Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University along a borehole at the site was consistent with results from FMI and PTS logging. INTRODUCTION

Stanford University

2

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University unit at the Enhanced Geothermal System (EGS) site at Desert Peak (Nevada) were used. Results indicate

Stanford University

3

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 ASSESSMENT OF GEOTHERMAL POTENTIAL AT UNGARAN VOLCANO.Prof.Soedarto, Semarang, Indonesia. 2 Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University

Stanford University

4

PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013  

E-Print Network [OSTI]

clean, renewable, and safe baseload geothermal power generation. INTRODUCTION Newberry VolcanoPROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University and shift stimulation to new fractures. The Newberry Volcano EGS Demonstration will allow geothermal

Foulger, G. R.

5

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, 94720, USA ABSTRACT Interactions between hydrothermal fluids and rock alter mineralogy, leading permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core

Stanford University

6

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, proppant will need to withstand high temperatures, acidified fluids, acid treatments, and cleanouts while in equilibrium with fluids of varying composition. TOUGHREACT was used to model one dimensional flow

Stanford University

7

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Resources Engineering 367 Panama Street Stanford, CA 94305-2220, USA e-mail: liljam@stanford.edu ABSTRACT The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource distribution in the field can be estimated by measuring potential differences between various points

Stanford University

8

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

significantly increase the costs of geothermal power plants, rendering less the feasibility of utilizationPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 - A METHODOLOGY FOR OPTIMAL GEOTHERMAL

Stanford University

9

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

attention in the last five decades. Geothermal heating and cooling are possible in zones having a normalPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 SUSTAINABILITY OF GEOTHERMAL DOUBLETS

Stanford University

10

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

and its heat source. INTRODUCTION The Kizildere geothermal field, which is situated within the MTPROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 ELECTRICAL RESISTIVITY IMAGE OF THE KIZILDERE

Stanford University

11

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes/University of Utah, U.S. Geothermal Inc. and Apex HiPoint Reservoir Engineering. The primary objective

Stanford University

12

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University is of primary concern in geothermal reservoir engineering. Based on a tracer circulation test performed at the European Enhanced Geothermal System (EGS) test site at Soultz-sous-Forêts, France, three different

Stanford University

13

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University National Laboratory National Security Engineering Division, L-188 7000 East Avenue, Livermore, CA 94550 e to complete an EGS reservoir project are (Figure 1): (1) finding and characterizing a site by drilling

Stanford University

14

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

in waste Hot reservoir: earth Cold reservoir: atmosphere Electricity Energy in raw materials Maintenance Energy Restoration Energy Heat Engine Energy in waste Figure 1: Geothermal heat engine converting raw, Stanford, California, February 1-3, 2010 SGP-TR-188 ENERGY RETURN ON ENERGY INVESTMENT, AN IMPORTANT FIGURE

Stanford University

15

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

was elaborated to prepare the implementation of the first Hungarian geothermal pilot power plant. The hydraulicPROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University FOR TRACER TRANSPORT IN A FRACTURED GEOTHERMAL RESERVOIR Aniko Toth, Peter Szucs and Elemer Bobok University

Stanford University

16

PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February1, 2012  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University was performed during one year on one site but injection pump failure and well damage lead to abandonment of the reservoir to the injected fluid paths. MODEL DESCRIPTION In this study we carried out numerical simulations

Boyer, Edmond

17

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

reveals that faster cooling rate which is equivalent to the fluid injection rate in geothermal operationsPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University IN HOT DRY GEOTHERMAL RESERVOIRS Xiaoxian Zhou1 , Atilla Aydin1 , Fushen Liu2 , David D. Pollard1 1

Stanford University

18

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University in a reservoir has been an essential part in the planning process for geothermal projects for the past 30 years of groundwater (for heating and/or cooling). The tool may be used in a preliminary planning phase to study

Stanford University

19

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University as the dynamic properties of the fluid flowing both through the wellbore and the reservoir. It is known that Petroleum and Geothermal fluids have similar properties in terms of well testing. In this regard, almost

Stanford University

20

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

.aniko@uni-miskolc.hu ABSTRACT Hungary has decided to implement its first geothermal pilot power plant for electricity production The implementation of the first Hungarian geothermal pilot power plant occurred in 2004. After a comprehensive sitePROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

1988; Smedley, 2002). Development of geothermal fields for power generation tends to increase the rate to constructing the geothermal power plant. The geothermal field is located in a Moil valley terraces set withinPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

22

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

an Enhanced Geothermal System (EGS) power generation project in Desert Peak (Nevada) geothermal field. As partPROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL SYSTEM K.M. Kovac1 , Susan J. Lutz2 , Peter S. Drakos3 , Joel Byersdorfer4 , and Ann Robertson

Stanford University

23

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

study sponsored by the U.S. Department of Energy (DOE), The Future of Geothermal Energy (MIT, 2006 level geothermal systems model to enable the US Department of Energy's Geothermal Technologies ProgramPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

24

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

a possible means of measuring thermal drawdown in a geothermal system before significant cooling occursPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University cooling. Results indicate that while the sensitivity of the method as generally proposed is low, it may

Stanford University

25

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, which produces fluid at temperatures in the range of 100-130 °C. Since 1979, the geothermal resource has the fluids from the entire region into distinctive units. This characterization provided valuable clues

Stanford University

26

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University MWe. A geochemical assessment of the field is made based on analytical data of fluids sampled in the initial aquifer fluids were modeled. Results indicate that "excess enthalpy" discharged by some wells

Stanford University

27

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University (the better the fluid flow, the lower the calcite content). This suggests that the fracture zones acting as flow pathways for the circulation of deep and hot fluids. These are crucial conditions

Stanford University

28

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Energy Geothermal Wayang Windu Ltd., 2. Geothermal Laboratory ITB, Bandung. mulyadiPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-DOMINATED TWO-PHASE ZONE OF THE WAYANG WINDU GEOTHERMAL FIELD, JAVA, INDONESIA Mulyadi1 and Ali Ashat2 1. Star

Stanford University

29

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

. The legislative framework in South Australia (Petroleum and Geothermal Energy Act 20001 ) and the behavior by the Petroleum and Geothermal Energy Act 2000 (P&GE Act), Figure 1.Geothermal licenses in South AustraliaPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

30

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

River geothermal site (from U.S. Geothermal Inc.) #12;Department of Energy from 1975 to 1982PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University RIVER GEOTHERMAL SITE Earl Mattson1 , Mitchell Plummer1 , Carl Palmer1 , Larry Hull1 , Samantha Miller1

Stanford University

31

Geothermal-reservoir engineering research at Stanford University. Second annual report, October 1, 1981-September 30, 1982  

SciTech Connect (OSTI)

Progress in the following tasks is discussed: heat extraction from hydrothermal reservoirs, noncondensable gas reservoir engineering, well test analysis and bench-scale experiments, DOE-ENEL Cooperative Research, Stanford-IIE Cooperative Research, and workshop and seminars. (MHR)

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

1982-09-01T23:59:59.000Z

32

Geothermal reservoir engineering research at Stanford University. First annual report, October 1, 1980-September 30, 1981  

SciTech Connect (OSTI)

The work on energy extraction experiments concerns the efficiency with which the in-place heat and fluids can be produced. The work on noncondensable gas reservoir engineering covers both the completed and continuing work in these two interrelated research areas: radon emanation from the rock matrix of geothermal reservoirs, and radon and ammonia variations with time and space over geothermal reservoirs. Cooperative research programs with Italy and Mexico are described. The bench-scale experiments and well test analysis section covers both experimental and theoretical studies. The small core model continues to be used for the study of temperature effects on absolute permeability. The unconsolidated sand study was completed at the beginning of this contract period. The Appendices describe some of the Stanford Geothermal program activities that results in interactions with the geothermal community. These occur in the form of SGP Technical Reports, presentations at technical meetings and publications in the open literature.

Brigham, W.E.; Horne, R.N.; Kruger, P.; Miller, F.G.; Ramey, H.J. Jr.

1981-09-01T23:59:59.000Z

33

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

Department of Energy Resources Engineering, Stanford University 367 Panama Street, Stanford, CA 94305, USA e and geometry are key for the optimum energy extraction from geothermal resources. Existing fracture systems, enhanced geothermal systems do not require natural convective hydrothermal resources, but rather

Stanford University

34

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 911, 2009  

E-Print Network [OSTI]

, Stanford, California, February 9­11, 2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL Donald W. Brown Los Alamos National Laboratory P.O. Box 1663, MS-D443 Los Alamos, New Mexico 87545 USA e-mail: dwb@lanl.gov ABSTRACT The concept of Hot Dry Rock (HDR) geothermal energy originated

Stanford University

35

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

, are as follows: (a) reduce the operations and maintenance cost; (b) reduce the power plant cost; (c) choose, Stanford, California, February 9-11, 2009 SGP-TR-187 OPTIMIZATION OF THE ECONOMICS OF ELECTRIC POWER FROM) developed to date, numerical simulation of idealized EGS reservoirs, economic sensitivity analysis

Stanford University

36

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

, Stanford, California, February 1-3, 2010 SGP-TR-188 HYDRAULIC FRACTURING OF NATURALLY FRACTURED RESERVOIRS hydraulic fractures formed in naturally fractured crystalline rock masses. The propped fractures were formed on injection of thin or low viscosity fluids (e.g. water) at pressures that are below the fracture opening

Stanford University

37

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

reservoirs where there exist coupled interactions among fluid and heat flow, and mechanical response, Stanford, California, February 1-3, 2010 SGP-TR-188 SIMULATION OF FLUID FLOW IN FRACTURED PORO and fracture pressure variation. This is accomplished by considering fluid flow and heat transport in a 2D

Stanford University

38

PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013  

E-Print Network [OSTI]

-elastic deformation with damage evolution, and groundwater flow are solved using the Explicit Finite Difference Lagrangian Method for solid deformation and the Finite Element Method for fluid mass conservation. Rock, Stanford, California, February 11-13, 2013 SGP-TR-198 MODELING RESERVOIR STIMULATION INDUCED BY WELLBORE

Lyakhovsky, Vladimir

39

Introduction to the Proceedings of the Sixth Geothermal Reservoir Engineering Workshop, Stanford Geothermal Program  

SciTech Connect (OSTI)

The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on thenumerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed i n these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented . Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey ( U.S.G.S.) , Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would l i k e t o thank Jean Cook and Joanne Hartford (Petroleum Engineering Department, Stanford University) without whom there may never have been a Sixth Workshop. Henry J. Ramey, Jr. Paul Kruger Ian G. Donaldson Stanford University December 31, 1980

Ramey, Henry J. Jr.; Kruger, Paul; Donaldson, Ian G.

1980-12-18T23:59:59.000Z

40

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

of Energy Resources Engineering 367 Panama Street Stanford, CA, 94305, USA e-mail: egillj opposed to time). The interwell connectivity is represented by a kernel function, which can be estimated via deconvolution. A nonparametric kernel estimation method is illustrated by deconvolving synthetic

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Julian, B.R. and G.R. Foulger, Monitoring Geothermal Processes with Microearthquake Mechanisms, Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9-  

E-Print Network [OSTI]

Julian, B.R. and G.R. Foulger, Monitoring Geothermal Processes with Microearthquake Mechanisms, Thirty- Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9- 11, 2009. Monitoring Geothermal Processes with Microearthquake Mechanisms Bruce R. Julian, U. S

Foulger, G. R.

42

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

of these projects there are really big challenges to be solved (extremely high overpressure, water salinity of this Study. There is no room to discuss the exploration, deep drilling, reservoir engineering and water in Hungary, their focus is on geothermal power plant project development. Having reviewed the available

Stanford University

43

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

extraction from deep, hot rocks for energy production is based on water circulation through a man made TESTS IN GEOTHERMAL RESERVOIRS M.R. Safari and A. Ghassemi Department of Petroleum Engineering at Texas A&M University College Station, Texas, U.S.A e-mail: ahmad.ghassemi@pe.tamu.edu ABSTRACT Heat

Stanford University

44

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

2 1 Istanbul Technical University, Department of Petroleum and Natural Gas Engineering, Maslak. In order to evaluate the ACE approach, we applied it to a subset of the Palinpinon data set and checked, prolonging the economic life of the reservoir. Presently, the developer relies on a variety of ways ranging

Stanford University

45

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

, Stanford University, Stanford, CA, spistone@stanford.edu 2 GeothermEx Inc., Richmond, CA ABSTRACT Carbon CO2 sequestration via subsurface fluid loss. In order to entertain this idea seriously in water, as can be observed in carbonated beverages. Furthermore, you can observe that the CO2 gas comes

Stanford University

46

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

-mail: hector.carlos.pulido@pemex.com ABSTRACT Complex reservoir geometries can influence the results obtained

Stanford University

47

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

for the simulation of steam flow in a geothermal power plant network". The fluid movement is governed. In the pipeline network of geothermal power plant the steam flows from high to low pressure and heat flows from, Stanford, California, February 1-3, 2010 SGP-TR-188 GeoSteamNet: 2. STEAM FLOW SIMULATION IN A PIPELINE

Stanford University

48

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

, Stanford, California, February 1-3, 2010 SGP-TR-188 2010 PRESENT STATUS OF GEOTHERMAL ENERGY IN TURKEY capacity in Turkey is about 100 MWe, while that of direct use installations is around 795 MWt. Direct use, solar, etc. Geological studies indicate that the most important geothermal systems of Turkey are located

Stanford University

49

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 DIRECTIONAL WELLS AT THE PAILAS GEOTHERMAL Costa Rica. Since 2009, the Costa Rican Electricity Company (ICE) has drilled 7 deep directional boreholes (in addition to the 9 existing vertical boreholes). The purpose of directional drilling has been

Stanford University

50

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 DESIGNING THERMAL-PHYSICAL, POWER out at expeditious development rates and there are about a million power plants of this type-energy power plant, that supplies consumers with heat within constrained by them parameters, standard

Stanford University

51

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

, Stanford, California, February 9-11, 2009 SGP-TR-187 FIELD EXPERIMENTS FOR STUDYING ON CO2 SEQUESTRATION to study CO2 sequestration in solid minerals by injecting CO2 dissolved water into a high temperature as carbonate minerals. INTRODUCTION For the global warming problems, it is considered to reduce CO2 emission

Stanford University

52

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 ARE GEOTHERMAL ENERGY RETURNS ON INVESTMENT as the investment energy for the next generation system. In the case of geothermal energy that means using on geothermal EROI of closing the loop is examined. The benefit of using geothermal energy, as compared

Stanford University

53

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

, Stanford, California, February 1-3, 2010 SGP-TR-188 FUTURE OF GEOTHERMAL ENERGY Subir K. Sanyal Geotherm This paper first describes the salient features of the various types of geothermal energy resources) geopressured systems, and (6) magma energy. Of these six types, only hydrothermal systems have been

Stanford University

54

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 A CONCEPTUAL MODEL FOR GEOTHERMAL ENERGY of the Caribbean islands have great potential for Geothermal Energy. These islands have been formed partially for geothermal energy. The only operating geothermal plant in the Caribbean is at Bouillante in Guadeloupe

Stanford University

55

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

Geothermal wells producing acidic fluid have been abandoned because of high corrosion potential on casing. In the Miravalles geothermal field, Costa Rica, there are geothermal wells producing acidic fluid. For these wells, Stanford, California, February 9-11, 2009 SGP-TR-187 ANALYSIS OF NEUTRALIZATION REACTION IN A GEOTHERMAL

Stanford University

56

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

-northeast of Reno, Nevada. It has an estimated reservoir temperature of 175-205C at 1- 2 km depth and supports understanding permeability anisotropy in the geothermal reservoir but also for estimating the fault reactivation studies, stress modeling, and 3D structural modeling may be valuable for geothermal development where cost

Stanford University

57

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Olkaria I (East) reservoir began producing steam for the 45 MWe Olkaria I power plant. During the twenty to this good performance, numerical simulation was done to establish how much more additional power could (Figure 3 & 4). Olkaria I reservoir serves the pioneer 45 MWe plant which was commissioned between 1981

Stanford University

58

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

] Basics of Geological Carbon Sequestration and Well Integrity (Adapted from Carbon Sequestration Research may lead to compromising the integrity of the reservoir. Results, obtained using LDEC, which analyze the integrity of the reservoir, the containment of the working geofluid, the surface deformation and ultimately

Stanford University

59

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

geosciences energy technology, the success of old and new approaches remain limited by the sparse knowledge an EGS reservoir project are (Figure 1): (1) finding and characterizing a site by drilling and logging exploratory wells; (2) creating the reservoir by drilling an injection well, stimulating the fractures

Stanford University

60

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

should be regarded as a continuing process ­ from the early exploration phase to the time when and production provides continuing refinement of reservoir parameters and, therefore, the electrical capacity estimates of reservoir capacity for electrical generation. INTRODUCTION In the early stage exploration

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

. These include steam- water flow (Li and Horne, 2001 and 2004), gas- condensate flow (App and Burger, 2009; Kumar out from reservoirs and bringing it to the surface, and it is almost impossible either to obtain

Stanford University

62

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

, there has been some interest in the use of carbon dioxide as a heat extraction fluid. CO2 offers a number and geological sequestration of CO2 within the reservoir · Possibility of direct use of produced CO2

Stanford University

63

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

plants, a pipe system is used to gather fluids from production wells and transport them to a power plant there are several geothermal power plants operational and there is potential for more. Because of the nature of the geothermal reservoirs involved, the steam supply systems for these power plants are normally designed for two

Stanford University

64

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

to hydraulic short-circuiting and inefficient heat transfer. The establishment of hydraulic connectivity geochemical and thermodynamic conditions in the reservoir to avoid degradation or adsorption of the tracer pumping tests conducted in heterogeneous transmissivity fields result in an overestimation of storativity

Stanford University

65

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

for the geothermal district heating (GDH) of approximately 150 000 dwellings. As of late 2010, thirty four GDH AT THE SCALE OF THE GEOTHERMAL HEATING DOUBLET IN THE PARIS BASIN, FRANCE. M.Le Brun1* , V.Hamm1 , S.Lopez1 , P systems apply the doublet concept in the Paris suburban area and mine the heat of the Dogger reservoir

Stanford University

66

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

is not an active volcanic region or plate boundary .Geothermal source might be from different source. The source of hot dry rock and geothermal reservoir and flow regimes have not be extensively explored. The Vijayan to geology of the study area with special emphasize on the dolerite dike which may have been the source

Stanford University

67

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

Cambridge, MA, 02139, USA e-mail: dconcha@mit.edu ABSTRACT We used the double-difference tomography method-sous-Forets, France with 45000 m3 of water resulted in over 12,000 microseismic events (also known as microearthquakes the reservoir. The 1993 stimulations at Soultz consisted of the injection of 45,000 m3 of water into an open

Stanford University

68

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

treatments have been limited, however, to only fractures that are or will open by pumping water from by pumping water from the surface to create a limited number of fractures in the open hole reservoir rock be to temporarily hydraulically isolate the stimulated fractures in the well and then create and/or stimulate

Stanford University

69

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

-WATER INJECTION INTO GEOTHERMAL RESERVOIRS: GEOTHERMAL ENERGY COMBINED WITH CO2 STORAGE Hamidreza Salimi of the geothermal system. In this way, synergy is established between geothermal energy production and subsurface CO) with geothermal energy. A further reduction could be achieved by capturing the remaining emitted CO2

Stanford University

70

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

monitoring between 1999 and 2005 at 51 benchmarks are interpreted in terms of a change of mass. The amount, the 1999-2005 gravity changes in the reservoir area indicate that the system of the KGF has mass decrease) (Figure 1). The area of KGF is about 21 km2 and it has altitude of about 1400 - 1800 m above sea level

Stanford University

71

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

; HEAd: heat exchange area density (area per volume of fluid and/or rock, to be specified); BTC: tracer. In fact, everything that matters about HEA(d) in geothermal reservoirs has already been identified is equivalent to HEAd in the first of 4 meanings discussed in the

Stanford University

72

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

SAND PROPPANTS UNDER GEOTHERMAL CONDITIONS Daniel Brinton, Kristie McLin, Joseph Moore Energy surfaces. Energy dispersive X-ray spectroscopy (EDS) was employed to determine the composition energy produced worldwide. Central to the process of creating an EGS reservoir is hydraulic fracturing

Stanford University

73

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

energy resources such as geopressured geothermal brine (GGB) reservoirs and hot saline aquifers (HSA) can be potential clean energy resources provided the heat extraction from the subsurface is done in an economic equation for the thermal energy transport is given as follows (Eq. 4). · · here, (4) w 1 (5) 1 1 (6) (7

Stanford University

74

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

AND RECOVERABLE THERMAL ENERGY IN GEOTHERMAL RESERVOIRS BY VOLUMETRIC METHODS Hülya Sarak, ?. nanç Türeyen) on to stored and recoverable thermal energy estimates calculated from volumetric methods. Effects distribution function, respectively) thermal energy "reserves" from individual wells (or fields) to get "proved

Stanford University

75

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

the main physical processes controlling the behavior of the geothermal field and help exploration commissioning of its second production unit, the Bouillante geothermal field has been supplying the Guadeloupe regional and reservoir scale data. Lumped parameters models were used as first exploration tools to test

Stanford University

76

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Drilling and completing new wells are costly. Those costs account for 30 % to 70% of the initial capital Technology" is defined by the Society of Petroleum Engineers in their "Advanced Drilling Engineering to all other researched drilling concepts. Firstly, a series of advanced concepts and technologies

Stanford University

77

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Zurich, Switzerland 3 College of Engineering and Mineral Resources, West Virginia University, Morgantown as a representative "worst case" to estimate heat extraction during production and thermal recovery following shut of scale in infrastructure development and operation costs (Sanyal 2005). Therefore, considerations about

Stanford University

78

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

. In the conditions of developing of the geothermal power engineering on Kamchatka there is an important question in the areas of the geothermal power plants. The utilization can be carried out in two directions: injection it is profitable to extract boron from technogenic solutions of the working geothermal power plants: Pauzhetsky

Stanford University

79

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Borozdina1 , Laura Foulquier1 , Maria Papachristou2 1 GPC IP, PARIS-NORD 2 ­ Immeuble Business Park ­ Bât. 4@geo.auth.gr ABSTRACT Three-dimensional modelling of geologic structures is routinely applied in petroleum and, at a lesser extent though, in geothermal engineering and has proven an efficient tool in investigating complex

Stanford University

80

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

tracers in the Raft River geothermal system. INTRODUCTION Geothermal energy will be one component by geothermal energy, like all energy sources, will depend on a combination of viable engineering and uncertainty will be critical to the design and operation of future geothermal energy sources. This paper

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

STANFORD UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT  

E-Print Network [OSTI]

20062007 Mechanical Engineering Student Services Building 530, Room 125 (650) 7257695 FAX (650) 7234882STANFORD UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT GRADUATE STUDENT HANDBOOK Academic Year Revised 9/06 #12;MECHANICAL ENGINEERING GRADUATE STUDENT HANDBOOK 20062007 TABLE OF CONTENTS (Clickable

Prinz, Friedrich B.

82

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

83

Fifteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

Not Available

1990-01-01T23:59:59.000Z

84

Stanford University Engineering Informatics Group (http://eil.stanford.edu)  

E-Print Network [OSTI]

of Engineering Web Services David Liu Department of Electrical Engineering Jim Cheng Department of Civil Engineering Service and Integration Mediators (Content and Access) Information Exchange (DBMS, PSL, IFC, XML) Service Integration (FICAS) Engineering Application Services #12;Stanford UniversityStanford University66

Stanford University

85

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-35 SECOND ANNUAL #12;INTRODUCTION The research e f f o r t of t h e Stanford Geothermal Program is focused on geothermal reservoir engineering. The major o b j e c t i v e of t h e protiram is t o develop techniques f o

Stanford University

86

Fourteenth workshop geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-01-01T23:59:59.000Z

87

Fourteenth workshop geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-12-31T23:59:59.000Z

88

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS Henry J. Ramey, Jr., and A. Louis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Stanford Geothermal Project Reports . . . . . . . . . . . . . . 69 Papers Presented a t the Second United Nations Symposium on t h e Development and Use of Geothermal Resources, May 19-29, 1975, San

Stanford University

89

Stanford Geothermal Program Tnterdisciplinary Research  

E-Print Network [OSTI]

Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

Stanford University

90

Sixth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

Ramey, H.J. Jr.; Kruger, P. (eds.)

1980-12-18T23:59:59.000Z

91

Seventeenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

1992-01-31T23:59:59.000Z

92

Geothermal Reservoir Evaluation Considering Fluid Adsorption  

E-Print Network [OSTI]

SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J. Economides September, 1983 Financial support was provided through the Stanford Geothermal Program Contract No Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford

Stanford University

93

Stanford University Department of Civil and Environmental Engineering  

E-Print Network [OSTI]

the development of a sustainable built environment, including buildings, infrastructure, renewable energy systems Sustainability and the Built Environment The Department of Civil & Environmental Engineering at Stanford the CEE Department's strategic goal of Engineering for Sustainability and engage with colleagues

Prinz, Friedrich B.

94

. Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

. Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR- 80 DEPLETION MODELING OF LIQUID DOMINATED GEOTHERMAL RESERVOIRS BY Gudmund 01sen June 1984 Financial support was provided through the Stanford Geothermal Program under

Stanford University

95

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORTI UNIVERSITY Stanford, California SGP-TR-85 ANALYSIS OF THE STANFORD GEOTHERMAL RESERVOIR MODEL EXPERIMENTS

Stanford University

96

Eighteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

1993-01-28T23:59:59.000Z

97

Nineteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Xianfa Deng who coordinated the meeting arrangements for the Workshop. Roland N. Home Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

1994-01-20T23:59:59.000Z

98

STANFORD GEOTHERMAL PR0GRAh.I STANFORD UNIVERSITY  

E-Print Network [OSTI]

Department of Energy since 1975. research i n geothermal r e s e r v o i r engineering techniques t h a t w iSTANFORD GEOTHERMAL PR0GRAh.I STANFORD UNIVERSITY STANFORD,CALIFORNIA 94305 SGP-TR-5 1 GEOTHERMAL Implications of Adsorption and Formation Fluid Composition on Geothermal Reservoir Evaluation . . 40 TASK 5

Stanford University

99

Twentieth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

None

1995-01-26T23:59:59.000Z

100

Sixteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate the audiovisual equipment and to Michael Riley who coordinated the meeting arrangements for a second year. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

1991-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - architecture reservoir properties Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Virginia University Collection: Fossil Fuels 3 PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31...

102

Thirteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones, Yasmin Gulamani, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, especially Jeralyn Luetkehans. The Thirteenth Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract No. DE-AS07-84ID12529. We deeply appreciate this continued support. Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jean W. Cook

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

1988-01-21T23:59:59.000Z

103

Julian, B.R. and G.R. Foulger, Improved Methods for Mapping Permeability and Heat sources in Geothermal Areas using Microearthquake Data, Thirty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University,  

E-Print Network [OSTI]

Systems (EGS) experiments and other geothermal operations. With support from the Dept. of Energy, we in Geothermal Areas using Microearthquake Data, Thirty-Fifth Workshop on Geothermal Reservoir Engineering and Heat sources in Geothermal Areas using Microearthquake Data Bruce R. Julian§ U. S. Geological Survey

Foulger, G. R.

104

Eleventh workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R. (Stanford Geothermal Program)

1986-01-23T23:59:59.000Z

105

Stanford University School of Engineering 171 Undergraduate Handbook 2005-2006 ENVIRONMENTAL ENGINEERING  

E-Print Network [OSTI]

, mathematics through differential equations, probability and statistics, and science including physicsStanford University School of Engineering 171 Undergraduate Handbook 2005-2006 ENVIRONMENTAL ENGINEERING -- ABET ACCREDITATION CRITERIA APPLY -- The environmental engineering profession works to protect

Prinz, Friedrich B.

106

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

107

Twelfth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, specially Jim Lovekin. The Twelfth Workshop was supported by the Geothermal Technology Division of the U. S. Department of Energy through Contract Nos. DE-AS03-80SF11459 and DE-AS07- 84ID12529. We deeply appreciate this continued support. January 1987 Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jesus Rivera

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

1987-01-22T23:59:59.000Z

108

NANOSENSORS AS RESERVOIR ENGINEERING TOOLS TO MAP IN-  

E-Print Network [OSTI]

.................................................................................. 1 1.1.1. The Role of Geothermal Energy........................................................ IN GEOTHERMAL RESERVOIRS By Morgan Ames June 2011 Financial support was provided through the Stanford Geothermal Program under Department of Energy (under contract number DE-FG36-08GO18192). Stanford University Stanford

Stanford University

109

Tenth workshop on geothermal reservoir engineering: proceedings  

SciTech Connect (OSTI)

The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

Not Available

1985-01-22T23:59:59.000Z

110

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on earlySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary

Stanford University

111

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES Paul Kruger and Henry J . Ramey, Jr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 THE GEOTHERMAL CHIMNEY MODEL . . . . . . . . . . . . . . . . . . . 3 Current Design of t h e . . . . . . . . . . . . . . . 67 Geothermal Reservoir Phy.Sica1 PIodels . . . . . . . . . . . . 73 RAD3N I N GEOTHERMAL RESERVOIRS

Stanford University

112

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

Howard, J. H.

2012-01-01T23:59:59.000Z

113

Created by the Stanford Technology Ventures Program (STVP) Department of Management Science and Engineering in the School of Engineering  

E-Print Network [OSTI]

and Engineering in the School of Engineering Stanford University Global Innovation Tournament Organizer Toolkit and Engineering in the School of Engineering Stanford University OVERVIEW & BACKGROUND Organizing and running of these challenges requires creativity, teamwork, execution, and value creation. ORGANIZING & RUNNING A TOURNAMENT

Prinz, Friedrich B.

114

Stanford Geothermal Program Stanford University  

E-Print Network [OSTI]

s Stanford Geothermal Program Stanford University Stanford, California RADON MEASUEMENTS I N GEOTHERMAL SYSTEMS ? d by * ** Alan K. Stoker and Paul Kruger SGP-TR-4 January 1975 :: raw at Lcs Alams S c i and water, o i l and n a t u r a l gas wells. with radon i n geothermal reservoirs. Its presence i n

Stanford University

115

Ninth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The attendance at the Workshop was similar to last year's with 123 registered participants of which 22 represented 8 foreign countries. A record number of technical papers (about 60) were submitted for presentation at the Workshop. The Program Committee, therefore, decided to have several parallel sessions to accommodate most of the papers. This format proved unpopular and will not be repeated. Many of the participants felt that the Workshop lost some of its unique qualities by having parallel sessions. The Workshop has always been held near the middle of December during examination week at Stanford. This timing was reviewed in an open discussion at the Workshop. The Program Committee subsequently decided to move the Workshop to January. The Tenth Workshop will be held on January 22-24, 1985. The theme of the Workshop this year was ''field developments worldwide''. The Program Committee addressed this theme by encouraging participants to submit field development papers, and by inviting several international authorities to give presentations at the Workshop. Field developments in at least twelve countries were reported: China, El Salvador, France, Greece, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, the Philippines, and the United States. There were 58 technical presentations at the Workshop, of which 4 were not made available for publication. Several authors submitted papers not presented at the Workshop. However, these are included in the 60 papers of these Proceedings. The introductory address was given by Ron Toms of the U.S. Department of Energy, and the banquet speaker was A1 Cooper of Chevron Resources Company. An important contribution was made to the Workshop by the chairmen of the technical sessions. Other than Stanford Geothermal Program faculty members, they included: Don White (Field Developments), Bill D'Olier (Hydrothermal Systems), Herman Dykstra (Well Testing), Karsten Pruess (Well Testing), John Counsil (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S. (Stanford Geothermal Program)

1983-12-15T23:59:59.000Z

116

Twenty-first workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

None

1996-01-26T23:59:59.000Z

117

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD February 1 9 8 5 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

118

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Financial support was provided through the Stanford Geothermal Program under Department of Energy Contract

Stanford University

119

Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?  

SciTech Connect (OSTI)

The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

Clarkson, Christopher R [ORNL

2011-01-01T23:59:59.000Z

120

Shear-slip analysis in multiphase fluid-flow reservoir engineering ap plications using TOUGH-FLAC  

E-Print Network [OSTI]

IN MULTIPHASE FLUID-FLOW RESERVOIR ENGINEERING APPLICATIONSin multiphase fluid-flow reservoir-engineering applications.in multiphase fluid-flow reservoir engineering applications.

Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg, Curt; Tsang, Chin-Fu

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE-Funded Research at Stanford Sees Results in Reservoir Characteriza...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Systems (EGS). This research will help developers learn more about the fracture systems in geothermal reservoirs, so that they may better predict the results of...

122

Stanford Geothermal Program Final Report  

E-Print Network [OSTI]

1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

Stanford University

123

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

i s maintain reservoir pressu found t o be f a i r l yPrieto. , Correlation of pressu temperature trends w i t h

Sudo!, G.A

2012-01-01T23:59:59.000Z

124

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

on Geothermal Resource Assessment and Reservoir EngineeriWorkshop on Geothermal Resources Assessment and ReserooirWorkshop on Geothermal Resources Assessment an ervoi r Engi

Sudo!, G.A

2012-01-01T23:59:59.000Z

125

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Modeling f o r Geothermal Reservoirs and Power- plants. I'Fumaroles Hunt, 1970 Geothermal power James, 1978 FusionGood a lated perfo : Geothermal Power Systems Compared. 'I

Sudo!, G.A

2012-01-01T23:59:59.000Z

126

Stanford Geothermal Program I n t e r d i s c i p l i n a r y Research  

E-Print Network [OSTI]

Stanford Geothermal Program I n t e r d i s c i p l i n a r y Research i n Engineering and Earth stimulation is expected to increase the productivity of geothermal reservoirs by providing increased

Stanford University

127

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD staff who have helped me finish this project. Financial support was provided by the Geothermal

Stanford University

128

Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Final report, September 29, 1993--September 30, 1996  

SciTech Connect (OSTI)

The goal of this three-year project was to provide a quantitative definition of reservoir heterogeneity. This objective was accomplished through the integration of geologic, geophysical, and engineering databases into a multi-disciplinary understanding of reservoir architecture and associated fluid-rock and fluid-fluid interactions. This interdisciplinary effort integrated geological and geophysical data with engineering and petrophysical results through reservoir simulation to quantify reservoir architecture and the dynamics of fluid-rock and fluid-fluid interactions. An improved reservoir description allows greater accuracy and confidence during simulation and modeling as steps toward gaining greater recovery efficiency from existing reservoirs. A field laboratory, the Sulimar Queen Unit, was available for the field research. Several members of the PRRC staff participated in the development of improved reservoir description by integration of the field and laboratory data as well as in the development of quantitative reservoir models to aid performance predictions. Subcontractors from Stanford University and the University of Texas at Austin (UT) collaborated in the research and participated in the design and interpretation of field tests. The three-year project was initiated in September 1993 and led to the development and application of various reservoir description methodologies. A new approach for visualizing production data graphically was developed and implemented on the Internet. Using production data and old gamma rays logs, a black oil reservoir model that honors both primary and secondary performance was developed. The old gamma ray logs were used after applying a resealing technique, which was crucial for the success of the project. In addition to the gamma ray logs, the development of the reservoir model benefitted from an inverse Drill Stem Test (DST) technique which provided initial estimates of the reservoir permeability at different wells.

Weiss, W.W.; Buckley, J.S.; Ouenes, A.

1997-05-01T23:59:59.000Z

129

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD the Stanford Geothermal Program under Department of Energy Contract No. DE-AT-03-80SF11459

Stanford University

130

Stanford Geothermal Program Final Report  

E-Print Network [OSTI]

of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of PetroleumStanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

Stanford University

131

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

supercritical geothermal resources located at depths 4-5 km or deeper, where the temperature estimates could of the estimates was carried out using the temperature records not involved in the calibration. The results%. This result makes it possible to increase significantly the deepness of indirect temperature estimations

Stanford University

132

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

geothermal resource of Germany with an estimated utilizable energy of about 180'000 EJ in a depth of 3-7 km and south German Variscian crystalline basement is considered to be the largest geothermal resource require complex and costly processing. Often they are anyhow limited to the topmost part of the basement

Stanford University

133

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

-conditioning. According to the most recent and conservative USGS estimate, in the US alone the geothermal resource base geothermal resource in the US Gulf of Mexico region. In particular, geopressured sandstones near salt domes gravity segregation of the fluids. GEOPRESSURED GEOTHERMAL RESOURCE DEVELOPMENT Geothermal systems provide

Stanford University

134

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

simulator analysis (HOLA) of discharge test data from the wells was used to estimate the productivity index with considerable scatter. The electrical power potential of wells HE-06 and HE-20 is estimated at 7.3 and 5.7 MWe in the region east of Reykjavk, Iceland's capital. It is the central volcano of the homonymic Hengill volcanic

Stanford University

135

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

, while gas samples are taken for NCG and 13C- CO2 isotope and steam condensate sampling are conducted in November 2009 and as of January 2011, 11 wells are completed. In this regard, geochemical sampling, tests and measurements are performed at two phase fluids: Chemical, stable isotope samplings are realized for brine

Stanford University

136

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

crustal model by inverting the entire set of P- and S-wave arrival time measurements. The relocated testing and/or re-injection of brines from steam condensate. Microearthquake monitoring can detect, since this is one of only few methods available to locate fault zones precisely. High-quality results

Foulger, G. R.

137

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

FORMATION IMAGING TECHNOLOGY: CORRELATION TO PERMEABILITY K. McLean1 and D. McNamara2 1 Contact Energy of the permeability. Only fractures with optimal orientation within the local stress field are considered for the reinjection strategy at Wairakei as well as understanding the nature of the connection between Wairakei

Stanford University

138

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

are situated in the Marbel Corridor and are supplying steam to a 52MWe power plant. The second stage production and 10 wells for brine injection. Power generation in MGPF was developed in two stages. The firstGP) which started its commercial operation in June 1999. The steam supplied to this plant comes from

Stanford University

139

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

The Ogiri geothermal power plant located in the West Kirishima area was opened in early 1996. Nittetsu Kagoshima Geothermal Co. (NKGC) supplies the geothermal steam to the power plant with installed capacity wells were completed when the power plant started its operation (Japan Geothermal Energy Association

Stanford University

140

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

that are associated with the Northern German Basin, a geothermal power plant will need to incorporate an Enhanced to reduce the probability of downtime in such geothermal power systems in order to achieve higher plant geothermal power plants in Germany. There are three potential regions for geothermal energy production

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

of pressure and quality, q . The results are shown in Figure 1. The smallest value of sound speed calculated large, rapid changes in the depth of vaporization. This can give rise to incompressible slugs of liquid steam forms. INTRODUCTION Wet steam (or any liquid in equilibrium with its own vapour) has an equation

Stanford University

142

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

problems associated with geothermal utilization. Hellisheiði Power Plant annually emits around 13000 tons The emission of hydrogen sulfide from geothermal power plants is one of the main environmental concerns is 101 µg/m3 . A review of the processes available for H2S abatement in geothermal power plant

Stanford University

143

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

at the Takigami geothermal field in Central Kyushu, Japan, where the Takigami power plant has been generating generation at the Takigami geothermal power plant, and we have detected the gravity changes which were of the absolute gravity measurement was strict. INTRODUCTION When the geothermal power plant starts electricity

Stanford University

144

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

of commercial power generation at The Geysers geothermal field in California as six distinct and consecutive the largest source of commercial geothermal power tapped to date in the world, and its history presents geothermal field in California has been supplying commercial electric power continuously for the last half

Stanford University

145

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

the production of power from coproduced and low temperature geothermal resources. To this end, and through a collaborative effort, RMOTC is being used as a test-bed for promising low temperature geothermal power overcome challenges currently faced with low temperature geothermal power production systems. Details

Stanford University

146

PROCEEDINGS, Thirty-First Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30-February 1, 2006  

E-Print Network [OSTI]

Industrial Science and Technology (AIST), Tsukuba, Japan, 7 Tohoku University, Sendai, Japan, 8 now @ MIL-TECH

Boyer, Edmond

147

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Callahan1 , Will Osborn1 , Stephen Hickman2 and Nicholas Davatzes3 1 AltaRock Energy, 7900 E. Green Lake by AltaRock Energy (ARE) with participants from Newberry Geothermal, Davenport Power, Temple University

Stanford University

148

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

which has potential for a geothermal sitting at the eastern flanks INTRODUCTION The geothermal energy), which is green geothermal area and as a lesson learned to apply in the similar area in order

Stanford University

149

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

. MOL, Enex ehf. of Iceland and Vulcan Kft. (its owner is Green Rock Energy Ltd. of Australia EXPLORATION IN HUNGARY Attila Kujbus CEGE Central-European Geothermal Energy Production Plc. Infopark D of this fact, there are hardly any geothermal energy facilities in Hungary, and those few are operated

Stanford University

150

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

recipients. The Australian Geothermal Energy Group (AGEG) has also seen significant changes and developments. Additionally the joint AGEG ­ Australian Geothermal Energy Association (AGEA) Geothermal Reporting Code Geothermal Energy Centre of Excellence at the University of Queensland, the Western Australian Geothermal

Stanford University

151

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

FIELD, SW-ICELAND: A STORY OF SUCCESSES AND FAILURES Gunnar Gunnarsson OR ­ Reykjavik Energy Bæjarhálsi, tracks of directionally drilled wells with green lines, hot springs and fumaroles with read dots, faults

Stanford University

152

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

are all directed at achieving the Australian Geothermal Energy Group's (AGEG) aspirational targets (the Australian Geothermal Energy Association, AGEA) and the AGEG is to see geothermal energy providing the lowest cost, emissions-free, renewable base load energy for centuries to come. This paper summarizes: (1

Stanford University

153

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

Lake City, UT 84104 2 Energy and Geoscience Institute, University of Utah, Salt Lake City, UT 84108 3 field, most of the productive wells are located in Section 21. Wells circled in green represent

Stanford University

154

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

INVESTIGATION PROGRAM K. Brockbank1 , C. Bromley2 and T. Glynn-Morris1 1 Contact Energy Wairakei Power Station.brockbank@contactenergy.co.nz ABSTRACT In 2008 Contact Energy undertook a comprehensive research program investigating subsidence by the green band. All wells are shown by green dots with the 13 boreholes drilled for the subsidence program

Stanford University

155

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

fuel, geothermal energy is generally considered to be a benign energy source in regard to environmental characterized by two organisms: firstly, the photoautotrophic Cyanobacterium (blue-green microalgae), which represents the primary producers, using light as the energy source, gradually dominating the ecosystem

Stanford University

156

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

to solve a giant demand on food and energy. Existing resources of oil and gas are limited in Indonesia and the existing infrastructure to reach the customers of the energy is not sufficient as access to many areas in Indonesia is limited. Therefore, de-central, location adapted provision with energy is crucial. One third

Stanford University

157

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Podgorney, 2 Hai Huang 1 University of Idaho 2 Carbon Resource Management Department, Idaho National Laboratory 3 Renewable Energy Technologies, Idaho National Laboratory PO Box 1625 Idaho Falls, ID, 83415 e pressure; (ii) the flow of fluid within the fracture; and (iii) the fracture propagation. DEMs can directly

Stanford University

158

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

HISTORIES AT MAHIAO AND MAHANAGDONG SECTOR OF LEYTE GEOTHERMAL PRODUCTION FIELD, PHILIPPINES J.D. Villacorte1 , R.C.M. Malate1 and R. N. Horne2 1 Energy Development Corporation, Energy Center, Merritt Road function for measuring well-to-well connectivity index is defined as: = = n j jiii txf n I 1 ))(( 1 (2

Stanford University

159

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

'' ''' 2 3 1 1 , , 2 2 1 1 , 2 2 L i ij j R i ij j R i ij j R i ij j U k U r U r U r expression is: ( ) ( )' ' '' '' 0 ijmn i j m n i j m n i j m nC k r r D d = + + (4) where 2006) ( ) ( ) ( ) ( ) ( ) 2 0 0 2 1 2 3 0 0 , sin , sin L R R R U D d d U U U D d d

Stanford University

160

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

TO 2100 Goldstein, B.A.1 , Hiriart, G., Tester, J.,. B., Bertani, R., Bromley, Gutierrez-Negrin, L.,C.J

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

DRILLING: DEVELOPMENT AND TEST RESULTS Christopher J. Durrand, Marcus R. Skeem, Ron B. Crockett and David R

Stanford University

162

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

GEOTHERMAL PRODUCTION FIELD, PHILIPPINES R. N. Colina, J. B. Omagbon, G. E. Parayno, R. P. Andrino, D. M. Yglopaz, R. C. M. Malate, F. X. M. Sta. Ana and J. J. C. Austria Energy Development Corporation Merritt

Stanford University

163

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

oil per year (45.7 million barrels) and reduces air pollution by almost 1 The total installed capacity

Stanford University

164

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

that this structure corresponds to a mode I (opening) crack. Perturbations to the seismicity rate and source areas, they flow into hot rock at depth inducing cracking and activating critically stressed pre to achieve this goal, it is necessary to mature existing microearthquake analysis techniques and software

Stanford University

165

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

, and thermal tourism. The first heating system was established in Gonen in 1978. Currently there are nearly 20 heating systems with 395 MWt thermal c) are suitable for electric power generation and the rest 38 are suitable for non-electric usages. According

Stanford University

166

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

introduced. Then, the reinjection operations conducted in the field so far are presented, and finally, after in some fields conducting or no-conducting reinjection operations with their pronounced resulting effects

Stanford University

167

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

of generating significant electrical power for facility consumption. To verify this concept, DOE's Rocky (CRADA) between Ormat Nevada, Inc. and the U.S. Department of Energy (DOE). This CRADA was followed Organic Rankine Cycle (ORC) power plant. This unit was installed at the Naval Petroleum Reserve No. 3

Stanford University

168

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

by Takenaka and Furuya (1991). Relatively low salinity and the low non-condensable gas concentration in steam, there is no surface manifestation in the immediate area. The nearest hot springs are located 1-2 km north and east Geothermal Co., Ltd is in charge of production and reinjection operations and supplies separated steam

Stanford University

169

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

). Relatively low salinity and the low non-condensable gas concentration in steam characterize the Takigami). Although the Takigami system lies within the very active Hohi geothermal region, there is no surface separated steam to the power station that is operated by Kyushu Electric Power Co., Inc. #12;A three

Stanford University

170

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

Tek, A Schlumberger Company, Salt Lake City, UT 84104 2 U.S. Geological Survey, Menlo Park, CA 94025 3 Temple lightly permeable open fractures identified by a suite of acoustic and electrical image logs logging to predict fluid pressures required for initiation of shear dilation and permeability development

Stanford University

171

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

of the level of measurement noise found in InSAR observations is also important to quantify. Under certain displacement- field measurements. First, in (e.g.) an undrained fracture, they can cause direct inflation or consumed (e.g. Lecampion et al., 2005). Interferometric Synthetic Aperture Radar (InSAR) is a well

Stanford University

172

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

than Aus$110 million (US$77 million) in Australian Federal and State government grants to meet up geothermal projects co- funded by investors and governments in Australia; (2) policies, programs

Stanford University

173

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

compared to other similar hydraulic fracturing in crystalline rock. Towards the end of the treatment three Telegrafenberg Potsdam, D-14473, Germany urpi@gfz-potsdam.de ABSTRACT A cyclic hydraulic fracturing experiment in the 5 day water-frac stimulation treatment that took place in the test site of Gro? Schönebeck, Germany

Stanford University

174

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

on thermal and hydraulic stimulation. Recent studies suggest that chemical stimulation may improve. An alternative to treatment with strong acids is the use of supercritical (SC) CO2 as stimulation agent, to examine ways in which mixtures of water and CO2 can be injected to enhance porosity. INTRODUCTION The most

Stanford University

175

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

to characterize near- wellbore and interwell fracture-surface area resulting from hydraulic stimulation processes a hydraulic stimulation provides some indication of the extent and direction of fracture creation adjacent direct evidence for increases in fracture permeabilities following a hydraulic stimulation. One

Stanford University

176

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

a numerical investigation of seismicity induced during injection into a single, isolated fracture. A model-injection events. In prior work, we investigated the impact of injection schedule using a simpler treatment is to perform coupled fluid flow and rate and state simulation on a large network of fractures. We discuss

Stanford University

177

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

" drilling of a geothermal well with a stimulation treatment that involves cold water injection over time of stimulation treatments in terms of enhanced permeability of the fracture network, and exposure of additional. Enhancements in fracture-matrix heat transfer areas from stimulation treatments cannot be assessed by such flow

Stanford University

178

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

to simulate flow in fractured rock and to assess the mechanical rock mass response to stress variations caused from field data. The model is used to simulate an injection operation. Fluid flow, hydraulic potential the mechanical, hydraulic and chemical processes and their interactions in the design process. Thus

Stanford University

179

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

of a moving fluid in elastic porous rocks modifies their mechanical response. Poroelasticity explains how the fluid inside the pores bears a portion of the total load supported by the rock. The other part for the bulk rock, one for the fluid and one for the total thermal expansion/contraction. The need

Stanford University

180

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

and containing a lot of natural gas. It is very suitable for development and utilization, including geothermal energy (and natural gas) electricity generation, heating and cooling, bathing and swimming, tourism , Xuanpeng Liu1 1 China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District 2 Pi

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

characteristics with unique problems caused by high-volume, hot water flows. This paper is an overview of state, geothermal electric plants have been built on the edges of tectonic plates where high temperature geothermal blanketing effect resulting in #12;temperatures as high as 270°C. The high-heat producing granite formations

Stanford University

182

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

is fundamental for predicting the ultimate size and shape of the hydraulic fractures formed by a treatment. Theoretical and experimental investigations of fracture initiation, propagation, and interaction with pre stress intensity factors can be calculated by numerical methods using ordinary element. Boundary element

Stanford University

183

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

Carlo Simulation results, these eleven fields have 453 MWe of power generation potential and 13 876 MWt). As a third step, the producible thermal power values of the 19 relatively medium temperature geothermal and encouraging the installation of power generating plant are underway. New geothermal legislation calls

Stanford University

184

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

the efficiency of geothermal power plants. In particular, EGS exploit the geothermal energy that is stored few thermal energy is converted into electrical power. The accurate modeling of the physical phenomena and artificially created fracture networks in the subsurface, thus increasing the efficiency of geothermal power

Stanford University

185

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

vary substantially from case to case (volumetric heat capacity, power plant or project life, method together with Monte Carlo simulations is often used to provide estimates of the probable density functions for uncertain estimates of the temperature, area, thickness, and thermal recovery factor

Stanford University

186

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

of 2015 nine units of geothermal electric power plants with a total capacity 450 MW are planned to be set of Mutnovsky volcano was studied by the method of numerical simulation. The distribution of temperature of natural heat carrier extraction to obtain geothermal energy are the subject of studying of mining thermal

Stanford University

187

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

: THE POTENTIAL OF POWER GENERATION TO BENEFIT INDIGENOUS COMMUNITIES Alex J. McCoy-West1,2 , Sarah Milicich1 it can provide a clean and efficient means of generating electricity in remote areas, if suitable

Stanford University

188

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

for the generation of electrical energy at the Los Azufres geothermal system, Mexico (Ruíz et al., 2010). The project

Stanford University

189

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

in water has implications for long term carbon sequestration and water-rock interactions (Liu et al. 2003 be superior to water in its ability to mine heat from hot fractured rock. Carbon dioxide also offers modeling. 1. Introduction With increasing concerns about carbon dioxide emissions into the atmosphere

Stanford University

190

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

air pollution and save conventional energy, geothermal energy as a heat source for district heating on some typical geothermal wells. 1.2 Cliamte Air temperature affects the indoor temperature through heat

Stanford University

191

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

OF THE GEOTHERMAL PARAMETERS OF THE GROUND IN CYPRUS FOR THE EXPLOITATION OF GEOTHERMAL ENERGY AND THE IMPACT aware of the benefits of geothermal energy and in order to increase the share of energy from renewable sources consumed in heating and cooling in 2020, promotes the geothermal energy systems through a Scheme

Stanford University

192

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

The concept of Enhanced Geothermal Systems (EGS) has long been recognized by geothermal energy experts as being the necessary technology for substantially increasing the contribution of geothermal energy DOE sponsored study led by MIT entitled "The Future of Geothermal Energy", hereafter referred

Stanford University

193

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

conditioning via sorption chillers and geothermal desalination. The technologies are not new in their basic

Stanford University

194

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

are observed to be very sensitive to the selected phase segregation pressure. Carbon dioxide concentrations nature of and manage production from hydrothermal systems (e.g. Ármansson et al., 1982; Gudmundsson hydrothermal mineral assemblages. This study describes a major fluid sampling campaign undertaken

Stanford University

195

PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012  

E-Print Network [OSTI]

will intersect existing natural fractures in the formation and form a interconnected fracture network, through network using technologies such as horizontal drilling with staged fracking, but such technologies are expensive and more applicable to shale gas production than to EGS. An alternative stimulation strategy

Santos, Juan

196

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

on a production string, connected back to a surface control mechanism and transformer via an electric power cable, induction electric motors are manufactured in a variety of horsepower ratings, operating voltages as cooling agents. The motor is powered from the surface using a submersible electric cable. Figure 1

Stanford University

197

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

Agreement (CRADA) to demonstrate small scale power generation from an oil field waste stream. The project

Stanford University

198

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

), water consumption, and land use from geothermal electricity generation than from traditional fossil-fuel­based electricity generators. However, the environmental impacts from the construction of geothermal energy. INTRODUCTION It is generally recognized that electricity production from geothermal power plants releases fewer

Stanford University

199

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

a downhole heat exchanger. The thermosiphon is a device that takes advantage of the gravity head difference. Use of downhole heat exchangers in place of surface heat exchangers. 3. Use of gravity head

Stanford University

200

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

. The atmospheric pressure change was specified as time-dependent Dirichlet boundary conditions at the well head mostly propagates into an aquifer directly through the well head, with pressure propagation limited Dirichlet boundary conditions on the earth surface and well head, where barometric pressure changes. Once

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Australia and Western Australia, that have been established with complementary programs to achieve research for industry and government to access research services Geothermal energy development in Australia will be best and Resources SA, Petroleum and Geothermal Group GPO Box 1671 Adelaide, SA, 5000, Australia e-mail: alexandra

Stanford University

202

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

Geothermal Energy Centre of Excellence, The University of Queensland, Queensland 4072, Australia 2 Radiogenic, Australia 3 School of Earth Sciences, The University of Queensland, Queensland 4072, Australia e-mail: t travertine vein and breccia deposits in the CO2-rich Pamukkale and Kirsehir geothermal fields in western

Stanford University

203

PROCEEDINGS, Twenty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 28-30, 2002  

E-Print Network [OSTI]

probably by the drilling fluid. When applied on all these fluids, numerous chemical geothermometers yield. On the three bore-holes drilled by CFG in this area, only the bore-hole located more at north (Californie bore-hole) and near the old LA-101 bore- hole, indicated the presence of inflows of hot fluid close to 90°C starting

Boyer, Edmond

204

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

- physical properties of a borehole heat exchanger (BHE) drilled into soft or hard rock (fig. 1). With a TRT loop type PE-HD heat exchanger pipes where a heating carrier fluid is pumped in a circuit with a constant rate. The heater of the TRT device is heating the fluid with constant power. The input and output

Stanford University

205

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

AND PDM SYSTEMS IMPROVE DRILLING PERFORMANCE IN A CALIFORNIA GEOTHERMAL WELL Dennis Lovett, Terra and reliability in drilling operations by utilizing a specially designed positive displacement motor (PDM system allows data transmission without a continuous fluid column. Operating the Coso geothermal field

Stanford University

206

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

that in deep and super deep wells the temperature of the drilling fluid (at a given depth) depends on the current vertical depth, on drilling technology (flow rate, well design, fluid properties, penetration rate of the thermal equilibrium when the temperature of drilling fluid (at a given depth) is a linear function of time

Stanford University

207

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

is an important parameter in geothermal drilling since it affects drilling fluid, operations and equipment THE INLET AND OUTLET MUD TEMPERATURES WHILE DRILLING GEOTHERMAL FORMATIONS Sema Tekin1 and Serhat Akin2 1-Omerbeyli field were estimated by using mud inlet and outlet temperatures obtained during drilling. GTEMP wellbore

Stanford University

208

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

-mail: hector.carlos.pulido@pemex.com ABSTRACT An alternative method, named to as direct synthesis, is proposed

Stanford University

209

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

(DOE, 2008). Because exploitation of EGS resources incorporates the augmentation or creation of 6km yield an estimated mean electric power resource on private and accessible public land in the United States and an order of magnitude larger than the conventional geothermal resource. Another recent

Stanford University

210

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

energy is utilized indirectly by two different systems. The first is air-water heat pumps utilizing the heat content of the warmed up air as it flows out of the mine tunnel. The other source is the heat of the tunnel entrance section. Initially, a fuel oil system was utilized to heat the incoming air. More

Stanford University

211

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

obtained by include the pore size, pore size distribution, pore number, and surface and mass fractal nature, BRN, 2007). #12;but still fractal pore walls, and a mass fractal pore distribution not seen and retention of water, gas and hydrocarbons, sequestration of wastes, the formation of ore deposits

Stanford University

212

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

and gas turbines and allow for highly efficient energy conversion. However, many of the end-uses currently used at low temperatures is provided by combusting natural gas and oil at very high temperatures, industrial, and transportation. Fossil fuels have remarkable properties as energy carriers, such as high

Stanford University

213

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO, 80401-3305, United States e-mail: Chad.Augustine@nrel.gov Katherine R. Young National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO, 80401-3305, United States e-mail: Katherine.Young@nrel.gov Arlene Anderson U.S. Department of Energy (DOE) Office of Energy

Stanford University

214

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

-mail: tpbel@yandex.ru ABSTRACT Today the problem of rational energy and thermal energy efficiency for marketable product obtaining is one of the directions. INTRODUCTION Today the problem of rational energy and thermal energy efficiency is of great interest. Traditional methods of energy production at the hydropower

Stanford University

215

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Park, CA 94025 2. Department of Energy Geothermal Technologies Program Washington, DC e-mail: colin of energy resources, including geothermal energy. Stakeholders at all levels of government, within in the 1970s during a time of rapid development and new interest in geothermal energy. That many

Stanford University

216

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

of Energy (MOE) and Renewable Energy Organization of Iran (SUNA). In this study, an attempt was made with some mitigation plans and monitoring program is accepted. INTRODUCTION Geothermal energy is generally accepted as being an environmentally benign energy source, particularly when compared to fossil fuel energy

Stanford University

217

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401, USA ABSTRACT In order for enhanced of the amount of energy generated from enhanced geothermal systems (EGS), which allows for the exploitation distinguishes EGS from most other energy sources is the difficulty and expense associated with characterizing

Stanford University

218

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

2 Innovation Center Iceland, Department of Materials, Biotechnology and Energy, Keldnaholt in a bulge in the wall of the casing and is detrimental to the geothermal energy production and the lifetime. This deformation of the casing can lead to reduced energy output and in worst cases render the well inoperative

Stanford University

219

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

building area in Shenyang City has harvested 330 days of excellent atmosphere environment. It shows Keyan Zheng1 Fang He2 1 Geothermal Council of China Energy Society 20 Da Hui Si Road, Haidian District Beijing, 100081, China e-mail: kyzheng@punlic3.bta.net.cn 2 GHP Council of China Renewable Energy Society

Stanford University

220

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

city, capital of the province (Fig.1). The field has been proved to be one of the geothermal prospects in Indonesia (Hochstein and Sudarman, 2008). PT. Pertamina Geothermal Energy (PT.PGE) conducted reconnaissance not been developed yet. Thus, we have carried out geochemical survey in this area and tried to develop

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

of low- temperature heat source [5], that enables the regime of heat supply with the temperature regime of traditional buildings in the temperature regime of 90/70 (194/158F) in the presence of geothermal heat supply is shown. INTRODUCTION Currently, widespread adoption of heat pump plants (HPP) in Ukraine, Russia

Stanford University

222

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

-mail: wcumming@wcumming.com ABSTRACT The most important element of an analysis to target a geothermal well geothermal wells, how should resource capacity be assessed at different project stages, what are the basic

Stanford University

223

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

OF GEOTHERMAL WELLS Frederick Libert1 , Peter1 , Riza Pasikki1 , Keita Yoshioka2 , and Mark Looney2 1. Chevron

Stanford University

224

PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012  

E-Print Network [OSTI]

: Organic Rankine Cycle) with maximal installed net capacity of 1.5MWe (Figure 1). Several deep geothermal wells penetrated a hidden fractured granite located in this Tertiary graben. For the sub

Boyer, Edmond

225

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

, the geothermal wells have been stimulated, both hydraulically and chemically, in order to improve the connection

Stanford University

226

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

of geothermal wells that are effectively cemented and durable poses a significant operational challenge used is critical to the long-term durability of a geothermal well. Conventional cement systems are high systems, they typically fail. More ductile cement systems have been introduced and applied in geothermal

Stanford University

227

PROCEEDINGS, Twenty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 26-28, 2004  

E-Print Network [OSTI]

and Soultz-sous-Forêts. #12;Figure 2a. Location map and profiles of the geothermal wells (From Gentier et al., 2003a; 2003b). Figure 2b. Geological cross-section between the geothermal wells (From Gentier et al

Paris-Sud XI, Université de

228

PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012  

E-Print Network [OSTI]

the geothermal wells predicts fluid convection with permeability up to 3x10-14 m2 in these strongly fractured

Paris-Sud XI, Université de

229

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

for the measurement of distributed temperature and pressure in geothermal wells. Our effort in the first year has been a MEMS pressure sensor at the bottom of the geothermal well. Another fiber will be used to interrogate

Stanford University

230

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

of the planned geothermal wells. A second Monte Carlo simulation provides the probability distributions

Stanford University

231

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

. Figure 2: Map showing the location of the geothermal wells outside the city of Lund. All the wells

Stanford University

232

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

. INTRODUCTION The petroleum exploration industry has a well- developed process of assessing exploration risk--IDENTIFICATION AND MITIGATION OF EGS EXPLORATION RISK Graeme R Beardsmore1,2 & Gareth T Cooper1 1 Hot Dry Rocks Pty Ltd PO Box in Australia (and many other places) is that achieving optimal temperature is the critical risk in exploration

Stanford University

233

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

and sensors are mainly developed for gas and oil exploration, applied to an environment of relatively low and the decay products of radioactive rock (Gupta and Roy, 2007). The traditional geothermal energy process is typically higher than 200°C, which limits direct applications of the current gas/oil well instruments

Stanford University

234

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

to provide some of the electricity needs for campus. In addition, a 6,000 foot (1,800 m) deep well is being of campus. The fluids would be used to power a 1.5 to 3.0 MWe binary plant to provide all the electricity the Oregon State Board of Higher Education was awarded an appropriation of $150,000 for use in exploration

Stanford University

235

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

to geothermal heat mining using carbon dioxide instead of water. While manometric, volumetric, and gravimetric techniques have been used successfully to investigate adsorption of low-density subcritical vapors demonstrated using propane at subcritical and supercritical temperatures between 35 °C and 97 °C confined

Stanford University

236

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

temperature and flows are suggested for spas and pools, space and district heating, greenhouse and aquaculture, provides the necessary energy to the project. Larger projects, such as district heating and industrial

Stanford University

237

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

water is then conducted to heat exchangers for production of 88°C water for district heating. During electricity and hot water for district heating with minimum impact on the environment while keeping

Stanford University

238

PROCEEDINGS, Twenty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 24-26, 2000  

E-Print Network [OSTI]

, GEOTHERMIE BOUILLANTE considered the opportunity to stimulate BO-4 in order to increase its production

Paris-Sud XI, Université de

239

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

GEOTHERMAL SIPHON Edited by Hal Gurgenci Queensland Geothermal Energy Centre of Excellence School a small Workshop organised by the Queensland Geothermal Energy Centre of Excellence in Brisbane on 25. The second day of the Workshop discussed the future research strategies for the Queensland Geothermal Energy

Stanford University

240

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

System A. Hassanzadegan, G. Blcher, G. Zimmermann, H. Milsch, I. Moeck Helmholtz Centre Potsdam - GFZ stress becomes tensile and equal to tensile strength of the rock. A temperature decrease of 80 C of deformation and pore pressure diffusion (Darcy's law) characterizes the mechanical response of fluid

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

FOR PLANNING OF AN EGS STIMULATION IN THE DESERT PEAK GEOTHERMAL FIELD, NEVADA Stephen H. Hickman1 and Nicholas C. Davatzes2 1 U.S. Geological Survey 345 Middlefield Road, MS977 Menlo Park, CA 94025, USA e of silicified rhyolite tuffs and metamorphosed mudstones at ambient temperatures of ~180 to 195 C. Our previous

Stanford University

242

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

of an ORC (Organic Rankine Cycle) plant having a net power capacity of 1,5MWe. Surface equipments (turbine fluid geochemistry, the temperature field and the hydraulic properties of the deep crystalline basement). The geothermal wells were hydraulically and chemically stimulated between 2000 and 2007 in order to enhance

Stanford University

243

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

3000 feet. However, the detailed subsurface geologic structures of the Indian Springs area are mostly- scale geothermal energy potential in the area. To explore the geothermal resource at Jemez Pueblo area. Seismic and MT imaging can provide complementary information to reveal detailed geologic

Stanford University

244

PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012  

E-Print Network [OSTI]

on injecting fluid into rock formations. "Fracking" to increase permeability in gas shale formations has in particular become widespread in recent years. There are now several case histories of fracking causing

Foulger, G. R.

245

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

.go.cr, SCastroZ@ice.go.cr, WTaylor@ice.go.cr ABSTRACT The Miravalles Geothermal Field has been producing electric Instituto Costarricense de Electricidad P. O. Box 10032-1000 San José, Costa Rica PMoya@ice.go.cr, FNietzen@ice to 3,000 meters. Individual wells produce enough steam to generate between 3 and 12 MW; injection wells

Stanford University

246

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

in the turbine is in the range of 1-6 mol%. Some condensation is likely to always occur in surface cooling generation equipment, similar to traditional steam geothermal power plants. Carbon-dioxide-based EGS systems water is present in the carbon dioxide, a water-rich phase will condense in surface equipment

Stanford University

247

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

, and improve EGS best practices. The risk analysis examined estimates of improvement potential for two metric drilling/construction and plant capital costs are key targets for cost reduction, all experts believed (1

Stanford University

248

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

, knock-out drums, piping and well pads. This paper describes the work flow and practices applied options for surface production facility design for Awi 9 conversion and criteria to select the best design infill drilling. Injection management remains the most important issue at Salak. Re-injection of brine

Stanford University

249

Integrated Dynamic Optimization and Control in Reservoir Engineering using Locally Identified Linear Models  

E-Print Network [OSTI]

on dynamic real-time optimization (D- RTO) of waterflooding strategies in petroleum reservoirs haveIntegrated Dynamic Optimization and Control in Reservoir Engineering using Locally Identified, the used large-scale, nonlinear, physics-based reservoir models suffer from vast parametric uncertainty

Van den Hof, Paul

250

Quantum harmonic oscillator state synthesis by reservoir engineering  

E-Print Network [OSTI]

The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations resulting in high contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems.

D. Kienzler; H. -Y. Lo; B. Keitch; L. de Clercq; F. Leupold; F. Lindenfelser; M. Marinelli; V. Negnevitsky; J. P. Home

2015-01-16T23:59:59.000Z

251

Stanford Geothermal Program Interd is c i p l inary Research  

E-Print Network [OSTI]

.E geothermal energy from artificially stimu- lated systems by in-place flashing was studied experimentally. Although improved geothermal energy recovery from stimulated reservoirs by in-place flashing appears promStanford Geothermal Program Interd is c i p l inary Research i n Engineering and Earth Sciences

Stanford University

252

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

of Proceedings that stand as one of the prominent literature sources in the field of geothermal energySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED

Stanford University

253

July 2012 for revisions contact rbedgar@stanford.edu USP List Members  

E-Print Network [OSTI]

for revisions contact rbedgar@stanford.edu Lance Lougee SLAC [lancel@slac.stanford.edu] Lance Phillips EHS [lagwagon@stanford.edu] Merry Weeks Sch Engineering [mweeks@stanford.edu] Michele Armstrong EHS [michelea

254

Applying Semantic Web Techniques to Reservoir Engineering: Challenges and Experiences from Event Modeling  

E-Print Network [OSTI]

Reservoir engineering is a branch of petroleum engi- neering that aims to maximize the economic recovery record key operations and dynamic status of resources (wells, field equipments, etc.) in a reservoir, Spreadsheets) used by domain experts to report field operations, and logs generated by software ap- plication

Prasanna, Viktor K.

255

Society of Petroleum Engineers Staggered In Time Coupling of Reservoir Flow Simulation and Geomechanical Defor-  

E-Print Network [OSTI]

Society of Petroleum Engineers SPE 51920 Staggered In Time Coupling of Reservoir Flow Simulation, The University of Texas at Austin Copyright 1999, Society of Petroleum Engineers, Inc. Thispaperwas by the Society of Petroleum Engineers and are subject to correction by the author(s). The material, as presented

Minkoff, Susan E.

256

Using precision gravity data in geothermal reservoir engineering modeling studies  

SciTech Connect (OSTI)

Precision gravity measurements taken at various times over a geothermal field can be used to derive information about influx into the reservoir. Output from a reservoir simulation program can be used to compute surface gravity fields and time histories. Comparison of such computer results with field-measured gravity data can add confidence to simulation models, and provide insight into reservoir processes. Such a comparison is made for the Bulalo field in the Philippines.

Atkinson, Paul G.; Pederseen, Jens R.

1988-01-01T23:59:59.000Z

257

Nanosensors as Reservoir Engineering Tools to Map Insitu Temperature Distributions in Geothermal Reservoirs  

SciTech Connect (OSTI)

The feasibility of using nanosensors to measure temperature distribution and predict thermal breakthrough in geothermal reservoirs is addressed in this report. Four candidate sensors were identified: melting tin-bismuth alloy nanoparticles, silica nanoparticles with covalently-attached dye, hollow silica nanoparticles with encapsulated dye and impermeable melting shells, and dye-polymer composite time-temperature indicators. Four main challenges associated with the successful implementation of temperature nanosensors were identified: nanoparticle mobility in porous and fractured media, the collection and detection of nanoparticles at the production well, engineering temperature sensing mechanisms that are both detectable and irreversible, and inferring the spatial geolocation of temperature measurements in order to map temperature distribution. Initial experiments were carried out to investigate each of these challenges. It was demonstrated in a slim-tube injection experiment that it is possible to transport silica nanoparticles over large distances through porous media. The feasibility of magnetic collection of nanoparticles from produced fluid was evaluated experimentally, and it was estimated that 3% of the injected nanoparticles were recovered in a prototype magnetic collection device. An analysis technique was tailored to nanosensors with a dye-release mechanism to estimate temperature measurement geolocation by analyzing the return curve of the released dye. This technique was used in a hypothetical example problem, and good estimates of geolocation were achieved. Tin-bismuth alloy nanoparticles were synthesized using a sonochemical method, and a bench heating experiment was performed using these nanoparticles. Particle growth due to melting was observed, indicating that tin-bismuth nanoparticles have potential as temperature nanosensors

Morgan Ames

2011-06-15T23:59:59.000Z

258

Water salinity of the First Eocene reservoir: Its unique behaviour and influence on reservoir engineering calculations  

SciTech Connect (OSTI)

The salinity of the produced water from First Eocene reservoir of Wafra field was studied through its past history. The change in the salinity of the initially produced water (from about 500 to 20,000 ppm NaCl) was attributed to the meteoric water which might have entered the reservoir through its outcrops to the west of the field. The correct value of the connate water salinity (23,000 ppm) that should be used in estimating the original oil in place by the volumetric method was determined by three different approaches. In addition, a technique to be followed in calculating the volumetric original oil in place for the First Eocene reservoir is outlined to overcome the complex behaviour of aquifer salinity. The change in the produced water salinity of the First Eocene reservoir with time was studied and proved that water is dumping from an upper water bearing zone into First Eocene reservoir. Upper water dumping, which apparently has supported the reservoir pressure, was confirmed to occur behind casing in many deeper wells penetrating the First Eocene reservoir by the analysis of their temperature and noise logs.

Ghoniem, S.A.A.; Al-Zanki, F.H.

1985-03-01T23:59:59.000Z

259

Water salinity of First Eocene reservoir: Unique behavior and influence on reservoir engineering calculations  

SciTech Connect (OSTI)

The salinity of the produced water from the First Eocene reservoir of the Wafra field was studied through its history. The change in the salinity of the initially produced water (from about 500 to 20,000 ppm NaCl) was attributed to meteoric water that might have entered the reservoir through outcrops west of the field. The correct value of the interstitial water salinity (23,000ppm) that should be used in estimating the original oil in place (OOIP) by the volumetric method was determined by three different approaches. In addition, a technique to overcome the complex behavior of aquifer salinity in calculating the volumetric OOIP for the First Eocene reservoir is outlined. A study of the change in the produced water salinity of the First Eocene reservoir with time proved that water is dumping from an upper water-bearing zone into the reservoir. Analysis of temperature and noise logs confirmed that this upper water dumping, which apparently has supported the reservoir pressure, occurred behind casing in many deeper wells penetrating the First Eocene reservoir.

Ghoniem, S.A.; Al-Zanki, F.H.

1987-09-01T23:59:59.000Z

260

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD the Stanford Geothermal Program, Department of Energy contract DE-AT03-80SFl1459 for their financial report Geothermal Program, Department of Energy contract DE-AT03-80SF11459 for their financial report. Also we would

Stanford University

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Departnent Geothermal Energy Extraction Scheme .............................................. 2 3.1 Experimental SetupStanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

Stanford University

262

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the DepartmentStanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR-81 TRACER TEST ANALYSIS OF THE KLAMATH FALLS GEOTHERMAL RESOURCE

Stanford University

263

Stanford Geothermal Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stanford Geothermal Workshop is one of the world's longest running technical meetings on geothermal energy. The conference brings together engineers, scientists and managers...

264

CDC Guide for Civil & Environmental Engineers he Stanford University Career Development Center (CDC)  

E-Print Network [OSTI]

, water resources management, bioremediation, and water treatment plant design. Environmental "chemical" engineers focus on environmental chemistry, advanced air and water treatment technologies and separation as well as manage government facilities and infrastructure. In industry, civil and environmental engineers

Prinz, Friedrich B.

265

STANFORD DINING --Jane Lathrop Stanford  

E-Print Network [OSTI]

the Acterra Award for Sustainability and PG&E award for Leadership in Applying Green Building Design and have and Leland Stanford. We take the time and effort to source the most sustainable ingredients while building contribute to the prestige of Stanford · Community building opportunities · Enhanced quality of life

Ford, James

266

Department of Biology, Stanford University, Stanford, CA. Taube Center for Jewish Studies, Stanford University, Stanford, CA.  

E-Print Network [OSTI]

1 Department of Biology, Stanford University, Stanford, CA. 2 Taube Center for Jewish Studies, Stanford University, Stanford, CA. *Correspondence to: Noah A. Rosenberg, Department of Biology, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA. E-mail: noahr@stanford.edu. KEY WORDS

Rosenberg, Noah

267

Top-Down Intelligent Reservoir Models, Integrating Reservoir Engineering with AI&DM Extended Abstract, 2009 AAPG Annual Conventions, Denver Colorado  

E-Print Network [OSTI]

integration of state-of-the-art in Artificial Intelligence & Data Mining (AI&DM) with solid reservoir that usually works well in the hand of an experienced team of engineers and geoscientists. Characteristics

Mohaghegh, Shahab

268

Sustainable Infrastructure Systems using Engineered Cementitious Michael D. Lepech, Department of Civil and Environmental Engineering, Stanford University,  

E-Print Network [OSTI]

either adopted LEED or developed their own national green building guidelines. While the success of LEED engineer would take to engage in "sustainable" engineering of building systems and civil infrastructure of these design solutions. In the United States, significant strides have been made by the US Green Building

Lepech, Michael D.

269

Petrofacies analysis - the petrophysical tool for geologic/engineering reservoir characterization  

SciTech Connect (OSTI)

Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measures of a reservoir. The word {open_quotes}petrofacies{close_quotes} makes an explicit link between petroleum engineers concerns with pore characteristics as arbiters of production performance, and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information, where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations will be reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production such as bypassed pay behind pipe and in old exploration holes, or to assess zonation and continuity of the reservoir. Petrofacies analysis is applied in this example to distinguishing flow units including discrimination of pore type as assessment of reservoir conformance and continuity. The analysis is facilitated through the use of color cross sections and cluster analysis.

Watney, W.L.; Guy, W.J.; Gerlach, P.M. [Kansas Geological Survey, Lawrence, KS (United States)] [and others

1997-08-01T23:59:59.000Z

270

A reservoir engineering and economic evaluation of waterflood infill drilling in the Johnson J.L. "AB" unit  

E-Print Network [OSTI]

A RESERVOIR ENGINEERING AND ECONOMIC EVALUATION OF WATERFLOOD INFILL DRILLING IN THE JOHNSON J. L. "AB" UNIT A Thesis by SAMEER KUMAR YADA VALLI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1990 Major Subject: Petroleum Engineering A RESERVOIR ENGINEERING AND ECONOMIC EVALUATION OF WATERFLOOD INFILL DRILLING IN THE JOHNSON J. L. "AB" UNIT A Thesis by SAMEER KUMAR YADAVALLI Approved...

Yadavalli, Sameer Kumar

1990-01-01T23:59:59.000Z

271

Hot Dry Rock Reservoir Engineering | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind Farm Facility HorseEngineering

272

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department and by the Geothermal & Hydrology Technologies Division of the U.S. Dept. of Energy, project No.: DE-AT03-80SF11459. -iv

Stanford University

273

Stanford University Sustainable Design & Construction Program  

E-Print Network [OSTI]

March 14, 2014 Y2E2 Building, Room 292E 473 Via Ortega, Stanford, CA 94305 #12;Sustainable DesignStanford University Sustainable Design & Construction Program 2014-2015 Admitted Student Open House for sophisticated structural/construction engineers " Support Design-Build Firms, Design Firms, Construction Firms

Prinz, Friedrich B.

274

STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305  

E-Print Network [OSTI]

Reservoir-Under Injection........................................................... 12 Measurements ...................................................................................... 19 Thermal Stress Effects................................................................... 33 4.2 4.3 4.4 INJECTION TECHNOLOGY

Stanford University

275

Stanford University Conservation  

E-Print Network [OSTI]

Stanford University Hearing Conservation Program April 2006 #12;Stanford University HEARING CONSERVATION PROGRAM CONTENTS PAGE 1.0 INTRODUCTION #12;HEARING CONSERVATION PROGRAM 1.0 INTRODUCTION "It is the policy of Stanford University to maintain

276

SGP-TR-32 STANFORD GEOTHERMAL PROGRAM  

E-Print Network [OSTI]

SGP- TR- 32 STANFORD GEOTHERMAL PROGRAM PROGRESS REPORT NO. 7 t o U. S. DEPARTMENT OF ENERGY Recent Radon Transient Experiments Energy Recovery from Fracture-Stimulated Geothermal Reservoirs 1 2 October 1, 1978 through December 31, 1978. Research is performed under t h e Department of Energy Contract

Stanford University

277

GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79  

E-Print Network [OSTI]

that well blocks must geothermal reservoir studies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

Pruess, Karsten

2012-01-01T23:59:59.000Z

278

Data-flow Distribution in FICAS Service Composition Infrastructure Dept. of Electrical Engineering  

E-Print Network [OSTI]

Data-flow Distribution in FICAS Service Composition Infrastructure David Liu Dept. of Electrical Engineering Stanford University Stanford, CA 94305 davidliu@stanford.edu Kincho H. Law Dept. of Civil and Environmental Engineering Stanford University Stanford, CA 94305 law@cive.stanford.edu Gio Wiederhold Computer

Stanford University

279

Analysis of Integration Models for Service Composition Dept. of Electrical Engineering  

E-Print Network [OSTI]

Analysis of Integration Models for Service Composition David Liu Dept. of Electrical Engineering. Other services include simulation programs [16], engineering, logistics, and business services & Environmental Engineering Stanford University Stanford, CA 94305, USA law@cive.stanford.edu Gio Wiederhold

Stanford University

280

History of the Stanford Synchrotron Radiation Lightsource | Stanford...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History of the Stanford Synchrotron Radiation Lightsource SPEAR Based on new applications of synchrotron radiation, SSRL began in 1973 as the Stanford Synchrotron Radiation Project...

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

282

Stanford Geothermal Program ml Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program ml Interdisciplinary Research in Engineering and Earth Sciences Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department Geothermal Program, for which am very thankful. iI #12;I am primarily indebted to my wife Martha. Her loving

Stanford University

283

Stanford London 2005 Slide 1 Technology Entrepreneurship  

E-Print Network [OSTI]

Stanford London 2005 Slide 1 Technology Entrepreneurship: A Personal Top 10 List Stanford Club;Stanford London 2005 Slide 2 "Don't Hate Me `Cause I'm a Weenie!" Then... Now... #12;Stanford London 2005 Slide 3 A Stanford University Legacy #12;Stanford London 2005 Slide 4 Stanford and Silicon Valley

Prinz, Friedrich B.

284

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network [OSTI]

the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

Howard, J.H.

2011-01-01T23:59:59.000Z

285

Geothermal Reservoir Engineering Research. Fourth annual report, October 1, 1983-September 30, 1984  

SciTech Connect (OSTI)

Reservoir definition research consisted of well test analysis and bench-scale experiments. Well testing included both single-well pressure drawdown and buildup testing, and multiple-well interference testing. The development of new well testing methods continued to receive major emphasis during the year. Work included a project on multiphase compressibility, including the thermal content of the rock. Several projects on double-porosity systems were completed, and work was done on relative-permeability. Heat extraction from rock will determine the long-term response of geothermal reservoirs to development. The work in this task area involved a combination of physical and mathematical modeling of heat extraction from fractured geothermal reservoirs. International cooperative research dealt with adsorption of water on reservoir cores, the planning of tracer surveys, and an injection and tracer test in the Los Azufres fields. 32 refs.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

1984-09-01T23:59:59.000Z

286

Dept. of Mechanical Engineering 1500 Engineering Dr.  

E-Print Network [OSTI]

Dept. of Mechanical Engineering 1500 Engineering Dr. University of Wisconsin ­ Madison Madison, WI. of Mechanical Engineering 2008 ­ Present Director of Engine Research Center 2003 ­ 2007 Associate Professor ­ 1995 Research Assistant Stanford University, Stanford, CA 1984 ­ 1989 Research Engineer Flow Research

Sheridan, Jennifer

287

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT OCTOBER 1 ­ DECEMBER 31, 1996 #12;1 1 AN EXPERIMENTAL that in the vertical case. 1.2 INTRODUCTION The process of boiling in porous media is of significance in geothermal

Stanford University

288

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

1 STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT JANUARY 1 - MARCH 31, 1997 #12;2 1 AN EXPERIMENTAL in geothermal systems as well as in many other applications such as porous heat pipes, drying and nuclear waste

Stanford University

289

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

290

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

291

Model-Based Control and Optimization of Large Scale Physical Systems -Challenges in Reservoir Engineering  

E-Print Network [OSTI]

needs to increase efficiency in oil recovery from subsurface reservoirs new technology is devel- oped challenge to rationalize the decision processes. With newly developed technology for drilling wells and in for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands E-mail: p

Van den Hof, Paul

292

HEAR2T and the Stanford Heart Network Stanford's Approach  

E-Print Network [OSTI]

intervention pro- gram could reduce the incidence of cardiac events (heart attack, bypass, etc.) by 40 their cardiovascular health and take action to reduce their risk for a heart attack or stroke. The Stanford HEART modelHEAR2T and the Stanford Heart Network Stanford's Approach SPRCHeart Healthy Communities (continued

Ford, James

293

Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Annual report, September 29, 1994--September 30, 1995  

SciTech Connect (OSTI)

The purpose of this project is to conduct a variety of laboratory and field tests and utilize all the geological, geophysical, and engineering information to develop a mathematical model of the reservoir by the use of global optimization methods. This interdisciplinary effort will integrate advanced geoscience and reservoir engineering concepts to quantify interwell reservoir heterogeneity and the dynamics of fluid-rock and fluid-fluid interactions. The reservoir characterization includes geological methods (outcrop and reservoir rock studies), geophysical methods (interwell acoustic techniques), and other reservoir/hydrologic methodologies including analyses of pressure transient data, core studies, and tracer tests. The field testing is being conducted at the Sulimar Queen Unit with related laboratory testing at the PRRC on samples from the Sulimar site and Queen sandstone outcrops. The aim is to (1) characterize and quantify lithologic heterogeneity, (2) mathematically quantify changes in the heterogeneity at various scales, (3) integrate the wide variety of data into a model that is jointly constrained by the interdisciplinary interpretive effort, and (4) help optimize petroleum recovery efficiencies.

Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

1996-04-01T23:59:59.000Z

294

Reservoir Engineering Optimization Strategies for Subsurface CO{sub 2} Storage  

SciTech Connect (OSTI)

The purpose of this report is to outline a methodology for calculating the optimum number of injection wells for geologic CCS. The methodology is intended primarily for reservoir pressure management, and factors in cost as well. Efficiency may come in many forms depending on project goals; therefore, various results are presented simultaneously. The developed methodology is illustrated via application in a case study of the Rocky Mountain Carbon Capture and Storage (RMCCS) project, including a CCS candidate site near Craig, Colorado, USA. The forecasting method provided reasonable estimates of cost and injection volume when compared to simulated results.

Mclntire, Blayde; McPherson, Brian

2013-09-30T23:59:59.000Z

295

E-Print Network 3.0 - aidlinsector ofthe geysers Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology ; Geosciences 7 PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31...

296

INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

Ernest A. Mancini

2004-02-25T23:59:59.000Z

297

Microsoft Word - Cooper Stanford_Modeling_Paper__final__1_.docx  

Office of Scientific and Technical Information (OSTI)

Workshop on Geothermal Reservoir Engineering D. Craig Cooper Carl D. Palmer Robert W. Smith Travis L. McLing February 2013 PROCEEDINGS, Thirty-Eighth Workshop on Geothermal...

298

Present Status and Future Prospects of Geothermal Development in Italy with an Appendix on Reservoir Engineering  

SciTech Connect (OSTI)

This paper consists of two parts and an appendix. In the first part a review is made of the geothermal activity in Italy from 1975 to 1982, including electrical and non-electrical applications. Remarks then follow on the trends that occurred and the operational criteria that were applied in the same period, which can be considered a transitional period of geothermal development in Italy. Information on recent trends and development objectives up to 1990 are given in the second part of the paper, together with a summary on program activities in the various geothermal areas of Italy. The appendix specifically reviews the main reseroir engineering activities carried out in the past years and the problems likely to be faced in the coming years in developing Itallian fields.

Cataldi, R.; Calamai, A.; Neri, G.; Manetti, G.

1983-12-15T23:59:59.000Z

299

Stanford Synchrotron Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff Basic Energy Sciences (BES)StandardsStanford

300

Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes  

SciTech Connect (OSTI)

Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications, Kansas Geological Survey Open-file reports, Master's theses, and postings on the project website: http://www.kgs.ku.edu/SEISKARST.

Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

2009-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...  

Open Energy Info (EERE)

Humeros Geothermal Reservoir (Mexico) Abstract An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed...

302

Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico--waterflood performance analysis for the South Cowden Grayburg Reservoir, Ector County, Texas. Final report  

SciTech Connect (OSTI)

A reservoir engineering study was conducted of waterflood performance in the South Cowden field, an Upper Permian Grayburg reservoir on the Central Basin Platform in West Texas. The study was undertaken to understand the historically poor waterflood performance, evaluate three techniques for incorporating petrophysical measurements and geological interpretation into heterogeneous reservoir models, and identify issues in heterogeneity modeling and fluid-flow scaleup that require further research. The approach included analysis of relative permeability data, analysis of injection and production data, heterogeneity modeling, and waterflood simulation. The poor South Cowden waterflood recovery is due, in part, to completion of wells in only the top half of the formation. Recompletion of wells through the entire formation is estimated to improve recovery in ten years by 6 percent of the original oil in place in some areas of the field. A direct three-dimensional stochastic approach to heterogeneity modeling produced the best fit to waterflood performance and injectivity, but a more conventional model based on smooth mapping of layer-averaged properties was almost as good. The results reaffirm the importance of large-scale heterogeneities in waterflood modeling but demonstrate only a slight advantage for stochastic modeling at this scale. All the flow simulations required a reduction to the measured whole-core k{sub v}/k{sub h} to explain waterflood behavior, suggesting the presence of barriers to vertical flow not explicitly accounted for in any of the heterogeneity models. They also required modifications to the measured steady-state relative permeabilities, suggesting the importance of small-scale heterogeneities and scaleup. Vertical flow barriers, small-scale heterogeneity modeling, and relative permeability scaleup require additional research for waterflood performance prediction in reservoirs like South Cowden.

Jennings, J.W. Jr.

1997-05-01T23:59:59.000Z

303

Stanford Social Innovation Review 518 Memorial Way, Stanford, CA 94305-5015  

E-Print Network [OSTI]

Stanford Social Innovation Review 518 Memorial Way, Stanford, CA 94305-5015 Ph: 650-725-5399. Fax Stanford Social Innovation Review Spring 2009 Copyright © 2009 by Leland Stanford Jr. University All Rights Reserved #12;40 STANFORD SOCIAL INNOVATION REVIEW · Spring 2009 ( ) On April 22, 1990,an estimated 200

Hoffman, Andrew J.

304

Stanford Radiology LPCH Fast Pediatric MRI  

E-Print Network [OSTI]

Stanford Radiology LPCH Fast Pediatric MRI Shreyas Vasanawala, MD/PhD Stanford University Lucile Radiology LPCH Thank you Par Lab Briefer, lighter, safer anesthesia for pediatric MRI #12; practice #12;Stanford Radiology LPCH #12;Stanford Radiology LPCH Current Solution INVASIVE LIMITS ACCESS

California at Berkeley, University of

305

STANFORD REDWOOD CITY INFUSION THERAPY CENTER  

E-Print Network [OSTI]

STANFORD REDWOOD CITY INFUSION THERAPY CENTER Stanford Redwood City Infusion Therapy Center 450 that the new Stanford Redwood City Infusion Therapy Center opened on January 6, 2014. This new state previously received infusion treatments in the Infusion Treatment Area (ITA) at the Stanford Cancer Center

Bejerano, Gill

306

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

307

Portable GPS Baseband Logging Morgan Quigley, Stanford University  

E-Print Network [OSTI]

Portable GPS Baseband Logging Morgan Quigley, Stanford University Pieter Abbeel, Stanford Dennis Akos, University of Colorado Andrew Y. Ng, Stanford University BIOGRAPHY Morgan Quigley and Pieter

Ng, Andrew Y.

308

STANFORD CANCER CENTER Patient Treatment  

E-Print Network [OSTI]

PRESCRIBED: Printed on 100% post-consumer recycled paper, with vegetable-based inks. #12;STANFORD CANCER any animal feces (i.e., cat litter) of any kind. OK to pet your animal, just wash your hands, keep

Ford, James

309

Sustainable Stanford Greening Infrastructure & Choices  

E-Print Network [OSTI]

sustainability coordinators Work with Office of Sustainability as staff to assist and coordinate with building;1717 Building Level Conservation Solicit participation for the campus Building Level Sustainability Program #12Sustainable Stanford Greening Infrastructure & Choices Fahmida Ahmed Office of Sustainability #12

310

Application of Stable Isotope `Techniques to Tracing Recharge of Geothenmal Systems  

E-Print Network [OSTI]

and by the Department of Petroleum Engineering, Stanford University ml Stanford Geothermall Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California #12;ABSTRACT sources of meteoric water recharge and recirculation of flashed reservoir fluids. ..-11- #12;TABLE

Stanford University

311

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

Yusuf, Nurudeen

2008-10-10T23:59:59.000Z

312

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

Yusuf, Nurudeen

2009-05-15T23:59:59.000Z

313

Stanford Social Innovation Review 518 Memorial Way, Stanford, CA 94305-5015  

E-Print Network [OSTI]

Stanford Social Innovation Review 518 Memorial Way, Stanford, CA 94305-5015 Ph: 650-725-5399. Fax: 650-723-0516 Email: info@ssireview.com, www.ssireview.com Design Thinking for Social Innovation By Tim Brown & Jocelyn Wyatt Stanford Social Innovation Review Winter 2010 Copyright 2007 by Leland Stanford Jr

Ramanujam, Nimmi

314

https://spectrum.stanford.edu/education-mentoring Contact us at Stanford-edplan-initiative@lists.stanford.edu  

E-Print Network [OSTI]

https://spectrum.stanford.edu/education-mentoring Contact us at Stanford-edplan-initiative@lists.stanford.edu IRB Update Wednesday, June 26, 2013 12:00PM ­ 1:00PM Li Ka Shing Center, Rm. 130 291 Campus Drive updates and FYIs to the research community on IRB-related topics. The workshop will provide guidance

Sonnenburg, Justin L.

315

Optimal Hydropower Reservoir Operation with Environmental Requirements MARCELO ALBERTO OLIVARES  

E-Print Network [OSTI]

Optimal Hydropower Reservoir Operation with Environmental Requirements By MARCELO ALBERTO OLIVARES Engineering Optimal Hydropower Reservoir Operation with Environmental Requirements Abstract Engineering solutions to the environmental impacts of hydropower operations on downstream aquatic ecosystem are studied

Lund, Jay R.

316

THE BULL RUN RIVER-RESERVOIR SYSTEM MODEL Robert L. Annear, Research Assistant, Civil and Environmental Engineering, Portland  

E-Print Network [OSTI]

to meet water demand and fish habitat requirements. Management strategies evaluated included adding and Environmental Engineering, Portland State University, Portland, Oregon. Scott A. Wells, Professor of Civil and Environmental Engineering, Portland State University, Portland, Oregon. Department of Civil and Environmental

Wells, Scott A.

317

Copyright 1999, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the 1999 SPE Reservoir Simulation Symposium  

E-Print Network [OSTI]

Copyright 1999, Society of Petroleum Engineers Inc. This paper was prepared for presentation by the Society of Petroleum Engineers and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers

Peszynska, Malgorzata

318

Copyright 2004, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the 2005 SPE Reservoir Simulation Symposium  

E-Print Network [OSTI]

Copyright 2004, Society of Petroleum Engineers Inc. This paper was prepared for presentation not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any position of the Society of Petroleum Engineers

Sambridge, Malcolm

319

E-Print Network 3.0 - accelerator center stanford Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

e Stanford University, Stanford, CA (092010 - present) Ph. D. in Applied Physics Advisor: Prof... . Zhi-Xun Shen Stanford University, Stanford, CA (092007 - ... Source:...

320

An evaluation of the Corps of Engineers optimum visitation and predicted visitation concepts in planning for reservoir recreation  

E-Print Network [OSTI]

were: 1. To determine what effects imprecise steps in the method- ologies have on the overall accuracy of these methods. 2. To determine whether these methodologies are limited in scope to include only certain types of recreation activities. 3... I. THE STUDY Introduction Definition of Terms The Problem Purpose of the Study . Scope and Limitations Description of Tennessee Colony Reservoir II. REVIEW OF LITERATURE III. METHODOLOGY 12 Determining Optimum Visitation 18 Optimum...

Kreag, Glenn Macarthur

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Stanford University Mercury Thermometer Replacement  

E-Print Network [OSTI]

Stanford University Mercury Thermometer Replacement Program Instructions for Reuniting Separated Fluid Column of Non-Mercury Thermometer Heating Method Heat the thermometers bulb in an upright position of the thermometer. Note that over filling the expansion chamber will break the thermometer. Tap the thermometer

322

EFFECTS OF WATER INJECTION INTO FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

DIVISION OF THE DEPARTMENT OF ENERGY STANFORD-DOE CONTRACT DE-AT03-80SF11459 #12;EFFECTS OF WATER INJECTION improvement and degradation of total energy recovery. placement of reservoir f l u i d can mean support of waste water disposal and %proved re- source recovery. I n order t o correctly apportion importance

Stanford University

323

MELISSA KEMP Stanford University, Department of Biology  

E-Print Network [OSTI]

EXPERIENCE Stanford University, Palo Alto, CA Fall 2010 - Present Department of Biology, Advisor: Dr Senior Thesis Previews. Williamstown, Massachusetts . August 2009. #12; 3 Population genetics

Hadly, Elizabeth

324

SSRLUO 2015 Executive Committee Members | Stanford Synchrotron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos, NM (SSRL UEC Chair) Jordi Cabana, University of Illinois at Chicago, IL Kelly Chacn, Oregon Health & Science University, Portland, OR Justin Chartron, Stanford...

325

Portable GPS Baseband Logging Morgan Quigley, Stanford University  

E-Print Network [OSTI]

Portable GPS Baseband Logging Morgan Quigley, Stanford University Pieter Abbeel, Stanford Dennis Akos, University of Colorado Andrew Y. Ng, Stanfod University BIOGRAPHY Morgan Quigley and Pieter

Stanford University

326

Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

Ma, Xiaodan

2013-12-10T23:59:59.000Z

327

Stanford University March 2011 Stanford Institute for Economic Policy Research on the web:http://siepr.stanford.edu  

E-Print Network [OSTI]

Stanford University · March 2011 Stanford Institute for Economic Policy Research on the web on the other are part of the competitive free-market process, with which the FCC should not meddle. The problem's Institute for Economic Policy Analysis and Professor, by courtesy, of Economics. From 1981 to 2003, he

Gerdes, J. Christian

328

Stanford University June 2012 Stanford Institute for Economic Policy Research on the web:http://siepr.stanford.edu  

E-Print Network [OSTI]

's compensating policies for small schools One example of such a policy failure comes from the government of India of learning and Compensating Policies for Small Schools: Addressing Schooling Inequalities in Rural India1Stanford University · June 2012 Stanford Institute for Economic Policy Research on the web

Ford, James

329

E-Print Network 3.0 - area idaho raft Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

area idaho raft Page: << < 1 2 3 4 5 > >> 1 PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31...

330

E-Print Network 3.0 - anomalies sub-surface structure Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

structure Page: << < 1 2 3 4 5 > >> 1 PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31...

331

E-Print Network 3.0 - area west java-indonesia Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

java-indonesia Page: << < 1 2 3 4 5 > >> 1 PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009...

332

Stanford University Committee on Health and Safety  

E-Print Network [OSTI]

and Energy Management 4. Report on Stanford Environment, Health and Safety (EH&S) programs ­ Larry Gibbs ­Professor of Pathology ·Nancy Olson ­Community Member, Palo Alto ·Jeffrey Wine ­Professor of Psychology, Associate Director of Sustainability and Energy Management 4. Report on Stanford Environment, Health

333

Tayo Oguntebi tayo@stanford.edu  

E-Print Network [OSTI]

with transactional memory. Member of the Pervasive Parallelism Laboratory, a broad effort across several research prototypes Expected Graduation date: 2012 M.S. ­ Stanford University, Stanford, California ElectricalView, MATLAB; Systems/Controls Proficient in French: Studied in Metz, France - Summer 2005 INDUSTRY EXPERIENCE

Olukotun, Kunle

334

Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California  

SciTech Connect (OSTI)

This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

Not Available

1988-07-01T23:59:59.000Z

335

SUPRI (Stanford University Petroleum Research Institute) heavy oil research program  

SciTech Connect (OSTI)

This report is a summary of the work performed under Department of Energy contract FG19-87BC14126 during the period February 22, 1987 to February 21, 1990. During that period the Stanford University Petroleum Research Institute has published twenty-two technical reports and professional papers. This report presents in general terms the scope of work of SUPRI which is divided in five main projects: reservoir properties, in-situ combustion, improvement of steam injection by additives, well-to-well formation evaluation, and field support services. The results obtained during the period of performance of the contract are then presented in the form of abstracts from the technical reports and papers written during the period of performance.

Brigham, W.E.; Ramey, H.J. Jr.; Aziz, K.; Castanier, L.

1990-01-01T23:59:59.000Z

336

International Symposium on Innovation & Sustainability of Structures in Civil Engineering  

E-Print Network [OSTI]

University, China, 2011 WEB SERVICES IN CIVIL AND STRUCTURAL ENGINEERING SIMULATIONS Kincho H. Law DepartmentInternational Symposium on Innovation & Sustainability of Structures in Civil Engineering Xiamen of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020, United States

Stanford University

337

An Engineering Information Service Infrastructure for Ubiquitous Computing  

E-Print Network [OSTI]

An Engineering Information Service Infrastructure for Ubiquitous Computing David Liu1 , Jinxing services. 1 Ph.D. Candidate, Department of Electrical Engineering, Stanford University, Stanford, CA 94305 easy access to various engineering information services. In terms of the standard ISO model

Stanford University

338

Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities  

SciTech Connect (OSTI)

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

2004-01-13T23:59:59.000Z

339

Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.  

SciTech Connect (OSTI)

The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

2006-11-01T23:59:59.000Z

340

Stanford  

E-Print Network [OSTI]

... Name, Vol. V, No. N, Month 20YY, Pages 10? ... A great deal of research has been done on the topic of position estimation in ad-hoc networks ([Ganesan et...

2005-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A reservoir management study of a mature oil field.  

E-Print Network [OSTI]

??An integrated geological, petrophysical and reservoir engineering review was performed for a mature, producing oil field. Like many older fields, important data are missing or (more)

Peruzzi, Tave

2012-01-01T23:59:59.000Z

342

PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES  

SciTech Connect (OSTI)

The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]).

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

2004-05-01T23:59:59.000Z

343

PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES  

SciTech Connect (OSTI)

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

2003-04-01T23:59:59.000Z

344

E-Print Network 3.0 - australia remote monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Australia (PIRSA) Level 6, 101 ... Source: Stanford University - Department of Energy Resources Engineering, Reservoir Simulation Research Collection: Fossil Fuels 8...

345

E-Print Network 3.0 - accurate absolute measurement Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Earth Sciences, University of Durham; Stanford University - Department of Energy Resources Engineering, Reservoir Simulation Research Collection: Fossil Fuels ;...

346

Stanford University School of Medicine Privacy Office medprivacy@stanford.edu | 650.725.1828  

E-Print Network [OSTI]

devices used for Stanford business, including personally-owned devices. This applies to all members questions. Personal mobile devices. If you use your personal mobile device for work purposes (including, visit http://med.stanford.edu/datasecurity. Back-up and encrypt devices. The School of Medicine Data

Kay, Mark A.

347

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements  

SciTech Connect (OSTI)

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

348

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report  

SciTech Connect (OSTI)

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

349

120 GRC BULLETIN Reservoir Engineering  

E-Print Network [OSTI]

. The contour lines show various measures of quality of the results. The black contour bounds the area within a volume where pressure declined, pore water was re- placed by steam, and clay minerals were dehydrated matrix. These changes in turn may affect the seismic prop- erties to a measurable degree, particularly

Foulger, G. R.

350

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network [OSTI]

Investigator: Roland N. Home September 1986 Second Annual Report Department of Energy Contract Number through the evaluation of fluid reserves, and the forecastingl of field behavior with time. Injection al series of Proceedings that are a prominent literature source on geothermal energy. The Program

Stanford University

351

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network [OSTI]

Investigator: Roland N. Home September 1985 First Annual Report Department of Energy Contract Number, and the forecasting of field behavior with time. Injection I I Tec hnology is a research area receiving special on geothermal energy. The Program publishes technical reports on all of its research projects. Research findings

Stanford University

352

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON  

E-Print Network [OSTI]

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

Julien, Pierre Y.

353

Stanford Anesthesia 50th Year Celebration Registration Category  

E-Print Network [OSTI]

Stanford Anesthesia 50th Year Celebration Registration Category Please select a registration Department of Anesthesia will not assume any responsibility for any injuries or other negative occurrences indicate your affiliation with Stanford Anesthesia Anesthesia Resident Anesthesia Fellow Anesthesia Faculty

Ford, James

354

Integration of well test analysis into naturally fractured reservoir simulation  

E-Print Network [OSTI]

of the requirements for the degree of MASTER OF SCIENCE December 2005 Major Subject: Petroleum Engineering INTEGRATION OF WELL TEST ANALYSIS INTO A NATURALLY FRACTURED RESERVOIR SIMULATION A Thesis by LAURA..., W. John Lee Wayne M. Ahr Head of Department, Stephen A. Holditch December 2005 Major Subject: Petroleum Engineering iii ABSTRACT Integration of Well Test Analysis into a Naturally Fractured Reservoir...

Perez Garcia, Laura Elena

2006-04-12T23:59:59.000Z

355

stanford hci group / cs376 http://cs376.stanford.eduScott Klemmer 19 October 2006  

E-Print Network [OSTI]

1 stanford hci group / cs376 http://cs376.stanford.eduScott Klemmer · 19 October 2006 Distributed with Ed Hutchins in the spring of 05... #12;3 Integration of Thinking and Doing Clearboard's tech

Klemmer, Scott

356

Application of reservoir models to Cherokee Reservoir  

SciTech Connect (OSTI)

As a part of the Cherokee Reservoir Project hydrodynamic-temperature models and water quality models hav

Kim, B.R.; Bruggink, D.J.

1982-01-01T23:59:59.000Z

357

Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering  

E-Print Network [OSTI]

AND IMPACT ON STRUCTURAL COLLAPSE RISK Reagan Chandramohan1 , Jack W. Baker2 and Gregory G. Deierlein3 ABSTRACT Calculation of structural collapse risk using non-linear response history analysis requires and Environmental Engineering, Stanford University, Stanford, CA 94305 2 Associate Professor, Dept. of Civil

Baker, Jack W.

358

Proceedings of the 9th International Scientific and Technical Conference "New Methods and Technologies in Petroleum Geology, Drilling and Reservoir  

E-Print Network [OSTI]

and Technologies in Petroleum Geology, Drilling and Reservoir Engineering," Volume II, 311-317, AGH, Krakow, Poland

Patzek, Tadeusz W.

359

Stanford University November 2012 Stanford Institute for Economic Policy Research on the web:http://siepr.stanford.edu  

E-Print Network [OSTI]

, most notably China, have large shale gas reserves. Current landed prices for liquefied natural gas (LNG:http://siepr.stanford.edu SIEPRpolicy brief Energy industry observers have called the development of unconventional natural gas the shale for a controlled release of the natural gas trapped inside are the two major breakthroughs

Zalta, Edward N.

360

Stanford University September 2011 Stanford Institute for Economic Policy Research on the web:http://siepr.stanford.edu  

E-Print Network [OSTI]

other major sectors of the U.S. economy? Many of the core ideas advocated by health care reformers:http://siepr.stanford.edu SIEPRpolicy brief Will information technology transform the health care sector the way it has transformed are premised on patients, physicians, and health care organizations having access to complete electronic

Li, Fei-Fei

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Accepted, subject to re-review, Journal of Hydraulic Engineering, ASCE, version of January 2006 Role of Ponded Turbidity Currents in Reservoir Trap Efficiency  

E-Print Network [OSTI]

, because some of this sediment may pass out of the reservoir without settling out. Here a model of trap. The dam causes a sustained turbidity current to reflect and form a muddy pond bounded upstream by a hydraulic jump. If the interface of this muddy pond rises above any vent or overflow point at the dam

Parker, Gary

362

Application of integrated reservoir management and reservoir characterization to optimize infill drilling  

SciTech Connect (OSTI)

This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

NONE

1997-04-01T23:59:59.000Z

363

Stanford UniverSity Postdoctoral Scholars  

E-Print Network [OSTI]

Stanford UniverSity Postdoctoral Scholars Health Care Reform and Your Health Insurance Options Effective January 1, 2014, the Affordable Care Act -- also known as "health care reform" -- will require the impact of health care reform and to feel confident about your personal coverage decisions

Kay, Mark A.

364

Rok Sosic, Jure Leskovec Stanford University  

E-Print Network [OSTI]

available by Stack Overflow https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z 5.2GB and Jure Leskovec, Stanford University 3 #12; Task: Find top Java experts on Stack Overflow Possible approaches for finding experts: Use Stack Overflow reputation score: Not Java specific No control Count

Pratt, Vaughan

365

Stanford Center for Position, Navigation & Time  

E-Print Network [OSTI]

contributing exciting, novel new technologies, and together can play a leading role in this technology to rejuvenate the GLONASS system · Japan is also active with QZSS. #12;6 Outline A. Navigation & time technology;2 Stanford Center for Position Navigation and Time · The implementation of GPS in 1973 began this technology

Straight, Aaron

366

Stanford University Dept. of Project Management  

E-Print Network [OSTI]

Stanford University Dept. of Project Management Compacting the Sand for the Hot Water Piping Hall Wilbur Hall Kim H Resid Green Library Crothers Hall Main Quad Knight Management Center (see INSET Hse. Clock Tower Galvez Modular Sweet Hall Bookstore Law School Crothers Memorial Encina Commons

Raymond, Jennifer L.

367

Stanford Center for Position, Navigation and Time  

E-Print Network [OSTI]

--ACES: Atomic Clock Ensemble in Space Bryant Walker Smith--Legal Aspects of Vehicle Automation Michael O Collision Avoidance System (ACAS X)" 15 9:30am 30 Beiker, Sven Stanford CARS "Automated vehicles are coming "Legal aspects of Vehicle Automation" 17 11:00am 30 Shaw, Stuart Lockheed Martin "GPS III Signal

Straight, Aaron

368

STANFORD GEOTHERMAL PROGRAM FIRST ANNUAL REPORT  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM FIRST ANNUAL REPORT t o U.S. DEPARTMENT OF ENERGY LAWRENCE BERKELEY PRESENTATIONS & PUBLICATIONS APPENDIX A: STANDARD GEOTHERMAL PROGRAM WEEKLY SEMINAR ii 1 4 23 35 49 58 60 63 65 Geothermal Program has maintained momentum built up under the previous National Science Foundation support

Stanford University

369

Copyright 2001, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the SPE Reservoir Simulation Symposium held in  

E-Print Network [OSTI]

Copyright 2001, Society of Petroleum Engineers Inc. This paper was prepared for presentation by the Society of Petroleum Engineers and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers

Elmroth, Erik

370

ENGINEERING MECHANICS SEMINARSENGINEERING MECHANICS SEMINARS THINK COMPOSITE  

E-Print Network [OSTI]

ENGINEERING MECHANICS SEMINARSENGINEERING MECHANICS SEMINARS THINK COMPOSITE "THINK outside the box" for more competitive structural COMPOSITES Dr. Melih Papila Visiting Professor, Aero/Astro Department, Stanford University. Adv. Composites and Polymer Processing Lab., Sabanci University, Istanbul. mpapila

Ponce, V. Miguel

371

Robert L. Byer Stanford University  

E-Print Network [OSTI]

a strong domestic program requires supporting a world-class cadre of scientists, engineers and students Holdren Director, Office of Science and Technology Policy New Executive Office Building 725 17th Street, NW Washington DC 20502 The Honorable Dr. Holdren, I am writing as president of the American Physical

372

Pressure maintenance in a volatile oil reservoir  

E-Print Network [OSTI]

PRESSURE MAINTENANCE IN A VOLATILE OIL RESERVOIR A Thesis BRUCE ALAN SCHUSTER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1989 Major... Subject: Petroleum Engineering PRESSURE MAINTENANCE IN A VOLATILE OIL RESERVOIR A Thesis BRUCE ALAN SCHUSTER Approved as to style and content by: S. A. Holditch (Chair of Committee) W. J. Lee (Member) R. R, Berg (Member) , Jz W. D. Von Gonten...

Schuster, Bruce Alan

1989-01-01T23:59:59.000Z

373

Reservoir analysis model for battlefield operations  

E-Print Network [OSTI]

RESERVOIR ANALYSIS MODEL FOR BATTLEFIELD OPERATIONS A Thesis by GARRETT JAMES SULLIVAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1988... Major Subject: Civil Engineering RESERVOIR ANALYSIS MODEL FOR BATTLEFIELD OPERATIONS A Thesis by GARRETT JAMES SULLIVAN Approved as to style and content by: Ralp A. Wurbs (Chair of Committee) mes (N er) neth tr ek Nem e Charles . a es...

Sullivan, Garrett James

1988-01-01T23:59:59.000Z

374

Multicomponent 3-D characterization of a coalbed methane reservoir  

SciTech Connect (OSTI)

Methane is produced from fractured coalbed reservoirs at Cedar Hill Field in the San Juan Basin. Fracturing and local stress are critical to production because of the absence of matrix permeability in the coals. Knowledge of the direction of open fractures, the degree of fracturing, reservoir pressure, and compartmentalization is required to understand the flow of fluids through the reservoir. A multicomponent 3-D seismic survey was acquired to aid in coalbed methane reservoir characterization. Coalbed reservoir heterogeneities, including isolated pressure cells, zones of increased fracture density, and variable fracture directions, have been interpreted through the analysis of the multicomponent data and integration with petrophysical and reservoir engineering studies. Strike-slip faults, which compartmentalize the reservoir, have been identified by structural interpretation of the 3-D P-wave seismic data. These faults form boundaries for pressure cells that have been identified by P-wave reflection amplitude anomalies.

Shuck, E.L. [Advance Geophysical Corp., Englewood, CO (United States)] [Advance Geophysical Corp., Englewood, CO (United States); Davis, T.L.; Benson, R.D. [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.] [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.

1996-03-01T23:59:59.000Z

375

Some practical aspects of reservoir management  

SciTech Connect (OSTI)

The practical essence of reservoir management is the optimal application of available resources-people, equipment, technology, and money to maximize profitability and recovery. Success must include knowledge and consideration of (1) the reservoir system, (2) the technologies available, and (3) the reservoir management business environment. Two Reservoir Management Demonstration projects (one in a small, newly-discovered field and one in a large, mature water-flood) implemented by the Department of Energy through BDM-Oklahoma illustrate the diversity of situations suited for reservoir management efforts. Project teams made up of experienced engineers, geoscientists, and other professionals arrived at an overall reservoir management strategy for each field. in 1993, Belden & Blake Corporation discovered a regionally significant oil reservoir (East Randolph Field) in the Cambrian Rose Run formation in Portage County, Ohio. Project objectives are to improve field operational economics and optimize oil recovery. The team focused on characterizing the reservoir geology and analyzing primary production and reservoir data to develop simulation models. Historical performance was simulated and predictions were made to assess infill drilling, water flooding, and gas repressurization. The Citronelle Field, discovered in 1955 in Mobile County, Alabama, has produced 160 million barrels from fluvial sandstones of the Cretaceous Rodessa formation. Project objectives are to address improving recovery through waterflood optimization and problems related to drilling, recompletions, production operations, and regulatory and environmental issues. Initial efforts focused on defining specific problems and on defining a geographic area within the field where solutions might best be pursued. Geologic and reservoir models were used to evaluate past performance and to investigate improved recovery operations.

Fowler, M.L.; Young, M.A.; Cole, E.L.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)

1996-09-01T23:59:59.000Z

376

Tackling Big Challenges Using Tiny Crystals | Stanford Synchrotron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference Room 108A Speaker: Matteo Cargnello, Stanford Univeristy Program Description Fossil fuels are not endless and their extensive use is causing irreversible climate...

377

Stanford Synchrotron Radiation Light Source (SSRL) | U.S. DOE...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

378

DOE Cites Stanford University and Two Subcontractors for Worker...  

Broader source: Energy.gov (indexed) [DOE]

- Stanford University, Pacific Underground Construction, Inc., and Western Allied Mechanical, Inc. - for violations in September 2007 of the Department's worker safety and...

379

2010 Annual Planning Summary for Stanford Linear Accelerator...  

Energy Savers [EERE]

to be prepared in the next 24 months, and the planned cost and schedule for each NEPA review identified. 2010 Annual Planning Summary for Stanford Linear Accelerator Center...

380

Thermoacoustic engines and refrigerators  

SciTech Connect (OSTI)

This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

Swift, G.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Type A Investigation of the Electrical Arc Injury at the Stanford...  

Broader source: Energy.gov (indexed) [DOE]

of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004 Type A Investigation of the Electrical Arc Injury at the Stanford Linear Accelerator...

382

Status of Cherokee Reservoir  

SciTech Connect (OSTI)

This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

Not Available

1990-08-01T23:59:59.000Z

384

Stanford-Berkeley Summer School 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 ByWatching Ions HopBL7-2Stanford-Berkeley

385

ENGINEERING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw...

386

DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS  

SciTech Connect (OSTI)

For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for optimizing the recovery from naturally fractured reservoir systems. The next logical extension of this work is to apply the proposed methods to an actual field case study to provide information for verification and modification of the techniques and simulator. This report provides the details of the proposed techniques and summarizes the activities undertaken during the course of this project. Technology transfer activities were highlighted by a two-day technical conference held in Oklahoma City in June 2002. This conference attracted over 90 participants and included the presentation of seventeen technical papers from researchers throughout the United States.

Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

2002-12-31T23:59:59.000Z

387

Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions  

SciTech Connect (OSTI)

An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

1997-08-01T23:59:59.000Z

388

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Aamodt, Tor - Department of Electrical and Computer Engineering, University of British Columbia Aazhang, Behnaam -...

389

Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995  

SciTech Connect (OSTI)

This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

Pande, P.K.

1996-11-01T23:59:59.000Z

390

Reservoir management using streamline simulation  

E-Print Network [OSTI]

of information and sparsity of data. Quantifying this uncertainty in terms of reservoir performance forecast poses a major reservoir management challenge. One solution to this problem is flow simulation of a large number of these plausible reservoir descriptions...

Choudhary, Manoj Kumar

2000-01-01T23:59:59.000Z

391

STANFORD UNIVERSITY DIVING SAFETY MANUAL Hopkins Marine Station of Stanford University  

E-Print Network [OSTI]

Grove CA 93950 #12;2 CONTENTS Section Page 1.00 GENERAL POLICY 4 1.10 STANFORD UNIVERSITY SCIENTIFIC.40 RECORD MAINTENANCE 9 2.00 DIVING REGULATIONS FOR SCUBA (OPEN CIRCUIT, COMPRESSED AIR) 10 2.10 INTRODUCTION 10 2.20 PRE-DIVE PROCEDURES 10 2.30 DIVING PROCEDURES 11 2.40 POST-DIVE PROCEDURES 12 2

392

Stanford University Occupational Health Center Protecting Your Health and Safety at Work Central to supporting and promoting a culture of safety at Stanford is the Stanford University Occupational Health  

E-Print Network [OSTI]

to supporting and promoting a culture of safety at Stanford is the Stanford University OccupationalStanford University Occupational Health Center Protecting Your Health and Safety at Work Central Health Center (SUOHC). The SUOHC is part of the Office of Environmental Health & Safety and has two

Kay, Mark A.

393

Top-Down Intelligent Reservoir Modeling (TDIRM) Y.Gomez, Y. Khazaeni, S.D. Mohaghegh, SPE, West Virginia University, R. Gaskari, Intelligent Solutions, Inc.  

E-Print Network [OSTI]

aspects of an oil reservoir. The models include different reservoir saturation conditions (saturated depletion and achieving high recovery factor has always been a challenge for reservoir engineersSPE 124204 Top-Down Intelligent Reservoir Modeling (TDIRM) Y.Gomez, Y. Khazaeni, S.D. Mohaghegh

Mohaghegh, Shahab

394

ICED'09/Paper number (Contribution ID) 1 INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED'09  

E-Print Network [OSTI]

ICED'09/Paper number (Contribution ID) 1 INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED'09 24 - 27 AUGUST 2009, STANFORD UNIVERSITY, STANFORD, CA, USA CREATIVITY THEORIES AND SCIENTIFIC DISCOVERY: A STUDY OF C-K THEORY AND INFUSED DESIGN ABSTRACT Creativity is central to human activity

Shai, Offer

395

ICED'09/373 1 INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED'09  

E-Print Network [OSTI]

ICED'09/373 1 INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED'09 24 - 27 AUGUST 2009, STANFORD UNIVERSITY, STANFORD, CA, USA CREATIVITY THEORIES AND SCIENTIFIC DISCOVERY: A STUDY OF C-K THEORY AND INFUSED Creativity is central to human activity and is a powerful force in personal and organizational success

Reich, Yoram

396

Engines  

SciTech Connect (OSTI)

This invention relates to Stirling engines and to improved methods of operation whereby catalytic oxidation of a major proportion of the fuel takes place in the external combustor. An external combustion unit of a Stirling engine comprises a catalytic combustor having a thermally stable and oxidation resistant monolith made from and/or carrying a catalytic material and including a multiplicity of flow paths for catalytic combustion of combustible gases and injected fuel. The use of a catalytic combustor in accordance with this invention enables a Stirling or other engine fitted therewith to be used in areas such as mines and underwater installations where conventional flame combustion is impracticable or is controlled by stringent regulations.

Enga, B.E.

1981-08-25T23:59:59.000Z

397

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer HonoredEngineering

398

ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES  

E-Print Network [OSTI]

ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

Gerdes, J. Christian

399

Stanford University HRPP Continuous Quality Improvement (CQI) Program  

E-Print Network [OSTI]

/13 Research Compliance Office STANFORD measures and improves, when necessary, compliance with organizational measures and improves, when necessary, the quality, effectiveness, and efficiency of the Human Research to assess compliance with organizational policies and procedures and applicable laws, regulations, codes

Puglisi, Joseph

400

Engineering Engineering  

E-Print Network [OSTI]

Engineering Engineering Technology & A T P E N N S T A T E 2 0 1 0 ­ 2 0 1 1 #12;2 Join us at penn state! Since 1896, Penn State has been a leader in engineering and engineering technology education varieties of engineering and engineering technology majors found anywhere in the United States. This means

Maroncelli, Mark

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mechanical engineering Department Seminar  

E-Print Network [OSTI]

Mechanical engineering Department Seminar Wynter J. Duncanson Department of Aerospace and Ocean Engineering Virginia Tech Smart' Bubbles for Acoustic Contrast in Oil Reservoirs 11:00 AM Friday, 19 April engineering from Boston University. Her doctoral research was devoted to designing surface architectures

402

Reservoir Operation in Texas  

E-Print Network [OSTI]

management of the surface water resources of the various river basins of the state. The operation of these essential water control facilities is examined in this report. Reservoir operation is viewed here from the perspective of deciding how much water...

Wurbs, Ralph A.

403

Reservoir Protection (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Water Resource Board has the authority to make rules for the control of sanitation on all property located within any reservoir or drainage basin. The Board works with the Department...

404

Session: Reservoir Technology  

SciTech Connect (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

405

DOE-Funded Research at Stanford Sees Results in Reservoir Characterization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartmentDOE, NEPA, and YOUFlex Bulletin The|

406

Use of east Texas reservoirs by wintering bald eagles  

E-Print Network [OSTI]

to Human Activities CONCLUSION Lakeshore Disturbances and Management Recommendations Public Attitude The Future . LITERATURE CITED APPENDIX - OTHER AVIAN SPECIES THIS RESEARCHER COMMONLY OBSERVED SHARING EAST TEXAS RESERVOIRS WITH BALD EAGLES... for the presence of late-departing eagles. 28 Project managers for each Corps of Engineers reservoir in the study area, river authorities, power plant personnel, regional U. S. Forest Service offices, and lumber- companies were contacted in person...

Russell, Sandra Joy

1982-01-01T23:59:59.000Z

407

Recovery of oil from fractured reservoirs by gas displacement  

E-Print Network [OSTI]

RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNE BE RG Submitted to the Graduate College of Texas AlkM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974... Major Subject: Petroleum Engineering RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNEBERG Approved as, to style and content by: . ( y (Chairman of Cornrnittee) (Head of Depar nt) / (Membe r) (Member) M b...

Unneberg, Arild

2012-06-07T23:59:59.000Z

408

Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir  

SciTech Connect (OSTI)

Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the reservoir.

Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

2006-09-30T23:59:59.000Z

409

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer Honored

410

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is Partnershipsn eEngineering

411

E-Print Network 3.0 - ai perth australia Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Avenue Crawley, W.A., 6009, Australia ... Source: Stanford University - Department of Energy Resources Engineering, Reservoir Simulation Research Collection: Fossil Fuels 44...

412

E-Print Network 3.0 - acidic geothermal springs Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on Geothermal Reservoir Engineering Stanford University... BINARY POWER PLANTS IN REMOTE GEOTHERMAL AREAS OF INDONESIA Huenges E., K. Erbas, M. Jaya, and A. ... Source:...

413

Integrated Dense Array and Transect MT Surveying at Dixie Valley...  

Open Energy Info (EERE)

Fluid Sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference 32th Workshop on Geothermal Reservoir Engineering; Stanford, California; 2007...

414

Egs Exploration Methodology Project Using the Dixie Valley Geothermal...  

Open Energy Info (EERE)

Mahesh Thakur, Fletcher H. Ibser, Jennifer Lewicki, B. Mack. Kennedy and Michael Swyer Conference Thirty-Eighth Workshop on Geothermal Reservoir Engineering; Stanford,...

415

3D Magnetotelluic characterization of the Coso Geothermal Field  

E-Print Network [OSTI]

130, 475-496. the Coso Geothermal Field, Proc.28 th Workshop on Geothermal Reservoir Engineering, Stanfords ratio and porosity at Coso geothermal area, California: J.

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2008-01-01T23:59:59.000Z

416

ORBIS: The Stanford Geospatial Network Model of the Roman World Version 1.0  

E-Print Network [OSTI]

ORBIS: The Stanford Geospatial Network Model of the Roman World Version 1.0 May, 2012 Walter and provides a unique resource for our understanding of premodern history. #12;ORBIS: The Stanford Geospatial....................................................................................................................................22 Geospatial technology

Quake, Stephen R.

417

Hispanic Poverty and Inequality Grant Competition Stanford Center on Poverty and Inequality  

E-Print Network [OSTI]

Hispanic Poverty and Inequality Grant Competition Stanford Center on Poverty and Inequality Request for Proposals The Stanford Center on Poverty and Inequality (CPI), a National Poverty Research Center funded by the Office

Li, Fei-Fei

418

Heat Transfer Engineering, 27(4):5363, 2006 Copyright C Taylor and Francis Group, LLC  

E-Print Network [OSTI]

. KENNY, JOHN K. EATON, and KENNETH E. GOODSON Mechanical Engineering Department, Stanford University. The authors would like to thank our sponsors, Honda R&D Co. Ltd., Intel Corporation, and DARPA, through

Hidrovo, Carlos H.

419

CHEMICAL TRACER RETENTION IN POROUS MEDIA Submitted to the Department of Petroleum Engineering  

E-Print Network [OSTI]

* CHEMICAL TRACER RETENTION IN POROUS MEDIA A Report Submitted to the Department of Petroleum Engineering of Stanford University in Fulfillment of the Requirement for the Degree of Master of Science

Stanford University

420

2011 Graduate and Professional Schools School of Civil & Environmental Engineering -Undergraduate  

E-Print Network [OSTI]

Engineering Stanford University MS Structural Engineering Technical University of Denmark MS Wind Energy Colombia University in the City of NY MS Construction Management Cornell University MENG (6) Civil Employer Title City State Arcadis Civil Engineer Baltimore MD Arcadis Entry Level Engineer Syracuse NY City

Lipson, Michal

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A reservoir management strategy for multilayered reservoirs in eastern Venezuela  

E-Print Network [OSTI]

A reservoir management strategy has been developed for a field located in eastern Venezuela. The field contains deep, high pressure, multilayer reservoirs. A thorough formation evaluation was accomplished using the log data, core data, PVT data...

Espinel Diaz, Arnaldo Leopoldo

1998-01-01T23:59:59.000Z

422

Optoelectronic Reservoir Computing  

E-Print Network [OSTI]

Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.

Yvan Paquot; Franois Duport; Anteo Smerieri; Joni Dambre; Benjamin Schrauwen; Marc Haelterman; Serge Massar

2011-11-30T23:59:59.000Z

423

THE DEVELOPMENT OF LOW TEMPERATURE TECHNOLOGY AT STANFORD AND ITS RELEVANCE TO HIGH ENERGY PHYSICS"  

E-Print Network [OSTI]

and High Energy Physics Laboratory I. INTRODUCTION In the history of nuclear and high energy physics ENERGY PHYSICS" H. Alan Schwettmant Stanford University Stanford, California Department of Physics there have been a few pioneer- The High Energy Physics Laboratory (HEPL) at Stanford ing laboratories which

Ohta, Shigemi

424

ENGINEERING ENGINEERING  

E-Print Network [OSTI]

million for Air Force project · Biological Systems Engineering uses MRI machine to further tissue studies: Engineering Extraordinary Students Enjoy a selection of stories about some of the amazing students® ENGINEERING NEBRASKA@ ENGINEERING EXTRAORDINARY STUDENTS AlSO INSIDE: BSEN INNOVATES WITH MRI

Farritor, Shane

425

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

M. and Abe, H. Shape by Hydraulic Fracturing s e r v o i rprinciples involved i n hydraulic fracturing are out1 ined.crack during hydraulic fracturing has been investigated. I t

Sudo!, G.A

2012-01-01T23:59:59.000Z

426

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

F i r s t Geopressured Geothermal Energy Conference. Austin,I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."

Sudo!, G.A

2012-01-01T23:59:59.000Z

427

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

was observed i n the unconsolidated sand model. Existence'packed w i t h fine, unconsolidated sand. The sand pack waso f convective flow i n unconsolidated sands i n d i c a t e

Sudo!, G.A

2012-01-01T23:59:59.000Z

428

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Scien- Producing Geothermal Wells. (LA 6 5 5 3 x ) t i f i cSteam-Water Flow i n Geothermal Wells. Journal o f Petroleumo f a Hawaii Geothermal Well-- HGP-A. It Geothermal

Sudo!, G.A

2012-01-01T23:59:59.000Z

429

PROCEEDINGS SECOND WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: CrystalFG36-08GO18149Speeding access toSpeedingSpeeding accessaP 18 13SECOND

430

PROCEEDINGS SIXTEENTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: CrystalFG36-08GO18149Speeding access toSpeedingSpeeding accessaP 18

431

PROCEEDINGS THIRD WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: CrystalFG36-08GO18149Speeding access toSpeedingSpeeding accessaP 18THIRD

432

Core Analysis for the Development and Constraint of Physical Models of Geothermal Reservoirs  

SciTech Connect (OSTI)

Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting assumptions based on a knowledge base founded in validated rock physics models of reservoir material.

Greg N. Boitnott

2003-12-14T23:59:59.000Z

433

Reinjection into geothermal reservoirs  

SciTech Connect (OSTI)

Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

Bodvarsson, G.S.; Stefansson, V.

1987-08-01T23:59:59.000Z

434

150-MW S-band klystron program at the Stanford Linear Accelerator Center  

SciTech Connect (OSTI)

Two S-Band klystrons operating at 150 MW have been designed, fabricated and tested at the Stanford Linear Accelerator Center (SLAC) during the past two years for use in an experimental accelerator at Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany. Both klystrons operate at the design power, 60 Hz repetition rate, 3 {micro}s pulsewidth, with an efficiency {gt} 40%, and agreement between the experimental results and simulations is excellent. The 535 kV, 700 A electron gun was tested by constructing a solenoidal focused beam stick which identified a source of oscillation, subsequently engineered out of the klystron guns. Design of the beam stick and the two klystrons is discussed, along with observation and suppression of spurious oscillations. Differences in design and the resulting performance of the Klystrons is emphasized.

Sprehn, D.; Caryotakis, G.; Phillips, R.M.

1996-07-01T23:59:59.000Z

435

Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992  

SciTech Connect (OSTI)

SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

Cantwell, K.; St. Pierre, M. [eds.

1992-12-31T23:59:59.000Z

436

Post Doctoral Research Fellowship Simulating the greenhouse gas emission from boreal region reservoirs  

E-Print Network [OSTI]

of greenhouse gases from northern boreal reservoirs as part of a Natural Sciences and Engineering Research modified the DeNitrification-DeComposition (DNDC) model to simulate the exchange of CO2 between boreal by the creation of reservoirs for the production of hydro-electricity. We have recently developed a water column

437

STANFORD HISTORICAL SOCIETY FOR IMMEDIATE RELEASE April 2014  

E-Print Network [OSTI]

horse on Stanford's Palo Alto Stock Farm, commemorate pre-university days. Samuel Morris, dean. The Palo Alto Stock Farm was still much in evidence, not only its former racetracks and paddocks, but also streets now gone, foreshortened, or redirected, the book reveals changes fostered by population growth

Straight, Aaron

438

stanford hci group / cs376 Scott Klemmer 17 October 2006  

E-Print Network [OSTI]

1 stanford hci group / cs376 Scott Klemmer · 17 October 2006 Remote Collaboration Paul Badger is highly culturally dependent e.g., Southern Europe has closer boundaries for personal space than America (tables) The Papier-Mâché toolkit (vision, rfid, barcode) iROS and the PatchPanel (interactive rooms

Klemmer, Scott

439

Computer Replacement Guidelines Environmental Health and Safety, Stanford University  

E-Print Network [OSTI]

Computer Replacement Guidelines Environmental Health and Safety, Stanford University 17 November 2005 This document describes the guidelines for replacing laptop and desktop computers at Environmental Health and Safety. PC laptop and desktop computers will be replaced a) on an ongoing basis where

440

Stanford University School of Medicine Responsible Conduct of Research  

E-Print Network [OSTI]

Stanford University School of Medicine Responsible Conduct of Research Session 6: Tissue Use Makeup Cases Please choose one case and write a 3-5 page paper that answers the questions that accompany many years gathering tissue samples from women with breast cancer. All donors gave permission

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Proceedings of the 1999 ASME Design Engineering Technical Conferences  

E-Print Network [OSTI]

of the Internet, engineering and design services should be able to interact in a formal yet flexible mannerProceedings of the 1999 ASME Design Engineering Technical Conferences September 12­15, 1999, Las Vegas, Nevada DETC99/CIE-9077 AN INTERNET-BASED DISTRIBUTED SERVICE ARCHITECTURE Charles S. Han Stanford

Stanford University

442

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network [OSTI]

and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions...

Bogatchev, Kirill Y.

2009-05-15T23:59:59.000Z

443

Estimation of initial reservoir pressure in tight gas sands  

E-Print Network [OSTI]

Major Subject: Petroleum Engineering ESTIMATION OF INITIAL RESERVOIR PRESSURE IN TIGHT GAS SANDS A Thesis by SUSAN ANN LEACH Approved as to style and content by: R. A. Norse (Chairman of Comaittee) A. Wattenbarger (Nember) R. R. Berg (Membe... of the Department of Petroleum Engineering, for his interest and faith during the author's graduate studies. Dr. R. A. Wattenbarger and Dr. R. R. Berg for serving as members of the author's Advisory Committee. TABLE OF CONTENTS ABSTRACT ACKNOWLEDGEMENTS...

Leach, Susan Ann

1984-01-01T23:59:59.000Z

444

Interdisciplinary study of reservoir compartments. Quarterly technical progress report, July 1, 1994--September 30, 1994  

SciTech Connect (OSTI)

This DOE research project was established to document the integrated team approach for solving reservoir engineering problems. A field study integrating the disciplines of geology, geophysics, and petroleum engineering will be the mechanism for documenting the integrated approach. This is an area of keen interest to the oil and gas industry. The goal will be to provide tools and approaches that can be used to detect reservoir compartments, reach a better reserve estimate, and improve profits early in the life of a field.

Van Kirk, C.W.

1994-10-28T23:59:59.000Z

445

DepartMent of ciVil & enVironMental enGineerinG  

E-Print Network [OSTI]

Mission Goals & Vision March 2006 > DepartMent of ciVil & enVironMental enGineerinG stanforD Uni of Sustainability 5 engineering for sustainability 6 embracing sustainable engineering 7 Sustainable Built strengths and priorities 19 * pacific rim environmental research center 20 * center for ocean solutions 21

Straight, Aaron

446

Heat engine Device that transforms heat into work.  

E-Print Network [OSTI]

, and rocket engines are heat engines. So are steam engines and turbines #12;2 refrigerator Device that uses by steam turbines. Steam turbines, jet engines and rocket engines use a Brayton cycle #12;4 Steam turbines1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

Winokur, Michael

447

Fluid Circulation and Heat Extraction from Engineered Geothermal...  

Open Energy Info (EERE)

from Engineered Geothermal Reservoirs Abstract A large amount of fluid circulation and heat extraction (i.e., thermal power production) research and testing has been conducted...

448

Interdisciplinary study of reservoir compartments. [Quarterly report, April 1, 1994--June 30, 1994  

SciTech Connect (OSTI)

This DOE research project was established to document the integrated team approach for solving reservoir engineering problems. A field study integrating the disciplines of geology, geophysics, and petroleum engineering will be the mechanism for documenting the integrated approach. This is an area of keen interest to the oil and gas industry. The goal will be to provide tools and approaches that can be used to detect reservoir compartments, reach a better reserve estimate, and improve profits early in the life of a field. Progress reports are presented for the following tasks: reservoir selection and data gathering; outcrop/core/log analysis/ and correlations, internal architecture description; seismic analysis; and permeability experimental work.

Van Kirk, C.W.; Thompson, R.S.

1994-07-26T23:59:59.000Z

449

Stanford geothermal program. Final report, July 1990--June 1996  

SciTech Connect (OSTI)

This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

NONE

1998-03-01T23:59:59.000Z

450

Stanford- Global Climate and Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: Missouri References:InformationStanford- Global

451

Stanford- Precourt Energy Efficiency Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: Missouri References:InformationStanford-

452

Upscaling verticle permeability within a fluvio-aeolian reservoir  

SciTech Connect (OSTI)

Vertical permeability (k{sub v}) is a crucial factor in many reservoir engineering issues. To date there has been little work undertaken to understand the wide variation of k{sub v} values measured at different scales in the reservoir. This paper presents the results of a study in which we have modelled the results of a downhole well tester using a statistical model and high resolution permeability data. The work has demonstrates and quantifies a wide variation in k{sub v} at smaller, near wellbore scales and has implications for k{sub v} modelling at larger scales.

Thomas, S.D.; Corbett, P.W.M.; Jensen, J.L. [Heriot-Watt Univ., Edinburgh (United Kingdom)

1997-08-01T23:59:59.000Z

453

Fluid Flow Simulation in Fractured Reservoirs  

E-Print Network [OSTI]

The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

Sarkar, Sudipta

2002-01-01T23:59:59.000Z

454

A simulation-based reservoir management program  

SciTech Connect (OSTI)

There are more than 5,200 independent oil and gas producers operating in the US today (based on current IPAA membership figures). These companies are playing an increasingly important role in production of hydrocarbons in California and elsewhere in the US. Pacific Operators Offshore, Inc., in a historic collaboration with its government royalty owners, the California State Lands Commission and the Minerals Management Service of the US Department of Interior, is attempting to redevelop the Carpinteria Offshore Field after two-and-a-half decades of production and partial abandonment by a previous operator. This paper will describe a project which focuses on the distribution of advanced reservoir management technologies (geological, petrophysical, and engineering) to independent producers like Pacific Operators Offshore, Inc. The evolving information highway, specifically the World Wide Web (WWW), serves as the distribution medium. The project to be described in this paper is an example of the implementation of a reservoir management tool which is supported by distributed databases, incorporates a shared computing environment, and integrates stochastic, geological, and engineering modeling.

Voskanian, M.M. [California State Lands Commission, Sacramento, CA (United States); Kendall, R.P.; Whitney, E.M. [Los Alamos National Lab., NM (United States); Coombs, S. [Pacific Operators Offshore, Inc., Santa Barbara, CA (United States); Paul, R.G. [Minerals Management Service, Reston, VA (United States). Headquarters Office; Ershaghi, I. [Univ. of Southern California, Los Angeles, CA (United States)

1996-05-01T23:59:59.000Z

455

2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Stanford Linear Accelerator Center Site Office (SLAC SO) (See also Science).

456

Data requirements and acquisition for reservoir characterization  

SciTech Connect (OSTI)

This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

Jackson, S.; Chang, Ming Ming; Tham, Min.

1993-03-01T23:59:59.000Z

457

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

458

Analysis of Geothermal Reservoir Stimulation using Geomechanics...  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using...

459

FRACTURED PETROLEUM RESERVOIRS  

SciTech Connect (OSTI)

The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

Abbas Firoozabadi

1999-06-11T23:59:59.000Z

460

Multidisciplinary reservoir description of the Batu Raja Limestone, Bima field, offshore northwest Java, Indonesia  

SciTech Connect (OSTI)

Bima field is the largest hydrocarbon reservoir producing from carbonate rocks in the offshore northwest Java area. The giant field has multiple drive mechanisms and high viscosity oil, resulting in rapid gas/oil ratio and water-cut increase after 2 yr of production. Because of high stakes and reservoir complexities, a three dimensional reservoir simulation model was used to evaluate field development options. An integrated geological, geophysical, and engineering reservoir description was done to provide input for the model. Geologically, the Oligocene-Miocene Batu Raja Limestone was deposited on the Seribu Platform, a basement-controlled, fault-bounded carbonate build-up. The reservoir consists of a series of cleaning-upwards cycles that were exposed to meteoric leaching during a lower Miocene drop in sea level. This diagenetic event enhanced porosity and permeability across the buildup. Based on reservoir quality, the reservoir was zoned into five model layers. Geophysical input included micromodeling sections (a form of seismic inversion) that were generated from a dense grid of seismic data. These were calibrated to well logs and used to define the buildup edge and map the thickness of the entire Batu Raja and the main pay zone. Engineering reservoir description integrated capillary pressure, relative permeability, production, and drill-stem test data. The three-dimensional simulation model required treatments unique to the Bima Field including varying GOC depths to honor separate gas cap closures; making permeability pressure dependent in poorly consolidated zones, and setting up horizontal well completion treatments. The synergistic approach of geological, engineering, and geophysical input into the Bima reservoir study resulted in a reservoir management tool as well as a model to aid regional Batu Raja exploration strategies.

Kaldi, J.G.; Woodling, G.S. (ARCO Oil and Gas Co., Plano, TX (USA)); Roe, R.C. (Atlantic Richfield Indonesia, Inc., Jakarta (Indonesia))

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

TEXAS A&M UNIVERSITY Reservoir Geophysics Program  

E-Print Network [OSTI]

includes applications to clastic reservoirs, heavy oil reservoirs, gas/oil shale, gas hydrates. Basic

462

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

Mohan Kelkar

2002-03-31T23:59:59.000Z

463

MaterialsScienceandEngineeringDepartmentColloquium 4:00 P.M. Monday, SePteMber 22, 2014  

E-Print Network [OSTI]

Creativity. Archer received his Ph.D. in chemical engineering from Stanford University in 1993MaterialsScienceandEngineeringDepartmentColloquium 4:00 P.M. Monday, SePteMber 22, 2014 rooM 100, MaterialS Science and engineering building 1304 W green Street, urbana Department of Materials Science

Gilbert, Matthew

464

Analysis and Modeling of Skywave Behavior Sherman Lo, Stanford University, Robert Wenzel, Booz Allen Hamilton, Per Enge,  

E-Print Network [OSTI]

Analysis and Modeling of Skywave Behavior Sherman Lo, Stanford University, Robert Wenzel, Booz Allen Hamilton, Per Enge, Stanford University 1.0 Introduction Skywave signals are an inherent part

Stanford University

465

Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996  

SciTech Connect (OSTI)

On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

1996-04-30T23:59:59.000Z

466

Place Learning in Dynamic Real-World Environments Brian Yamauchi1 (yamauchi@robotics.stanford.edu)  

E-Print Network [OSTI]

Place Learning in Dynamic Real-World Environments Brian Yamauchi1 (yamauchi@robotics.stanford.edu) Pat Langley2 (langley@robotics.stanford.edu) Institute for the Study of Learning and Expertise 2164 Staunton Court, Palo Alto, CA 94306 Abstract In this paper, we present an approach for mobile robot

Langley, Pat

467

Place Learning in Dynamic RealWorld Environments Brian Yamauchi 1 (yamauchi@robotics.stanford.edu)  

E-Print Network [OSTI]

Place Learning in Dynamic Real­World Environments Brian Yamauchi 1 (yamauchi@robotics.stanford.edu) Pat Langley 2 (langley@robotics.stanford.edu) Institute for the Study of Learning and Expertise 2164 Staunton Court, Palo Alto, CA 94306 Abstract In this paper, we present an approach for mobile robot

Langley, Pat

468

Long ion chamber systems for the SLC (Stanford Linear Collider)  

SciTech Connect (OSTI)

A Panofsky Long Ion Chamber (PLIC) is essentially a gas-filled coaxial cable, and has been used to protect the Stanford Linear Accelerator from damage caused by its electron beam, and as a sensitive diagnostic tool. This old technology has been updated and has found renewed use in the SLC. PLIC systems have been installed as beam steering aids in most parts of the SLC and are a part of the system that protects the SLC from damage by errant beams in several places. 5 refs., 3 figs., 1 tab.

Rolfe, J.; Gearhart, R.; Jacobsen, R.; Jenkins, T.; McComick, D.; Nelson, R.; Reagan, D.; Ross, M.

1989-03-01T23:59:59.000Z

469

Stanford - Woods Institute for the Environment | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St. Charles isStallings,StandardizedStanekStanford

470

Interdisciplinary study of reservoir compartments and heterogeneity. Final report, October 1, 1993--December 31, 1996  

SciTech Connect (OSTI)

A case study approach using Terry Sandstone production from the Hambert-Aristocrat Field, Weld County, Colorado was used to document the process of integration. One specific project goal is to demonstrate how a multidisciplinary approach can be used to detect reservoir compartmentalization and improve reserve estimates. The final project goal is to derive a general strategy for integration for independent operators. Teamwork is the norm for the petroleum industry where teams of geologists, geophysicists, and petroleum engineers work together to improve profits through a better understanding of reservoir size, compartmentalization, and orientation as well as reservoir flow characteristics. In this manner, integration of data narrows the uncertainty in reserve estimates and enhances reservoir management decisions. The process of integration has proven to be iterative. Integration has helped identify reservoir compartmentalization and reduce the uncertainty in the reserve estimates. This research report documents specific examples of integration and the economic benefits of integration.

Van Kirk, C.

1998-01-01T23:59:59.000Z

471

Undergraduate Civil Engineering  

E-Print Network [OSTI]

of much of the infrastructure that developed and developing countries take for granted. Every reservoir industry. As a small department, one of six in a strongly integrated faculty, we offer a friendly: · environmental and sustainable engineering; · designing and building major structures; · project management

Bristol, University of

472

Chickamauga reservoir embayment study - 1990  

SciTech Connect (OSTI)

The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

1992-12-01T23:59:59.000Z

473

Design Innovation Global network of designers, engineers, and innovators challenging complex real world problems  

E-Print Network [OSTI]

Design Innovation Global network of designers, engineers, and innovators challenging complex real world problems Stanford University Global Alliance for Research and Design #12;Our Course #12;The ever evolving Design Innovation Course ME310 is a year-long project-based design engineering course that began

Prinz, Friedrich B.

474

The development of magnetic resonance imaging for the determination of porosity in reservoir core samples  

E-Print Network [OSTI]

THE DEVELOPMENT OF MAGNETIC RESONANCE IMAGING FOR THE DETERMINATION OF POROSITY IN RESERVOIR CORE SAMPLES A Thesis by BYRON BLAKE SHERMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Petroleum Engineering THE DEVELOPMENT OF MAGNETIC RESONANCE IMAGING FOR THE DETERMINATION OF POROSITY IN RESERVOIR CORE SAMPLES A Thesis by BYRON BLAKE SHERMAN Approved...

Sherman, Byron Blake

1991-01-01T23:59:59.000Z

475

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network [OSTI]

DEVELOPING A TIGHT GAS SAND ADVISOR FOR COMPLETION AND STIMULATION IN TIGHT GAS RESERVOIRS WORLDWIDE A Thesis by KIRILL BOGATCHEV Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2007 Major Subject: Petroleum Engineering DEVELOPING A TIGHT GAS SAND ADVISOR FOR COMPLETION AND STIMULATION IN TIGHT GAS RESERVOIRS WORLDWIDE A Thesis by KIRILL...

Bogatchev, Kirill Y

2008-10-10T23:59:59.000Z

476

A placement model for matrix acidizing of vertically extensive, multilayer gas reservoirs  

E-Print Network [OSTI]

A PLACEMENT MODEL FOR MATRIX ACIDIZING OF VERTICALLY EXTENSIVE, MULTILAYER GAS RESERVOIRS A Thesis by MANABU NOZAKI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2008 Major Subject: Petroleum Engineering A PLACEMENT MODEL FOR MATRIX ACIDIZING OF VERTICALLY EXTENSIVE, MULTILAYER GAS RESERVOIRS A Thesis by MANABU NOZAKI Submitted to the Office...

Nozaki, Manabu

2008-10-10T23:59:59.000Z

477

Application of the transient, isochronal p/z plotting method to multilayered reservoirs  

E-Print Network [OSTI]

. The economic decisions concerning the optimum exploitation and management of the resources are made on the basis of the revenue to be earned from the sale of the produced hydrocarbons. Major reservoir engineering decisions are also made on the basis...APPLICATION OF THE TRANSIENT, ISOCHRONAL p/z PLOTTING METHOD TO MULTILAYERED RESERVOIRS A Thesis by RA SHMIN RAMESH DANDEKAR Submitted to the Office of Graduate Studies of Texas A&M University in panial fulfillment of the requirements...

Dandekar, Rashmin Ramesh

1992-01-01T23:59:59.000Z

478

A study of the validity of early material balance estimates in petroleum reservoirs  

E-Print Network [OSTI]

A STUDY OF THE VALIDITY OF EARLY MATERIAL BALANCE ESTIMATES IN PETROLEUM RESERVOIRS A Thesis by CHRISTIAN ANZE GALINDO Submitted to the Graduate College of the Texas ARM University in partia4 fulfillment of the requirements for the degree... of MASTER OF SCIENCE January 1964 Major Subject: Petroleum Engineering A STUDY OF THE VALIDITY OF EARLY MATERIAL BALANCE ESTIMATES IN PETROLEUM RESERVOIRS A Thesis by CHRISTIAN ANZE GALINDO App o ed as to style nd content by. Chairman of Committee...

Galindo, Christian Anze

1964-01-01T23:59:59.000Z

479

The effect of vertical fractures on the behavior of a stratified reservoir under waterflood  

E-Print Network [OSTI]

THE EFFECT OF VERTICAL FRACTURES ON THE BEHAVIOR OF A STRATIFIED RESERVOIR UNDER WATERFLOOD A Thesis Bobby E Pettitt Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial i...'ulfillment of the requirements for the degree of MASTER OF SCIENCE August~ 1963 Major Sub]ect: Petroleum Engineering THE EFFECT GF VERTICAL FRACTURES ON THE BEHAVIOR OF A STRATIFIED RESERVOIR UNDER WATERFLOOD A Thesis by Bobby E. Pettitt Approved as to style...

Pettitt, Bobby Eugene

1963-01-01T23:59:59.000Z

480

The effect of cross flow in a stratified reservoir during a water flood  

E-Print Network [OSTI]

OF SCIENCE August 1970 Major Subject: PETROLEUM ENGINEERING THE EFFECT OF CROSS FLOW IN A STRATIFIED RESERVOIR DURING A WATERFLOOD A Thesis by GORDON EDMUND SOMMERS Approved as to style and content by: (C a'rman of Committee) (Hea of Depart nt...) (Member ) (Member) (Member) (Member) (Member) August 1970 111 ABSTRACT The Effect of Crossflow in a Stratified Reservoir During a Waterflood. (August 1970) Gordon Edmund Sommers, B. S. , Texas A@M University Directed by: Dr. Joseph S. Osoba...

Sommers, Gordon Edmund

1970-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir engineering stanford" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A column based variance analysis approach to static reservoir model upgridding  

E-Print Network [OSTI]

A COLUMN BASED VARIANCE ANALYSIS APPROACH TO STATIC RESERVOIR MODEL UPGRIDDING A Thesis by MATTHEW BRANDON TALBERT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2008 Major Subject: Petroleum Engineering A COLUMN BASED VARIANCE ANALYSIS APPROACH TO STATIC RESERVOIR MODEL UPGRIDDING A Thesis by MATTHEW BRANDON TALBERT Submitted to the Office...

Talbert, Matthew Brandon

2008-10-10T23:59:59.000Z

482

Mathematical modeling of a CO?b2?s-enriched waterflood in fractured reservoirs  

E-Print Network [OSTI]

MATHEMATICAL MODELING OF A COg-ENRICHED WATERFLOOD IN FRACTURED RESERVOIRS A Thesis by STANLEY BRIAN LITTLE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1990 Major Subject: Petroleum Engineering MATHEMATICAL MODELING OF A COZ-ENRICHED WATERFI. OOD IN FRACTURED RESERVOIRS A Thesis by STANLEY BRIAN LITTLE Approved as to style and content by C. H. Wu (Chair of Committee...

Little, Stanley Brian

2012-06-07T23:59:59.000Z

483

The performance of a volatile oil reservoir overlain by a gas cap  

E-Print Network [OSTI]

THE PERFORMANCE OF A VOLATILE OIL RESERVOIR OVERLAIN BY A GAS CAP A Thesis By J. RALPH ELLIS, JR. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August, 1960 Major Subject: PETROLEUM ENGINEERING THE PERFORMANCE OF A VOLATILE OIL RESERVOIR OVERLAIN BY A GAS CAP A Thesis By J. RALPH ELLIS, JR. Approved as to style and content by: hairxnan of Coxnxnittee) (Head...

Ellis, Joseph Ralph, Jr

1960-01-01T23:59:59.000Z

484

The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs  

E-Print Network [OSTI]

THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1972 Major Subject: PETROLEUM ENGINEERING THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Approved as. to style...

Ferguson, Ed Martin

2012-06-07T23:59:59.000Z

485

Reservoir characterization based on tracer response and rank analysis of production and injection rates  

SciTech Connect (OSTI)

Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

1997-08-01T23:59:59.000Z

486

Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling  

SciTech Connect (OSTI)

Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

P. K. Pande

1998-10-29T23:59:59.000Z

487

Engineering Technician  

Broader source: Energy.gov [DOE]

Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

488

A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS  

E-Print Network [OSTI]

FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

Anderson, C.

2011-01-01T23:59:59.000Z

489

Geo-Engineering through Internet Informatics (GEMINI)  

SciTech Connect (OSTI)

GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and region (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.

Watney, W. Lynn; Doveton, John H.; Victorine, John R.; Bohling, Goeffrey C.; Bhattacharya, Saibal; Byers, Alan P.; Carr, Timothy R.; Dubois, Martin K.; Gagnon, Glen; Guy, Willard J.; Look, Kurt; Magnuson, Mike; Moore, Melissa; Olea, Ricardo; Pakalapadi, Jayprakash; Stalder, Ken; Collins, David R.

2002-06-25T23:59:59.000Z

490

The Carpenteria reservoir redevelopment project  

SciTech Connect (OSTI)

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop a simulation-based reservoir management system that could be used to guide the redevelopment of the Carpenteria Offshore Field, which is located just seven miles from Santa Barbara. The system supports geostatistical and geological modeling and reservoir forecasting. Moreover, it is also a shared resource between the field operator, Pacific Operators Offshore, and the mineral owners, the U.S. Department of the Interior and the State of California.

Kendall, R.P.; Whitney, E.M.; Krogh, K.E. [Los Alamos National Lab., NM (United States); Coombs, S. [Pacific Operators Offshore, Inc., Carpinteria, CA (United States); Paul, R.G. [Dept. of the Interior (United States); Voskanian, M.M. [California State Lands Commission, Sacramento, CA (United States); Ershaghi, I. [University of Southern California, Los Angeles, CA (United States)

1997-08-01T23:59:59.000Z

491

Jasper Ridge Biological Preserve Annual Report 2000 -01 Stanford University  

E-Print Network [OSTI]

an aging dam and reservoir, which over its life has become fully integrated into the hydrologic, ecological by important developments in land and resource management challenges facing the Preserve. These challenges are a result of managing a biological field station located in an increasingly urbanized landscape. One

492

Optimizing injected solvent fraction in stratified reservoirs  

E-Print Network [OSTI]

Waterflooding has become standard practice for extending the productive life of many solution gas drive reservoirs, but has the disadvantage of leaving a substantial residual oil volume in the reservoir. Solvent flooding has been offered as a...

Moon, Gary Michael

1993-01-01T23:59:59.000Z

493

Comparative Evaluation of Generalized River/Reservoir System Models  

E-Print Network [OSTI]

This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

Wurbs, Ralph A.

494

STANFORD HCI GROUP & AIM LAB Dynamic Checklists for Operating Room Crises  

E-Print Network [OSTI]

-time synchronization between input devices. Stanford HCI / Kristen Leach, Jesse Cirimele, Leslie Wu, Justin Lee, Tonya current prototype of a dynamic checklist for Asystole. Our current EHR and condensed vitals section

Klemmer, Scott

495

Optimization Online - Managing Hydroelectric Reservoirs over an ...  

E-Print Network [OSTI]

Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss...

Pierre-Luc Carpentier

2013-07-07T23:59:59.000Z

496

Engineering Electrical &  

E-Print Network [OSTI]

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

Hickman, Mark

497

Engineering Electrical &  

E-Print Network [OSTI]

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

Hickman, Mark

498

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

499

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky  

SciTech Connect (OSTI)

In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

2010-07-01T23:59:59.000Z

500

Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III  

SciTech Connect (OSTI)

This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

2001-08-07T23:59:59.000Z