoirs

    E-Print Network [OSTI]

    Z. -K. Su; S. -J. Jiang

    2011-05-25T23:59:59.000Z

    The non-Markovian master equations are derived to study quantum discord dynamics of two qubits coupled to a common reservoir and two independent reservoirs, respectively. We compare the dynamics under different parameters, such as reservoir spectra and resonant parameters, at high temperature and at zero temperature. The results indicate that the dynamics at these two extreme temperatures share similar characters, as well as differences.

  14. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    on Geothermal Resource Assessment and Reservoir EngineeriWorkshop on Geothermal Resources Assessment and ReserooirWorkshop on Geothermal Resources Assessment an ervoi r Engi

  15. GEOMECHANICS IN RESERVOIR SIMULATION: OVERVIEW OF ...

    E-Print Network [OSTI]

    P. LONGUEMARE

    2002-11-12T23:59:59.000Z

    dans le rservoir et de faciliter le calage des historiques de production. Abstract Geomechanics in Reservoir Simulation: Overview of Coupling Methods and...

  16. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of...

  17. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of...

  18. Safety of Dams and Reservoirs Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act regulates dams and associated reservoirs to protect health and public safety and minimize adverse consequences associated with potential dam failure. The act describes the responsibilities...

  19. International reservoir operations agreement helps NW fish &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or 503-230-5131 International reservoir operations agreement helps Northwest fish and power Portland, Ore. - The Bonneville Power Administration and the British Columbia...

  20. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation Of Chemical...

  1. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismicity This project will develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics; finite element modeling;...

  2. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  3. Geothermal: Sponsored by OSTI -- Methodologies for Reservoir...

    Office of Scientific and Technical Information (OSTI)

    Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  4. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    i s maintain reservoir pressu found t o be f a i r l yPrieto. , Correlation of pressu temperature trends w i t h

  5. Eleventh workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R. (Stanford Geothermal Program)

    1986-01-23T23:59:59.000Z

    The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

  6. The verification of a semi-analytical reservoir simulator using a finite difference reservoir simulator

    E-Print Network [OSTI]

    Dube, Hans Gerhardt

    1990-01-01T23:59:59.000Z

    of Cases Fundamental Difference Between the Reservoir Simulators. Data Sets. . General Process of Verification. . . . . . . . . . . . . . . 22 24 25 25 26 29 32 36 SINGLE LAYER, RADIAL FLOW DRAWDOWN CASES. . 38 viii Page Infinite Cylindrical... Drawdown Problems. . . . . . . . . . . . . 38 41 43 45 49 50 52 MULTIPLE LAYER RESERVOIR, RADIAL FLOW DRAWDOWN CASES. 63 Simulation of Multiple Layer Reservoirs. . . . . . Simulation Parameters. Constant Rate Drawdown Tests in an Infinite...

  7. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-04-01T23:59:59.000Z

    Wave-induced variations of pore pressure in a partially-saturated reservoir result in oscillatory liquid flow. The viscous losses during this flow are responsible for wave attenuation. The same viscous effects determine the changes in the dynamic bulk modulus of the system versus frequency. These changes are necessarily linked to attenuation via the causality condition. We analytically quantify the frequency dependence of the bulk modulus of a partially saturated rock by assuming that saturation is patchy and then link these changes to the inverse quality factor. As a result, the P-wave attenuation is quantitatively linked to saturation and thus can serve as a saturation indicator.

  8. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR...

    Broader source: Energy.gov (indexed) [DOE]

    Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir...

  9. Reservoir Characterization Research Laboratory Research Plans for 2013

    E-Print Network [OSTI]

    Texas at Austin, University of

    and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining Hydrocarbons Charles#12; Reservoir Characterization Research Laboratory Research Plans for 2013 Outcrop for heavy oil deposits within the Canadian Grosmont Formation. #12;iii Reservoir Characterization Research

  10. Optimal Reservoir Management and Well Placement Under Geologic Uncertainty

    E-Print Network [OSTI]

    Taware, Satyajit Vijay

    2012-10-19T23:59:59.000Z

    Reservoir management, sometimes referred to as asset management in the context of petroleum reservoirs, has become recognized as an important facet of petroleum reservoir development and production operations. In the ...

  11. Visual display of reservoir parameters affecting enhanced oil recovery

    SciTech Connect (OSTI)

    Wood, J.R.

    1996-01-27T23:59:59.000Z

    This project will provide a detailed example, based on a field trial, of how to evaluate a field for EOR operations utilizing data typically available in an older field which has under gone primary development. The approach will utilize readily available, affordable PC-based computer software and analytical services. This study will illustrate the steps involved in: (1) setting up a relational database to store geologic, well-log, engineering, and production data, (2) integration of data typically available for oil and gas fields with predictive models for reservoir alteration, and (3) linking these data and models with modern computer software to provide 2-D and 3-D visualizations of the reservoir and its attributes. The techniques are being demonstrated through a field trial on a reservoir, Pioneer Field, a field that produces from the Monterey Formation, which is a candidate for thermal EOR. Technical progress is summarized for the following tasks: (1) project administration and management; (2) data collection; (3) data analysis and measurement; (4) modeling; and (5) technology transfer.

  12. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11T23:59:59.000Z

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  13. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10T23:59:59.000Z

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  14. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    None

    1996-01-26T23:59:59.000Z

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  15. 3-DIMENSIONAL GEOMECHANICAL MODELING OF A TIGHT GAS RESERVOIR, RULISON FIELD, PICEANCE BASIN, COLORADO

    E-Print Network [OSTI]

    3-DIMENSIONAL GEOMECHANICAL MODELING OF A TIGHT GAS RESERVOIR, RULISON FIELD, PICEANCE BASIN, COLORADO by Kurtis R. Wikel #12;ii #12;iii ABSTRACT An integrated 3-dimensional geomechanical model have used the predictive geomechanical model to compare production and effective stress change

  16. Simulation of production and elastic properties of reservoirs to validate time-lapse seismics.

    E-Print Network [OSTI]

    Guerin, Gilles

    , including the 3D seismic processing and inversion, and the preliminary time- lapse interpretation. We-lapse seismics. 3.1 Introduction Time-lapse, or 4-D, seismic monitoring is an integrated reservoir exploitation technique based on the analysis of successive 3-D seismic surveys. Differences over time in seismic

  17. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    SciTech Connect (OSTI)

    Watney, W.L.

    1994-12-01T23:59:59.000Z

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas City limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.

  18. Reservoir compartmentalization of deep-water Intra Qua Iboe sand (Pliocene), Edop field, offshore Nigeria

    SciTech Connect (OSTI)

    Hermance, W.E.; Olaifa, J.O. [Mobile Producing Nigeria, Lagos (Nigeria); Shanmugam, G. [Mobile Research and Development Corp., Dallas, TX (United States)] [and others

    1995-08-01T23:59:59.000Z

    An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge. Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.

  19. Economics of Developing Hot Stratigraphic Reservoirs

    SciTech Connect (OSTI)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01T23:59:59.000Z

    Stratigraphic geothermal reservoirs at 3 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  20. GEOMECHANICAL MODELING AS A RESERVOIR CHARACTERIZATION TOOL

    E-Print Network [OSTI]

    GEOMECHANICAL MODELING AS A RESERVOIR CHARACTERIZATION TOOL AT RULISON FIELD, PICEANCE BASIN _______________ ____________________ Dr. Terence K. Young Department Head Department of Geophysics ii #12;ABSTRACT Geomechanics is a powerful reservoir characterization tool. Geomechanical modeling is used here to understand how the in

  1. Geothermal Reservoir Evaluation Considering Fluid Adsorption

    E-Print Network [OSTI]

    Stanford University

    SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J, California #12;GEOTHERMAL RESERVOIR EVALUATION CONSIDERING FLUID ADSORPTION AND COMPOSITION A DISSERTATIONFtion phenomena is described. Then, t h e implications of adsorption on material balance calculations and on vel1

  2. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 2. Propagation of a hydraulic fracture Seth fracture and fault mechanics, fluid flow in fractured reservoirs, and geome- chanics in nonconventional the development of complex hydraulic fractures (HFs) that are commonly ob- served in the field and in experiments

  3. STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS

    E-Print Network [OSTI]

    Stanford University

    STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS Henry J. Ramey, Jr., and A. Louis C a p i l l a r i t y . . . . . . . . . . 28 RADON I N GEOTHEENAL RESERVOIRS . . . . . . . 33 HEAT AND MASS TRANSPORT I N FRACTURED ROCKS . . . . . . . . . . . . .35 Mathematical Models

  4. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    SciTech Connect (OSTI)

    Ahmad Ghassemi

    2003-06-30T23:59:59.000Z

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

  5. Improved oil recovery in fluvial dominated reservoirs of Kansas--near-term. Annual report

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-11-01T23:59:59.000Z

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management and (5) integrated geological and engineering analysis. Results of these two field projects are discussed.

  6. Improved Oil Recovery In Fluvial Dominated Deltaic Reservoirs of Kansas - Near Term

    SciTech Connect (OSTI)

    Green, Don W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-01-14T23:59:59.000Z

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these types of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  7. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. January 1, 1996--March 31, 1996

    SciTech Connect (OSTI)

    Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    1996-05-01T23:59:59.000Z

    The basis of this research is to apply novel techniques from artificial Intelligence and Expert Systems in capturing, integrating and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. The ultimate goal is to design and implement a single powerful expert system for use by small producers and independents to efficiently exploit reservoirs. The main challenge of the proposed research is to automate the generation of detailed reservoir descriptions honoring all the available ``software`` and ``hardware`` data that ranges from qualitative and semi-quantitative geological interpretations to numeric data obtained from cores, well tests, well logs and production statistics. In this sense, the proposed research project is truly multidisciplinary. It involves significant amount of information exchange between researchers in geology, geostatistics, and petroleum engineering. Computer science (and artificial intelligence) provides the means to effectively acquire, integrate and automate the key expertise in the various disciplines in a reservoir characterization expert system. Additional challenges are the verification and validation of the expert system, since much of the interpretation of the experts is based on extended experience in reservoir characterization. Accomplishments to date are discussed.

  8. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

  9. Two-dimensional simulation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    of the Raft River geothermal reservoir and wells. (SINDA-3G program) Abstract Computer models describing both the transient reservoir pressure behavior and the time...

  10. Modeling CO2 Sequestration in a Saline Reservoir and Depleted...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling CO 2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO 2 Sequestration Potential of The Ozark Plateau Aquifer System,...

  11. Sustainability of Shear-Induced Permeability for EGS Reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study...

  12. Extreme Methane Emissions from a Swiss Hydropower Reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using

  13. A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS

    E-Print Network [OSTI]

    Anderson, C.

    2011-01-01T23:59:59.000Z

    Paper SPE 7681, Soc. Petrol. Eng. Fifth Symp. on ReservoirPaper SPE 7679, Soc. Petrol. Eng. Fifth Symp. on Reservoir

  14. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...

    Broader source: Energy.gov (indexed) [DOE]

    model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanicalhydrologicthermal model of reservoir....

  15. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir

    Broader source: Energy.gov (indexed) [DOE]

    fluid injection into a tight reservoir on the edges of a hydrothermal field * Use seismic data to constrain geomechanicalhydrologicthermal model of reservoir * Model for...

  16. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    E-Print Network [OSTI]

    Brown, V.

    2013-01-01T23:59:59.000Z

    the field data to accurately model potential reservoirs andreservoir scale electrical anisotropy from marine CSEM datathe reservoir target can be determined from seismic data or

  17. Aligned vertical fractures, HTI reservoir symmetry, and Thomsen seismic anisotropy parameters

    E-Print Network [OSTI]

    Berryman, James G.

    2008-01-01T23:59:59.000Z

    seismic parameters for fractured reservoirs when the crackin a naturally fractured gas reservoir, The Leading Edge,

  18. Some practical aspects of reservoir management

    SciTech Connect (OSTI)

    Fowler, M.L.; Young, M.A.; Cole, E.L.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)

    1996-09-01T23:59:59.000Z

    The practical essence of reservoir management is the optimal application of available resources-people, equipment, technology, and money to maximize profitability and recovery. Success must include knowledge and consideration of (1) the reservoir system, (2) the technologies available, and (3) the reservoir management business environment. Two Reservoir Management Demonstration projects (one in a small, newly-discovered field and one in a large, mature water-flood) implemented by the Department of Energy through BDM-Oklahoma illustrate the diversity of situations suited for reservoir management efforts. Project teams made up of experienced engineers, geoscientists, and other professionals arrived at an overall reservoir management strategy for each field. in 1993, Belden & Blake Corporation discovered a regionally significant oil reservoir (East Randolph Field) in the Cambrian Rose Run formation in Portage County, Ohio. Project objectives are to improve field operational economics and optimize oil recovery. The team focused on characterizing the reservoir geology and analyzing primary production and reservoir data to develop simulation models. Historical performance was simulated and predictions were made to assess infill drilling, water flooding, and gas repressurization. The Citronelle Field, discovered in 1955 in Mobile County, Alabama, has produced 160 million barrels from fluvial sandstones of the Cretaceous Rodessa formation. Project objectives are to address improving recovery through waterflood optimization and problems related to drilling, recompletions, production operations, and regulatory and environmental issues. Initial efforts focused on defining specific problems and on defining a geographic area within the field where solutions might best be pursued. Geologic and reservoir models were used to evaluate past performance and to investigate improved recovery operations.

  19. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky

    SciTech Connect (OSTI)

    Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

    2010-07-01T23:59:59.000Z

    In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

  20. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling.

    SciTech Connect (OSTI)

    NONE

    1998-01-15T23:59:59.000Z

    A total of 18 wells, 14 producers and 4 injection wells, were drilled and completed during the Field Demonstration portion of the project. These 18 wells are all currently in service, with the producing wells going on-line between May and September 1996, and the injection wells going into service between August and December 1996. Current Unit production is approximately 3,100 BOPD, of which approximately 800 BOPD is being contributed from the 14 Project 10-acre producing wells (Figure 1). A revision in the Statement of Work was approved to allow for the drilling of additional 10-acre infill wells or injection well conversions as budget constraints allow.

  1. Adsorption of water vapor on reservoir rocks

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  2. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

    1988-01-21T23:59:59.000Z

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones, Yasmin Gulamani, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, especially Jeralyn Luetkehans. The Thirteenth Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract No. DE-AS07-84ID12529. We deeply appreciate this continued support. Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jean W. Cook

  3. Twelfth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

    1987-01-22T23:59:59.000Z

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, specially Jim Lovekin. The Twelfth Workshop was supported by the Geothermal Technology Division of the U. S. Department of Energy through Contract Nos. DE-AS03-80SF11459 and DE-AS07- 84ID12529. We deeply appreciate this continued support. January 1987 Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jesus Rivera

  4. Guide for Developing Integrated Aquatic Vegetation Management

    E-Print Network [OSTI]

    Guide for Developing Integrated Aquatic Vegetation Management Plans in Oregon Maribeth V. Gibbons is an integrated aquatic vegetation management plan? When is an IAVMP required? Part II: Developing a Plan Chapter and Reservoirs · Portland State University · Portland OR 97207 #12;Acknowledgements This manual benefited

  5. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect (OSTI)

    Michael Batzle

    2006-04-30T23:59:59.000Z

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Gas saturated reservoirs change reflection amplitudes significantly. The goal for the final project period was to systematically combine and document these various effects for use in deep water exploration and transfer this knowledge as clearly and effectively as possible.

  6. The relationship of teacher perceptions of the impact of technology integration on Texas Assessment of Knowledge and Skills (TAKS) scores of 9th-11th grade students at Alamo Heights Independent School District, San Antonio, Texas

    E-Print Network [OSTI]

    Alfaro, Frank Eduardo

    2008-10-10T23:59:59.000Z

    ). With the ostensible goal of higher student achievement, the technology outcomes for these expenditures have been categorized by some researchers in terms of _______________ The style for this record of study follows that of the Human Resource Development Quarterly. 2... to the appropriate use of that computer technology integrated as a tool for classroom instruction. Appropriate use of computers, in terms of classroom instruction, is commonly referred to in the research as computer use that is constructivist in its approach...

  7. The verification of a semi-analytical reservoir simulator using a finite difference reservoir simulator

    E-Print Network [OSTI]

    Dube, Hans Gerhardt

    1990-01-01T23:59:59.000Z

    reduction in CPU time and computer memory, when compared to using finite difference reservoir simulators and mainframe computers, to solve the same problem. Development of Computers The advances that have been made in computing power and the improved...THE VERIFICATION OF A SEMI-ANALYTICAL RESERVOIR SIMULATOR USING A FINITE DIFFERENCE RESERVOIR SIMULATOR A Thesis by HANS GERHARDT DUBE Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment of the requirements...

  8. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements

    SciTech Connect (OSTI)

    Locke, C.D.; Salamy, S.P.

    1991-09-01T23:59:59.000Z

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  9. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report

    SciTech Connect (OSTI)

    Locke, C.D.; Salamy, S.P.

    1991-09-01T23:59:59.000Z

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  10. Characterization and reservoir evaluation of a hydraulically fractured, shaly gas reservoir

    E-Print Network [OSTI]

    Santiago Molina, Cesar Alfonso

    1991-01-01T23:59:59.000Z

    the possibility of replacing average reservoir pressures for short-term pressure data to evaluate gas reserves. Petrophysical properties derived from logs (shale content and porosity) were found to correlate very well. A correlation between average porosity..., Shaly Gas Reservoir. ( December 1991 ) Cesar Alfonso Santiago Molina, Ingeniero de Petroleos, Universidad Nacional de Colombia; Chair of Advisory Committee: Dr. Steven W. Poston Shale content in reservoir rocks affect their petrophysical properties...

  11. Integrated 3D Acid Fracturing Model for Carbonate Reservoir Stimulation

    E-Print Network [OSTI]

    Wu, Xi

    2014-06-23T23:59:59.000Z

    workflow is illustrated in Figure 3.3. The approach starts with a fracture simulator, which uses a geomechanical model, to calculate fracture width during the pad injection. A hydraulic fracture is created at the defined injection condition. Next, we... be directly found from the output of Fracpro. Table 3.1 shows an output file example from Fracpro for a fracture geometry at the end of a pad injection. The geometry data is restored in an .fpx file, named PROJECT_NAME.fpx and can be read using any text...

  12. Integrating Provenance Information in Reservoir Engineering Jing Zhao, Na Chen

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    that can exploit the additional measurements (such as using the right kind of drilling fluid) for optimized and logging while drilling (LWD) 2 . Designed to replace wireline logging, LWD captures a wealth of additional drilling. Analysis of provenance information has become a critical requirement of data analysis

  13. Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown,Innoferm GmbHCaltechOpen Energy

  14. Chemistry, Reservoir, and Integrated Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-DesertofSuccessTroy A.Chemical Sciences39

  15. Integrated seismic studies at the Rye Patch geothermal reservoir | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7OpenInnovativeTechnologies IFCTSensing Systems

  16. Intelligent Computing System for Reservoir Analysis and Risk Assessment of Red River Formation, Class Revisit

    SciTech Connect (OSTI)

    Sippel, Mark A.

    2002-09-24T23:59:59.000Z

    Integrated software was written that comprised the tool kit for the Intelligent Computing System (ICS). The software tools in ICS are for evaluating reservoir and hydrocarbon potential from various seismic, geologic and engineering data sets. The ICS tools provided a means for logical and consistent reservoir characterization. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) combining tools. A flexible approach can be used with the ICS tools. They can be used separately or in a series to make predictions about a desired reservoir objective. The tools in ICS are primarily designed to correlate relationships between seismic information and data obtained from wells; however, it is possible to work with well data alone.

  17. Dams and Reservoirs Safety Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Dams and Reservoirs Safety Act provides for the certification and inspection of dams in South Carolina and confers regulatory authority on the Department of Health and Environmental Control....

  18. Study of induced seismicity for reservoir characterization

    E-Print Network [OSTI]

    Li, Junlun, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...

  19. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  20. Reservoir fracture characterizations from seismic scattered waves

    E-Print Network [OSTI]

    Fang, Xinding

    2012-01-01T23:59:59.000Z

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  1. Salinity routing in reservoir system modeling

    E-Print Network [OSTI]

    Ha, Mi Ae

    2007-04-25T23:59:59.000Z

    in several major river basins in Texas and neighboring states. WRAP is the river/reservoir system simulation model incorporated in the Water Availability Modeling (WAM) System applied by agencies and consulting firms in Texas in planning and water right...

  2. New multilateral well architecture in heterogeneous reservoirs

    E-Print Network [OSTI]

    Jia, Hongqiao

    2004-09-30T23:59:59.000Z

    . The performance of new multilateral well in heterogeneous reservoirs is studied, and that is compared with vertical well architecture also. In order to study the productivity of new multilateral wells, we use a numerical simulation method to set up heterogeneous...

  3. Determination of mechanical properties of reservoir rock

    E-Print Network [OSTI]

    Barnett, Ashley

    1993-01-01T23:59:59.000Z

    Apparatus, experimental procedure, and methodology have been developed to determine the mechanical response of reservoir rock. The apparatus is capable of subjecting cylindrical core specimens to triaxial stress states and temperatures...

  4. Continuous variable entanglement dynamics in structured reservoirs

    E-Print Network [OSTI]

    R. Vasile; S. Olivares; M. G. A. Paris; S. Maniscalco

    2009-10-13T23:59:59.000Z

    We address the evolution of entanglement in bimodal continuous variable quantum systems interacting with two independent structured reservoirs. We derive an analytic expression for the entanglement of formation without performing the Markov and the secular approximations and study in details the entanglement dynamics for various types of structured reservoirs and for different reservoir temperatures, assuming the two modes initially excited in a twin-beam state. Our analytic solution allows us to identify three dynamical regimes characterized by different behaviors of the entanglement: the entanglement sudden death, the non-Markovian revival and the non-secular revival regimes. Remarkably, we find that, contrarily to the Markovian case, the short-time system-reservoir correlations in some cases destroy quickly the initial entanglement even at zero temperature.

  5. Coarse scale simulation of tight gas reservoirs

    E-Print Network [OSTI]

    El-Ahmady, Mohamed Hamed

    2004-09-30T23:59:59.000Z

    It is common for field models of tight gas reservoirs to include several wells with hydraulic fractures. These hydraulic fractures can be very long, extending for more than a thousand feet. A hydraulic fracture width is ...

  6. GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly

    E-Print Network [OSTI]

    GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing from tropical and boreal reservoirs are significant. In light of hydropower's potential role as a green to characterize carbon dioxide (CO2) and methane (CH4) emissions from hydropower reservoirs in the US Southeast

  7. Reservoir cross-over in entanglement dynamics

    E-Print Network [OSTI]

    L. Mazzola; S. Maniscalco; K. -A. Suominen; B. M. Garraway

    2009-08-28T23:59:59.000Z

    We study the effects of spontaneous emission on the entanglement dynamics of two qubits interacting with a common Lorentzian structured reservoir. We assume that the qubits are initially prepared in a Bell-like state. We focus on the strong coupling regime and study the entanglement dynamics for different regions of the spontaneous emission decay parameter. This investigation allows us to explore the cross-over between common and independent reservoirs in entanglement dynamics.

  8. Finite temperature reservoir engineering and entanglement dynamics

    E-Print Network [OSTI]

    S. Fedortchenko; A. Keller; T. Coudreau; P. Milman

    2014-05-29T23:59:59.000Z

    We propose experimental methods to engineer reservoirs at arbitrary temperature which are feasible with current technology. Our results generalize to mixed states the possibility of quantum state engineering through controlled decoherence. Finite temperature engineered reservoirs can lead to the experimental observation of thermal entanglement --the appearance and increase of entanglement with temperature-- to the study of the dependence of finite time disentanglement and revival with temperature, quantum thermodynamical effects, among many other applications, enlarging the comprehension of temperature dependent entanglement properties.

  9. Numerical simulation of sandstone reservoir models

    E-Print Network [OSTI]

    Gross, Stephen Joseph

    1983-01-01T23:59:59.000Z

    . Case 3 - Alternatin h1 h and low ermeabilities Waterflood performance of the Case 3 reservoir is shown in Figures 19 and 20. The process 1s practically rate insensitive for both the high and low viscosity ratio cases because of the ex istence... The results of the water flood study indicate that lower rates result i n higher waterflood oil recoveries from heterogeneous reservoirs, particularly where high oil-water viscosity ratios exist. These results support the conclusions of Jordan et. al...

  10. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    SciTech Connect (OSTI)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01T23:59:59.000Z

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  11. Electromagnetic oil field mapping for improved process monitoring and reservoir characterization: A poster presentation

    SciTech Connect (OSTI)

    Waggoner, J.R.; Mansure, A.J.

    1992-02-01T23:59:59.000Z

    This report is a permanent record of a poster paper presented by the authors at the Third International Reservoir Characterization Technical Conference in Tulsa, Oklahoma on November 3--5, 1991. The subject is electromagnetic (EM) techniques that are being developed to monitor oil recovery processes to improve overall process performance. The potential impact of EM surveys is very significant, primarily in the areas of locating oil, identifying oil inside and outside the pattern, characterizing flow units, and pseudo-real time process control to optimize process performance and efficiency. Since a map of resistivity alone has little direct application to these areas, an essential part of the EM technique is understanding the relationship between the process and the formation resistivity at all scales, and integrating this understanding into reservoir characterization and simulation. First is a discussion of work completed on the core scale petrophysics of resistivity changes in an oil recovery process; a steamflood is used as an example. A system has been developed for coupling the petrophysics of resistivity with reservoir simulation to simulate the formation resistivity structure arising from a recovery process. Preliminary results are given for an investigation into the effect of heterogeneity and anisotropy on the EM technique, as well as the use of the resistivity simulator to interpret EM data in terms of reservoir and process parameters. Examples illustrate the application of the EM technique to improve process monitoring and reservoir characterization.

  12. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-07-01T23:59:59.000Z

    In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.

  13. Predicting interwell heterogeneity in fluvial-deltaic reservoirs: Outcrop observations and applications of progressive facies variation through a depositional cycle

    SciTech Connect (OSTI)

    Knox, P.R.; Barton, M.D. [Univ. of Texas, Austin, TX (United States)

    1997-08-01T23:59:59.000Z

    Nearly 11 billion barrels of mobile oil remain in known domestic fluvial-deltaic reservoirs despite their mature status. A large percentage of this strategic resource is in danger of permanent loss through premature abandonment. Detailed reservoir characterization studies that integrate advanced technologies in geology, geophysics, and engineering are needed to identify remaining resources that can be targeted by near-term recovery methods, resulting in increased production and the postponement of abandonment. The first and most critical step of advanced characterization studies is the identification of reservoir architecture. However, existing subsurface information, primarily well logs, provides insufficient lateral resolution to identify low-permeability boundaries that exist between wells and compartmentalize the reservoir. Methods to predict lateral variability in fluvial-deltaic reservoirs have been developed on the basis of outcrop studies and incorporate identification of depositional setting and position within a depositional cycle. The position of a reservoir within the framework of a depositional cycle is critical. Outcrop studies of the Cretaceous Ferron Sandstone of Utah have demonstrated that the architecture and internal heterogeneity of sandstones deposited within a given depositional setting (for example, delta front) vary greatly depending upon whether they were deposited in the early, progradational part of a cycle or the late, retrogradational part of a cycle. The application of techniques similar to those used by this study in other fluvial-deltaic reservoirs will help to estimate the amount and style of remaining potential in mature reservoirs through a quicklook evaluation, allowing operators to focus characterization efforts on reservoirs that have the greatest potential to yield additional resources.

  14. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, January 1--March 31, 1994

    SciTech Connect (OSTI)

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1994-12-31T23:59:59.000Z

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts, with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate to reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. Technical progress is summarized for the following: geological studies; hydrologic and tracer research; and geophysical research.

  15. HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON

    E-Print Network [OSTI]

    Julien, Pierre Y.

    HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

  16. Formation and thermal evolution of insoluble reservoir bitumen in Angolan carbonate reservoirs

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Formation and thermal evolution of insoluble reservoir bitumen in Angolan carbonate reservoirs from 98% insoluble bitumen to 45% insoluble, indicating a substantial spread of maturity. However, the discordance shown by these parameters (e.g. bitumen reflectance and bitumen solubility in DCM) indicates

  17. A triple-continuum pressure-transient model for a naturally fractured vuggy reservoir

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    simulation of naturally fractured reservoirs, Water Resour.model for fissured fractured reservoir, Soc. Pet. Eng. J. ,behavior of naturally fractured reservoirs, Soc. Pet. Eng.

  18. A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs

    E-Print Network [OSTI]

    Wu, Yu-Shu; Pruess, Karsten

    2004-01-01T23:59:59.000Z

    of naturally fractured reservoirs with uniform fracturefor naturally fractured reservoirs, SPE-11688, Presented atflow simulations in fractured reservoirs, Report LBL- 15227,

  19. Numerical modeling of water injection into vapor-dominated geothermal reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01T23:59:59.000Z

    in heterogeneous fractured reservoirs in three dimensions,others employed a fractured reservoir description, using theused for the fractured reservoir problem are given in Table

  20. An Analytical Solution for Slug-Tracer Tests in Fractured Reservoirs

    E-Print Network [OSTI]

    Shan, Chao; Pruess, Karsten

    2005-01-01T23:59:59.000Z

    Tracer Tests in Fractured Reservoirs Chao Shan and Karstenof chemicals or heat in fractured reservoirs is stronglyin a water-saturated fractured reservoir. The solution shows

  1. Aligned vertical fractures, HTI reservoir symmetry, and Thomsen seismic anisotropy parameters for polar media

    E-Print Network [OSTI]

    Berryman, James G.

    2008-01-01T23:59:59.000Z

    waves in such fractured reservoirs (Hsu and Schoenberg,i.e. , for cracked/fractured reservoirs), the vertical phasemore closely. FRACTURED RESERVOIRS AND CRACK-INFLUENCE

  2. Pore-scale mechanisms of gas flow in tight sand reservoirs

    E-Print Network [OSTI]

    Silin, D.

    2011-01-01T23:59:59.000Z

    Fundamentals of fractured reservoir engineering, Elsevierof naturally fractured reservoirs, SPEJ (1963), 106. J. D.37]. In a fractured conventional reservoir, the accumulating

  3. Effects of non-condensible gases on fluid recovery in fractured geothermal reservoirs

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.; Gaulke, Scott

    1986-01-01T23:59:59.000Z

    Simu- lations in Fractured Reservoirs, Lawrence Berkeleyfrom a twctphase fractured reservoir. T h e results obtainedRecovery in Fractured Geothermal Reservoirs Gudmundur S.

  4. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01T23:59:59.000Z

    Summary of reservoir engineering data: from the authors.of new data important to geo- thermal reservoir engineeringdata and other information related to geothermal reservoir

  5. Integrated Water Management for Environmental Flows in the Rio Grande

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    flows; Reservoir reoperation; Integrated water management; Adaptive management; Rio Grande. IntroductionIntegrated Water Management for Environmental Flows in the Rio Grande S. Sandoval-Solis, A.M.ASCE1 the environment. This paper presents an integrated water management approach to meet current and future water

  6. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28T23:59:59.000Z

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  7. Seismic imaging of reservoir flow properties: Resolving waterinflux and reservoir permeability

    SciTech Connect (OSTI)

    Vasco, D.W.; Keers, Henk

    2006-11-27T23:59:59.000Z

    Methods for geophysical model assessment, in particuale thecomputation of model parameter resolution, indicate the value and thelimitations of time-lapse data in estimating reservoir flow properties. Atrajectory-based method for computing sensitivities provides an effectivemeans to compute model parameter resolutions. We examine the commonsituation in which water encroaches into a resrvoir from below, as due tothe upward movement of an oil-water contact. Using straight-forwardtechniques we find that, by inclusing reflections off the top and bottomof a reservoir tens of meters thick, we can infer reservoir permeabilitybased upon time-lapse data. We find that, for the caseof water influxfrom below, using multiple time-lapse 'snapshots' does not necessarilyimprove the resolution of reservoir permeability. An application totime-lapse data from the Norne field illustrates that we can resolve thepermeability near a producing well using reflections from threeinterfaces associated with the reservoir.

  8. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  9. ENVIRONMENTAL FLOWS IN A HUMAN-DOMINATED SYSTEM: INTEGRATED WATER MANAGEMENT STRATEGIES FOR THE RIO GRANDE/BRAVO BASIN

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Wiley & Sons, Ltd. key words: integrated water management; environmental flows; reservoir re Reach of the RGB. This study addresses the need for integrated water management in Big Bend by devel­2009), water allocation, and reservoir operations, and key human water management objectives (water supply

  10. Fractured shale reservoirs: Towards a realistic model

    SciTech Connect (OSTI)

    Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

    1996-09-01T23:59:59.000Z

    Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

  11. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - near - term. Technical progress report, June 17, 1994--June 17, 1995

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of water injection wells with solids as a result of poor water quality. In many instances the lack of reservoir management is due to lack of (1) data collection and organization, (2) integrated analysis of existing data by geological and engineering personnel, and (3) identification of optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in the project. The Stewart Field (on the latter stage of primary production) is located in Finney County, Kansas, and was operated by Sharon Resources, Inc. and is now operated by North American Resources Company. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  12. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term. Annual report, June 18, 1993--June 18, 1994

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.

    1995-10-01T23:59:59.000Z

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of water injection wells with solids as a result of poor water quality. In many instances the lack of reservoir management is due to lack of (1) data collection and organization, (2) integrated analysis of existing data by geological and engineering personnel, and (3) identification of optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on the latter stage of primary production) is located in Finney County, Kansas and is operated by Sharon Resources, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  13. Reservoir characterization and enhanced oil recovery research

    SciTech Connect (OSTI)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01T23:59:59.000Z

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  14. Horizontal well applications in complex carbonate reservoirs

    SciTech Connect (OSTI)

    Rahman, M.; Al-Awami, H.

    1995-10-01T23:59:59.000Z

    Over the past four years, Saudi Aramco has drilled over eighty horizontal wells, onshore and offshore. It has successfully applied this technology to develop new reservoirs as well as enhance recovery from its mature fields. This paper presents the reservoir engineering aspects of `horizontal` and `high angle` wells drilled in a major offshore field in Saudi Arabia. It shows how horizontal wells have (a) increased the recovery of bypassed oil, (b) improved well productivity in tight reservoirs, (c) increased production from thin oil zones underlain by water, and (d) improved peripheral injection. The paper discusses the actual performance of the horizontal wells and compares them with offset conventional wells. It presents the results of logging and testing of these wells, and highlights actual field data on (a) relationship between productivity gain and horizontal length, (b) pressure loss along the horizontal wellbore, and (c) effect of heterogeneity on coning an inflow performance.

  15. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01T23:59:59.000Z

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  16. Structural Reliability: Assessing the Condition and Reliability of Casing in Compacting Reservoirs

    E-Print Network [OSTI]

    Chantose, Prasongsit

    2012-02-14T23:59:59.000Z

    Casing has a higher risk of failure in a compacting reservoir than in a typical reservoir. Casing fails when reservoir compaction induces compression and shear stresses onto it. They compact as reservoir pressure depletes during production. High...

  17. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28T23:59:59.000Z

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  18. Application of Artificial Intelligence to Reservoir Characterization - An Interdisciplinary Approach

    SciTech Connect (OSTI)

    Kelkar, B.G.; Gamble, R.F.; Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    2000-01-12T23:59:59.000Z

    The primary goal of this project is to develop a user-friendly computer program to integrate geological and engineering information using Artificial Intelligence (AI) methodology. The project is restricted to fluvially dominated deltaic environments. The static information used in constructing the reservoir description includes well core and log data. Using the well core and the log data, the program identifies the marker beds, and the type of sand facies, and in turn, develops correlation's between wells. Using the correlation's and sand facies, the program is able to generate multiple realizations of sand facies and petrophysical properties at interwell locations using geostatistical techniques. The generated petrophysical properties are used as input in the next step where the production data are honored. By adjusting the petrophysical properties, the match between the simulated and the observed production rates is obtained.

  19. Impact of relative permeability models on fluid flow behavior for gas condensate reservoirs

    E-Print Network [OSTI]

    Zapata Arango, Jose? Francisco

    2002-01-01T23:59:59.000Z

    . 6 Integral from immiscible to miscible transition models for gas condensate relative permeability. 5 . 6 . . 8 9 . 10 . 12 . 16 . 18 . 20 . 23 CHAPTER III CASE STUDY. . . 27 3. 1 Tuning of the reservoir fluid model 3. 2 Relative... model . 5. 2. 2 Anisotropic model . 64 . 74 . 77 . 90 CHAPTER VI SUMMARY . 105 6. 1 Conclusions. . 6. 1. 1 Conclusions from the literature review and case study . . . . . . 6. 1. 2 Conclusions from the simulation study 6. 1. 3 Conclusions from...

  20. Characterization of gas condensate reservoirs using pressure transient and production data - Santa Barbara Field, Monagas, Venezuela

    E-Print Network [OSTI]

    Medina Tarrazzi, Trina Mercedes

    2003-01-01T23:59:59.000Z

    (Test Date: 09O1-2001j. . . . . . IV INTEGRATION OF ANALYSIS RESULTS. Maps of Reservoir Properdes. Origimd Gas-in-Place (OGIP) and Estimated Ultimate Recovery (EUR) . . . . . . Flow Properiies (k, tt, s) . Well Interference Effects . . . . . 13... . . . . . . . . . ?. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . ?. .. . . . . . . . . 52 4. 2 4. 4 4. 5 4. 6 4. 7 4. 8 Computed Estimated Ultimate Recovery versus Well Completion Date ? Block A, Santa Barbara Field. . Comparison of Estimated Ultimate Recovery (EUR) versus Computed Origmal Gas- in-Place (OIGP) ? Block A, Santa...

  1. Impact of relative permeability models on fluid flow behavior for gas condensate reservoirs

    E-Print Network [OSTI]

    Zapata Arango, Jose? Francisco

    2002-01-01T23:59:59.000Z

    . 6 Integral from immiscible to miscible transition models for gas condensate relative permeability. 5 . 6 . . 8 9 . 10 . 12 . 16 . 18 . 20 . 23 CHAPTER III CASE STUDY. . . 27 3. 1 Tuning of the reservoir fluid model 3. 2 Relative... model . 5. 2. 2 Anisotropic model . 64 . 74 . 77 . 90 CHAPTER VI SUMMARY . 105 6. 1 Conclusions. . 6. 1. 1 Conclusions from the literature review and case study . . . . . . 6. 1. 2 Conclusions from the simulation study 6. 1. 3 Conclusions from...

  2. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  3. Seawater can damage Saudi sandstone oil reservoirs

    SciTech Connect (OSTI)

    Dahab, A.S. (King Saud Univ., Riyadh (SA))

    1990-12-10T23:59:59.000Z

    Experiments have shown that formation damage from waterflooding of the Aramco and Alkhafji sandstones of Saudi Arabia will not occur if the salinity of the injected brines is higher than 20% NaCl. Because the connate water in these reservoirs has a high salt content of up to 231,000 ppm, Saudi oil fields are almost always susceptible to formation damage when flooded with seawater (about 38,500 ppm). The productive behavior of a reservoir can be affected by clay crystals developed within rock pores.

  4. Application of horizontal wells in steeply dipping reservoirs

    E-Print Network [OSTI]

    Lopez Navarro, Jose David

    1995-01-01T23:59:59.000Z

    A three-dimensional reservoir simulation study is performed to evaluate the impact of horizontal well applications on oil recovery from steeply dipping reservoirs. The Provincia field, located in Colombia, provided the ...

  5. Feasibility of waterflooding Soku E7000 gas-condensate reservoir

    E-Print Network [OSTI]

    Ajayi, Arashi

    2002-01-01T23:59:59.000Z

    . To achieve this recovery, the reservoir should return to natural depletion after four years of water injection, before water invades the producing wells. Factors that affect the effectiveness of water injection in this reservoir include aquifer strength...

  6. Optimal Hydropower Reservoir Operation with Environmental Requirements MARCELO ALBERTO OLIVARES

    E-Print Network [OSTI]

    Lund, Jay R.

    Optimal Hydropower Reservoir Operation with Environmental Requirements By MARCELO ALBERTO OLIVARES Engineering Optimal Hydropower Reservoir Operation with Environmental Requirements Abstract Engineering solutions to the environmental impacts of hydropower operations on downstream aquatic ecosystem are studied

  7. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir

    Broader source: Energy.gov [DOE]

    Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir.

  8. Modeling of Magnetic Nanoparticles Transport in Shale Reservoirs

    E-Print Network [OSTI]

    An, Cheng

    2014-12-18T23:59:59.000Z

    of this technology for enhanced oil recovery, nano-scale sensors and subsurface mapping. Little work has been conducted to establish numerical models to investigate nanoparticle transport in reservoirs, and particularly much less for shale reservoirs. Unlike...

  9. Techniques of High Performance Reservoir Simulation for Unconventional Challenges

    E-Print Network [OSTI]

    Wang, Yuhe

    2013-12-05T23:59:59.000Z

    The quest to improve the performance of reservoir simulators has been evolving with the newly encountered challenges of modeling more complex recovery mechanisms and related phenomena. Reservoir subsidence, fracturing and fault reactivation etc...

  10. Optimizing Development Strategies to Increase Reserves in Unconventional Gas Reservoirs

    E-Print Network [OSTI]

    Turkarslan, Gulcan

    2011-10-21T23:59:59.000Z

    in tight gas fields is challenging, not only because of the wide range of depositional environments and large variability in reservoir properties, but also because the evaluation often has to deal with a multitude of wells, limited reservoir information...

  11. Feasibility of waterflooding Soku E7000 gas-condensate reservoir

    E-Print Network [OSTI]

    Ajayi, Arashi

    2002-01-01T23:59:59.000Z

    . To achieve this recovery, the reservoir should return to natural depletion after four years of water injection, before water invades the producing wells. Factors that affect the effectiveness of water injection in this reservoir include aquifer strength...

  12. Modeling of Magnetic Nanoparticles Transport in Shale Reservoirs

    E-Print Network [OSTI]

    An, Cheng

    2014-12-18T23:59:59.000Z

    of this technology for enhanced oil recovery, nano-scale sensors and subsurface mapping. Little work has been conducted to establish numerical models to investigate nanoparticle transport in reservoirs, and particularly much less for shale reservoirs. Unlike...

  13. Evaluating human fecal contamination sources in Kranji Reservoir Catchment, Singapore

    E-Print Network [OSTI]

    Nshimyimana, Jean Pierre

    2010-01-01T23:59:59.000Z

    Singapore government through its Public Utilities Board is interested in opening Kranji Reservoir to recreational use. However, water courses within the Kranji Reservoir catchment contain human fecal indicator bacteria ...

  14. 3-D sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect (OSTI)

    Janok P. Bhattacharya; George A. McMechan

    2007-02-16T23:59:59.000Z

    This project examined the internal architecture of delta front sandstones at two locations within the Turonian-age Wall Creek Member of the Frontier Formation, in Wyoming. The project involved traditional outcrop field work integrated with core-data, and 2D and 3D ground penetrating radar (GPR) imaging from behind the outcrops. The fluid-flow engineering work, handled through a collaborative grant given to PI Chris White at LSU, focused on effects on fluid flow of late-stage calcite cement nodules in 3D. In addition to the extensive field component, the work funded 2 PhD students (Gani and Lee) and resulted in publication of 10 technical papers, 17 abstracts, and 4 internal field guides. PI Bhattacharya also funded an additional 3 PhD students that worked on the Wall Creek sandstone funded separately through an industrial consortium, two of whom graduated in the fall 2006 ((Sadeque and Vakarelov). These additional funds provided significant leverage to expand the work to include a regional stratigraphic synthesis of the Wall Creek Member of the Frontier Formation, in addition to the reservoir-scale studies that DOE directly funded. Awards given to PI Bhattacharya included the prestigious AAPG Distinguished Lecture Award, which involved a tour of about 25 Universities and Geological Societies in the US and Canada in the fall of 2005 and Spring of 2006. Bhattacharya gave two talks, one entitled Applying Deltaic and Shallow Marine Outcrop Analogs to the Subsurface, which highlighted the DOE sponsored work and the other titled Martian River Deltas and the Origin of Life. The outcrop analog talk was given at about 1/2 of the venues visited.

  15. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01T23:59:59.000Z

    I. (2005), Geothermal Reservoir Characterization via Thermalfor characterization of fractured geothermal reservoirs. For

  16. Performance prediction of oil wells producing water in bounded reservoirs

    E-Print Network [OSTI]

    Jochen, Valerie Ann Ellis

    1991-01-01T23:59:59.000Z

    of reservoir rock and fluid properties. Vogel6, based on computer simulation of dissolved gas drive reservoirs, developed a dimensionless inflow performance relationship (IPR). Vogel suggested that the ratio of the oil rate at a given time, to its maximum..., were developed for solution gas drive reservoirs, but they have often been used for other types of reservoirs due to a lack of suitable substitutes. Evinger and Muskat9 also conducted one of the earliest investigations of three phase flow...

  17. Feasibility of seasonal multipurpose reservoir operation in Texas

    E-Print Network [OSTI]

    Tibbets, Michael N

    1986-01-01T23:59:59.000Z

    constant top of conservation pool elevation. Managing Texas reservoirs by seasonal rule curve operation shows the potential for increasing the firm yield from a reservoir and at the same time decreasing damages due to flooding. However, seasonal rule... Framework for Reservoir Management . . Flood Control Versus Conservation Purposes Conservation Operations . Flood Control Operations Operating Procedures Seasonal Rule Curve Operation in Texas CHAPTER III SEASONAL FACTORS AFFECTING RESERVOIR OPERATION...

  18. Integration Defended: Berkeley Unifieds Strategy to Maintain School Diversity

    E-Print Network [OSTI]

    Chavez, Lisa; Frankenberg, Erica

    2009-01-01T23:59:59.000Z

    Derechos Civiles D E Integration Defended: Berkeley UnifiedUnified School District. 1967. Integration of the BerkeleyStudents. In Lessons in Integration: Realizing the Promise

  19. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05T23:59:59.000Z

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  20. MODELING OF NATURALLY FRACTURED RESERVOIRS BY FORMAL HOMOGENIZATION TECHNIQUES*

    E-Print Network [OSTI]

    Douglas Jr., Jim

    MODELING OF NATURALLY FRACTURED RESERVOIRS BY FORMAL HOMOGENIZATION TECHNIQUES* Todd Arbogast,y Jim in naturally fractured reservoirs. A single component in a single phase and two-component mis- cible. porous medium, double porosity, fractured reservoir, homogenization. yDepartment of Mathematics, Purdue

  1. ESTIMATION OF MATRIX BLOCK SIZE DISTRIBUTION IN NATURALLY FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    ESTIMATION OF MATRIX BLOCK SIZE DISTRIBUTION IN NATURALLY FRACTURED RESERVOIRS A Report Submitted;2 ABSTRACT Interporosity flow in a naturslly fractured reservoir is modelled by a new formulation of the distribution. Thus, observed pressure response from fractured reservoirs can be analysed to obtain the matrix

  2. EFFECTS OF WATER INJECTION INTO FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-57 SGP-TR-57 EFFECTS OF WATER INJECTION INTO FRACTURED GEOTHERMAL RESERVOIRS: A SUMMARY INTO FRACTURED GEOTHERMAL RESERVOIRS A SUMMARY OP EXPERImCE WORtDWIDE Roland N. Horne Stanford University ABSTRACT Reinjection of water i n t o fractured geothermal reservoirs holds potential both f o r

  3. INVERSION OF CONVERTED-WAVE SEISMIC DATA FOR RESERVOIR CHARACTERIZATION

    E-Print Network [OSTI]

    INVERSION OF CONVERTED-WAVE SEISMIC DATA FOR RESERVOIR CHARACTERIZATION AT RULISON FIELD, COLORADO Basin of northwest Colorado. The reservoir consists of lenticular fluvial sands, shales, and coals of magnitude lower than the seismic resolution which is 105 ft. The sandstone reservoirs are the primary target

  4. ELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION

    E-Print Network [OSTI]

    to successfully produce low permeability gas reservoirs. My study links rock physics to well log and seismic data shales to reservoir sandstones. Typically, the presence of gas-saturated sandstones lowers the Vp/Vs evenELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION AT RULISON FIELD

  5. Analysis of reservoir performance and forecasting for the eastern area of the C-2 Reservoir, Lake Maracaibo, Venezuela

    E-Print Network [OSTI]

    Urdaneta Anez, Jackeline C

    2001-01-01T23:59:59.000Z

    This research developed a numerical simulation based on the latest reservoir description to evaluate the feasibility of new infill wells to maximize the recovery specifically in the eastern region of the reservoir operated by Petroleos de Venezuela...

  6. The Statistical Reservoir Model: calibrating faults and fractures, and predicting reservoir response to water flood

    E-Print Network [OSTI]

    geomechanics to have a significant influence on hydrocarbon production rates through changes in the effective 2004). Geomechanics not only predicts a reservoir response in the near field, but also at long range i

  7. Type curve analysis for naturally fractured reservoirs (infinite-acting reservoir case): a new approach

    E-Print Network [OSTI]

    Angel Restrepo, Juan Alejandro

    2000-01-01T23:59:59.000Z

    . The objectives of this work are as follows: First, we generated new type curves for the analysis of pressure drawdown and buildup tests performed in naturally fractured reservoirs. Next, we develop a systematic approach for the analysis and interpretation...

  8. Type curve analysis for naturally fractured reservoirs (infinite-acting reservoir case): a new approach

    E-Print Network [OSTI]

    Angel Restrepo, Juan Alejandro

    2000-01-01T23:59:59.000Z

    This work introduces new type curve solutions for an unfractured well in an infinite-acting naturally fractured reservoir, including wellbore storage and skin effects. Both pseudosteady-state and transient? interporosity flow models are studied...

  9. Seismic Determination of Reservoir Heterogeneity: Application to the Characterization of Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Imhof, Matthias G.; Castle, James W.

    2003-03-12T23:59:59.000Z

    The objective of the project was to examine how seismic and geologic data could be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study was performed at West Coalinga Field in California.

  10. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-05-01T23:59:59.000Z

    The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic inter-well and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data is being integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1995-96, the third year of the project. Most work consisted of interpreting the large quantity of data collected over two field seasons. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies. The primary objective of the regional stratigraphic analysis is to provide a more detailed interpretation of the stratigraphy and gross reservoir characteristics of the Ferron Sandstone as exposed in outcrop. The primary objective of the case-studies work is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir.

  11. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11T23:59:59.000Z

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  12. Hydroelectric Reservoirs -the Carbon Dioxide and Methane

    E-Print Network [OSTI]

    Fischlin, Andreas

    and contribute to global warming. The problem of greenhouse gases and their impact on global warming have become gas source. #12;1 1. Introduction The electricity produced by hydroelectric reservoirs is commonly greenhouse gases. One good point to know by dealing with these two greenhouse gases is that the global

  13. Network Stochastic Programming for Valuing Reservoir Storage

    E-Print Network [OSTI]

    complicates the simultaneous optimization of hydropower for a multi-stage, multi-reservoir system. The expected value of hydropower must be simultaneously optimized over all time steps and scenarios. Previous stochastic programming model of the Tennessee River Basin converged rapidly to an upper bound on hydropower

  14. Evolution of analyzing reservoir simulation data

    SciTech Connect (OSTI)

    Phelps, R.E.; Huang, A.Y.

    1994-12-31T23:59:59.000Z

    Numerical Reservoir Simulation is routinely used by the petroleum producing companies world-wide as an engineering tool to efficiently manage their hydrocarbon reservoirs. The task of building models with a large number of grid-blocks is not easy, and to analyze the voluminous results produced by such models is even more difficult. This paper discusses the historical evolution of techniques used to analyze reservoir simulation data over the past decade. It outlines how the advancement of workstation technology and the introduction of X-Window System opened up an entirely new way of utilizing mainframe computing power and workstation graphical display capabilities, simultaneously. The paper also discusses Saudi Aramco`s experience in the development of sophisticated reservoir simulation post-processing packages. The need for direct communication between the programmer and end-users to facilitate a user-friendly package is emphasized. A practical example illustrating the benefit of these post-processing packages in the construction and history matching of a large model with approximately 52,000 cells is presented. Savings in manpower and computer resources using current technology are estimated.

  15. Evolution of analyzing reservoir simulation data

    SciTech Connect (OSTI)

    Phelps, R.E.; Huang, A.Y.

    1995-12-01T23:59:59.000Z

    Petroleum-producing companies world-wide routinely use numerical reservoir simulation as an engineering tool to manage their hydrocarbon reservoirs efficiently. The task of building models with a large number of gridblocks is not easy, and analyzing the voluminous results produced by such models is even more difficult. This paper discusses the historical evolution of techniques used to analyze reservoir simulation data over the past decade. It outlines how the advancement of workstation technology and the introduction of an X-Window system opened up an entirely new way of using mainframe computing power and workstation graphical display capabilities simultaneously. The paper also discusses Saudi Aramco`s experience in the development of sophisticated reservoir simulation postprocessing packages. The authors emphasize the need for direct communication between the programmer and end users to facilitate a user-friendly package. They present a practical example illustrating the benefit of these postprocessing packages in the construction and history matching of a large model with approximately 52,000 cells. They estimate savings in manpower and computer resources using current technology.

  16. Tight gas reservoirs: A visual depiction

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    Future gas supplies in the US will depend on an increasing contribution from unconventional sources such as overpressured and tight gas reservoirs. Exploitation of these resources and their conversion to economically producible gas reserves represents a major challenge. Meeting this challenge will require not only the continuing development and application of new technologies, but also a detailed understanding of the complex nature of the reservoirs themselves. This report seeks to promote understanding of these reservoirs by providing examples. Examples of gas productive overpressured tight reservoirs in the Greater Green River Basin, Wyoming are presented. These examples show log data (raw and interpreted), well completion and stimulation information, and production decline curves. A sampling of wells from the Lewis and Mesaverde formations are included. Both poor and good wells have been chosen to illustrate the range of productivity that is observed. The second section of this document displays decline curves and completion details for 30 of the best wells in the Greater Green River Basin. These are included to illustrate the potential that is present when wells are fortuitously located with respect to local stratigraphy and natural fracturing, and are successfully hydraulically fractured.

  17. Reservoir offset models for Radiocarbon calibration

    E-Print Network [OSTI]

    Nicholls, Geoff

    Reservoir offset models for Radiocarbon calibration Martin Jones Department of Anthropology mdj offset is to enable the application of calibration data (µ(), e.g. Stuiver et al. 1998) developed for one are not independent. However, the standard procedure for incorporating offset error into calibrated distributions

  18. Non-Darcy flow in geothermal reservoirs

    SciTech Connect (OSTI)

    Zyvoloski, G.

    1982-01-01T23:59:59.000Z

    The effects of non-Darcy flow laws are investigated for two geothermal reservoir types: multiphase and Hot Dry Rock (HDR). Long-term thermal behavior is emphasized as short-term pressure transient behavior is addressed in the oil field literature. Comparisons of Darcy and non-Darcy flow laws are made.

  19. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01T23:59:59.000Z

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  20. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31T23:59:59.000Z

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  1. Semi-analytical solutions for multilayer reservoirs

    E-Print Network [OSTI]

    Lolon, Elyezer Pabibak

    2001-01-01T23:59:59.000Z

    , we develop, validate, and present five new approximate solutions for the case of a multilayer reservoir system - these solutions are: [ Solution p[wDj(tD)] Description 1 a[j] Constant p[wDj(tD)] Case 2 a[j tD] Linear p[wDj(tD)] Zero...

  2. Coarse scale simulation of tight gas reservoirs

    E-Print Network [OSTI]

    El-Ahmady, Mohamed Hamed

    2004-09-30T23:59:59.000Z

    It is common for field models of tight gas reservoirs to include several wells with hydraulic fractures. These hydraulic fractures can be very long, extending for more than a thousand feet. A hydraulic fracture width is usually no more than about 0...

  3. Visual display of reservoir parameters affecting enhanced oil recovery. Quarterly report, July 1--September 30, 1996

    SciTech Connect (OSTI)

    Wood, J.R.

    1996-07-31T23:59:59.000Z

    This project consists of two parts. In Part 1, well logs, other well data, drilling, and production data for the Pioneer Field in the southern San Joaquin Valley of California were obtained, assembled, and input to a commercial relational database manager. These data were used in PC-based geologic mapping, evaluation, and visualization software programs to produce 2-D and 3-D representations of the reservoir. Petrographic and petrophysical measurements made on samples from Pioneer Field, including core, cuttings and liquids, were used to calibrate the log suite. In Part 2, these data sets were used to develop algorithms to correlate log response to geologic and engineering measurements. This project provides a detailed example, based on a field trial, of how to evaluate a field for EOR operations utilizing data typically available in older fields which have undergone primary development. The approach utilizes readily available, affordable PC-based computer software and analytical services. This study illustrates the steps involved in: (1) setting up a relational database to store geologic, well-log, engineering, and production data; (2) integration of data typically available for oil and gas fields with predictive models for reservoir alteration, and (3) linking these data and models with modern computer software to provide 2-D and 3-D visualizations of the reservoir and its attributes. The techniques were demonstrated through a field trial in Pioneer Field, that produces from the Monterey Formation, a reservoir which is a candidate for thermal EOR.

  4. Characterization of oil and gas reservoir heterogeneity; Final report, November 1, 1989--June 30, 1993

    SciTech Connect (OSTI)

    Sharma, G.D.

    1993-09-01T23:59:59.000Z

    The Alaskan North Slope comprises one of the Nation`s and the world`s most prolific oil province. Original oil in place (OOIP) is estimated at nearly 70 BBL (Kamath and Sharma, 1986). Generalized reservoir descriptions have been completed by the University of Alaska`s Petroleum Development Laboratory over North Slope`s major fields. These fields include West Sak (20 BBL OOIP), Ugnu (15 BBL OOIP), Prudhoe Bay (23 BBL OOIP), Kuparuk (5.5 BBL OOIP), Milne Point (3 BBL OOIP), and Endicott (1 BBL OOIP). Reservoir description has included the acquisition of open hole log data from the Alaska Oil and Gas Conservation Commission (AOGCC), computerized well log analysis using state-of-the-art computers, and integration of geologic and logging data. The studies pertaining to fluid characterization described in this report include: experimental study of asphaltene precipitation for enriched gases, CO{sup 2} and West Sak crude system, modeling of asphaltene equilibria including homogeneous as well as polydispersed thermodynamic models, effect of asphaltene deposition on rock-fluid properties, fluid properties of some Alaskan north slope reservoirs. Finally, the last chapter summarizes the reservoir heterogeneity classification system for TORIS and TORIS database.

  5. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05T23:59:59.000Z

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  6. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2002-10-08T23:59:59.000Z

    During this reporting period, research was continued on characterizing and modeling the behavior of naturally fractured reservoir systems. This report proposed a model to relate the seismic response to production data to determine crack spacing and aperture, provided details of tests of proposed models to obtain fracture properties from conventional well logs with actual field data, and verification of the naturally fractured reservoir simulator developed in this project.

  7. Geology and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Anderson, P.B.; Morris, T.H.; Dewey, J.A. Jr.; Mattson, A.; Foster, C.B.; Snelgrove, S.H.; Ryer, T.A.

    1998-05-01T23:59:59.000Z

    The objective of the Ferron Sandstone (Utah) project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Both new and existing data is being integrated into a 3-D model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies. The primary objective of the regional stratigraphic analysis is to provide a more detailed interpretation of the stratigraphy and gross reservoir characteristics of the Ferron Sandstone as exposed in outcrop. The primary objective of the case-studies work is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir. Work on tasks 3 and 4 consisted of developing two- and three-dimensional reservoir models at various scales. The bulk of the work on these tasks is being completed primarily during the last year of the project, and is incorporating the data and results of the regional stratigraphic analysis and case-studies tasks.

  8. Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

    1997-05-11T23:59:59.000Z

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  9. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2002-10-01T23:59:59.000Z

    RSI has access to two synthetic seismic programs: Osiris seismic modeling system provided by Odegaard (Osiris) and synthetic seismic program, developed by SRB, implementing the Kennett method for normal incidence. Achieving virtually identical synthetic seismic traces from these different programs serves as cross-validation for both. The subsequent experiments have been performed with the Kennett normal incidence code because: We have access to the source code, which allowed us to easily control computational parameters and integrate the synthetics computations with our graphical and I/O systems. This code allows to perform computations and displays on a PC in MatLab or Octave environment, which is faster and more convenient. The normal incidence model allows us to exclude from the synthetic traces some of the physical effects that take place in 3-D models (like inhomogeneous waves) but have no relevance to the topic of our investigation, which is attenuation effects on seismic reflection and transmission.

  10. Dworshak Reservoir Kokanee Population Monitoring, Annual Report 2001.

    SciTech Connect (OSTI)

    Maiolie, Melo; Stark, Eric

    2003-03-01T23:59:59.000Z

    Onsite testing of strobe lights was conducted to determine if they repelled kokanee Oncorhynchus nerka away from the turbine intakes at Dworshak Dam. We tested a set of nine strobe lights flashing at a rate of 360 flashes/min placed near the intake of a 90 mW turbine. A split-beam echo sounder was used to determine the effect of strobe light operation on fish density (thought to be mostly kokanee) in front of the turbine intakes. On five nights between December 2001 and January 2002, fish density averaged 110 fish/ha when no lights were flashing. Mean density dropped to 13 fish/ha when the strobe lights were turned on during five additional nights of sampling. This 88% decline in density was significant at the P = 0.009 level of significance based on a paired Student's t test. There appeared to be no tendency for fish to habituate to the lights during the night. Test results indicate that a single set of nine lights may be sufficient to repel kokanee from a turbine intake during the night. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2001. Estimated abundance of kokanee has continued to increase since the spring of 1996 when high entrainment losses occurred. Based on hydroacoustic surveys, we estimated 3,276,000 kokanee in Dworshak Reservoir in early July 2001. This included 2,069,000 age-0 kokanee (90% CI {+-} 16.4%), 801,000 age-1 kokanee (90% CI {+-} 17.8%), and 406,000 age-2 kokanee (90% CI {+-} 20.5%). Entrainment sampling was also conducted with split-beam hydroacoustics a minimum of one continuous 24 h period per month. The highest entrainment rates occurred at night with lower discharges and shallower intake depths. Fish movement patterns suggested that they swam 'at will' in front of the intakes and may have chosen to move into the turbine intakes. Based on monthly hydroacoustic sampling in the forebay, we found that kokanee density was low in July and August during a period of high discharge. However, kokanee density was high in late winter when discharge was also high, thus increasing the likelihood of entrainment. Counts of spawning kokanee in four tributary streams used as an index reached 6,079 fish. This spawner count appeared unusually low considering the high population estimate of kokanee in the reservoir and data collected in previous years.

  11. Impes modeling of volumetric dry gas reservoirs with mobile water

    E-Print Network [OSTI]

    Forghany, Saeed

    2004-09-30T23:59:59.000Z

    . For abnormally or geopressured reservoirs, pressure gradients often approach values equal to the overburden pressure gradient (i.e., ~1.0 psi/ft). 8, 9 Among these types of dry gas reservoirs, in this study we will focus on volumetric reservoir. 1... properties of a given reservoir?s gas and water can handle pressures starting from standard conditions up to 4,000 psi and the units for this table are tabulated in Table 3.1. Table 3.1- Units for the PVT properties used in the input file Pressure...

  12. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  13. Geological and petrophysical characterization of the ferron sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Allison, M.L.

    1996-05-01T23:59:59.000Z

    The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data is being integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1994-95, the second year of the project. Most work consisted of developing field methods and collecting large quantities of existing and new data. We also continued to develop preliminary regional and case-study area interpretations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies.

  14. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, September 29, 1993--September 29, 1994

    SciTech Connect (OSTI)

    Allison, M.

    1995-07-01T23:59:59.000Z

    The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic inter-well and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah will be collected. Both new and existing data will be integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1993-94, the first year of the project. Most work consisted of developing field methods and collecting large quantities of existing and new data. We also developed preliminary regional and case-study area interpretations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) development of reservoirs models, and (4) field-scale evaluation of exploration strategies.

  15. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis; L. R. Graumann

    2003-03-31T23:59:59.000Z

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.

  16. Fractured reservoir evaluation using Monte Carlo techniques

    SciTech Connect (OSTI)

    Sears, G.F.; Phillips, N.V.

    1987-01-01T23:59:59.000Z

    Pro forma cash-flow analysis of petroleum ventures usually is considered as a deterministic model. In the last 10 years, Monte Carlo analysis has allowed the introduction of probability distributions of input variables in place of single-valued functions. Reserve determination and rate scheduling in these current Monte Carlo techniques have relied on the volumetric formula, which works well in nonfractured reservoirs. Recent massive drilling in fractured reservoirs has rendered this approach unusable. This paper develops a variation of the Arps rate-cumulative equation as a basic model for the determination of the distribution of original reserves and the decline rates. Continuation of the Monte Carlo technique into net present value analysis and internal rate of return (IRR) is also developed.

  17. Seismic of the territory Toktogul reservoir, Kyrgyzstan

    SciTech Connect (OSTI)

    Kamchybekov, Murataly; Yegemberdiyeva, Kuliya [Institute of Seismology of National Academy Science Kyrgyz Republic (Kyrgyzstan)

    2008-07-08T23:59:59.000Z

    In connection with that this seismic in the territory of Naryn cascade maybe has its peculiarity in cludding in the territory Toktogul reservoir before of the building of the Toktogul dam, during of the building and after accordingly was decided to consider the seismic in this space of times. The arm of the present paper is estimation seismic of the territory Toktogul reservoir for different times: before of the building of the Toktogul dam (1960-1973), during its filling (1974-1980) and since start it's of the uninterruptedly exploitation to present time (1981-2006). The territory in that located the cascade of Naryn River is considered that seismic active in the Central part of the Tien Shan. The tectonic motions are become here intensity. The presence of the large faults is complicating significantly the seismic situation of the study region.

  18. Overspill avalanching in a dense reservoir network

    E-Print Network [OSTI]

    Mamede, G L; Schneider, C M; de Arajo, J C; Herrmann, H J

    2012-01-01T23:59:59.000Z

    Sustainability of communities, agriculture, and industry is strongly dependent on an effective storage and supply of water resources. In some regions the economic growth has led to a level of water demand which can only be accomplished through efficient reservoir networks. Such infrastructures are not always planned at larger scale but rather made by farmers according to their local needs of irrigation during droughts. Based on extensive data from the upper Jaguaribe basin, one of the world's largest system of reservoirs, located in the Brazilian semiarid northeast, we reveal that surprisingly it self-organizes into a scale-free network exhibiting also a power-law in the distribution of the lakes and avalanches of discharges. With a new self-organized-criticality-type model we manage to explain the novel critical exponents. Implementing a flow model we are able to reproduce the measured overspill evolution providing a tool for catastrophe mitigation and future planning.

  19. Evaluation of Devonian shale gas reservoirs

    SciTech Connect (OSTI)

    Vanorsdale, C.R.

    1987-05-01T23:59:59.000Z

    The evaluation of predominantly shale reservoirs presents a problem for engineers traditionally educated either to correct for or to ignore such lithologic zones. Currently accepted evaluation techniques and their applicability are discussed to determine the best way to forecast remaining recoverable gas reserves from the Devonian shales of the Appalachian basin. This study indicates that rate/time decline-curve analysis is the most reliable technique and presents typical decline curves based on production data gathered from 508 shale wells in a three-state study area. The resultant type curves illustrate a dual- (or multiple-) porosity mechanism that violates standard decline-curve analysis guidelines. The results, however, are typical not only for the Devonian shales but for all naturally fractured, multilayered, or similar shale reservoirs.

  20. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    SciTech Connect (OSTI)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01T23:59:59.000Z

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  1. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1). Annual report, February 1, 1991--January 31, 1992

    SciTech Connect (OSTI)

    Watney, W.L.

    1992-08-01T23:59:59.000Z

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to link the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.

  2. Feasibility of Optimizing Recovery & Reserves from a Mature & Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling & Completion of a Trilateral Horizontal Well

    SciTech Connect (OSTI)

    Coombs, Steven F.

    1999-11-09T23:59:59.000Z

    The main objective of this project is to devise an effective redevelopment strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field's low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: (1) Develop an integrated database of all existing data from work done by the former ownership group. (2) Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. (3) Operate and validate reservoirs' conceptual model by incorporating new data from the proposed trilateral well. (4) Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs.

  3. Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore California Reservoir Through the Drilling and Completion of a Trilateral Horizontal Well

    SciTech Connect (OSTI)

    Steven F. Coombs

    1996-12-31T23:59:59.000Z

    The main objective of this project is to devise an effective redevelopment strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field's low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: Develop an integrated database of all existing data from work done by the former ownership group. Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. Operate and validate reservoirs? conceptual model by incorporating new data from the proposed trilateral well. Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs.

  4. Feasability of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore California Reservoir Through the Drilling and Completion of a Trilateral Horizontal Well

    SciTech Connect (OSTI)

    Steven F. Coombs

    1996-10-29T23:59:59.000Z

    The main objective of this project is to devise an effective redevelopment strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field's low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: Develop an integrated database of all existing data from work done by the former ownership group. Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. Operate and validate reservoirs? conceptual model by incorporating new data from the proposed trilateral well. Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs.

  5. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11T23:59:59.000Z

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  6. Reservoir analysis model for battlefield operations

    E-Print Network [OSTI]

    Sullivan, Garrett James

    1988-01-01T23:59:59.000Z

    'age. Tbe concrete gravity dam had eighteen spillway gates thirty-tvo feet in height along the top of the stxucture (Figure 7). The United Nations Copyright (1952) by the Society of Amexican Nilitaxy Engineers. Reprinted by permission from the January... of expert systems for Military Hydrology applications, specifically the reservoir drawdown problem. Finally, a next generation notional concept for the RANBO concept is presented incorporating a wide range of military requirements (dam-break analysis...

  7. Technology and Economics Affecting Unconventional Reservoir Development

    E-Print Network [OSTI]

    Flores Campero, Cecilia P.

    2010-01-15T23:59:59.000Z

    5.1.1 Low-Permeability Oil (Chalk Reservoirs) ???...? 47 5.1.1.1 Austin Chalk Formation????????? 48 5.1.1.1.1 Production History?????????. 49 5.1.2 Oil Shale???????????????..??. 53 5.1.2.1 Bakken Shale Formation... are more sensitive to certain type of resources such as oil shales and gas hydrates????????????????????.. 3 1.2 Oil shale resources in the Green River formation are giant accumulations waiting for economical exploitation???????????...???... 4 1...

  8. Experimental production characteristics of anticlinal reservoirs

    E-Print Network [OSTI]

    Williams, Charles David

    1959-01-01T23:59:59.000Z

    The production characteristics of an anticlinal model reservoir have been studied. The results show the effects of production rate, structural well location, well density, and fluid properties on the oil and gas recovery. The results of this study indicate... the need to shut in high gas- oil ratio wells in order to achieve maximum recovery. An increase in well density increased recovery significantly for both upstructure and downstructure wells. An increase in the production rate appeared to increase re...

  9. Experimental production characteristics of anticlinal reservoirs

    E-Print Network [OSTI]

    Williams, Charles David

    1959-01-01T23:59:59.000Z

    field examples showing the importance of gxavity dxain- age on oil reservoir, perfoxmance have been pubhshed. Among these are the Gook Ranch Field in Shackleford County, Texas, the Mile (5) Six Pool in Peru, the Elk Basin Tensleep Reservoiz in Wyom... through the kerosene until a pressure above the desired bubble point pressure was attained. Kerosene was then circulated through. the gas cap in the mixing cylinder with a Hills-McGanna proportlosing pump until no further pressure drop was noted...

  10. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  11. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. (Saudi Aramco, Dhahran (Saudi Arabia))

    1996-01-01T23:59:59.000Z

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  12. Effects of diagenesis on reservoir quality within two Cypress reservoirs in the Illinois basin

    SciTech Connect (OSTI)

    Scott, B.D.; McGee, K.R.; Seyler, B. (Illinois State Geological Survey, Champaign (United States))

    1991-08-01T23:59:59.000Z

    One billion bbl of oil have been produced from the Chesterian Cypress Formation in the Illinois basin. These heterogeneous reservoirs may consist of deltaic, marine-reworked deltaic, and/or reworked marine sandstone within mixed siliciclastic-carbonate environments. Thin section, x-ray diffraction, and scanning electron microscopy coupled with energy dispersive x-ray analysis indicate that the effects of diagenesis play a significant role in reservoir quality of Mattoon and Parkersburg fields in Illinois. Five separate Cypress sandstones may be present at Mattoon field (Coles County), a predominantly stratigraphic trap, produces from three distinct Cypress strata. In these fields, reservoir quality is reduced when quartz overgrowths and later stage, blocky mosaic ferroan-calcite cement occlude pore throats. Authigenic clay minerals occur as pore-lining particles that inhibit fluid-flow. Clay minerals preset are illite, mixed-layered illite/smectite, chlorite, and kaolinite. Reservoir quality is enhanced through dissolution of early ferroan-calcite cement, dissolution of detrital feldspar, and microfracturing. Completion, stimulation, and production programs within the heterogeneous Cypress sandstone reservoirs would be improved by recognition of mineral relationships and diagenetic overprints. Developments programs may need to include the use of clay stabilizers in mud clean-out acid treatments.

  13. Thermal analysis of the ATI thermionic converter for optimum cesium reservoir location

    SciTech Connect (OSTI)

    Young, T.J. (Aerospace Power Division, Wright Laboratory/POOC, Wright-Patterson AFB, Ohio 45433-6563 (United States)); Thayer, K.L.; Ramalingam, M.L. (UES, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432-1894 (United States))

    1993-01-15T23:59:59.000Z

    A first-order thermal analysis was performed on the emitter lead region of the Advanced Thermionic Initiative (ATI) Thermionic Fuel Element (TFE) design. The lead region is the candidate location for a metal-matrix, cesium-graphite reservoir to supply cesium vapor to the thermionic converter. The cesium pressure developed is dependent upon the temperature and cesium-carbon equilibrium reaction of the reservoir. Steady-state, one dimensional conduction, with thermal radiation losses and Joulean heat generation, was used to calculate the temperature distribution in the non-fueled lead region. This temperature distribution was linked to the ATI reactor core design through the integration of axial emitter temperature distributions for the maximum, minimum, and average power TFE fuel pins. The axial temperature distribution in the emitter lead region was found to be most pronounced for the maximum power fuel element and least pronounced for the minimum power TFE.

  14. Using ArcGIS to extrapolate greenhouse gas emissions on the Pengxi River, a tributary of the Three Gorges Reservoir in China

    E-Print Network [OSTI]

    Yasarer, Lindsey

    2014-11-19T23:59:59.000Z

    Using ArcGIS to extrapolate greenhouse gas emissions on the Pengxi River, a tributary of the Three Gorges Reservoir in China Lindsey MW Yasarer, PhD Candidate, University of Kansas Dr. Zhe Li, Associate Professor, Chongqing University Dr...D Student, Chongqing University Zhengyu Zhang and Xiao Yao, Masters Students, Chongqing University CSTEC: China Science and Technology Exchange Center NSF EAPSI Program The research was funded by the National Natural Science Foundation of China...

  15. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01T23:59:59.000Z

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  16. Feasibility of optimizing recovery and reserves from a mature and geological complex multiple turbidite offshore California reservoir through the drilling and completion of a trilateral horizontal well. Quarterly report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Coombs, S.F.

    1996-05-20T23:59:59.000Z

    The main objective of this project is to devise an effective re-development strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field`s low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: develop an integrated database of all existing data from work done by the former ownership group; expand reservoir drainage and reduce sand problems through horizontal well drilling and completion; operate and validate reservoir`s conceptual model by incorporating new data from the proposed trilateral well; transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs. This report is an overview of the work that has been completed since the prior reporting period and is broken out by task number.

  17. Economic reservoir design and storage conservation by reduced sedimentation

    SciTech Connect (OSTI)

    Singh, K.P.; Durgunoglu, A.

    1990-01-01T23:59:59.000Z

    A mathematical model has been developed for estimating the design storage capacity of a reservoir by using the expected water demand, storage loss due to sedimentation, and physical and hydrological characteristics of the watershed. Suitable mitigative measures can be incorporated in dam design and reservoir operation to substantially reduce sediment entrapment in the reservoir, and to improve dissolved oxygen levels by releasing hypolimnetic waters from the reservoir. These measures may also greatly reduce streambed degradation downstream of the dam and consequent initiation of a new erosion cycle in the tributaries. Economic analyses for different storage-maintenance measures (such as undersluices and flushing pipes) have been investigated in terms of reduction in initial reservoir design storage, cost of installing measures, and cost of any dredging operations. These analyses are performed for a site in Illinois for several water-demand levels and useful lives of the reservoir.

  18. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01T23:59:59.000Z

    Transfer Area in Fractured Reservoirs, paper presented attests in horizontally fractured reservoirs Yoojin Jung Earthtests in horizontally fractured reservoirs where fluid flow

  19. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry on Injectivity in Fractured Geothermal Reservoirs with High Ionic Strength Fluids

    E-Print Network [OSTI]

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-01-01T23:59:59.000Z

    swelling in a fractured geothermal reservoir, Proceedings ofon Injectivity in Fractured Geothermal Reservoirs with Highdry rock and hot fractured rock reservoirs in a sustainable

  20. Numerical simulation of single-phase and multiphase non-Darcy flow in porous and fractured reservoirs

    E-Print Network [OSTI]

    Wu, Yu-Shu

    2000-01-01T23:59:59.000Z

    flow simulations in fractured reservoirs, Report LBL-15227,behavior of naturally fractured reservoirs, Soc. Pet. Eng.Flow in Porous and Fractured Reservoirs Yu-Shu Wu Earth

  1. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    southwest. Much valuable reservoir data have been collectedAnalysis of pressure data gives reservoir transmissivityThe detailed data of the reservoir that are needed to

  2. Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine plot

    E-Print Network [OSTI]

    Daley, T.M.

    2011-01-01T23:59:59.000Z

    CASSM monitoring data with the reservoir model to obtain anof CASSM data and updating the Reservoir Model Using thedata and, when the match is unsatisfactory, the initial reservoir

  3. Geophysical Prospecting, 1997, 45, 39-64 Fractured reservoir delineation using

    E-Print Network [OSTI]

    Edinburgh, University of

    Geophysical Prospecting, 1997, 45, 39-64 Fractured reservoir delineation using multicomponent of delineating fractured reservoirs and optimizing the development of the reservoirs using shear-wave data the potential of shear waves for fractured reservoir delineation. Introduction Most carbonate reservoirs contain

  4. The Bakken - An Unconventional Petroleum and Reservoir System

    SciTech Connect (OSTI)

    Sarg, J.

    2011-12-31T23:59:59.000Z

    An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar effective stress as the Middle Bakken suggesting that the shale will not contain induced fractures, and will contribute hydrocarbons from interconnected micro-fractures. Organic-rich shale impedance increases with a reduction in porosity and an increase in kerogen stiffness during the burial maturation process. Maturation can be directly related to impedance, and should be seismically mappable. Fractures enhance permeability and production. Regional fractures form an orthogonal set with a dominant NE-SW trend, and a less prominent NW-SE trend. Many horizontal 1 direction to intersect these fractures. Local structures formed by basement tectonics or salt dissolution generate both hinge parallel and hinge oblique fractures that may overprint and dominate the regional fracture signature. Horizontal microfractures formed by oil expulsion in the Bakken shales, and connected and opened by hydrofracturing provide permeability pathways for oil flow into wells that have been hydro-fractured in the Middle Bakken lithofacies. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

  5. The Bakken-An Unconventional Petroleum and Reservoir System

    SciTech Connect (OSTI)

    Frederick Sarg

    2011-12-31T23:59:59.000Z

    An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar effective stress as the Middle Bakken suggesting that the shale will not contain induced fractures, and will contribute hydrocarbons from interconnected micro-fractures. Organic-rich shale impedance increases with a reduction in porosity and an increase in kerogen stiffness during the burial maturation process. Maturation can be directly related to impedance, and should be seismically mappable. Fractures enhance permeability and production. Regional fractures form an orthogonal set with a dominant NE-SW trend parallel to ?1, and a less prominent NW-SE trend. Many horizontal wells are drilled perpendicular to the ?1 direction to intersect these fractures. Local structures formed by basement tectonics or salt dissolution generate both hinge parallel and hinge oblique fractures that may overprint and dominate the regional fracture signature. Horizontal microfractures formed by oil expulsion in the Bakken shales, and connected and opened by hydrofracturing provide permeability pathways for oil flow into wells that have been hydro-fractured in the Middle Bakken lithofacies. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

  6. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    SciTech Connect (OSTI)

    Reed, M.J. (ed.)

    1993-03-01T23:59:59.000Z

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  7. Simulation of paraffin damage due to natural cooling in reservoirs

    E-Print Network [OSTI]

    Peddibhotla, Sriram

    1993-01-01T23:59:59.000Z

    and phases at reservoir conditions Fig. 4 - Solid-liquid phase equilibrium Fig. 5 - Paraffin plugging pore spaces 12 15 Fig. 6 - Simulated oil rates for a well in a reservoir without gas . . . . . . . . . Fig. 7 - Paraffin deposition profile... of paraffin removal with cyclic ERH heating for Case 1 Fig. 15 - Simulated oil rates for a well in a reservoir with gas. . . . , . . . . . Fig. 16 - Paraffin deposition profile for an initial solid concentration 3. 5/o Fig. 17 - Production ratio as a...

  8. Analyzing aquifers associated with gas reservoirs using aquifer influence functions

    E-Print Network [OSTI]

    Targac, Gary Wayne

    1988-01-01T23:59:59.000Z

    - teristics of the associated aquifer are vital to proper management of the reservoir. Typically, the reservoir and associated aquifer are located in a geologic setting which is highly faulted. Limited geologic and seismic knowledge exists about...ANALYZING AQUIFERS ASSOCIATED WITH GAS RESERVOIRS USING AQUIFER INFLUENCE FUNCTIONS A Thesis by GARY WAYNE TARGAC Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  9. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect (OSTI)

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26T23:59:59.000Z

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to production-induced formation pressure drawdown). The Piceance Basin (Colorado) was chosen for this study because of the extensive set of data provided to us by federal agencies and industry partners, its remaining reserves, and its similarities with other Rocky Mountain basins. We focused on the Rulison Field to test our ability to capture details in a well-characterized area. In this study, we developed a number of general principles including (1) the importance of even subtle flexure in creating fractures; (2) the tendency to preserve fractures due to the compressibility of gases; (3) the importance of oscillatory fracture/flow cycles in the expulsion of natural gas from source rock; and (4) that predicting fractures requires a basin model that is comprehensive, all processes are coupled, and is fully 3-D. A major difficulty in using Basin RTM or other basin simulator has been overcome in this project; we have set forth an information theory technology for automatically integrating basin modeling with classical database analysis; this technology also provides an assessment of risk. We have created a relational database for the Piceance Basin. We have developed a formulation of devolatilization shrinkage that integrates organic geochemical kinetics into incremental stress theory, allowing for the prediction of coal cleating and associated enhancement of natural gas expulsion from coal. An estimation of the potential economic benefits of the technologies developed or recommended here is set forth. All of the above findings are documented in this report.

  10. ACADEMIC INTEGRITY CODE 1 GENERAL PROVISIONS

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    approve the Council's procedures as well as bylaws and membership requirements. The Integrity CouncilACADEMIC INTEGRITY CODE 1 GENERAL PROVISIONS 1.1 Basic Principle of Academic Integrity Academic integrity means honesty and responsibility in scholarship. Academic assignments exist to help students learn

  11. Effects of Original Vegatation on Reservoir Water Quality

    E-Print Network [OSTI]

    Ball, J.; Weldon, C.; Crocker, B.

    TR- 64 1975 Effects of Original Vegetation on Reservoir Water Quality J. Ball C. Weldon B. Crocker Texas Water Resources Institute Texas A&M University ...

  12. 5641_FrozenReservoirs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from a frozen reservoir. Most prior work has been on developing production techniques for heavy oil in unconsolidated but unfrozen sands, or for gas hydrates. There is no...

  13. Use Of Electrical Surveys For Geothermal Reservoir Characterization...

    Open Energy Info (EERE)

    For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Use Of Electrical Surveys...

  14. Variations in dissolved gas compositions of reservoir fluids...

    Open Energy Info (EERE)

    from the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Variations in dissolved gas compositions of reservoir...

  15. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley,...

  16. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir Investigations on the Hot Dry Rock Geothermal System,...

  17. Lithology and Alteration Mineralogy of Reservoir Rocks at Coso...

    Open Energy Info (EERE)

    of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the...

  18. Lithology and alteration mineralogy of reservoir rocks at Coso...

    Open Energy Info (EERE)

    of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the...

  19. Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...

    Open Energy Info (EERE)

    Distributions Abstract A methodology for analyzing the internal flow characteristics of a fractured geothermal reservoir using tracer-determined residence time distribution curves...

  20. An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...

    Open Energy Info (EERE)

    Both reservoirs seem to be separated by a vitreous tuff lithological unit, but hydraulic connectivity occurs through faults and fractures of the system, allowing deep steam...

  1. Geothermal reservoir temperatures estimated from the oxygen isotope...

    Open Energy Info (EERE)

    reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search OpenEI...

  2. Application of thermal depletion model to geothermal reservoirs...

    Open Energy Info (EERE)

    PROCEEDINGS, Second workshop on geothermal reservoir engineering, Stanford, CA, USA, 1 Dec 1976, 111977 DOI Not Provided Check for DOI availability: http:crossref.org...

  3. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Task 3: Mechanical behaviors of carbonated minerals. - Task 4: Modeling of CO2- reservoir rock interactions. - Task 5: Preparation of report covering the four tasks previous task,...

  4. Carbon Dioxide and Helium Emissions from a Reservoir of Magmatic...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Carbon Dioxide and Helium Emissions from a Reservoir of Magmatic Gas Beneath Mammoth...

  5. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    Gasoline and Diesel Fuel Update (EIA)

    Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production Reservoir Underground...

  6. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    SciTech Connect (OSTI)

    Taylor, Archie R.

    1996-07-01T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three dimensional (3-D) seismic; (3) Cross-well bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  7. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR

    SciTech Connect (OSTI)

    Unknown

    2003-01-15T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

  8. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18T23:59:59.000Z

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  9. A Semantic Framework for Integrated Asset Management in Smart Oilfields Ramakrishna Soma

    E-Print Network [OSTI]

    Hwang, Kai

    A Semantic Framework for Integrated Asset Management in Smart Oilfields Ramakrishna Soma Department transformation of oilfield operations where infor- mation integration from a variety of tools for reservoir mod to be portable across oilfield assets, to allow different classes of end users to interact with the integrated

  10. Quantification of uncertainty in reservoir simulations influenced by varying input geological parameters, Maria Reservoir, CaHu Field

    E-Print Network [OSTI]

    Schepers, Karine Chrystel

    2005-02-17T23:59:59.000Z

    QUANTIFICATION OF UNCERTAINTY IN RESERVOIR SIMULATIONS INFLUENCED BY VARYING INPUT GEOLOGICAL PARAMETERS, MARIA RESERVOIR, CAHU FIELD A Thesis by KARINE CHRYSTEL SCHEPERS Submitted to the Office of Graduate... BY VARYING INPUT GEOLOGICAL PARAMETERS, MARIA RESERVOIR, CAHU FIELD A Thesis by KARINE CHRYSTEL SCHEPERS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  11. Quantification of uncertainty in reservoir simulations influenced by varying input geological parameters, Maria Reservoir, CaHu Field

    E-Print Network [OSTI]

    Schepers, Karine Chrystel

    2005-02-17T23:59:59.000Z

    QUANTIFICATION OF UNCERTAINTY IN RESERVOIR SIMULATIONS INFLUENCED BY VARYING INPUT GEOLOGICAL PARAMETERS, MARIA RESERVOIR, CAHU FIELD A Thesis by KARINE CHRYSTEL SCHEPERS Submitted to the Office of Graduate... BY VARYING INPUT GEOLOGICAL PARAMETERS, MARIA RESERVOIR, CAHU FIELD A Thesis by KARINE CHRYSTEL SCHEPERS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  12. Seismic Determination of Reservoir Heterogeneity: Application to the Characterization of Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Imhof, Matthias G.; Castle, James W.

    2003-03-12T23:59:59.000Z

    The objective of the project was to examine how seismic and geologic data could be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. Performed a theoretical and numerical study to examine which subsurface features the surface seismic method actually resolves.

  13. Reservoir characterization of Pennsylvanian Sandstone reservoirs. Quarterly progress report, January 1, 1991--March 31, 1991

    SciTech Connect (OSTI)

    Kelkar, B.G.

    1993-08-08T23:59:59.000Z

    The overall objectives of this work are: (i) to investigate the importance of various qualities and quantities of data on the optimization of waterflooding performance; and (ii) to study the application of newly developed geostatistical techniques to analyze available production data to predict future proposals of infill drilling. The study will be restricted to Pennsylvanian sandstone reservoirs commonly found in Oklahoma.

  14. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirch CreekWarrior,Blackfoot Reservoir

  15. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEIBixby, Oklahoma:BlackBlackfoot Reservoir

  16. Reservoir technology - geothermal reservoir engineering research at Stanford. Fifth annual report, October 1, 1984-September 30, 1985

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

    1985-09-01T23:59:59.000Z

    The objective is to carry out research on geothermal reservoir engineering techniques useful to the geothermal industry. A parallel objective is the training of geothermal engineers and scientists. The research is focused toward accelerated development of hydrothermal resources through the evaluation of fluid reserves, and the forecasting of field behavior with time. Injection technology is a research area receiving special attention. The program is divided into reservoir definition research, modeling of heat extraction from fractured reservoirs, application and testing of new and proven reservoir engineering technology, and technology transfer. (ACR)

  17. Production management techniques for water-drive gas reservoirs. Field number 1, onshore gulf coast over-pressured, high yield condensate reservoir. Topical report, July 1993

    SciTech Connect (OSTI)

    Hower, T.L.

    1993-07-01T23:59:59.000Z

    To develop improved completion and reservoir management strategies for water-drive gas reservoirs, the study conducted on an overpressured high yield gas condensate reservoir is reported. The base recovery factor for the field was projected to be only 47.8%, due to high residual gas saturation and a relatively strong aquifer which maintained reservoir pressure.

  18. Computer Simulation of Reservoir Depletion and Oil Flow from the Macondo Well Following the Deepwater

    E-Print Network [OSTI]

    Computer Simulation of Reservoir Depletion and Oil Flow from the Macondo Well Following, 2010, Computer simulation of reservoir depletion and oil flow from the Macondo well following......................................................................................................................................... 7 Reservoir Depletion

  19. Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and 76 Field, Clinton Co., KY.

    E-Print Network [OSTI]

    SPE 36651 Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and enhanced recovery, production operations in fracture- dominated oil and gas reservoirs. Borehole geophones to study reservoir fracture systems. Methods currently applied to study fracture systems include tilt

  20. Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic, France Abstract Hydromechanical coupled processes in a shallow fractured carbonate reservoir rock were fracture network made up of vertical faults and bedding planes. Hydromechanical response of the reservoir

  1. Measuring Frac-pack Conductivity at Reservoir Temperature and High Closure Stress

    E-Print Network [OSTI]

    Fernandes, Preston X.

    2010-10-12T23:59:59.000Z

    sands, oil shales and ultra deepwater wells are examples of unconventional reservoirs. Ultra-deepwater reservoirs have the potential to produce billions of barrels of hydrocarbons from the deep buried formations. These reservoirs are usually high...

  2. Operation of water supply reservoirs for flood mitigation : hydrologic and institutional considerations

    E-Print Network [OSTI]

    Craney, Patrick Wayne

    1996-01-01T23:59:59.000Z

    Additional demands are being placed upon reservoirs to meet a variety of diverse needs. These demands require efficient management of the limited storage through reservoir operations. This efficiency is most critical with water supply reservoirs...

  3. Pressure transient test analysis of vuggy naturally fractured carbonate reservoir: field case study

    E-Print Network [OSTI]

    Ajayi, Babatunde Tolulope

    2009-06-02T23:59:59.000Z

    Well pressure transient analysis is widely used in reservoir management to obtain reservoir information needed for reservoir simulation, damage identification, well optimization and stimulation evaluation. The main objective of this project...

  4. STUDY OF WATERFLOODING PROCESS IN NATURALLY FRACTURED RESERVOIRS FROM STATIC AND DYNAMIC IMBIBITION EXPERIMENTS

    E-Print Network [OSTI]

    Schechter, David S.

    STUDY OF WATERFLOODING PROCESS IN NATURALLY FRACTURED RESERVOIRS FROM STATIC AND DYNAMIC IMBIBITION experiments, followed by waterflooding, were performed at reservoir conditions to investigate rock wettability Berea and Spraberry cores at reservoir conditions to illustrate the actual process of waterflooding

  5. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    DOE Patents [OSTI]

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04T23:59:59.000Z

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  6. Direct Reservoir Parameter Estimation Using Joint Inversion of Marine Seismic AVA & CSEM Data

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    estimation of reservoir parameters from geophysical data isthe seismic data fit at times below the reservoir. InversionReservoir Parameter Estimation Using Joint Inversion of Marine Seismic AVA & CSEM Data

  7. A triple-continuum pressure-transient model for a naturally fractured vuggy reservoir

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    well test data from a fractured-vuggy reservoir in Westernwell test data from a fractured-vuggy reservoir in Westerndata for two wells from a naturally fractured vuggy oil reservoir,

  8. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Gary Mavko

    2000-10-01T23:59:59.000Z

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  9. An interdisciplinary approach to reservoir management: The Malu Field, West Niger Delta, Nigeria

    SciTech Connect (OSTI)

    Patterson, B.A.; Bluhm, C.T. [Chevron Overseas Petroleum, San Ramon, CA (United States); Adokpaye, E.U. [Chevron Nigeria Limited, Lekki (Nigeria)] [and others

    1995-08-01T23:59:59.000Z

    The Malu Field is 175 kilometers southeast of Lagos, offshore Nigeria. The field was discovered in 1967 and brought on stream in 1971. Peak production reached 31,300 barrels per day in 1972. Twenty-six wells have been drilled in the thirty-six square kilometer size field. In 1990 original-oil-in-place was estimated at 345 million barrels with cumulative production of 109 million barrels and an estimated 40 million barrels of remaining reserves. The Main Field review was initiated in 1994 to resolve structural and production inconsistencies and therefore improve reservoir performance. The tools used include reprocessed three-dimensional seismic, oil chemistry (primarily gas chromatography), and production data. The complexly faulted field is subdivided into seven different fault blocks. Growth faults generally trend northwest to southeast and are downthrown to the west. Twenty-five different hydrocarbon-bearing sands have been identified within the field. These sands are separated into sixty-three different reservoirs by the series of southeast trending growth faults. Most sands are laterally continuous within mapped fault blocks except in east Malu. Cross-fault communication of oils occurs among several of the shallow reservoirs in west Malu allowing wells to deplete unintended horizons. In addition, three of the dual string completions are producing oil only from only the upper sands. The integration of seismic, oil chemistry, and production data allows more efficient management of production by providing accurate structure maps, reserve estimates, drainage pathways, and justification for workovers and future development drilling.

  10. Application of the transient, isochronal p/z plotting method to multilayered reservoirs

    E-Print Network [OSTI]

    Dandekar, Rashmin Ramesh

    1992-01-01T23:59:59.000Z

    of the crossflow reservoir cases was lower than the error for the corresponding commingled reservoir cases. The error in gas- The error in gas-in-place estimates in all of the crossflow reservoir cases was lower than the error for the corresponding commingled... reservoir cases. The ermr in gas- in-place estimate decreases with increasing permeability contrast. The behavior can be attributed to the fact that crossflow reservoir behavior is similar to the behavior of homogeneous reservoir after the passage...

  11. DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Shari Dunn-Norman

    2005-06-01T23:59:59.000Z

    The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. In the twelve to eighteen-month project period, three wells were equipped with ERT arrays. Electrical resistivity tomography (ERT) background measurements were taken in the three ERT equipped wells. Pumping equipment was installed on the two fracture stimulated wells and pumping tests were conducted following the hydraulic fracture treatments. All wells were treated monthly with microbes, by adding a commercially available microbial mixture to wellbore fluids. ERT surveys were taken on a monthly basis, following microbial treatments. Worked performed to date demonstrates that resistivity changes are occurring in the subsurface, with resistivity increasing slightly. Pumping results for the hydraulically fractured wells were disappointing, with only a show of oil recovered and an increase in well shut-in pressure.

  12. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    . While geomechanics in conventional reservoir simulator is often governed by change in pore addresses the modelling of the geomechanical effects induced by reservoir production and reinjection, the optimum production rate and the reservoir performance, reservoir geomechanics tries to capture rock

  13. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    KALMAN FILTER (ENKF) FOR HISTORY MATCHING PRESSURE DATA FROM GEOTHERMAL RESERVOIRS Omer Inanc TureyenPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University performance predictions of reservoir models for liquid dominated geothermal reservoirs. Specifically we

  14. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    SciTech Connect (OSTI)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

    2003-09-01T23:59:59.000Z

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

  15. A general-purpose, geochemical reservoir simulator

    SciTech Connect (OSTI)

    Liu, X.; Ortoleva, P.

    1996-12-31T23:59:59.000Z

    A geochemical simulator for the analysis of coupled reaction and transport processes is presented. The simulator is based on the numerical solution of the equations of coupled multi-phase fluid flow, species transport, energy balance and rock/fluid reactions. It also accounts for the effects of grain growth/dissolution and the alteration of porosity and permeability due to mineral reactions. The simulator can be used to analyze core floods, single-well scenarios and multiple production/injection well systems on the reservoir scale. Additionally, the simulator provides two flow options: the Darcy law for fluid flow in porous media and the Brinkman law that subsumes both free and porous medium flows. The simulator was tested using core acidizing data and results were in good agreement with laboratory observations. The simulator was applied to analyze matrix acidizing treatments for a horizontal well. The evolution of the skin factor was predicted and the optimal volume of acid required to remove the near-wellbore damage was determined. Reactive fluid infiltration was shown to lead to reaction-front fingering under certain conditions. Viscosity contrast in multiphase flow could also result in viscous fingering. Examples in this study also address these nonlinear fingering phenomena. A waterflood on the reservoir scale was analyzed and simulation results show that scale formation during waterfloods can occur far beyond injection wells. Two cases of waste disposal by deep well injection were evaluated and our simulation results were consistent with field measured data.

  16. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-29T23:59:59.000Z

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.

  17. Sixth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1980-12-18T23:59:59.000Z

    INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

  18. The Optimization of Well Spacing in a Coalbed Methane Reservoir

    E-Print Network [OSTI]

    Sinurat, Pahala Dominicus

    2012-02-14T23:59:59.000Z

    reserve estimation for a coalbed methane reservoir. Other numerical reservoir simulation studies were presented by David, H. and Law, S.18, Hower, T.L.19, and Jalal, J. and Shahab, D.M.20. They showed the application of a compositional simulator...

  19. A Variable Cell Model for Simulating Gas Condensate Reservoir Performance

    E-Print Network [OSTI]

    Al-Majed, Abdulaziz Abdullah

    maturation profiles, which ie exhibitpd when gas pressure. Between this region near tha wellbore, SPE-~~~ SPE 21428 A Variable Cell Model for Simulating Gas Condensate Reservoir Performance A of depletion performance of gas condensate reservoirs report the existence of a A variable cell model

  20. Solving the Linear Equation in Reservoir Simulation List of authors

    E-Print Network [OSTI]

    Boyer, Edmond

    analogous to those techniques, but ensures that material balance is preserved exactly within each planeSolving the Linear Equation in Reservoir Simulation List of authors: Julien Maes 1 Reservoir, so that solving the linear equations arising in Newtons step is more and more challenging. Simulators

  1. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    SciTech Connect (OSTI)

    Brown, V.; Hoversten, G.M.; Key, K.; Chen, J.

    2011-10-01T23:59:59.000Z

    A combination of 1D and 3D forward and inverse solutions is used to quantify the sensitivity and resolution of conventional controlled source electromagnetic (CSEM) data collected using a horizontal electric dipole source to transverse electrical anisotropy located in a deep-water exploration reservoir target. Since strongly anisotropic shale layers have a vertical resistivity that can be comparable to many reservoirs, we examine how CSEM can discriminate confounding shale layers through their characteristically lower horizontal resistivity. Forward modeling demonstrates that the sensitivity to reservoir level anisotropy is very low compared to the sensitivity to isotropic reservoirs, especially when the reservoir is deeper than about 2 km below the seabed. However, for 1D models where the number of inversion parameters can be fixed to be only a few layers, both vertical and horizontal resistivity of the reservoir can be well resolved using a stochastic inversion. We find that the resolution of horizontal resistivity increases as the horizontal resistivity decreases. We show that this effect is explained by the presence of strong horizontal current density in anisotropic layers with low horizontal resistivity. Conversely, when the reservoir has a vertical to horizontal resistivity ratio of about 10 or less, the current density is vertically polarized and hence has little sensitivity to the horizontal resistivity. Resistivity anisotropy estimates from 3D inversion for 3D targets suggest that resolution of reservoir level anisotropy for 3D targets will require good a priori knowledge of the background sediment conductivity and structural boundaries.

  2. Developing A Grid Portal For Large-scale Reservoir Studies

    E-Print Network [OSTI]

    Allen, Gabrielle

    Developing A Grid Portal For Large-scale Reservoir Studies 1 Center for Computation & Technology 2 uncertainty. · Advantages of grid technology · Proposed Solution of the UCoMS Team · What is a Portal? · UCo of reservoir uncertainty... Petroleum drilling consist of many uncertainties. Main objective is to optimize

  3. Norphlet reservoir in Mobile Bay: Origins of deep porosity

    SciTech Connect (OSTI)

    Lock, B.E.; Broussard, S.W. (Univ. of Southwestern Louisiana, Lafayette (USA))

    1989-09-01T23:59:59.000Z

    The authors have applied thin section and SEM petrographic techniques in an attempt to understand better the erratic distribution of highly porous, reservoir quality sands (reservoir zone), and overlying tight, thoroughly cemented sands (tight zone) that together constitute the Norphlet Formation of Mary Ann field. Their conclusions are summarized.

  4. Predicting spatial distribution of critical pore types and their influence on reservoir quality, Canyon (Pennsylvanian) Reef reservoir, Diamond M field, Texas

    E-Print Network [OSTI]

    Fisher, Aaron Jay

    2007-04-25T23:59:59.000Z

    Subject: Geology iii ABSTRACT Predicting Spatial Distribution of Critical Pore Types and Their Influence on Reservoir Quality, Canyon (Pennsylvanian) Reef Reservoir, Diamond M Field, Texas... scale. Ultimately slice maps of reservoir quality at a 10 ft interval for a 150 ft section of the Canyon Reef reservoir were developed. These iv reservoir quality maps will provide a useful tool for the design and implementation of accurate...

  5. Measuring and predicting reservoir heterogeneity in complex deposystems: The fluvial-deltaic Big Injun sandstone in West Virginia

    SciTech Connect (OSTI)

    Patchen, D.G.; Hohn, M.E.; Aminian, K.; Donaldson, A.; Shumaker, R.; Wilson, T.

    1993-04-01T23:59:59.000Z

    The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositional systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.

  6. Visual display of reservoir parameters affecting enhanced oil recovery. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    Wood, J.R.

    1996-07-31T23:59:59.000Z

    This project consists of two parts. In Part 1, well logs, other well data, drilling, and production data for the Pioneer Field in the southern San Joaquin Valley of California were obtained, assembled, and input to a commercial relational database manager. These data are being used in PC-based geologic mapping,e valuation, and visualization software programs to produce 2-D and 3-D representations of the reservoir geometry, facies and subfacies, stratigraphy, porosity, oil saturation, and other measured and model parameters. Petrographic and petrophysical measurements made on samples from Pioneer Field, including core, cuttings, and liquids, are being used to calibrate the log suite. In Part 2, these data sets are being used to develop algorithms to correlate log response to geologic and engineering measurements. This project provides a detailed example, based on a field trial, of how to evaluate a field for EOR operations utilizing data typically available in older fields which have undergone primary development. The approach utilizes readily available, affordable PC-based computer software and analytical services. This study will illustrate the steps involved in: (1) setting up a relational database to store geologic, well-log, engineering, and production data; (2) integration of data typically available for oil and gas fields with predictive models for reservoir alteration; and (3) linking these data and models with modern computer software to provide 2-D and 3-D visualizations of the reservoir and its attributes. The techniques are being demonstrated through a field trial in Pioneer Field, that produces from the Monterey Formation, a reservoir which is a candidate for thermal EOR.

  7. Area balance and strain in coalbed methane reservoirs of the Black Warrior basin

    SciTech Connect (OSTI)

    Pashin, J.C. [Geological Survey of Alabama, Tuscaloosa, AL (United States); Groshong, R.H., Jr. [Univ. of Alabama, Tuscaloosa, AL (United States)

    1996-09-01T23:59:59.000Z

    Investigation of coalbed methane reservoirs in the Black Warrior basin of Alabama has established a correspondence between productivity and structural position, but the reasons for this correspondence remain uncertain. In Cedar Cove field, for example, exceptionally productive wells are concentrated in a rollover anticline, whereas in Oak Grove field, exceptionally productive wells are aligned along a synclinal axis. This suggests that factors controlling gas production are a derivative of the structural geometry, and not the geometry by itself. Natural fractures and a low state of in-situ stress facilitate depressurization of coalbed reservoirs by dewatering, and hence, desorption and production of coalbed gas. Our hypothesis is that the abundance and openness of natural fractures in the Black Warrior basin are a direct expression of the layer-parallel strain dictated by map-scale structural geometry. Area balancing techniques can be used to quantify requisite strain, which is the homogeneous layer-parallel strain required for local area balance, and can also be used to constrain and verify structural cross sections. Application of area balancing techniques to extensional structures in the Black Warrior basin indicates that coalbed gas is produced from thin-skinned structures detached within the coal-bearing Pottsville Formation. Within reservoir intervals, requisite strain values are as high as 10 percent and increase downward toward the basal detachment. Mapping structure and production indicates that some productivity sweet spots correlate with enhanced bed curvature. Whereas requisite strain is the homogeneous strain calculated for discrete bed segments, curvature affects the distribution of strain within those segments. Recognizing this, our research is now focused on integrating area balancing techniques with curvature analysis to explain production patterns in coalbed methane reservoirs.

  8. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    SciTech Connect (OSTI)

    Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

    2003-11-12T23:59:59.000Z

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

  9. Tube-wave Seismic Imaging and Monitoring Method for Oil Reservoirs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tube-wave Seismic Imaging and Monitoring Method for Oil Reservoirs and Aquifers Lawrence Berkeley National Laboratory Contact LBL About This Technology Real-Time Reservoir...

  10. Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems Novel use of 4D Monitoring Techniques to Improve Reservoir...

  11. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01T23:59:59.000Z

    we use field data and coupled reservoir-geomechanicaldistance change data for monitoring the reservoir during COReservoir monitoring and characterization using satellite geodetic data:

  12. Continuous reservoir simulation model updating and forecasting using a markov chain monte carlo method

    E-Print Network [OSTI]

    Liu, Chang

    2009-05-15T23:59:59.000Z

    forecasts of well and reservoir performance, accessible at any time. It can be used to optimize long-term reservoir performance at field scale....

  13. Analytical solution for Joule-Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs

    E-Print Network [OSTI]

    Mathias, S.A.

    2010-01-01T23:59:59.000Z

    sequestration in depleted oil and gas reservoirs Simon A.1. Introduction Depleted oil and gas reservoirs (DOGRs)

  14. Integrative Biology Keith A. Crandall, Chair

    E-Print Network [OSTI]

    Hart, Gus

    . The bioinformatics major is for students with interests in both the computer and the biological sciences. The degree merges these interests in the areas of bioinformatics and computational biology, giving students Programs and Degrees BS Bioinformatics BS Biology Composite Teaching BS Integrative Biology Students should

  15. Equilibrium composition between liquid and clathrate reservoirs on Titan

    E-Print Network [OSTI]

    Mousis, Olivier; Lunine, Jonathan I; Sotin, Christophe

    2015-01-01T23:59:59.000Z

    Hundreds of lakes and a few seas of liquid hydrocarbons have been observed by the Cassini spacecraft to cover the polar regions of Titan. A significant fraction of these lakes or seas could possibly be interconnected with subsurface liquid reservoirs of alkanes. In this paper, we investigate the interplay that would happen between a reservoir of liquid hydrocarbons located in Titan's subsurface and a hypothetical clathrate reservoir that progressively forms if the liquid mixture diffuses throughout a preexisting porous icy layer. To do so, we use a statistical-thermodynamic model in order to compute the composition of the clathrate reservoir that forms as a result of the progressive entrapping of the liquid mixture. This study shows that clathrate formation strongly fractionates the molecules between the liquid and the solid phases. Depending on whether the structure I or structure II clathrate forms, the present model predicts that the liquid reservoirs would be mainly composed of either propane or ethane, r...

  16. High resolution reservoir geological modelling using outcrop information

    SciTech Connect (OSTI)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01T23:59:59.000Z

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  17. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  18. Computational Intelligence for Deepwater Reservoir Depositional Environments Interpretation

    E-Print Network [OSTI]

    Yu, Tina; Clark, Julian; Sullivan, Morgan; 10.1016/j.jngse.2011.07.014

    2013-01-01T23:59:59.000Z

    Predicting oil recovery efficiency of a deepwater reservoir is a challenging task. One approach to characterize a deepwater reservoir and to predict its producibility is by analyzing its depositional information. This research proposes a deposition-based stratigraphic interpretation framework for deepwater reservoir characterization. In this framework, one critical task is the identification and labeling of the stratigraphic components in the reservoir, according to their depositional environments. This interpretation process is labor intensive and can produce different results depending on the stratigrapher who performs the analysis. To relieve stratigrapher's workload and to produce more consistent results, we have developed a novel methodology to automate this process using various computational intelligence techniques. Using a well log data set, we demonstrate that the developed methodology and the designed workflow can produce finite state transducer models that interpret deepwater reservoir depositional...

  19. Water injection as a means for reducing non-condensible and corrosive gases in steam produced from vapor-dominated reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; Spycher, Nicolas; Kneafsey, Timothy J.

    2008-01-01T23:59:59.000Z

    studies for a fractured reservoir description using theTransport in Fractured Geothermal Reservoirs, Geothermics,

  20. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect (OSTI)

    Christopher D. White

    2009-12-21T23:59:59.000Z

    Significant volumes of oil and gas occur in reservoirs formed by ancient river deltas. This has implications for the spatial distribution of rock types and the variation of transport properties. A between mudstones and sandstones may form baffles that influence productivity and recovery efficiency. Diagenetic processes such as compaction, dissolution, and cementation can also alter flow properties. A better understanding of these properties and improved methods will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high-resolution view of variability. Insights gleaned from these exposures can be used to model analogous reservoirs, for which data is sparser. The Frontier Formation in central Wyoming provides an opportunity for high-resolution models. The same rocks exposed in the Tisdale anticline are productive in nearby oil fields. Kilometers of exposure are accessible, and bedding-plane exposures allow use of high-resolution ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct geostatistical and flow models. Strata-conforming grids were use to reproduce the observed geometries. A new Bayesian method integrates outcrop, core, and radar amplitude and phase data. The proposed method propagates measurement uncertainty and yields an ensemble of plausible models for calcite concretions. These concretions affect flow significantly. Models which integrate more have different flow responses from simpler models, as demonstrated an exhaustive two-dimensional reference image and in three dimensions. This method is simple to implement within widely available geostatistics packages. Significant volumes of oil and gas occur in reservoirs that are inferred to have been formed by ancient river deltas. This geologic setting has implications for the spatial distribution of rock types (\\Eg sandstones and mudstones) and the variation of transport properties (\\Eg permeability and porosity) within bodies of a particular rock type. Both basin-wide processes such as sea-level change and the autocyclicity of deltaic processes commonly cause deltaic reservoirs to have large variability in rock properties; in particular, alternations between mudstones and sandstones may form baffles and trends in rock body permeability can influence productivity and recovery efficiency. In addition, diagenetic processes such as compaction, dissolution, and cementation can alter the spatial pattern of flow properties. A better understanding of these properties, and improved methods to model the properties and their effects, will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high resolution, low uncertainty view of subsurface variability. Patterns and insights gleaned from these exposures can be used to model analogous reservoirs, for which data is much sparser. This approach is particularly attractive when reservoir formations are exposed at the surface. The Frontier Formation in central Wyoming provides an opportunity for high resolution characterization. The same rocks exposed in the vicinity of the Tisdale anticline are productive in nearby oil fields, including Salt Creek. Many kilometers of good-quality exposure are accessible, and the common bedding-plane exposures allow use of shallow-penetration, high-resolution electromagnetic methods known as ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct high-resolution geostatistical and flow models for the Wall Creek Member of the Frontier Formation. Stratal-conforming grids were use to reproduce the progradational and aggradational geometries observed in outcrop and radar data. A new, Bayesian method integrates outcrop--derived statistics, core observations of concretions, and radar amplitude and