National Library of Energy BETA

Sample records for reservoir expansion project

  1. EIS-0404: Los Vaqueros Reservoir Expansion Project, California

    Broader source: Energy.gov [DOE]

    This EIS/Environmental Impact Report was prepared by the Department of the Interior (Bureau of Reclamation, Mid-Pacific Region) and the Contra Costa Water District to evaluate the environmental impacts of a proposal to enlarge the existing Los Vaqueros Reservoir in Contra Costa County, California. DOE’s Western Area Power Administration (Western) was a cooperating agency because it has jurisdiction over transmission facilities that were expected to be relocated under the proposed action. Based on project changes, however, Western has no action and therefore will not adopt the EIS or issue a ROD.

  2. EA-2041: Cameron LNG Expansion Project | Department of Energy

    Office of Environmental Management (EM)

    41: Cameron LNG Expansion Project EA-2041: Cameron LNG Expansion Project Summary The Federal Energy Regulatory Commission (FERC) prepared an environmental assessment (EA) that ...

  3. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu...

    Office of Environmental Management (EM)

    8: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana Summary The ...

  4. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    SciTech Connect (OSTI)

    Reed, M.J.

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  5. Magnolia LNG and Lake Charles Expansion Projects Final Environmental...

    Office of Environmental Management (EM)

    Energy Regulatory Commission Office of Energy Projects Washington, DC 20426 Magnolia LNG and Lake Charles Expansion Projects Final Environmental Impact Statement Magnolia LNG, LLC ...

  6. Gypsy Field project in reservoir characterization

    SciTech Connect (OSTI)

    Castagna, John P.; Jr., O'Meara, Daniel J.

    2000-01-12

    The overall objective of this project was to use extensive Gypsy Field Laboratory and data as a focus for developing and testing reservoir characterization methods that are targeted at improved recovery of conventional oil. This report describes progress since project report DOE/BC/14970-7 and covers the period June 1997-September 1998 and represents one year of funding originally allocated for the year 1996. During the course of the work previously performed, high resolution geophysical and outcrop data revealed the importance of fractures at the Gypsy site. In addition, personnel changes and alternative funding (OCAST and oil company support of various kinds) allowed the authors to leverage DOE contributions and focus more on geophysical characterization.

  7. Environmental Assessment for the Terminal Expansion Project.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1985-02-01

    The Terminal Expansion Project is proposed by Bonneville Power Administration (BPA), Southern California Edison (SCE), and the Los Angeles Department of Water and Power (LADWP) to increase the operating capacity of the existing bipole direct current (dc) Intertie line between the Celilo Converter Station at The Dalles, Oregon, and the Sylmar converter Station at Sylmar, California. The proposal will allow a greater exchange of electric power between the Pacific Northwest (PNW) and Southern California without constructing new interregional transmission lines. By adding more alternating ac/dc converter equipment at the terminals, the conductors on the existing 845-mile dc intertie transmission line can be operated at full design capacity. The dc Intertie plus two other ac lines which terminate near San Francisco comprise the ''Intertie.'' Though the project is interregional, relatively little construction will be needed. This Environmental Assessment addresses the environmental impacts of the proposed actions and makes a determination as to their significance. Though LADWP is complying with the State environmental process, as required by the California Environmental Quality Act (CEQA), the impacts of their construction are being considered as part of the impacts of the overall proposal and are considered in the determination of significance.

  8. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu...

    Energy Savers [EERE]

    with the public interest. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects Public Comment Opportunities No public comment opportunities available at this time....

  9. Tanzania Energy Development and Access Expansion Project | Open...

    Open Energy Info (EERE)

    energy access expansion. The project is consistent with the latest Joint Assistance Strategy (2007-2010) by specifically supporting the goals of the Government's National...

  10. Pyrotek Graphitization Facility Expansion Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt016_es_sekedat_2011_p.pdf (756.86 KB) More Documents & Publications Pyrotek Graphitization Facility Expansion Project Pyrotek Graphitization Facility Expansion Project EA-1720: Finding of No Significant Impact

  11. Gypsy Field project in reservoir characterization. Final report

    SciTech Connect (OSTI)

    O`Meara, Jr., D. J.

    1997-05-01

    The overall objective of this project is to use the extensive Gypsy Field laboratory and data set as a focus for developing and testing reservoir characterization methods that are targeted at improved recovery of conventional oil. The Gypsy Field laboratory consists of coupled outcrop and subsurface sites which have been characterized to a degree of detail not possible in a production operation. Data from these sites entail geological descriptions, core measurements, well logs, vertical seismic surveys, a 3D seismic survey, crosswell seismic surveys, and pressure transient well tests. The overall project consists of four interdisciplinary sub-projects which are closely interlinked: modeling depositional environments; sweep efficiency; tracer testing; and integrated 3D seismic interpretation. The first of these aims at improving the ability to model complex depositional environments which trap movable oil. The second is a development geophysics project which proposes to improve the quality of reservoir geological models through better use of 3D seismic data. The third investigates the usefulness of a new numerical technique for identifying unswept oil through rapid calculation of sweep efficiency in large reservoir models. The fourth explores what can be learned from tracer tests in complex depositional environments, particularly those which are fluvial dominated.

  12. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect (OSTI)

    Swalnick, Natalia

    2013-06-30

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  13. West Foster Creek Expansion Project 2007 HEP Report.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    2008-02-01

    During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

  14. Project title: Stimulation at Desert Peak and Bradys reservoirs: modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with the coupled THM code FEHM | Department of Energy Project title: Stimulation at Desert Peak and Bradys reservoirs: modeling with the coupled THM code FEHM Project title: Stimulation at Desert Peak and Bradys reservoirs: modeling with the coupled THM code FEHM Project title: Stimulation at Desert Peak and Bradys reservoirs: modeling with the coupled THM code FEHM presentation at the April 2013 peer review meeting held in Denver, Colorado. kelkar_peer2013.pdf (496.77 KB) More

  15. LBL/Industry fractured reservoir performance definition project

    SciTech Connect (OSTI)

    Benson, S.M.

    1995-04-01

    One of the problems facing the petroleum industry is the recovery of oil from heterogeneous, fractured reservoirs and from reservoirs that have been partially depleted. In response to this need, several companies, notably British Petroleum USA, (BP) and Continental Oil Company (CONOCO), have established integrated reservoir description programs. Concurrently, LBL is actively involved in developing characterization technology for heterogeneous, fractured rock, mainly for DOE`s Civilian Nuclear Waste Program as well as Geothermal Energy programs. The technology developed for these programs was noticed by the petroleum industry and resulted in cooperative research centered on the petroleum companies test facilities. The emphasis of this work is a tightly integrated interdisciplinary approach to the problem of characterizing complex, heterogeneous earth materials. In this approach we explicitly combine the geologic, geomechanical, geophysical and hydrologic information in a unified model for predicting fluid flow. The overall objective is to derive improved integrated approaches to characterizing naturally fractured gas reservoirs.

  16. Full Reviews: Reservoir Characterization

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer reviewer comments for Reservoir Characterization.

  17. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect (OSTI)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  18. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared an EIS that analyzes the potential environmental impacts of constructing and operating the proposed Magnolia LNG Project, an on-land liquefied natural gas (LNG) terminal and associated facilities near Lake Charles, Louisiana. The EIS also analyzes the potential environmental impacts of constructing and operating the proposed Lake Charles Expansion Project, which would reconfigure an existing pipeline system to serve the LNG terminal site. DOE was a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  19. Seismicity and Reservoir Fracture Characterization

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

  20. Project title: Stimulation at Desert Peak and Bradys reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capability of modeling reservoir scale systems over time span of interest (20-30 years) ... that depend on pressure, temperature, and stresses in a highly nonlinear manner. ...

  1. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly

  2. Project title: Stimulation at Desert Peak and Bradys reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the ...

  3. Secondary heat recovery from low-permeability high-temperature reservoir: A possible project in the Larderello Field, Italy

    SciTech Connect (OSTI)

    Gianelli, G.; Squarci, P.; Capocecera, P.

    1997-12-31

    A project of fracture stimulation and secondary heat recovery from the metamorphic reservoir of the Larderello geothermal field could be developed in a next future. Geological and geophysical data suggest that the stimulation can enhance permeability and that the water injection can be recovered as steam. In particular, the area of the project is characterized by the presence of an important seismic reflector which has been explained assuming the presence of fractured rocks filled with high pressure fluids. Extensional and hydraulic fractures can present at temperatures of 300-350{degrees}C, and this makes the experiment of extreme interest.

  4. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect (OSTI)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  5. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  6. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal), Class I

    SciTech Connect (OSTI)

    Bou-Mikael, Sami

    2002-02-05

    This project outlines a proposal to improve the recovery of light oil from waterflooded fluvial dominated deltaic (FDD) reservoir through a miscible carbon dioxide (CO2) flood. The site is the Port Neches Field in Orange County, Texas. The field is well explored and well exploited. The project area is 270 acres within the Port Neches Field.

  7. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  8. SMALL, GEOLOGICALLY COMPLEX RESERVOIRS CAN BENEFIT FROM RESERVOIR SIMULATION

    SciTech Connect (OSTI)

    Richard E. Bennett

    2002-06-24

    The Cascade Sand zone of the Mission-Visco Lease in the Cascade Oil field of Los Angeles County, California, has been under water flood since 1970. Increasing water injection to increase oil production rates was being considered as an opportunity to improve oil recovery. However, a secondary gas cap had formed in the up-dip portion of the reservoir with very low gas cap pressures, creating concern that oil could be displaced into the gas cap resulting in the loss of recoverable oil. Therefore, injecting gas into the gas cap to keep the gas cap pressurized and restrict the influx of oil during water injection was also being considered. Further, it was recognized that the reservoir geology in the gas cap area is very complex with numerous folding and faulting and thus there are potential pressure barriers in several locations throughout the reservoir. With these conditions in mind, there were concerns regarding well to well continuity in the gas cap, which could interfere with the intended repressurization impact. Concerns about the pattern of gas flow from well to well, the possibilities of cycling gas without the desired increased pressure, and the possible loss of oil displaced into the gas cap resulted in the decision to conduct a gas tracer survey in an attempt to better define inter-well communication. Following the gas tracer survey, a reservoir model would be developed to integrate the findings of the gas tracer survey, known geologic and reservoir data, and historic production data. The reservoir model would be used to better define the reservoir characteristics and provide information that could help optimize the waterflood-gas injection project under consideration for efficient water and gas injection management to increase oil production. However, due to inadequate gas sampling procedures in the field and insufficiently developed laboratory analytical techniques, the laboratory was unable to detect the tracer in the gas samples taken. At that point, focus

  9. Expansion of the 5 DE Noviembre hydroelectric project, El Salvador, C.A.

    SciTech Connect (OSTI)

    Fuerte, E.G.; Mendoza, V.; Wang, L.L.

    1995-12-31

    With an area of 21,050 square kilometers, the Republic of El Salvador is the smallest country in Central American. El Salvador, independent since 1821, is a democratic country with its President elected by popular vote for a five-year term. The population in El Salvador was estimated at 5.1 million in 1992. Over the period of 1984 to 1993, the peak load of the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) system, which serves about 98 percent of the country`s power needs, grew 6.5 percent per year. During the same period the energy generation increased at an annual rate of 6.8 percent. These growths were achieved in spite of the political turmoil and civil war that had gripped the country from 1980 to 1992. Since the end of the civil war, the country has witnessed significant economic recovery and growth. System demands will continue to increase at a rapid rate, due primarily to continued economic recovery and expansion resulting from establishment of the now political system. CEL generating facilities will be undergoing significant rehabilitation to correct the problems accumulated over the civil war period.

  10. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal - Appendix)

    SciTech Connect (OSTI)

    Bou-Mikael, Sami

    2002-02-05

    The main objective of the Port Neches Project was to determine the feasibility and producibility of CO2 miscible flooding techniques enhanced with horizontal drilling applied to a Fluvial Dominated Deltaic reservoir. The second was to disseminate the knowledge gained through established Technology Transfer mechanisms to support DOE's programmatic objectives of increasing domestic oil production and reducing abandonment of oil fields.

  11. SNL/SRNL Joint Project on degradation of mechanical properties in structural metals and welds for GTS reservoirs.

    SciTech Connect (OSTI)

    Ronevich, Joseph Allen; Balch, Dorian K.; San Marchi, Christopher W.; West, Scott; Morgan, Mike

    2015-12-01

    This project was intended to enable SNL-CA to produce appropriate specimens of relevant stainless steels for testing and perform baseline testing of weld heat-affected zone and weld fusion zone. One of the key deliverables in this project was to establish a procedure for fracture testing stainless steel weld fusion zone and heat affected zones that were pre-charged with hydrogen. Following the establishment of the procedure, a round robin was planned between SNL-CA and SRNL to ensure testing consistency between laboratories. SNL-CA and SRNL would then develop a comprehensive test plan, which would include tritium exposures of several years at SRNL on samples delivered by SNL-CA. Testing would follow the procedures developed at SNL-CA. SRNL will also purchase tritium charging vessels to perform the tritium exposures. Although comprehensive understanding of isotope-induced fracture in GTS reservoir materials is a several year effort, the FY15 work would enabled us to jump-start the tests and initiate long-term tritium exposures to aid comprehensive future investigations. Development of a procedure and laboratory testing consistency between SNL-CA and SNRL ensures reliability in results as future evaluations are performed on aluminum alloys and potentially additively-manufactured components.

  12. Marys Lake 69/115-kV transmission line upgrade and substation expansion projects

    SciTech Connect (OSTI)

    1996-05-01

    Western Area Power Administration (Western) and the Platte River Power Authority (Platte River) propose to upgrade portions of the existing electric transmission and substation system that serves the Town of Estes Park, Colorado. The existing transmission lines between the Estes Power Plant Switchyard and the Marys Lake Substation include a 115,000 volt (115-kV) line and 69,000 volt (69-kV) line. Approximately one mile is a double-circuit 115/69-kV line on steel lattice structures, and approximately two miles consists of separate single-circuit 115-kV and a 69-kV lines, constructed on wood H-Frame structures. Both lines were constructed in 1951 by the US Bureau of Reclamation. The existing transmission lines are on rights-of-way (ROW) that vary from 75 feet to 120 feet and are owned by Western. There are 48 landowners adjacent to the existing ROW. All of the houses were built adjacent to the existing ROW after the transmission lines were constructed. Upgrading the existing 69-kV transmission line between the Marys Lake Substation and the Estes Power Plant Switchyard to 115-kV and expanding the Marys Lake Substation was identified as the most effective way in which to improve electric service to Estes Park. The primary purpose and need of the proposed project is to improve the reliability of electric service to the Town of Estes Park. Lack of reliability has been a historical concern, and reliability will always be less than desired until physical improvements are made to the electrical facilities serving Estes Park.

  13. Reservoir Claddings

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet explains how to properly decouple reservoir claddings from water sensitive materials of the wall assembly.

  14. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project ... More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks ...

  15. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    SciTech Connect (OSTI)

    Fowler, M.L.; Young, M.A.; Madden, M.P.

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  16. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  17. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  18. The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: Develop Improved Methods For Maintaining Permeable Fracture Volumes In EGS Reservoirs.

  19. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect (OSTI)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  20. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  1. Electric power generation expansion and integration, Micronesia (Yap, Kosrae, Pohnpei, Chuuk) power plants project. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The State of Yap in the Federated States of Micronesia is now entirely dependent on oil for electric power generation. The present high costs and limited capacity for electric power generation are major disincentives to the economic development of Yap. Preliminary proposals from two U.S. companies regarding waste-to-energy plants might furnish electricity to Yap below present costs. Yap and its sister state of Kosrae have agreed to jointly seek a grant from the U.S. Trade and Development Program (TDP) to cover three areas: An assessment of projected power generating requirements; A review of generating alternatives with emphasis on waste to energy generation; and An environmental analysis of the waste to energy alternatives. The government in Yap has two objectives: reduce the amount of money spent for diesel fuel now and in the future and make sufficient electricity available at a reasonable price to attract development for the economy of Yap. Officials on both Pohnpei and Kosrae echoed these objectives.

  2. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  3. Pipeline Expansions

    Reports and Publications (EIA)

    1999-01-01

    This appendix examines the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It also includes those projects in Canada and Mexico that tie-in with the U.S. markets or projects.

  4. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    SciTech Connect (OSTI)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-05-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm / shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm / shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the “International Handbook of Evaluated Criticality Safety Benchmark Experiments” have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement / shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy

  5. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir. seismic_fehler_fluid_flow.pdf (1.15 MB) More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and

  6. Summary of Research through Phase II/Year 2 of Initially Approved 3 Phase/3 Year Project - Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    SciTech Connect (OSTI)

    G. Grammer

    2007-09-30

    This final scientific/technical report covers the first 2 years (Phases I and II of an originally planned 3 Year/3 Phase program). The project was focused on evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin. The characterization of select dolomite reservoirs was the major focus of our efforts in Phases I and II of the project. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault-related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in these 2 studied intervals (based upon fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. In the Niagaran (Silurian), there is a general trend of increasing dolomitization shelfward, with limestone predominant in more basinward positions. A major finding is that facies types, when analyzed at a detailed level, are directly related to reservoir porosity and permeability in these dolomites which increases the predictability of reservoir quality in these units. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point that the results should be exportable throughout the basin. Much of the data synthesis and modeling for the project was scheduled to be part of Year 3/Phase III, but the discontinuation of funding after Year 2 precluded those efforts

  7. Pyrotek Graphitization Facility Expansion Project

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  8. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  9. Heat Flow Database Expansion for NGDS Data Development, Collection...

    Open Energy Info (EERE)

    Database Expansion for NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Heat Flow...

  10. Final project report on arsenic biogeochemistry in the Clinch River and Watts Bar Reservoir: Volume 2, Quality assurance/quality control summary report for arsenic biogeochemistry in the Clinch River and Watts Bar Reservoir. Environmental Restoration Program

    SciTech Connect (OSTI)

    Newman, K.A.; Ford, C.J.; Byrd, J.T.

    1995-04-01

    Arsenic contamination was studied in the Clinch River/Watts Bar Reservoir (CR/WBR) system downstream from the US Department of Energy`s Oak Ridge Reservation (ORR). Arsenic is of particular interest and concern because (1) it occurs commonly in coal-bearing rock and waste products such as fly ash associated with the burning of coal, (2) it is classified as a Class A carcinogen by the US Environmental Protection Agency, and (3) disposal of fly ash, both on and off the ORR, may have contaminated surface water and sediments in the Clinch River and Watts Bar Reservoir. The present study dffers from previous reports on arsenic concentrations in the CR/WBR system in the use of much more sensitive and precise processing and analytical techniques to measure arsenic species (arsenate, arsenite, and organic arsenic) at levels well below the ecological and human health risk screening criteria. The absolute detection limits using these techniques are approximately 20 to 40 pmol/L or 0.0015 to 0.003 {mu}g/L.

  11. Chemistry, Reservoir, and Integrated Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry, Reservoir, and Integrated Models Chemistry, Reservoir, and Integrated Models Below are the project presentations and respective peer review results for Chemistry, Reservoir and Integrated Models. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS), Marte Gutierrez and Masami Nakagawa, Colorado School of Mines Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal

  12. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    SciTech Connect (OSTI)

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  13. Final Project Report on Arsenic Biogeochemistry in the Clinch River and Watts Bar Reservoir, Volume 2: Quality Assurance/Quality Control Summary Report for Arsenic Biogeochemistry in the Clinch River and Watts Bar Reservoir

    SciTech Connect (OSTI)

    Newman, K.A.

    1995-01-01

    Arsenic contamination was studied in the Clinch River/Watts Bar Reservoir (CR/WBR) system downstream from the U.S. Department of Energy's Oak Ridge Reservation (ORR). Arsenic is of particular interest and concern because (1) it occurs commonly in coal-bearing rock and waste products such as fly ash associated with the burning of coal, (2) it is classified as a Class A carcinogen by the U. S. Environmental Protection Agency, and (3) disposal of fly ash, both on and off the ORR, may have contaminated surface water and sediments in the Clinch River and Watts Bar Reservoir. The present study differs from previous reports on arsenic concentrations in the CR/WBR system in the use of much more sensitive and precise processing and analytical techniques to measure arsenic species (arsenate, arsenite, and organic arsenic) at levels well below the ecological and human health risk screening criteria. The absolute detection limits using these techniques are approximately 20 to 40 pmol/L, or 0.0015 to 0.003 {micro}g/L. Four main sites were sampled quarterly over a 3-year period (1990 through 1992). Sites investigated included Lower Watts Bar Reservoir near the Watts Bar Dam (Tennessee River kilometer 849.6), the Kingston area (Clinch River kilometer 1.6), Poplar Creek (Poplar Creek kilometer 1.6), and the McCoy Branch Embayment (McCoy Branch kilometer 0.3). Additional sites were investigated in the vicinity of these main stations to determine the distribution of contamination and to identify possible alternative or additional sources of arsenic. Detection limits that were a factor of 20 below the minimum risk screening criteria were achieved for 100% of arsenic speciation data. However, 118 samples for inductively coupled plasma metals analysis were not preserved to analytical specifications, and the analytical holding times for 180 ion chromatography samples were not met. More rigorous preservative testing protocols and more tightly defined analytical statements of work will

  14. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir, Class II

    SciTech Connect (OSTI)

    Hickman, T. Scott; Justice, James J.; Egg, Rebecca

    2001-08-07

    The Oxy operated Class 2 Project at West Welch Project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO2 injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir demonstration characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO2 flood design based on the reservoir characterization.

  15. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    SciTech Connect (OSTI)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  16. Status of Norris Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

  17. Final project report on arsenic biogeochemistry in the Clinch River and Watts Bar Reservoir: Volume 1, Main text. Environmental Restoration Program

    SciTech Connect (OSTI)

    Ford, C.J.; Byrd, J.T.; Grebmeier, J.M.; Harris, R.A.; Moore, R.C.; Madix, S.E.; Newman, K.A.; Rash, C.D.

    1995-04-01

    This document reports on the study of arsenic contamination in the Clinch River/Watts Bar Reservoir (CR/WBR) system, downstream from the US Department of Energy`s Oak Ridge Reservation (ORR). Arsenic is of particular interest and concern because it occurs commonly in coal-bearing rock and waste products, such as fly ash associated with the burning of coal; it is classified as a Class A carcinogen by the Environmental Protection Agency; and disposal of fly ash, both on and off the ORR, may have contaminated surface water and sediments in the Clinch River and Watts Bar Reservoir. Four main sites were sampled quarterly over a 3-year period. Sites investigated included lower Watts Bar Reservoir near Watts Bar Dam [Tennessee River kilometer (TRK) 849.6], the Kingston area [Clinch River kilometer (CRK) 1.6], Poplar Creek, and the McCoy Branch Embayment. Additional sites were investigated in the vicinity of these main stations to determine the distribution of contamination and to identify possible alternative or additional sources of arsenic.

  18. CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project Categorical Determination Alcoa Tennessee Automotive Sheet Expansion Project CX(s) Applied: B1.31 Date: 05/06/2014 Location(s): Alcoa, Tennessee Offices(s): Loan Programs Office More Documents & Publications CX-012188: Categorical Exclusion Determination CX-012189: Categorical Exclusion

  19. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, Don; Koerner, Roy; Moos, Dan; Nguyen, John; Phillips, Chris; Tagbor, Kwasi; Walker, Scott

    1999-11-09

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  20. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  1. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  2. Geothermal Reservoir Dynamics - TOUGHREACT

    SciTech Connect (OSTI)

    Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

    2005-03-15

    This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

  3. THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THMC Modeling of EGS Reservoirs - Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity Derek Elsworth Pennsylvania State University Chemistry, Reservoir and Integrated Models Project Officer: Lauren Boyd Total Project Funding: $1.11M + $0.5M = $1.61M April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Challenges * Prospecting

  4. Sweet Lake Geopressured-geothermal Project, Magma Gulf-Technadril/DOE Amoco Fee. Volume II. Surface installations reservoir testing. Annual report, February 28, 1981-February 10, 1982

    SciTech Connect (OSTI)

    Hoffman, K.S.

    1984-01-01

    The Magma Gulf-Technadril/Department of Energy Amoco Fee No. 1 (production) and salt water disposal wells were drilled in the period from August, 1980 to February 1981. Surface facilities were designed and constructed during March-June 1981. Flow testing began in June 1981 and continued until February, 1982. The Miogypsinoides interval contains seven discrete sands in the test well. These sands have been numbered 1 to 7, beginning at the top of the sequence. Data from wireline logs and core samples suggested that the first zone to be perforated should be Sand 5. Because of its high porosity and permeability, Sand 5 was thought to contain almost 50% of the total hydraulic capacity of the well. Flow testing of Sand 5 was performed in three stages, each of which is fully described in this report. Phase I was designed as an initial clean-up flow and a reservoir confirmation test. Phase II consisted of the reservoir limit determination test and lasted 17 days. Boundaries were confirmed which suggest that the Sweet Lake reservoir is fairly narrow, with boundaries on three sides, but is open in one direction with no closure for at least 4-1/4 miles. These boundaries approximate the shape of the graben in which the test well was drilled, but may or may not be directly related to the major faults forming the graben. Phase III testing was planned to be a long-term test at commercial design rates. Although Sand 5 alone would not support such rates, long-term production was demonstrated. Additional research not supported by DOE funding was also performed during the period covered by this report. This research, consisting of mud logging, micropaleontology, organic geochemistry, core analysis, and rock mechanics, is summarized in this report.

  5. Natural Gas Pipeline and System Expansions

    Reports and Publications (EIA)

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  6. Status of Cherokee Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  7. Status of Wheeler Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  8. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  9. Reservoir performance of a gravity-stable, vertical CO[sub 2] miscible flood: Wolfcamp reef reservoir, Wellman Unit

    SciTech Connect (OSTI)

    Bangia, V.K.; Yau, F.F.; Hendricks, G.R. )

    1993-11-01

    A gravity-stable, vertical CO[sub 2] miscible flood was implemented in the Wellman Unit Wolfcamp reef reservoir in 1983. CO[sub 2] was injected into the crest of the reservoir to displace the oil vertically downward, and water was injected into the lower water-swept region of the reservoir to maintain reservoir pressure at slightly above the minimum miscibility pressure (MMP). Excellent production response to increased CO[sub 2] injection was observed. The reservoir performance was encouraging and indicated excellent volumetric conformance and ultimate recovery. This paper reviews the operating strategy and project performance from inception through mid-1991.

  10. Heat Flow Database Expansion for NGDS Data Development, Collection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU) ... not contain any proprietary Track Three - Data Project Team Members SMU - Siemens CT ...

  11. Expansion and Improvement of Solar Water Heating Technology in...

    Open Energy Info (EERE)

    and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating Technology...

  12. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2003-01-31

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Major development work planned for the project includes the drilling of three horizontal production and one vertical injection wells, the conversion of five wells from production to injection service, and the expansion of injection capacity at the nitrogen management facility. Other work items include initiation of project monitoring and continued reservoir simulation. EBU 74G-2, the injection well planned to support the production of EBU 64-3H, has been drilled. Completion was underway at the time of this report. EBU 64-3H was fracture-stimulated during the period, further increasing production from this new horizontal well. Drilling of the final two wells of the pilot project is planned for 2003. Both are planned as horizontal producing wells. Work also began on projects aimed at increasing injection in the pilot area. The project to add compression and increase injection capacity at the nitrogen management facility was initiated, with completion targeted for March 2003. Additional producer-to-injector conversions are expected to be implemented around the same time. The revised history match of the simulation model has been completed, and work has begun to evaluate options with forecast simulations. The quality of the history match is significantly improved over the prior match. The predicted distribution of remaining reserves in the field is significantly changed. Decisions on projects planned for implementation later in Budget Period 2 will be guided by new forecasts.

  13. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  14. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas - Near-Term, Class II

    SciTech Connect (OSTI)

    Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

    2001-10-30

    The focus of this project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent.

  15. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock

  16. Base Technology and Tools for Super Critical Reservoir | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Base Technology and Tools for Super Critical Reservoir Base Technology and Tools for Super Critical Reservoir Project objective: Develop building blocks necessary for robust tools that can operate in supercritical environments. high_henfling_super_critical_reservoir.pdf (305.92 KB) More Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Development of a HT Seismic Tool Harsh Environment Silicon Carbide Sensor Technology for Geothermal

  17. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stochastic Analysis of Injection-Induced Seismicity | Department of Energy Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity This project will develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics; finite element modeling; geo-statistical concepts to establish

  18. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  19. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  20. Fit for Purpose Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that needs to be addressed by current and future Fit-for-Purpose projects includes: Reservoir pressure management - In deep saline formations, pressure increases due to...

  1. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  2. Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Strycker, A.R.; Guariguata, G.; Salmen, F.G.

    1994-12-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

  3. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  4. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project Final Report 2000-2002.

    SciTech Connect (OSTI)

    Baxter, Jeremy; Baxter, James S.

    2002-12-01

    This report summarizes the third and final year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. The fence and traps were operated from September 6th to October 11th 2002 in order to enumerate post-spawning bull trout. During the study period a total of 309 bull trout were captured at the fence. In total, 16 fish of undetermined sex, 114 males and 179 females were processed at the fence. Length and weight data, as well as recapture information, were collected for these fish. An additional 41 bull trout were enumerated upstream of the fence by snorkeling prior to fence removal. Coupled with the fence count, the total bull trout enumerated during the project was 350 individuals. Several fish that were tagged in the lower Bull River were recaptured in 2002, as were repeat and alternate year spawners previously enumerated in past years at the fence. A total of 149 bull trout redds were enumerated on the ground in 2002, of which 143 were in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past six years. The results of the three year project are summarized, and population characteristics are discussed.

  5. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (OSTI)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  6. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Matthias G. Imhof; James W. Castle

    2005-02-01

    The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. Throughout the project, however, we learned that this strategy was impractical because the different data and model are complementary instead of competitive. For the complex Coalinga field, we found that a thorough understanding of the reservoir evolution through geologic times provides the necessary framework which ultimately allows integration of the different data and techniques.

  7. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  8. Multi-institutional project to study climate change's effect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An expansive new project called Next Generation Ecosystem Experiments-Tropics aims to ... An expansive new project called Next Generation Ecosystem Experiments-Tropics, or ...

  9. Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: to develop a 3-D numerical model for simulating mode I; II; and III (tensile; shear; and tearing propagation of multiple fractures using the virtual multi-dimensional internal bond (VMIB); to predict geothermal reservoir stimulation.

  10. Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement

    SciTech Connect (OSTI)

    Dershowitz, William S.; Curran, Brendan; Einstein, Herbert; LaPointe, Paul; Shuttle, Dawn; Klise, Kate

    2002-07-26

    The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.

  11. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project will provide the first ever formal evaluation of fracture and fracture flow evolution in an EGS reservoir following a hydraulic stimulation.

  12. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995

    SciTech Connect (OSTI)

    Pande, P.K.

    1996-11-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  13. Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data

    SciTech Connect (OSTI)

    Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild; Liu, Ning

    2003-03-10

    The goal of this project was to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem was necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management.

  14. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  15. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-12-11

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  16. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman

    2003-01-17

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  17. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2001.

    SciTech Connect (OSTI)

    Baxter, James S.; Baxter, Jeremy

    2002-03-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing.

  18. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and reservoir simulation were completed as prerequisites for design of efficient ASP flood patterns. Characterizing the complex reservoir geology that identifies the geologic conditions that will optimize oil recoveries for expansion of the ASP pilots in the Bridgeport and Cypress sandstones to other areas of Lawrence Field is the primary objective of this project. It will permit evaluation of efficiency of oil recovery from Bridgeport and Cypress sandstone reservoirs using ASP technology. Additionally evaluation of similar Pennsylvanian and Chesterian reservoirs shows that it is likely that ASP flood technology can be successfully applied to similar reservoirs in the Illinois Basin as well as to other U.S. reservoirs. Chemical flooding was introduced in stages with the first flood initiated in 2010 and a second offset pilot project initiated during 2011. Rex Energy Corporation is reporting a positive response on its ASP Middagh pilot project in the Pennsylvanian Bridgeport B reservoir, Lawrence Field. Oil response in the 15 acre flood has continued to show an increase in oil cut from 1% to 12%. Total pattern production increased from 16 BOPD and stabilized at a range of 65-75 BOPD in the last three months of 2011. Peak production rose to 100 + BOPD. Oil cut in the pilot increased for 1.0% to ~ 12.0% with an individual well showing oil cuts greater than 20%. A second, 58 acre pilot (Perkins-Smith) adjacent to and likely in communication with the Middagh pilot has been initiated. Preliminary brine injection has been implemented and ASP injection was initiated in mid-2012. Response is expected by mid-2013 with peak recovery expected by late 2013. Rex Energy is projecting full scale expansion with the next step of development being a 351 acre project scheduled to begin in mid-2013. Preliminary development has been initiated in this Delta Unit area located in the south half of section 32, T

  19. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect (OSTI)

    Davies, D.K.; Vessell, R.K.; Doublet, L.E.

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  20. Weakly relativistic plasma expansion

    SciTech Connect (OSTI)

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  1. Fractured reservoir discrete feature network technologies. Final report, March 7, 1996 to September 30, 1998

    SciTech Connect (OSTI)

    Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta

    1998-12-01

    This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.

  2. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2000.

    SciTech Connect (OSTI)

    Baxter, James S.; Baxter, Jeremy

    2001-02-01

    An enumeration fence and traps were installed on Skookumchuck Creek from September 7 th to October 16 th to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 252 bull trout were sampled through the enumeration fence. Length, weight, and sex were determined for all but one of the 252 bull trout captured. In total, one fish of undetermined sex, 63 males and 188 females were processed through the fence. A total of 67 bull trout were observed on a snorkel survey prior to the fence being removed on October 16 th . Coupled with the fence count, the total bull trout count during this project was 319 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout, Rocky Mountain whitefish, kokanee, sucker, and Eastern brook trout. Redds were observed during ground surveys in three different locations (river km 27.5- 28.5, km 29-30, and km 24-25). The largest concentration of redds were noted in the upper two sections which have served as the index sections over the past four years. A total of 197 bull trout redds were enumerated on the ground on October 4 th . The majority of redds (n=189) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past four years. The additional 8 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Skookumchuck Creek at km 39.5, and Skookumchuck Creek at the fence site suggested that water temperatures were within the range preferred by bull trout for spawning, egg incubation, and rearing.

  3. Kenya-GEF Projects | Open Energy Information

    Open Energy Info (EERE)

    database1 GEF Climate Projects in Kenya 1780 Kenya Joint Geophysical Imaging (JGI) Methodology for Geothermal Reservoir Assessment Climate Change UNEP Medium Size Project, GEF...

  4. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Matthias G. Imhof; James W. Castle

    2005-02-01

    The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. We learned, however, that this strategy was impractical. The different data and tools need to be integrated from the beginning because they are all interrelated. This report describes a new approach to geostatistical modeling and presents an integration of geology and geophysics to explain the formation of the complex Coalinga reservoir.

  5. Century Wind Project Expansion | Open Energy Information

    Open Energy Info (EERE)

    EnXco Energy Purchaser MidAmerican Energy Location Wright and Hamilton Counties IA Coordinates 42.509141, -93.682151 Show Map Loading map... "minzoom":false,"mappings...

  6. Aircraft Hangar High Expansion Foam Project

    Broader source: Energy.gov [DOE]

    Presenter: Lenny Farello, Senior Fire Protection Engineer, NNSA Associate Administrator for Safety, Infrastructure and Operations (NA‐50)

  7. Transient well testing in two-phase geothermal reservoirs

    SciTech Connect (OSTI)

    Aydelotte, S.R.

    1980-03-01

    A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

  8. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  9. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  10. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    SciTech Connect (OSTI)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  11. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  12. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drillings. Annual technical progress report, June 13, 1996 to June 12, 1998

    SciTech Connect (OSTI)

    Nevans, Jerry W.; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill

    1999-04-27

    Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, does not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations. Other technologies, such as inter-well injection tracers and magnetic flow conditioners, can also aid in the efficient evaluation and operation of both injection and producing wells. The purpose of this project was to demonstrate useful and cost effective methods of exploitation of the shallow shelf carbonate reservoirs of the Permian Basin located in West Texas.

  13. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual technical progress report, June 13, 1996--June 12, 1997

    SciTech Connect (OSTI)

    Nevans, J.W.; Pregger, B.; Blasingame, T.; Doublet, L.; Freeman, G.; Callard, J.; Moore, D.; Davies, D.; Vessell, R.

    1997-08-01

    Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, does not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations. The purpose of this project is to demonstrate the application of advanced secondary recovery technologies to remedy producibility problems in typical shallow shelf carbonate reservoirs of the Permian Basin, Texas. Typical problems include poor sweep efficiency, poor balancing of injection and production rates, and completion techniques that are inadequate for optimal production and injection.

  14. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  15. Methodologies for Reservoir Characterization Using Fluid Inclusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Methodologies for ...

  16. OPEC production: Untapped reserves, world demand spur production expansion

    SciTech Connect (OSTI)

    Ismail, I.A.H. )

    1994-05-02

    To meet projected world oil demand, almost all members of the Organization of Petroleum Exporting Countries (OPEC) have embarked on ambitious capacity expansion programs aimed at increasing oil production capabilities. These expansion programs are in both new and existing oil fields. In the latter case, the aim is either to maintain production or reduce the production decline rate. However, the recent price deterioration has led some major OPEC producers, such as Saudi Arabia and Iran, to revise downward their capacity plans. Capital required for capacity expansion is considerable. Therefore, because the primary source of funds will come from within each OPEC country, a reasonably stable and relatively high oil price is required to obtain enough revenue for investing in upstream projects. This first in a series of two articles discusses the present OPEC capacity and planned expansion in the Middle East. The concluding part will cover the expansion plans in the remaining OPEC countries, capital requirements, and environmental concerns.

  17. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Murphy, M.B.

    1999-02-01

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  18. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  19. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  20. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; Dwasi Tagbor; John Nguygen; Roy Koerner; Scott Walker

    1997-04-10

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  1. Parcperdue geopressure-geothermal project. Study a geopressured reservoir by drilling and producing a well in a limited geopressured water sand. Final technical report, September 28, 1979-December 31, 1983

    SciTech Connect (OSTI)

    Hamilton, J.R.; Stanley, J.G.

    1984-01-15

    The behavior of geopressured reservoirs was investigated by drilling and producing a well in small, well defined, geopressured reservoir; and performing detailed pressure transient analysis together with geological, geophysical, chemical, and physical studies. The Dow-DOE L. R. Sweezy No. 1 well was drilled to a depth of 13,600 feet in Parcperdue field, just south of Lafayette, Louisiana, and began production in April, 1982. The production zone was a poorly consolidated sandstone which constantly produced sand into the well stream, causing damage to equipment and causing other problems. The amount of sand production was kept manageable by limiting the flow rate to below 10,000 barrels per day. Reservoir properties of size, thickness, depth, temperature, pressure, salinity, porosity, and permeability were close to predicted values. The reservoir brine was undersaturated with respect to gas, containing approximately 20 standard cubic feet of gas per barrel of brine. Shale dewatering either did not occur or was insignificant as a drive mechanism. Production terminated when the gravel-pack completion failed and the production well totally sanded in, February, 1983. Total production up to the sanding incident was 1.94 million barrels brine and 31.5 million standard cubic feet gas.

  2. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  3. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, Lawrence M.; Strum, Michael J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  4. Encapsulated microsensors for reservoir interrogation

    DOE Patents [OSTI]

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  5. Reservoir characterization of a Permian Giant: Yates Field, West Texas

    SciTech Connect (OSTI)

    Tinker, S.W.; Mruk, D.H.

    1995-06-01

    The Yates Field reservoir characterization project provided the geologic framework, data, and tools that support the ongoing reservoir management of Yates Field. Geologic and engineering data from 1800 wells with digital log data, 23,000 feet of quantified core analysis and description, and six decades of production data, were integrated, analyzed, and displayed in a format which could be used for field evaluation, management, and simulation. The Yates Field reservoir characterization products include: quantified, standardized, digital core descriptions for 118 cores in the field; 2-D digital cross section through every well in the field; 2-D structure and isochore maps for major and internal marker horizons, net and gross reservoir maps, net and gross shale maps, secondary calcite distribution maps, cave distribution maps, and fracture distribution maps; a 6.8 million cell 3-D geologic model of the complete reservoir that includes log, core, and production data. The reservoir characterization project resulted in a quantified description of the heterogeneous matrix and fracture network in Yates Field. It is the efficient, ongoing management of this classic dual-porosity system that has stabilized production from this sixty-eight year old, 4.2 billion barrel field.

  6. The Potosi Reservoir Model 2013

    SciTech Connect (OSTI)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In the preceding, the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this topical report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48.3km x48.3km), while preserving all property modeling workflows and layering. This model was retained as the base case of Potosi Dynamic Model 2013a. The Potosi reservoir model was updated to take into account the new data from the verification well VW2 which was drilled in 2012. The new porosity and permeability modeling was

  7. Reservoir Modeling Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting 2012 GEOTHERMAL TECHNOLOGIES PROGRAM PEER REVIEW ... History Past Meetings: March 2010 IPGT Modeling Working Group Meeting May 2010 GTP Peer ...

  8. Stateline Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stateline Expansion Wind Farm Jump to: navigation, search Name Stateline Expansion Wind Farm Facility Stateline Expansion Sector Wind energy Facility Type Commercial Scale Wind...

  9. Geotechnology for low-permeability gas reservoirs, 1995

    SciTech Connect (OSTI)

    Brown, S.; Harstad, H.; Lorenz, J.; Warpinski, N.; Boneau, T.; Holcomb, D.; Teufel, L.; Young, C.

    1995-06-01

    The permeability, and thus the economics, of tight reservoirs are largely dependent on natural fractures, and on the in situ stresses that both originated fractures and control subsequent fracture permeability. Natural fracture permeability ultimately determines the gas (or oil) producibility from the rock matrix. Therefore, it is desirable to be able to predict, both prior to drilling and during reservoir production, (1) the natural fracture characteristics, (2) the mechanical and transport properties of fractures and the surrounding rock matrix, and (3) the present in situ stress magnitudes and orientations. The combination of activities described in this report extends the earlier work to other Rocky Mountain gas reservoirs. Additionally, it extends the fracture characterizations to attempts of crosswell geophysical fracture detection using shear wave birefringence and to obtaining detailed quantitative models of natural fracture systems for use in improved numerical reservoir simulations. Finally, the project continues collaborative efforts to evaluate and advance cost-effective methods for in situ stress measurements on core.

  10. Diamond Shamrock nears completion of major expansions

    SciTech Connect (OSTI)

    True, W.R.

    1993-05-24

    With completion later this year of a second refined products line into Colorado, Diamond Shamrock Inc., San Antonio, will have added more than 600 miles of product and crude-oil pipeline on its system and expanded charge and production capacities at its two state-of-the-art refineries, all within 30 months. The projects aim at improving the company's ability to serve markets in the U.S. Southwest and increasing capacities and flexibility at its two refineries. The paper describes these projects under the following headings: new products service; another new line; and refineries, crude pipelines; Three Rivers expansion and Supplies for McKee.

  11. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect (OSTI)

    Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn

    2001-10-29

    This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs.

  12. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect (OSTI)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-06-01

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plant that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration are being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the US.

  13. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    SciTech Connect (OSTI)

    Laubach, S.E.; Marrett, R.; Rossen, W.; Olson, J.; Lake, L.; Ortega, O.; Gu, Y.; Reed, R.

    1999-01-01

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specific goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.

  14. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management.

    SciTech Connect (OSTI)

    Koerner, R.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1997-10-21

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1997 and to report all technical data and findings as specified in the `Federal Assistance Reporting Checklist`. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques.

  15. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker.

    1998-01-26

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period October - December 1997 and to report all technical data and findings as specified in the Federal Assistance Reporting Checklist . The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  16. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1998-04-22

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1998 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  17. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management.

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nauyen, John; Moos, Dan; Tagbor, Kwasi

    1997-07-28

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period April - June 1997 and to report all technical data and findings as specified in the `Federal Assistance Reporting Checklist`. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques.

  18. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1998-01-26

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period October - December 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  19. Cryogenic expansion machine

    DOE Patents [OSTI]

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  20. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect (OSTI)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  1. IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2

    SciTech Connect (OSTI)

    Timothy R. Carr; Don W. Green; G. Paul Willhite

    2000-04-30

    This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small independent producer to identify

  2. Data Integration for the Generation of High Resolution Reservoir Models

    SciTech Connect (OSTI)

    Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

    2009-01-07

    The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

  3. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA) EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington ...

  4. FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  5. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fernandez, Carlos A.

    2013-09-25

    EGS field projects have not sustained production at rates greater than of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  6. Seismic and Rockphysics Diagnostics of Multiscale Reservoir Textures

    SciTech Connect (OSTI)

    Gary Mavko

    2005-07-01

    This final technical report summarizes the results of the work done in this project. The main objective was to quantify rock microstructures and their effects in terms of elastic impedances in order to quantify the seismic signatures of microstructures. Acoustic microscopy and ultrasonic measurements were used to quantify microstructures and their effects on elastic impedances in sands and shales. The project led to the development of technologies for quantitatively interpreting rock microstructure images, understanding the effects of sorting, compaction and stratification in sediments, and linking elastic data with geologic models to estimate reservoir properties. For the public, ultimately, better technologies for reservoir characterization translates to better reservoir development, reduced risks, and hence reduced energy costs.

  7. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  8. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fernandez, Carlos A.

    EGS field projects have not sustained production at rates greater than of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  9. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    SciTech Connect (OSTI)

    Carlos A. Fernandez

    2014-09-15

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  10. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    SciTech Connect (OSTI)

    Fernandez, Carlos A.

    2013-09-25

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  11. Water resources review: Ocoee reservoirs, 1990

    SciTech Connect (OSTI)

    Cox, J.P.

    1990-08-01

    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  12. Collapsible sheath fluid reservoirs for flow cytometers

    DOE Patents [OSTI]

    Mark, Graham A. (Los Alamos, NM)

    2000-01-01

    The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.

  13. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for ...

  14. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    SciTech Connect (OSTI)

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.; Jordan, O.T.; Ana, F.X.M.S.; Bodvarsson, G.S.; Doughty, C.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water front away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.

  15. 216-B-3 expansion ponds closure plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

  16. An innovative secondary recovery approach for a marginal reservoir

    SciTech Connect (OSTI)

    Clark, T.J.; Hanafy, H.H.

    1995-11-01

    The Younis Lower Rudeis reservoir is operated by the Gulf of Suez Petroleum Company (GUPCO) in a remote area of the Gulf of Suez, Egypt. Before concluding that Younis had no future potential, GUPCO commissioned a reservoir/facility engineering team to study the reservoir development potential. First, reservoir simulation would be used to improve the understanding of the depletion mechanism and the original oil in place. Second, simulation would be used to determine the potential for waterflooding. Third, if waterflooding potential exists,the team must find a way to economically develop the incremental reserves. The reservoir simulation work clarified the depletion mechanism in Younis, and indicated a significant potential for waterflooding exists. History matching of the historical reservoir performance discovered that a much larger reservoir volume is actually present than mapped, and that ultimate recovery will actually reach only 22 percent of the OOIP. Furthermore, while gravity segregation of gas is occurring, significant unrecovered oil reserves will remain downdip of the current producers. Waterflooding could aid recovery of this downdip oil. With expected reserves from the waterflood project to total 5.3 MMBO, the facility engineers were challenged with providing up to 6000 BPD of water to the platform. An innovative technique was ultimately designed to install all needed equipment on the Younis unmanned platform for a remote waterflood. Since surface injection is expected to occur under a vacuum due to the low reservoir pressure, inexpensive equipment would be used to withdraw water from the Gulf, treat and filter, and deliver to the injection well at the required rate.

  17. GPFA-AB_Phase1GeologicReservoirsContentModel10_26_2015.xls

    SciTech Connect (OSTI)

    Teresa E. Jordan

    2015-09-30

    This dataset conforms to the Tier 3 Content Model for Geologic Reservoirs Version 1.0. It contains the known hydrocarbon reservoirs within the study area of the GPFA-AB Phase 1 Task 2, Natural Reservoirs Quality Analysis (Project DE-EE0006726). The final values for Reservoir Productivity Index (RPI) and uncertainty (in terms of coefficient of variation, CV) are included. RPI is in units of liters per MegaPascal-second (L/MPa-s), quantified using permeability, thickness of formation, and depth. A higher RPI is more optimal. Coefficient of Variation (CV) is the ratio of the standard deviation to the mean RPI for each reservoir. A lower CV is more optimal. Details on these metrics can be found in the Reservoirs_Methodology_Memo.pdf uploaded to the Geothermal Data Repository Node of the NGDS in October of 2015.

  18. Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Lorie M. Dilley Hattenburg Dilley & Linnell Track Name: Geochemistry Project Officer: Ava Coy Total Project Funding: $414,000 April 25, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice Fluid types interpreted from fluid inclusion gas chemistry across Coso geothermal system 2 | US DOE Geothermal Office eere.energy.gov

  19. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...

    Open Energy Info (EERE)

    evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Reservoir evaluation tests on...

  20. FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FRAC-STIM: A Physics-Based Fracture Stimulation, Reservoir Flow and Heat Transport Simulator (aka FALCON) Robert Podgorney Idaho National Laboratory R&D Project Officer: B. Segneri ...

  1. Waveguide-based Ultrasonic and Far-field Electromagnetic Sensors for Downhole Reservoir Characterization

    Broader source: Energy.gov [DOE]

    Project objective: To develop waveguide-based ultrasonic and farfield electromagnetic sensors to measure key Enhanced Geothermal Systems (EGS) reservoir parameters, including directional temperature, pressure, fluidflow, fracture imaging, and flow/rock interaction.

  2. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-29

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.

  3. Improved oil recovery in Mississippian carbonate reservoirs of Kansas - near term -- Class 2. Quarterly progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Carr, T.; Green, D.W.; Willhite, G.P.

    1995-11-01

    The objective of this project is to demonstrate incremental reserves from Osagian and Meramecian dolomite reservoirs in western Kansas through application of reservoir characterization to identify areas of unrecovered mobile petroleum. Specific reservoirs targeted are the Schaben Field in Ness County and the Bindley Field in Hodgeman County.

  4. Chickamauga reservoir embayment study - 1990

    SciTech Connect (OSTI)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  5. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Czirr, K.L.; Gaddis, M.P.; Moshell, M.K.

    2002-02-21

    The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs.

  6. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Grigg, Reid B.; Schechter, David S.

    1999-10-15

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  7. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect (OSTI)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olson; Deanna Combs; Dhiraj Dembla

    2004-06-01

    The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. To this end it has commissioned several small consulting studies to technically support its effort to secure a partner. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and has written a thesis describing his research (titled ''Stimulating enhanced oil recovery (EOR) by high-pressure air injection (HPAI) in west Texas light oil reservoir''). We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete all activities specified in the proposal, it will be necessary to request

  8. FERC approves Northwest pipeline expansion

    SciTech Connect (OSTI)

    Not Available

    1992-06-15

    Northwest Pipeline Co., Salt Lake City, Utah, received a final permit from the Federal Energy Regulatory Commission for a $373.4 million main gas line expansion. This paper reports that it plans to begin construction of the 443 MMcfd expansion in mid-July after obtaining further federal, state, and local permits. The expanded system is to be fully operational by second quarter 1993. When the expansion is complete, total Northwest system mileage will be 3,936 miles and system capacity about 2.49 bcfd.

  9. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - near-term. Quarterly report, April 1 - June 30, 1996

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-07-01

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites, Stewart Field, and Savonburg Field, operated by different independent oil operators are involved in this project. General topics to be addressed are: (1) reservoir management and performance evaluation; (2) waterflood optimization; and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. For the Stewart Field project, work is summarized for the last quarter on waterflood operations and reservoir management. For the Savonburg Field project, work on water plant development, and pattern changes and wellbore cleanup are briefly described.

  10. Clocking the Early Universe's Expansion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clocking the Early Universe's Expansion Calculations Performed at NERSC Help Scientists Close in on the Nature of Dark Energy April 17, 2014 Margie Wylie, mwylie@lbl.gov, +1 510 ...

  11. Zambia : long-term generation expansion study - executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Buehring, W.; Veselka, T.; Decision and Information Sciences

    2008-02-28

    The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. The analysis involved the hydro operations studies of the Zambezi river basin and the systems planning studies for the least-cost generation expansion planning. Two well-known and widely accepted computer models were used in the analysis: PC-VALORAGUA model for the hydro operations and optimization studies and the WASP-III Plus model for the optimization of long-term system development. The WASP-III Plus model is a part of the Argonne National Laboratory's Energy and Power Evaluation Model (ENPEP). The analysis was conducted in close collaboration with the Zambia Electricity Supply Corporation (ZESCO). On the initiative from The World Bank, the sponsor of the study, ZESCO formed a team of experts that participated in the analysis and were trained in the use of computer models. Both models were transferred to ZESCO free of charge and installed on several computers in the ZESCO corporate offices in Lusaka. In September-October 1995, two members of the ZESCO National Team participated in a 4-week training course at Argonne National Laboratory near Chicago, U.S.A., focusing on the long-term system expansion planning using the WASP and VALORAGUA models. The hydropower operations studies were performed for the whole Zambezi river basin, including the full installation of the Kariba power station, and the Cahora Bassa hydro power station in Mozambique. The analysis also included possible future projects such as Itezhi-Tezhi, Kafue Gorge Lower, and Batoka Gorge power stations. As hydropower operations studies served to determine the operational characteristics of the existing and future hydro power plants, it was necessary to simulate the whole Zambezi river basin in order to take into account all interactions and mutual influences between the hydro power plants. In addition, it allowed for the optimization of reservoir management

  12. Fluvial-deltaic heavy oil reservoir, San Joaquin basin

    SciTech Connect (OSTI)

    Miller, D.D.; McPherson, J.G.; Covington, T.E.

    1989-03-01

    Unconsolidated arkosic sands deposited in a fluvial-deltaic geologic setting comprise the heavy oil (13/degree/ API gravity) reservoir at South Belridge field. The field is located along the western side of the San Joaquin basin in Kern County, California. More than 6000 closely spaced and shallow wells are the key to producing the estimated 1 billion bbl of ultimate recoverable oil production. Thousands of layered and laterally discontinuous reservoir sands produce from the Pleistocene Tulare Formation. The small scale of reservoir geometries is exploited by a high well density, required for optimal heavy oil production. Wells are typically spaced 200-500 ft (66-164 m) apart and drilled to 1000 ft (328 m) deep in the 14-mi/sup 2/ (36-km/sup 2/) producing area. Successful in-situ combustion, cyclic steaming, and steamflood projects have benefited from the shallow-depth, thick, layered sands, which exhibit excellent reservoir quality. The fundamental criterion for finding another South Belridge field is to realize the extraordinary development potential of shallow, heavy oil reservoirs, even when an unspectacular discovery well is drilled. The trap is a combination of structural and stratigraphic mechanisms plus influence from unconventional fluid-level and tar-seal traps. The depositional model is interpreted as a braid delta sequence that prograded from the nearby basin-margin highlands. A detailed fluvial-deltaic sedimentologic model establishes close correlation between depositional lithofacies, reservoir geometries, reservoir quality, and heavy oil producibility. Typical porosity is 35% and permeability is 3000 md.

  13. MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA

    SciTech Connect (OSTI)

    Albert C. Reynolds; Dean S. Oliver; Fengjun Zhang; Yannong Dong; Jan Arild Skjervheim; Ning Liu

    2003-01-01

    Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. But while the volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade, it is not yet possible to make use of all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. The goal of this project is to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem is necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management. Facies (defined here as regions of relatively uniform petrophysical properties) are common features of all reservoirs. Because the flow properties of the various facies can vary greatly, knowledge of the location of facies boundaries is of utmost importance for the prediction of reservoir performance and for the optimization of reservoir management. When the boundaries between facies are fairly well known, but flow properties are poorly known, the average properties for all facies can be determined using traditional techniques. Traditional history matching honors dynamic data by adjusting petrophysical properties in large areas, but in the process of adjusting the reservoir model ignores the static data and often results in implausible reservoir

  14. Final Report: AST-0613577 "Experimental study of magnetic bubble expansion as a model for extragalactic radio lobes"

    SciTech Connect (OSTI)

    Lynn, Alan

    2011-02-18

    Final report for project "Experimental study of magnetic bubble expansion as a model for extragalactic radio lobes" supported by NSF/DOE Joint Program in Basic Plasma Science.

  15. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect (OSTI)

    1998-01-01

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  16. Application of Integrated Reservoir management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect (OSTI)

    B. Pregger; D. Davies; D. Moore; G. Freeman; J. Callard; J.W. Nevans; L. Doublet; R. Vessell; T. Blasingame

    1997-08-31

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  17. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  18. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    SciTech Connect (OSTI)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

    2003-09-01

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

  19. THMC Modeling of EGS Reservoirs … Continuum through Discontinuum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THMC Modeling of EGS Reservoirs Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs ...

  20. THMC Modeling of EGS Reservoirs …Continuum through Discontinuum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THMC Modeling of EGS Reservoirs Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs ...

  1. Reservoir Modeling Working Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting Reservoir Modeling Working Group Meeting Reservoir Modeling working group meeting presentation on May 10, 2012 at the 2012 Peer Review ...

  2. IPGT Reservoir Modeling Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPGT Reservoir Modeling Working Group IPGT Reservoir Modeling Working Group Summary of recommendations and geothermal reservoir benchmarking workshop gtp2012peerreviewreservoirm...

  3. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    SciTech Connect (OSTI)

    Perri, Pasquale R.; Cooney, John; Fong, Bill; Julander, Dale; Marasigan, Aleks; Morea, Mike; Piceno, Deborah; Stone, Bill; Emanuele, Mark; Sheffield, Jon; Wells, Jeff; Westbrook, Bill; Karnes, Karl; Pearson, Matt; Heisler, Stuart

    2000-04-24

    The primary objective of this project was to conduct advanced reservoir characterization and modeling studies in the Antelope Shale of the Bureau Vista Hills Field. Work was subdivided into two phases or budget periods. The first phase of the project focused on a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work would then be used to evaluate how the reservoir would respond to enhanced oil recovery (EOR) processes such as of CO2 flooding. The second phase of the project would be to implement and evaluate a CO2 in the Buena Vista Hills Field. A successful project would demonstrate the economic viability and widespread applicability of CO2 flooding in siliceous shale reservoirs of the San Joaquin Valley.

  4. A reservoir management plan

    SciTech Connect (OSTI)

    Allis, R.G.

    1989-06-16

    There are numerous documented cases of extraction of fluids from the ground causing surface subsidence. The cases include groundwater, oil and gas, as well as geothermal fluid withdrawal. A recent comprehensive review of all types of man-induced land subsidence was published by the Geological Survey of America. At the early stages of a geothermal power development project it is standard practice in most countries for an environmental impact report to be required. The possibility of geothermal subsidence has to be addressed, and usually it falls on the geophysicists and/or geologists to make some predictions. The advice given is vital for planning the power plant location and the borefield pipe and drain layout. It is not so much the vertical settlement that occurs with subsidence but the accompanying horizontal ground strains that can do the most damage to any man-made structure.

  5. Potosi Reservoir Modeling; History and Recommendations

    SciTech Connect (OSTI)

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO₂) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from two projects: the US DOE-funded Illinois Basin–Decatur Project being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois, as well as data from the Illinois – Industrial Carbon Capture and Sequestration (IL-ICCS) project funded through the American Recovery and Reinvestment Act. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the Verification Well 1 (VW1) and the Injection Well (CCS1), structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for the Potosi Formation. The intention was for two million tonnes per annum (MTPA) of CO₂ to be injected for 20 years into the Potosi Formation. In 2013, updated reservoir models for the Cambrian Potosi Formation were evaluated. The data included formation tops from mud logs, well logs from the CCS1, VW1, and Verification Well 2 (VW2) wells, structural and stratigraphic formation from a larger 3D seismic survey, and field data from several waste water injection wells for Potosi Formation. The objective is to simulate the injection of CO₂ at a rate 3.5 million tons per annum (3.2 million tonnes per annum [MTPA]) for 30 years 106 million tons (96 MT total) into the Potosi Formation. The Potosi geomodeling efforts have evolved

  6. Relativistic effects on plasma expansion

    SciTech Connect (OSTI)

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  7. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    Green, D.W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite G.P.

    1999-10-29

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

  8. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-11-03

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

  9. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.

    SciTech Connect (OSTI)

    Sellman, Jake; Dykstra, Tim

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.

  10. Seismic estimation of porosity in the Permian San Andres carbonate reservoir, Welch Field, Dawson, County, Texas

    SciTech Connect (OSTI)

    Watts, G.P.; Hinterlong, G.D. )

    1996-01-01

    OXY and the DOE Are partners in a advanced technology demonstration project at OXY's West Welch Unit. Production is from a low permeability San Andres reservoir of Permian age similar to many shallow shelf carbonate reservoirs in the Permian Basin. The project involves the construction of a detailed geological model for numerical simulation to design and then conduct a CO[sub 2] flood of the reservoir. Depositional textures of the reservoir rock are highly variable from diagenesis, mostly anhydritic cementing, creating a highly complex pore system. Identification of the interwell reservoir continuity and flow units present the greatest challenge to the reservoir description. A 1993 vintage 3-D seismic survey with a bin spacing of 110[prime] by 165[prime] has been used to assist with the interwell reservoir description. The structure definition at the top and base of the reservoir have been accurately mapped with respect to the well data. Core and well log measurements of porosity, permeability and water saturation were computed and summed across the seismic reservoir interval. Measurements of amplitude, frequency and phase within the 3-D volume were summed across the reservoir interval. All seismic attributes were sampled to the wells and compared through scatterplots to the well log and core measurements. Excellent correlation between three seismic attributes and porosity has been documented. A deterministic method has been used to estimate porosity values at each seismic bin location. The method uses the seismic measurements to shape the geology between the wells while maintaining agreement with the well data at the well locations.

  11. Seismic estimation of porosity in the Permian San Andres carbonate reservoir, Welch Field, Dawson, County, Texas

    SciTech Connect (OSTI)

    Watts, G.P.; Hinterlong, G.D.

    1996-12-31

    OXY and the DOE Are partners in a advanced technology demonstration project at OXY`s West Welch Unit. Production is from a low permeability San Andres reservoir of Permian age similar to many shallow shelf carbonate reservoirs in the Permian Basin. The project involves the construction of a detailed geological model for numerical simulation to design and then conduct a CO{sub 2} flood of the reservoir. Depositional textures of the reservoir rock are highly variable from diagenesis, mostly anhydritic cementing, creating a highly complex pore system. Identification of the interwell reservoir continuity and flow units present the greatest challenge to the reservoir description. A 1993 vintage 3-D seismic survey with a bin spacing of 110{prime} by 165{prime} has been used to assist with the interwell reservoir description. The structure definition at the top and base of the reservoir have been accurately mapped with respect to the well data. Core and well log measurements of porosity, permeability and water saturation were computed and summed across the seismic reservoir interval. Measurements of amplitude, frequency and phase within the 3-D volume were summed across the reservoir interval. All seismic attributes were sampled to the wells and compared through scatterplots to the well log and core measurements. Excellent correlation between three seismic attributes and porosity has been documented. A deterministic method has been used to estimate porosity values at each seismic bin location. The method uses the seismic measurements to shape the geology between the wells while maintaining agreement with the well data at the well locations.

  12. Characterization of oil and gas reservoir heterogeneity. Final report

    SciTech Connect (OSTI)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  13. Modernization project comes online at Savannah River | National...

    National Nuclear Security Administration (NNSA)

    Automated Reservoir Management System (ARMS) was based on hardware and software architecture that were approaching obsolescence, prompting a multi-year project to implement its...

  14. Tenth workshop on geothermal reservoir engineering: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  15. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect (OSTI)

    Seright, Randall; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Anand; Wavrik, Kathryn

    2001-09-07

    The objectives of this project are: (1) to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas, (2) to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems, and (3) to develop procedures to optimize blocking agent placement in naturally fractured reservoirs. Work was directed at both injection wells and production wells and at vertical, horizontal, and highly deviated wells.

  16. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    SciTech Connect (OSTI)

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  17. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    SciTech Connect (OSTI)

    Refunjol, B.T.; Lake, L.W.

    1997-08-01

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  18. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2002-01-09

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

  19. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    Tom Beebe

    2003-05-05

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the seventh annual reporting period (8/3/00-8/2/01) covered by this report, work continued on interpretation of the interwell seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted and the acquired data processed and interpretation started. Only limited well work and facility construction were conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and six wells had experienced gas (CO{sub 2}) breakthrough.

  20. THMC Modeling of EGS Reservoirs -- Continuum through Discontinuum...

    Office of Scientific and Technical Information (OSTI)

    Capturing Reservoir Stimulation, Evolution and Induced Seismicity Citation Details ... Capturing Reservoir Stimulation, Evolution and Induced Seismicity This work has ...

  1. Sunset Reservoir Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Reservoir Solar Power Plant Facility Sunset Reservoir Sector Solar Facility Type Photovoltaic Developer Recurrent Energy Location San Francisco, California Coordinates...

  2. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.

    2001-03-28

    This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.

  3. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect (OSTI)

    Lucia, F.J.; Kerans, C.

    1997-05-29

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study.

  4. Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interfaces | Department of Energy Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock Interfaces Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock Interfaces Project obectives: Utilize synchrotron X-ray measurements, to monitor all aspects of atomic to nanoscale structural changes resulting from chemical interactions of scCO2-H2O binary fluids with rocks under environments directly relevant to EGS. chemistry_you_synchrotron_studies.pdf (1.84

  5. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir, Class I

    SciTech Connect (OSTI)

    Bou-Mikael, Sami

    2002-02-05

    This report demonstrates the effectiveness of the CO2 miscible process in Fluvial Dominated Deltaic reservoirs. It also evaluated the use of horizontal CO2 injection wells to improve the overall sweep efficiency. A database of FDD reservoirs for the gulf coast region was developed by LSU, using a screening model developed by Texaco Research Center in Houston. The results of the information gained in this project is disseminated throughout the oil industry via a series of SPE papers and industry open forums.

  6. THMC Modeling of EGS Reservoirs … Continuum through Discontinuum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity | Department of Energy THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing

  7. 4. International reservoir characterization technical conference

    SciTech Connect (OSTI)

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  8. An assessment of the Tongonan geothermal reservoir, Philippines, at high-pressure operating conditions

    SciTech Connect (OSTI)

    Sarmiento, Z.F.; Aquino, B.G.; Aunzo, Z.P.; Rodis, N.O.; Saw, V.S.

    1993-10-01

    An evaluation of the Tongonan geothermal reservoir was conducted to improve the power recovery through reservoir and process optimization. The performance of the existing production wells was reviewed and the response of the field based on the anticipated production levels was simulated at various operating conditions. The results indicate that the Tongonan geothermal reservoir can be exploited at a high pressure operating condition with substantial improvement in the field capacity. The authors calculate that the Upper Mahiao and the Malitbog sectors of the Tongonan field are capable of generating 395 MWe at 1.0 MPa abs., on top of the existing 112.5 MWe plant, compared with 275 MWe if the field is operated at 0.6 MPa abs. The total capacity for the proposed Leyte A 640 MWe expansion can be generated from these sectors with the additional power to be tapped from Mahanagdong and Alto Peak sectors.

  9. Geostatistics applied to gas reservoirs

    SciTech Connect (OSTI)

    Meunier, G.; Coulomb, C.; Laille, J.P. )

    1989-09-01

    The spatial distribution of many of the physical parameters connected with a gas reservoir is of primary interest to both engineers and geologists throughout the study, development, and operation of a field. It is therefore desirable for the distribution to be capable of statistical interpretation, to have a simple graphical representation, and to allow data to be entered from either two- or three-dimensional grids. To satisfy these needs while dealing with the geographical variables, new methods have been developed under the name geostatistics. This paper describes briefly the theory of geostatistics and its most recent improvements for the specific problem of subsurface description. The external-drift technique has been emphasized in particular, and in addition, four case studies related to gas reservoirs are presented.

  10. PROJECT PROFILE: Ceramatec, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These generators will be most similar to thermoelectric generators, though the ion expansion engines are considerably more efficient. This project was announced on September 16, ...

  11. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs

    SciTech Connect (OSTI)

    Seright, Randall S.

    2000-09-20

    This research project has three objectives. The first objective is to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective is to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective is to develop procedures to optimize blocking agent placement in naturally fractured reservoirs. This research project consists of three tasks, each of which addresses one of the above objectives. This work is directed at both injection wells and production wells and at vertical, horizontal, and highly deviated wells.

  12. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a

  13. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a

  14. Increasing waterflood reserves in the Wilmington oil field through improved reservoir characterization and reservoir management. [Quarterly report], October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1996-01-23

    The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques. Technical progress is reported for the following tasks; reservoir characterization, reservoir engineering; deterministic (3-D) geologic modeling; pulsed acoustic logging; and technology transfer.

  15. INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO

    SciTech Connect (OSTI)

    F. Jerry Lucia

    2002-01-31

    This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock-fabric flow layers

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-07

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  17. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf carbonate reservoir. [Quarterly report], October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Taylor, A.R.

    1996-01-01

    West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, TX. This field was discovered early 1940`s and produces oil under a solution gas drive mechanism from the Sand Adres formation at {approx}4800 ft. This field has been under waterflood for 30 yr and a significant portion has been infill drilled on 20-ac density. A 1982-86 CO{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a CO{sub 2} pipeline near the field allowed phased development of a miscible CO{sub 2} injection project at the South Welch Unit. Reservoir quality is poorer at West Welch Unit due to relative position to sea level during deposition, and this unit is ideal for demonstrating methods for enhancing economics of IOR projects in lower quality SSC (shallow shelf carbonate) reservoirs. This Class 2 project concentrates on the efficient design of a miscible CO{sub 2} project based on detailed reservoir characterization. During the quarter, progress was made on petrophysical analysis and tomography processing. The geologic model is dependent on these, and the actual reservoir simulation cannot start until the geologic model is complete, although all the preliminary simulation work is being done.

  18. Application of reservoir characterization and advanced technologies to improve recovery and economics in a lower quality shallow shelf Sand Andreas Reservoir: Quarterly technical report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Taylor, A.R., Hickman, T.S., Justice, J.J.

    1997-04-30

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l.Advanced petrophysics 1547 2.Three-dimensional (3-D) seismic 3.Cross-well bore tomography 4.Advanced reservoir simulation 5.Carbon dioxide (CO{sub 2}) stimulation treatments 6.Hydraulic fracturing design and monitoring 7. Mobility control agents SUMMARY OF TECHNICAL PROGRESS West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982- 86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible CO injection project at the South Welch Unit.

  19. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  20. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    SciTech Connect (OSTI)

    Knight, Bill; Schechter, David S.

    2002-07-26

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  1. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area

    SciTech Connect (OSTI)

    Schechter, D.S.

    1999-02-03

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This report provides results of the third year of the five-year project for each of the four areas including a status report of field activities leading up to injection of CO2.

  2. The 1/Nc Expansion in Baryons

    SciTech Connect (OSTI)

    Jose L. Goity, Chandana Jayalath, Norberto N. Scoccola

    2010-08-01

    The 1/N_c expansion in baryons is discussed with two applications, namely baryon masses and partial decay widths. These applications provide the basic insights on the utility of the expansion.

  3. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near term. Quarterly report, June 30--September 30, 1995

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1995-10-15

    The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. General topics to be addressed will be (1) reservoir management and performance evaluation; (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process on both field demonstration sites.

  4. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-10-01

    increases, the remaining oil saturation decreases. This is evident from log and core analysis. (5) Using a compositional simulator, we are able to reproduce the important reservoir characteristics by assuming a two layer model. One layer is high permeability region containing water and the other layer is low permeability region containing mostly oil. The results are further verified by using a dual porosity model. Assuming that most of the volatile oil is contained in the matrix and the water is contained in the fractures, we are able to reproduce important reservoir performance characteristics. (6) Evaluation of secondary mechanisms indicates that CO{sub 2} flooding is potentially a viable option if CO{sub 2} is available at reasonable price. We have conducted detailed simulation studies to verify the effectiveness of CO{sub 2} huff-n-puff process. We are in the process of conducting additional lab tests to verify the efficacy of the same displacement. (7) Another possibility of improving the oil recovery is to inject surfactants to change the near well bore wettability of the rock from oil wet to water wet. By changing the wettability, we may be able to retard the water flow and hence improve the oil recovery as a percentage of total fluid produced. If surfactant is reasonably priced, other possibility is also to use huff-n-puff process using surfactants. Laboratory experiments are promising, and additional investigation continues. (8) Preliminary economic evaluation indicates that vertical wells outperform horizontal wells. Future work in the project would include: (1) Build multi-well numerical model to reproduce overall reservoir performance rather than individual well performance. Special emphasis will be placed on hydrodynamic connectivity between wells. (2) Collect data from adjacent Hunton reservoirs to validate our understanding of what makes it a productive reservoir. (3) Develop statistical methods to rank various reservoirs in Hunton formation. This will allow

  5. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect (OSTI)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our

  6. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  7. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Morea, Michael F.

    1999-11-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  8. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Michael F. Morea.

    1998-04-23

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  9. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Morea, Michael F.

    1999-11-08

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  10. Determining sand-body geometries for waterflood reservoirs: Examples from Oklahoma

    SciTech Connect (OSTI)

    Kreisa, R.D.; Pinero, E. )

    1987-02-01

    Waterflood projects require an accurate knowledge of reservoir geometry and well-to-well continuity. However, sandstones with thin, multiple-pay zones can be extremely difficult to correlate with confidence. Two case studies of Pennsylvanian sandstones in Oklahoma illustrate how a model for the depositional history of such reservoirs can be an effective tool for determining reservoir continuity. In contrast, correlation criteria such as similar wireline log signatures and relative sand-body thicknesses are not reliable in many situations. In Southwest Logan field (Beaver County), 5 to 15-ft thick reservoir sands formed as shallow marine sand ridges. Their dimensions were approximated from height-to-width ratios of modern sand ridges. Then the reservoir sands were mapped using wireline logs and core data. Individual reservoir sands were approximately 1-2 km wide and stacked en echelon vertically. Thus, a line-drive waterflood pattern oriented parallel to the axes of the ridges is recommended. Tatums field (Carter County) consists of 5 to 50-ft thick sandstones deposited in various deltaic environments. Distributary channel sands have good continuity downdip, but are narrow and lenticular across depositional strike. Crevasse splay and other bay-fill sands were deposited marginal to the channels and are extremely discontinuous. This depositional model can be used to improve flood patterns for these sands, leading to improved sweep efficiency. In both examples, for effective mapping, the depositional facies models have been used to register reservoir quality and wireline log signatures.

  11. Skimming' a reservoir for trash

    SciTech Connect (OSTI)

    Shenman, L.E. )

    1993-02-01

    Several hydropower facilities are using a new technology for removing floating trash in reservoirs. Representatives from the facilities say the boat, called a trashskimmer, is efficient, easy to maneuver, and transportable. Designed by United Marine International, Inc., the pontoon boat features an operators cab that straddles an open hull between the skis of the pontoon, and uses dual propellers to maneuver through the water. The Marineskimmer allows the operator to approach the trash from the water side upstream of the plant. The Tennessee Valley Authority has used the boat since 1990.

  12. Improved oil recovery in fluvial dominated reservoirs of Kansas--near-term. Annual report

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-11-01

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management and (5) integrated geological and engineering analysis. Results of these two field projects are discussed.

  13. Research needs for strandplain/barrier island reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.L.; Salamy, S.P.; Sarathi, P.S.; Young, M.A.

    1994-12-01

    This report identifies reservoir characterization and reservoir management research needs and IOR process and related research needs for the fourth geologic class, strandplain/barrier island reservoirs. The 330 Class 4 reservoirs in the DOE Tertiary OH Recovery Information System (TORIS) database contain about 30.8 billion barrels of oil or about 9% of the total original oil-in-place (OOIP) in all United States reservoirs. The current projection of Class 4 ultimate recovery with current operations is only 38% of the OOIP, leaving 19 billion barrels as the target for future IOR projects. Using the TORIS database and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (surfactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, California, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000, which emphasizes the urgent need for the development and demonstration of cost-effective recovery technologies.

  14. HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect (OSTI)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-12-10

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration will being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the U.S.

  15. Analysis of Geothermal Reservoir Stimulation Using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report ...

  16. Hydrothermal Convection Systems with Reservoir Temperatures greater...

    Open Energy Info (EERE)

    Systems with Reservoir Temperatures greater than or equal to 90 degrees C Authors Brook, Mariner, Mabey, Swanson, Guffanti and Muffler Published Journal Assessment of...

  17. Geothermometry At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Activity Details Location Blackfoot Reservoir Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown References Amy Hutsinpiller, W. T....

  18. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  19. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  20. Characterization of Fractures in Geothermal Reservoirs Using...

    Open Energy Info (EERE)

    Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly...

  1. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  2. International reservoir operations agreement helps NW fish &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or 503-230-5131 International reservoir operations agreement helps Northwest fish and power Portland, Ore. - The Bonneville Power Administration and the British Columbia...

  3. Precise Gravimetry and Geothermal Reservoir Management | Open...

    Open Energy Info (EERE)

    Precise Gravimetry and Geothermal Reservoir Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Precise Gravimetry and Geothermal...

  4. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of ...

  5. 201202 Reservoir System Modeling Technologies Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Applied To The Columbia River - PSR Adjoint Modeling Framework for Real-Time Control of Water - Deltares Reservoir Operations Analysis in the Willamette Water 2100...

  6. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  7. Post Waterflood C02 Miscible Flood in Light Oil Fluvial-Dominated Deltaic Reservoirs

    SciTech Connect (OSTI)

    John Augustine

    1998-01-13

    Only one well remains in production in the Port Neches CO2 project; Kuhn #14. Production from this project is approaching economic limit and the project is nearing termination at this point. The work over to return Kuhn #38 to production failed and the well is currently shut in. All produced CO2 is currently being reinjected in the reservoir. The CO2 recycled volume is 2 MMCFD.

  8. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  9. Ranking of Texas reservoirs for application of carbon dioxide miscible displacement

    SciTech Connect (OSTI)

    Ham, J

    1996-04-01

    Of the 431 reservoirs screened, 211 projected revenue that exceeded cost, ie, were profitable. Only the top 154 reservoirs, however, showed a profit greater than 30%. The top 10 reservoirs predicted a profit of at least 80%. Six of the top ten were Gulf Coast sandstones. The reservoirs are representative of the most productive discoveries in Texas; they account for about 72% of the recorded 52 billion barrels oil production in the State. Preliminary evaluation in this study implied that potential production from CO{sub 2}-EOR could be as much as 4 billion barrels. In order to enhance the chances of achieving this, DOE should consider a targeted outreach program to the specific independent operators controlling the leases. Development of ownership/technical potential maps and an outreach program should be initiated to aid this identification.

  10. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect (OSTI)

    Wood, James R.; Harrison, William B.

    2000-10-24

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.