Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Economics of Developing Hot Stratigraphic Reservoirs  

SciTech Connect (OSTI)

Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

2014-09-01T23:59:59.000Z

2

Magic Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemillMississippi. ItsReservoir

3

Analysis of reservoir performance and forecasting for the eastern area of the C-2 Reservoir, Lake Maracaibo, Venezuela  

E-Print Network [OSTI]

This research developed a numerical simulation based on the latest reservoir description to evaluate the feasibility of new infill wells to maximize the recovery specifically in the eastern region of the reservoir operated by Petroleos de Venezuela...

Urdaneta Anez, Jackeline C

2001-01-01T23:59:59.000Z

4

A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development  

SciTech Connect (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

Ahmad Ghassemi

2003-06-30T23:59:59.000Z

5

DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS  

SciTech Connect (OSTI)

For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for optimizing the recovery from naturally fractured reservoir systems. The next logical extension of this work is to apply the proposed methods to an actual field case study to provide information for verification and modification of the techniques and simulator. This report provides the details of the proposed techniques and summarizes the activities undertaken during the course of this project. Technology transfer activities were highlighted by a two-day technical conference held in Oklahoma City in June 2002. This conference attracted over 90 participants and included the presentation of seventeen technical papers from researchers throughout the United States.

Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

2002-12-31T23:59:59.000Z

6

Developing A Grid Portal For Large-scale Reservoir Studies  

E-Print Network [OSTI]

Developing A Grid Portal For Large-scale Reservoir Studies 1 Center for Computation & Technology 2 uncertainty. · Advantages of grid technology · Proposed Solution of the UCoMS Team · What is a Portal? · UCo of reservoir uncertainty... Petroleum drilling consist of many uncertainties. Main objective is to optimize

Allen, Gabrielle

7

Technology and Economics Affecting Unconventional Reservoir Development  

E-Print Network [OSTI]

5.1.1 Low-Permeability Oil (Chalk Reservoirs) ???...? 47 5.1.1.1 Austin Chalk Formation????????? 48 5.1.1.1.1 Production History?????????. 49 5.1.2 Oil Shale???????????????..??. 53 5.1.2.1 Bakken Shale Formation... are more sensitive to certain type of resources such as oil shales and gas hydrates????????????????????.. 3 1.2 Oil shale resources in the Green River formation are giant accumulations waiting for economical exploitation???????????...???... 4 1...

Flores Campero, Cecilia P.

2010-01-15T23:59:59.000Z

8

The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs  

Broader source: Energy.gov [DOE]

Project objective: Develop Improved Methods For Maintaining Permeable Fracture Volumes In EGS Reservoirs.

9

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. Tasks completed in the first six-month period include soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. Work performed to date demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand.

Shari Dunn-Norman

2003-09-05T23:59:59.000Z

10

Evaluation of field development plans using 3-D reservoir modelling  

SciTech Connect (OSTI)

Three-dimensional reservoir modelling has become an accepted tool in reservoir description and is used for various purposes, such as reservoir performance prediction or integration and visualisation of data. In this case study, a small Northern North Sea turbiditic reservoir was to be developed with a line drive strategy utilising a series of horizontal producer and injector pairs, oriented north-south. This development plan was to be evaluated and the expected outcome of the wells was to be assessed and risked. Detailed analyses of core, well log and analogue data has led to the development of two geological {open_quotes}end member{close_quotes} scenarios. Both scenarios have been stochastically modelled using the Sequential Indicator Simulation method. The resulting equiprobable realisations have been subjected to detailed statistical well placement optimisation techniques. Based upon bivariate statistical evaluation of more than 1000 numerical well trajectories for each of the two scenarios, it was found that the wells inclinations and lengths had a great impact on the wells success, whereas the azimuth was found to have only a minor impact. After integration of the above results, the actual well paths were redesigned to meet external drilling constraints, resulting in substantial reductions in drilling time and costs.

Seifert, D.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom); Newbery, J.D.H. [Conoco, UK Ltd., Aberdeen (United Kingdom)] [and others

1997-08-01T23:59:59.000Z

11

Application of fractal theory in refined reservoir description for EOR pilot area  

SciTech Connect (OSTI)

A reliable reservoir description is essential to investigate scenarios for successful EOR pilot test. Reservoir characterization includes formation composition, permeability, porosity, reservoir fluids and other petrophysical parameters. In this study, various new tools have been applied to characterize Kilamayi conglomerate formation. This paper examines the merits of various statistical methods for recognizing rock property correlation in vertical columns and gives out methods to determine fractal dimension including R/S analysis and power spectral analysis. The paper also demonstrates that there is obvious fractal characteristics in conglomerate reservoirs of Kilamayi oil fields. Well log data in EOR pilot area are used to get distribution profile of parameters including permeability, porosity, water saturation and shale content.

Yue Li; Yonggang Duan; Yun Li; Yuan Lu

1997-08-01T23:59:59.000Z

12

Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs  

SciTech Connect (OSTI)

In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

James Reeves

2005-01-31T23:59:59.000Z

13

Hanford 200 Areas Development Plan  

SciTech Connect (OSTI)

The purpose of the Hanford 200 Areas Development Plan (Development Plan) is to guide the physical development of the 200 Areas (which refers to the 200 East Area, 200 West Area, and 200 Area Corridor, located between the 200 East and 200 West Areas) in accordance with US Department of Energy (DOE) Order 4320.lB (DOE 1991a) by performing the following: Establishing a land-use plan and setting land-use categories that meet the needs of existing and proposed activities. Coordinating existing, 5-year, and long-range development plans and guiding growth in accordance with those plans. Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities. Identifying site development issues that need further analysis. Integrating program plans with development plans to ensure a logical progression of development. Coordinate DOE plans with other agencies [(i.e., Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA)]. Being a support document to the Hanford Site Development Plan (DOE-RL 1990a) (parent document) and providing technical site information relative to the 200 Areas.

Rinne, C.A.; Daly, K.S.

1993-08-01T23:59:59.000Z

14

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir  

Broader source: Energy.gov [DOE]

Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir.

15

Optimizing Development Strategies to Increase Reserves in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

in tight gas fields is challenging, not only because of the wide range of depositional environments and large variability in reservoir properties, but also because the evaluation often has to deal with a multitude of wells, limited reservoir information...

Turkarslan, Gulcan

2011-10-21T23:59:59.000Z

16

Area balance and strain in coalbed methane reservoirs of the Black Warrior basin  

SciTech Connect (OSTI)

Investigation of coalbed methane reservoirs in the Black Warrior basin of Alabama has established a correspondence between productivity and structural position, but the reasons for this correspondence remain uncertain. In Cedar Cove field, for example, exceptionally productive wells are concentrated in a rollover anticline, whereas in Oak Grove field, exceptionally productive wells are aligned along a synclinal axis. This suggests that factors controlling gas production are a derivative of the structural geometry, and not the geometry by itself. Natural fractures and a low state of in-situ stress facilitate depressurization of coalbed reservoirs by dewatering, and hence, desorption and production of coalbed gas. Our hypothesis is that the abundance and openness of natural fractures in the Black Warrior basin are a direct expression of the layer-parallel strain dictated by map-scale structural geometry. Area balancing techniques can be used to quantify requisite strain, which is the homogeneous layer-parallel strain required for local area balance, and can also be used to constrain and verify structural cross sections. Application of area balancing techniques to extensional structures in the Black Warrior basin indicates that coalbed gas is produced from thin-skinned structures detached within the coal-bearing Pottsville Formation. Within reservoir intervals, requisite strain values are as high as 10 percent and increase downward toward the basal detachment. Mapping structure and production indicates that some productivity sweet spots correlate with enhanced bed curvature. Whereas requisite strain is the homogeneous strain calculated for discrete bed segments, curvature affects the distribution of strain within those segments. Recognizing this, our research is now focused on integrating area balancing techniques with curvature analysis to explain production patterns in coalbed methane reservoirs.

Pashin, J.C. [Geological Survey of Alabama, Tuscaloosa, AL (United States); Groshong, R.H., Jr. [Univ. of Alabama, Tuscaloosa, AL (United States)

1996-09-01T23:59:59.000Z

17

Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III  

SciTech Connect (OSTI)

The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

Knight, Bill; Schechter, David S.

2002-07-26T23:59:59.000Z

18

Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area  

SciTech Connect (OSTI)

The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This report provides results of the third year of the five-year project for each of the four areas including a status report of field activities leading up to injection of CO2.

Schechter, D.S.

1999-02-03T23:59:59.000Z

19

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with little capital investment. The first year period was divided into two phases--Phase I and Phase II. Each phase was 6 months in duration. Tasks completed in first six month period included soil sampling, geochemical analysis, construction of ERT arrays, collection of background ERT surveys, and analysis of core samples to develop a geomechanical model for designing the hydraulic fracturing treatment. Five wells were to be drilled in phase I. However, weather and funding delays resulted in drilling shifting to the second phase of the project. During the second six month period, five vertical wells were drilled through the Bluejacket and Warner Sands. These wells were drilled with air and logged openhole. Drilling locations were selected after reviewing results of background ERT and geochemical surveys. Three ERT wells (2,3,4) were arranged in an equilateral triangle, spaced 70 feet apart and these wells were completed open hole. ERT arrays constructed during Phase I, were installed and background surveys were taken. Two wells (1,5) were drilled, cased, cemented and perforated. These wells were located north and south of the three ERT wells. Each well was stimulated with a linear guar gel and 20/40 mesh Brady sand. Tiltmeters were used with one fracture treatment to verify fracture morphology. Work performed during the first year of this research project demonstrates that surface geochemical methods can be used to differentiate between productive and non-productive areas of the Warner Sand and that ERT can be used to successfully image through the Warner Sand. ERT work also provided a background image for future MEOR treatments. Well logs from the five wells drilled were consistent with previous logs from historical coreholes, and the quality of the formation was found to be as expected. Hydraulic fracturing results demonstrated that fluid leakoff is inadequate for tip screenout (TSO) and that a horizontal fracture was generated. At this point it is not clear if the induced fracture remained in the Warner Sand, or propagated into another formation. MEOR treatments were originally expected to commence during Phase II. Due to weather delays, drilling and stimulation work was not completed until September, 2003. Microbial treatments therefore will commence in October, 2003. Phase III, the first 10 months of the second project year, will focus primarily on repeated cycles of MEOR treatments, ERT measurements and well pumping.

Shari Dunn-Norman

2004-03-01T23:59:59.000Z

20

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and Characterization of Natural...

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Tenth workshop on geothermal reservoir engineering: proceedings  

SciTech Connect (OSTI)

The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

Not Available

1985-01-22T23:59:59.000Z

22

Reservoir characterization of the Clough area, Barnett Shale, Wise County, Texas. Topical report, January-July 1995  

SciTech Connect (OSTI)

The objective of this work was to learn more about the reservoir characteristics in the Barnett Shale. Specifically, from an analysis of pressure, production, interference, and fracture treatment data in three Mitchell Energy Corporation Cough area wells, the authors can infer the relationship between the induced hydraulic fractures and the natural fracture system in the reservoir. The authors are learning something about drainage area size, shape, and orientation.

Hill, N.C.; Lancaster, D.E.

1995-07-01T23:59:59.000Z

23

The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska  

SciTech Connect (OSTI)

The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively underformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding on fracture patterns, (3) The influence of deformation on fluid flow, and (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics.

Wallace, Wesley K.; Hanks, Catherine L.; Whalen, Michael T.; Jensen1, Jerry; Shackleton, J. Ryan; Jadamec, Margarete A.; McGee, Michelle M.; Karpov1, Alexandre V.

2001-07-23T23:59:59.000Z

24

Characterization of dynamic change of Fan-delta reservoir properties in water-drive development  

SciTech Connect (OSTI)

Fan-delta reservoir in Huzhuangji oil field of east China, is a typical highly heterogeneous reservoir. The oil field has been developed by water-drive for 10 years, but the oil recovery is less than 12%, and water cut is over 90%, resulting from high heterogeneity and serious dynamic change of reservoir properties. This paper aims at the study of dynamic change of reservoir properties in water-drive development. Through quantitative imaging analysis and mercury injection analysis of cores from inspection wells, the dynamic change of reservoir pore structure in water-drive development was studied. The results show that the {open_quotes}large pore channels{close_quotes} develop in distributary channel sandstone and become larger in water-drive development, resulting in more serious pore heterogeneity. Through reservoir sensitivity experiments, the rock-fluid reaction in water-drive development is studied. The results show the permeability of some distal bar sandstone and deserted channel sandstone becomes lower due to swelling of I/S clay minerals in pore throats. OD the other hand, the permeability of distributary channel and mouth bar sandstone become larger because the authigenic Koalinites in pore throats are flushed away with the increase of flow rate of injection water. Well-logging analysis of flooded reservoirs are used to study the dynamic change of reservoir properties in various flow units. The distribution of remaining oil is closely related to the types and distribution of flow units.

Wu Shenghe; Xiong Qihua; Liu Yuhong [Univ. of Petroleum Changping, Beijing (China)

1997-08-01T23:59:59.000Z

25

Geomechanical Development of Fractured Reservoirs During Gas Production  

E-Print Network [OSTI]

is constructed by implementing a poroviscoelastic model into the dual permeability (DPM)-finite element model (FEM) to investigate the coupled time-dependent viscoelastic deformation, fracture network evolution and compressible fluid flow in gas shale reservoir...

Huang, Jian

2013-04-05T23:59:59.000Z

26

Reservoir Simulation Used to Plan Diatomite Developement in Mountainous Region  

E-Print Network [OSTI]

In Santa Barbara County, Santa Maria Pacific (an exploration and production company) is expanding their cyclic steam project in a diatomite reservoir. The hilly or mountainous topography and cut and fill restrictions have interfered with the company...

Powell, Richard

2012-10-19T23:59:59.000Z

27

DEVELOPMENT PRACTICES FOR OPTIMIZED MEOR IN SHALLOW HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The objective of this research project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in western Missouri and southeastern Kansas, using an integrated approach including surface geochemical surveys, conventional MEOR treatments, horizontal fracturing in vertical wells, electrical resistivity tomography (ERT), and reservoir simulation to optimize the recovery process. The objective also includes transferring the knowledge gained from the project to other local landowners, to demonstrate how they may identify and develop their own heavy oil resources with minimal capital investment. In the twelve to eighteen-month project period, three wells were equipped with ERT arrays. Electrical resistivity tomography (ERT) background measurements were taken in the three ERT equipped wells. Pumping equipment was installed on the two fracture stimulated wells and pumping tests were conducted following the hydraulic fracture treatments. All wells were treated monthly with microbes, by adding a commercially available microbial mixture to wellbore fluids. ERT surveys were taken on a monthly basis, following microbial treatments. Worked performed to date demonstrates that resistivity changes are occurring in the subsurface, with resistivity increasing slightly. Pumping results for the hydraulically fractured wells were disappointing, with only a show of oil recovered and an increase in well shut-in pressure.

Shari Dunn-Norman

2005-06-01T23:59:59.000Z

28

Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997  

SciTech Connect (OSTI)

The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the second year of the five-year project for each of the four areas. In the first area, the author has completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. In the second area, the author has completed extensive inhibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. In the third area, the author has made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. In the fourth area, the author has completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix. The final three years of this project involves implementation of the CO{sub 2} pilot. Up to twelve new wells are planned in the pilot area; water injection wells to contain the CO{sub 2}, three production wells to monitor performance of CO{sub 2}, CO{sub 2} injection wells including one horizontal injection well and logging observation wells to monitor CO{sub 2} flood fronts. Results of drilling these wells will be forthcoming.

Schechter, D.S.

1998-07-01T23:59:59.000Z

29

Sedimentology and diagenesis of misoa C-2 reservoir, VLE-305/326 area, block V, Lamar Field, Maracaibe Lake, Venezuela  

SciTech Connect (OSTI)

The main purpose of this study was to characterize the Upper Eocene C-2 reservoir using sedimentological, petrophysical and biostratigraphic parameters. The reservoir quality was evaluated by defining its physical attributes, geometry, areal distribution and orientation, from facies analysis of sedimentary units identified in core samples. In evaluating the sedimentary features of the Misoa C-2 reservoir in VLE 305/326 area, Block V, Lamar Field, Maracaibo Lake, 2,000' of cores from five wells (named VLe-339, VLE-720, VLE -723, VLe-754, LPG-1211) were analyzed. The sedimentary sequence studied represents upper-middle deltaic plain deposits with no marine influence. These deposits were identified as interdistributary channels, crevasse splays and interdistributary bays deposited in a northward prograding system. Seven sedimentary facies were defined from the physical, chemical and biological features observed in all cores. These facies were petrophysically and petrographically characterized then grouped in six sedimentary units which were then correlated over the entire area. One hundred well logs were correlated using sedimentological criteria. Finally, four flow units were identified in the reservoir using the sedimentological parameters, petrophysical data and production behavior. A surface trend analysis program utilizing thickness values resulted in contours, trends, residuals and isometry maps of each unit with a generalized southwest-northeast trend orientation. It was determined that facies distribution in the units controls the reservoir quality. These results are the main input into reservoir simulation. An accurate reservoir modeling is needed to prepare for optimizing secondary oil recovery.

Cabrera de Casas, L.; Chacartegui, F. (Maraven S.A., Caracas (Venezuela))

1993-02-01T23:59:59.000Z

30

Data Assimilation Tools for CO2 Reservoir Model Development – A Review of Key Data Types, Analyses, and Selected Software  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has embarked on an initiative to develop world-class capabilities for performing experimental and computational analyses associated with geologic sequestration of carbon dioxide. The ultimate goal of this initiative is to provide science-based solutions for helping to mitigate the adverse effects of greenhouse gas emissions. This Laboratory-Directed Research and Development (LDRD) initiative currently has two primary focus areas—advanced experimental methods and computational analysis. The experimental methods focus area involves the development of new experimental capabilities, supported in part by the U.S. Department of Energy’s (DOE) Environmental Molecular Science Laboratory (EMSL) housed at PNNL, for quantifying mineral reaction kinetics with CO2 under high temperature and pressure (supercritical) conditions. The computational analysis focus area involves numerical simulation of coupled, multi-scale processes associated with CO2 sequestration in geologic media, and the development of software to facilitate building and parameterizing conceptual and numerical models of subsurface reservoirs that represent geologic repositories for injected CO2. This report describes work in support of the computational analysis focus area. The computational analysis focus area currently consists of several collaborative research projects. These are all geared towards the development and application of conceptual and numerical models for geologic sequestration of CO2. The software being developed for this focus area is referred to as the Geologic Sequestration Software Suite or GS3. A wiki-based software framework is being developed to support GS3. This report summarizes work performed in FY09 on one of the LDRD projects in the computational analysis focus area. The title of this project is Data Assimilation Tools for CO2 Reservoir Model Development. Some key objectives of this project in FY09 were to assess the current state-of-the-art in reservoir model development, the data types and analyses that need to be performed in order to develop and parameterize credible and robust reservoir simulation models, and to review existing software that is applicable to these analyses. This report describes this effort and highlights areas in which additional software development, wiki application extensions, or related GS3 infrastructure development may be warranted.

Rockhold, Mark L.; Sullivan, E. C.; Murray, Christopher J.; Last, George V.; Black, Gary D.

2009-09-30T23:59:59.000Z

31

Optimization of coalbed-methane-reservoir exploration and development strategies through integration of simulation and economics  

SciTech Connect (OSTI)

The unique properties and complex characteristics of coalbed methane (CBM) reservoirs, and their consequent operating strategies, call for an integrated approach to be used to explore for and develop coal plays and prospects economically. An integrated approach involves the use of sophisticated reservoir, wellbore, and facilities modeling combined with economics and decision-making criteria. A new CBM prospecting tool (CPT) was generated by combining single-well (multilayered) reservoir simulators with a gridded reservoir model, Monte Carlo (MC) simulation, and economic modules. The multilayered reservoir model is divided into pods, representing relatively uniform reservoir properties, and a 'type well' is created for each pod. At every MC iteration, type-well forecasts are generated for the pods and are coupled with economic modules. A set of decision criteria contingent upon economic outcomes and reservoir characteristics is used to advance prospect exploration from the initial exploration well to the pilot and development stages. A novel approach has been used to determine the optimal well spacing should prospect development be contemplated. CPT model outcomes include a distribution of after-tax net present value (ATNPV), mean ATNPV (expected value), chance of economic success (Pe), distribution of type-well and pod gas and water production, reserves, peak gas volume, and capita. Example application of CPT to a hypothetical prospect is provided. An integrated approach also has been used to assist with production optimization of developed reservoirs. For example, an infill-well locating tool (ILT) has been constructed to provide a quick-look evaluation of infill locations in a developed reservoir. An application of ILT to a CBM reservoir is provided.

Clarkson, C.R.; McGovern, J.M.

2005-12-15T23:59:59.000Z

32

Development of Surrogate Reservoir Models (SRM) For Fast Track  

E-Print Network [OSTI]

(minimize left behind oil). #12;13 SPE 99667 Shahab D. Mohaghegh, Ph.D. (WVU & ISI) Very Complex Geology #12 Dhabi Company for Onshore Oil Operations - ADCO SPE 99667 SPE Intelligent Energy Conference, Amsterdam Reservoir Model (SRM) based on a Full Field Model (FFM) for a giant oil field in the Middle East. #12;4 SPE

Mohaghegh, Shahab

33

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network [OSTI]

and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions...

Bogatchev, Kirill Y.

2009-05-15T23:59:59.000Z

34

The development of magnetic resonance imaging for the determination of porosity in reservoir core samples  

E-Print Network [OSTI]

THE DEVELOPMENT OF MAGNETIC RESONANCE IMAGING FOR THE DETERMINATION OF POROSITY IN RESERVOIR CORE SAMPLES A Thesis by BYRON BLAKE SHERMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Petroleum Engineering THE DEVELOPMENT OF MAGNETIC RESONANCE IMAGING FOR THE DETERMINATION OF POROSITY IN RESERVOIR CORE SAMPLES A Thesis by BYRON BLAKE SHERMAN Approved...

Sherman, Byron Blake

1991-01-01T23:59:59.000Z

35

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network [OSTI]

DEVELOPING A TIGHT GAS SAND ADVISOR FOR COMPLETION AND STIMULATION IN TIGHT GAS RESERVOIRS WORLDWIDE A Thesis by KIRILL BOGATCHEV Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2007 Major Subject: Petroleum Engineering DEVELOPING A TIGHT GAS SAND ADVISOR FOR COMPLETION AND STIMULATION IN TIGHT GAS RESERVOIRS WORLDWIDE A Thesis by KIRILL...

Bogatchev, Kirill Y

2008-10-10T23:59:59.000Z

36

Facies, depositional environments, and reservoir properties of the Shattuck sandstone, Mesa Queen Field and surrounding areas, southeastern New Mexico  

E-Print Network [OSTI]

iii FACIES, DEPOSITIONAL ENVIRONMENTS, AND RESERVOIR PROPERTIES OF THE SHATTUCK SANDSTONE, MESA QUEEN FIELD AND SURROUNDING AREAS, SOUTHEASTERN NEW MEXICO A Thesis by JARED BRANDON HAIGHT Submitted to the Office... PROPERTIES OF THE SHATTUCK SANDSTONE, MESA QUEEN FIELD AND SURROUNDING AREAS, SOUTHEASTERN NEW MEXICO A Thesis by JARED BRANDON HAIGHT Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

Haight, Jared

2004-09-30T23:59:59.000Z

37

Recent developments in drill-stem test interpretation useful to explorationists in tight gas sand plays and in identifying reservoirs with linear geometry  

SciTech Connect (OSTI)

Two major areas of recent development in drill-stem testing are of particular interest to geologists. The first is the use of closed chamber DST's to evaluate the very tight gas sands currently under intense exploration in areas such as Alberta's Deep basin and various intermontane basins in the US Rocky Mountain province. Field examples from the Deep basin of Alberta are shown together with results after completion. Other applications are shown. The second development is the use of DST data to identify reservoirs with linear flow geometry. Geologic situations where flow into the well bore during a test can be considered linear rather than truly radial include long narrow reservoirs with parallel boundaries such as channel sands, zones bounded by parallel sealing-fault boundaries, or naturally fractured reservoirs where an open fracture intersects the well bore.

Reid, H.W.; Davis, T.B.; Alexander, L.G.

1981-05-01T23:59:59.000Z

38

Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1995--August 31, 1996  

SciTech Connect (OSTI)

The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding in the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

Schechter, D.S.

1997-12-01T23:59:59.000Z

39

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir  

Broader source: Energy.gov (indexed) [DOE]

- Also includes relevant well information * Developed sub-grid scale model of fracture permeability as a function of normal and shear displacements - Installed in the fully...

40

New developments in high resolution borehole seismology and their applications to reservoir development and management  

SciTech Connect (OSTI)

Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

Paulsson, B.N.P. [Chevron Petroleum Technology Company, La Habra, CA (United States)

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency: A Reservoir Simulation Approach  

SciTech Connect (OSTI)

The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef, fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to normalized baseline E ranges ranks fluvial deltaic and turbidite highest and shelf carbonate lowest. The estimated average normalized baseline E of turbidite, and shelf carbonate depositional environments are 42.5% and 13.1%, with corresponding standard deviations of 11.3%, and 3.10%, respectively. Simulations of different plume management techniques suggest that the horizontal well, multi-well injection with brine production from blanket vertical producers are the most efficient E enhancement strategies in seven of eight depositional environments; for the fluvial deltaic depositional environment, vertical well with blanket completions is the most efficient. This study estimates normalized baseline E ranges for eight depositional environments, which can be used to assess the CO2 storage resource of candidate formations. This study also improves the general understanding of depositional environment’s influence on E. The lessons learned and results obtained from this study can be extrapolated to formations in other US basins with formations of similar depositional environments, which should be used to further refine regional and national storage resource estimates in future editions of the Carbon Utilization and Storage Atlas of the United States. Further study could consider the economic feasibility of the E enhancement strategies identified here.

Okwen, Roland; Frailey, Scott; Leetaru, Hannes; Moulton, Sandy

2014-09-30T23:59:59.000Z

42

The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska  

SciTech Connect (OSTI)

The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

2004-07-01T23:59:59.000Z

43

Burial diagenesis and timing of reservoir development, North Haynesville Field, Louisiana  

E-Print Network [OSTI]

of MASTER OF SCIENCE December 1982 Major Subject: Geology BURIAL DIAGENESIS AND TIMING OF RESERVOIR DEVELOPMENT, NORTH HAYNESVILLE FIELD, LOUISIANA A Thesis by HARRIS BENJAMIN HULL Approved as to style and content by: syne M. Ahr (Chairman...'s encouragement and support also was greatly appreciated. TABLE OF CONTFNTS Page INTRODUCTION Reg'onal Geology Present Status Methods SMACKOVER ROCK PROPERTIES 13 Composition Sedimentary Structures Microfacies 13 28 29 DEPOSITIONAL ENVIRONMENTS 38...

Hull, Harris Benjamin

1982-01-01T23:59:59.000Z

44

Characterization and interwell connectivity evaluation of Green Rver reservoirs, Wells Draw study area, Uinta Basin, Utah  

E-Print Network [OSTI]

and seal rocks of the Green River petroleum system. Datum is Mahoganey oil shale bed (1). 49 27 Fig. 11?Cross-section of thermal maturity of oil accumulations in the Green River petroleum system. 49 28 Fig. 12? Lake Uinta depositional... This petroleum system has produced more than 450 MMBO mainly from two formations, the Green River and Colton Formations. 7 The Green River Formation contains the source rock and most of the reservoir and seal rocks (Fig. 10). 49 Most of the kerogen-rich oil...

Abiazie, Joseph Uchechukwu

2009-05-15T23:59:59.000Z

45

Chickamauga reservoir embayment study - 1990  

SciTech Connect (OSTI)

The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

1992-12-01T23:59:59.000Z

46

World Geothermal Congress, Melbourne, Australia, 19-25 April, 2015 TOMO4D: Temporal Changes in Reservoir Structure at Geothermal Areas  

E-Print Network [OSTI]

World Geothermal Congress, Melbourne, Australia, 19-25 April, 2015 TOMO4D: Temporal Changes in Reservoir Structure at Geothermal Areas Bruce Julian, Gillian Foulger, Andrew Sabin, Najwa Mhana Temporal geothermal areas, California, using three-dimensional local-earthquake tomography repeated on a year

Foulger, G. R.

47

WRAP process area development control work plan  

SciTech Connect (OSTI)

This work plan defines the manner in which the Waste Receiving and Processing Facility, Module I Process Area will be maintained under development control status. This status permits resolution of identified design discrepancies, control system changes, as-building of equipment, and perform modifications to increase process operability and maintainability as parallel efforts. This work plan maintains configuration control as these efforts are undertaken. This task will end with system testing and reissue of field verified design drawings.

Leist, K.L., Fluor Daniel Hanford

1997-02-27T23:59:59.000Z

48

Advanced reservoir characterization and evaluation of CO2 gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997  

SciTech Connect (OSTI)

The objective of the Spraberry CO{sub 2} pilot project is to determine the technical and economic feasibility of continuous CO{sub 2} injection in the naturally fractured reservoirs of the Spraberry Trend. In order to describe, understand, and model CO{sub 2} flooding in the naturally fractured Spraberry reservoirs, characterization of the fracture system is a must. Additional reservoir characterization was based on horizontal coring in the second year of the project. In addition to characterization of natural fractures, horizontal coring has confirmed a previously developed rock model for describing the Spraberry Trend shaly sands. A better method for identifying Spraberry pay zones has been verified. The authors have completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. The authors have completed extensive imbibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. The authors have also made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. They have completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix.

McDonald, P.

1998-06-01T23:59:59.000Z

49

Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III  

SciTech Connect (OSTI)

The goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. The four areas have been completed and reported in the previous annual reports. This report provides the results of the final year of the project including two SPE papers (SPE 71605 and SPE 71635) presented in the 2001 SPE Annual Meeting in New Orleans, two simulation works, analysis of logging observation wells (LOW) and progress of CO{sub 2} injection.

Knight, Bill; Schechter, David S.

2001-11-19T23:59:59.000Z

50

Fractured reservoir discrete feature network technologies. Final report, March 7, 1996 to September 30, 1998  

SciTech Connect (OSTI)

This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.

Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta

1998-12-01T23:59:59.000Z

51

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS  

SciTech Connect (OSTI)

The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

Jill S. Buckley; Norman R. Morrow

2006-01-01T23:59:59.000Z

52

Analysis of the Development of Messoyakha Gas Field: A Commercial Gas Hydrate Reservoir  

E-Print Network [OSTI]

the presence of gas hydrates in the Messoyakha field was not a certainty, this current study determined the undeniable presence of gas hydrates in the reservoir. This study uses four models of the Messoyakha field structure and reservoir conditions...

Omelchenko, Roman 1987-

2012-12-11T23:59:59.000Z

53

A Study of the Economic Impact of Water Impoundment Through the Development of a Comparative-Projection Model  

E-Print Network [OSTI]

Using two established reservoir projects, an economic simulation model for reservoir development was constructed. The two comparative areas used for the model development are both reservoirs in central Texas and were constructed during approximately...

Pearson, J.E.

54

Mining earth's heat: development of hot-dry-rock geothermal reservoirs  

SciTech Connect (OSTI)

The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program, as initially developed by the Los Alamos National Laboratory, is to mine this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large-diametervertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kW of electricity. A second-generation system, recently drilled to 4.5 km (15,000 ft) and temperatures of 320/sup 0/C (608/sup 0/F), entails creating multiple, parallel fractures between a pair of inclined boreholes. This system should produce 5 to 10 MW(e) for 20 years. Significant contributions to underground technology have been made through the development of the program.

Pettitt, R.A.; Becker, N.M.

1983-01-01T23:59:59.000Z

55

DEVELOPMENT OF MORE-EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS  

SciTech Connect (OSTI)

The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N2 gas. Subtask 2.2 conducts experiments with CO{sub 2} foam. Subtask 2.3 develops and applies a simulator for foam processes in field application.

William R. Rossen; Russell T. Johns; Gary A. Pope

2003-08-21T23:59:59.000Z

56

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS  

SciTech Connect (OSTI)

Exposure to crude oil in the presence of an initial brine saturation can render rocks mixed-wet. Subsequent exposure to components of synthetic oil-based drilling fluids can alter the wetting toward less water-wet or more oil-wet conditions. Mixing of the non-aromatic base oils used in synthetic oil-based muds (SBM) with an asphaltic crude oil can destabilize asphaltenes and make cores less water-wet. Wetting changes can also occur due to contact with the surfactants used in SBM formulations to emulsify water and make the rock cuttings oil-wet. Reservoir cores drilled with SBMs, therefore, show wetting properties much different from the reservoir wetting conditions, invalidating laboratory core analysis using SBM contaminated cores. Core cleaning is required in order to remove all the drilling mud contaminants. In theory, core wettability can then be restored to reservoir wetting conditions by exposure to brine and crude oil. The efficiency of core cleaning of SBM contaminated cores has been explored in this study. A new core cleaning procedure was developed aimed to remove the adsorbed asphaltenes and emulsifiers from the contaminated Berea sandstone cores. Sodium hydroxide was introduced into the cleaning process in order to create a strongly alkaline condition. The high pH environment in the pore spaces changed the electrical charges of both basic and acidic functional groups, reducing the attractive interactions between adsorbing materials and the rock surface. In cores, flow-through and extraction methods were investigated. The effectiveness of the cleaning procedure was assessed by spontaneous imbibition tests and Amott wettability measurements. Test results indicating that introduction of sodium hydroxide played a key role in removing adsorbed materials were confirmed by contact angle measurements on similarly treated mica surfaces. Cleaning of the contaminated cores reversed their wettability from oil-wet to strongly water-wet as demonstrated by spontaneous imbibition rates and Amott wettability indices.

Jill S. Buckley; Norman R. Morrow

2005-04-01T23:59:59.000Z

57

Development and distribution of Rival reservoirs in central Williston basin, western North Dakota  

SciTech Connect (OSTI)

The Mississippian Rival (Nesson) beds in the central Williston basin, North Dakota, are a limestone to evaporite regressive sequence. Progradation of the depositional system produced several distinct shallowing-upward genetic units. Cyclicity in Rival beds was produced by periodic fluctuations in sea level. Rival oil reservoirs are porous and permeable packstones and grainstones. The dominant allochems in these reservoir rocks are peloids and skeletal and algal fragments. These sediments were deposited along carbonate shorelines and within algal banks that developed basinward of shorelines. The trapping mechanism along shorelines is a lithofacies change from limestone to anhydride. Algal banks are locally productive along paleostructural trends where bathymetric shallowing produced shoals dominated by the Codiacean alga Ortonella. Algal banks are flanked by impermeable carbonate mudstones and wackestones deposited in interbank and protected shelf environments. Two distinct Rival bank trends occur in the central basin: a northwest-southeast trend in McKenzie and Williams Counties, North Dakota, parallel with the Cedar Creek anticline, and a northeast-southwest trend along the Nesson anticline and the northeast flank of the basin, parallel with the Weldon-Brockton fault trend.

Hendricks, M.L.

1988-07-01T23:59:59.000Z

58

Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach  

E-Print Network [OSTI]

SPE 159172 Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach Hamid Hadibeik, The University of Texas the dynamics of water- and oil- base mud-filtrate invasion that produce wellbore supercharging were developed

Torres-Verdín, Carlos

59

Model Development to Establish Integrated Operational Rule Curves for Hungry Horse and Libby Reservoirs - Montana, 1996 Final Report.  

SciTech Connect (OSTI)

Hungry Horse and Libby dams have profoundly affected the aquatic ecosystems in two major tributaries of the Columbia River by altering habitat and water quality, and by imposing barriers to fish migration. In 1980, the U.S. Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, designed in part to balance hydropower development with other natural resources in the Columbia System. The Act formed the Northwest Power Planning Council (Council) who developed a program to protect, mitigate and enhance fish and wildlife on the Columbia River and its tributaries. Pursuant to the Council`s Fish and Wildlife Program for the Columbia River System (1987), we constructed computer models to simulate the trophic dynamics of the reservoir biota as related to dam operation. Results were used to develop strategies to minimize impacts and enhance the reservoir and riverine fisheries, following program measures 903(a)(1-4) and 903(b)(1-5). Two FORTRAN simulation models were developed for Hungry Horse and Libby reservoirs located in northwestern Montana. The models were designed to generate accurate, short-term predictions specific to two reservoirs and are not directly applicable to other waters. The modeling strategy, however, is portable to other reservoir systems where sufficient data are available. Reservoir operation guidelines were developed to balance fisheries concerns in the headwaters with anadromous species recovery actions in the lower Columbia (Biological Rule Curves). These BRCs were then integrated with power production and flood control to reduce the economic impact of basin-wide fisheries recovery actions. These Integrated Rule Curves (IRCs) were developed simultaneously in the Columbia Basin System Operation Review (SOR), the Council`s phase IV amendment process and recovery actions associated with endangered Columbia Basin fish species.

Marotz, Brian; Althen, Craig; Gustafson, Daniel

1996-01-01T23:59:59.000Z

60

Development Wells At Salt Wells Area (Nevada Bureau of Mines...  

Open Energy Info (EERE)

Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area...

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

1. RESERVOIR PERFORMANCE ANALYSIS 1.1 Analysis of Step Rate Injection Tests in the O'Daniel Pilot Area  

E-Print Network [OSTI]

- 1- 1. RESERVOIR PERFORMANCE ANALYSIS 1.1 Analysis of Step Rate Injection Tests in the O the reservoir rock. This pressure is referred as to formation parting pressure. Determination of formation demonstrates stress-sensitive behavior, one of the phenomena that influences the performance of waterflooding

Schechter, David S.

62

Core Analysis for the Development and Constraint of Physical Models of Geothermal Reservoirs  

SciTech Connect (OSTI)

Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting assumptions based on a knowledge base founded in validated rock physics models of reservoir material.

Greg N. Boitnott

2003-12-14T23:59:59.000Z

63

Development of general inflow performance relationships (IPR's) for slanted and horizontal wells producing heterogeneous solution-gas drive reservoirs  

SciTech Connect (OSTI)

Since 1968, the Vogel equation has been used extensively and successfully for analyzing the inflow performance relationship (IPR) of flowing vertical wells producing by solution-gas drive. Oil well productivity can be rapidly estimated by using the Vogel IPR curve and well outflow performance. With recent interests on horizontal well technology, several empirical IPRs for solution-gas drive horizontal and slanted wells have been developed under homogeneous reservoir conditions. This report presents the development of IPRs for horizontal and slanted wells by using a special vertical/horizontal/slanted well reservoir simulator under six different reservoir and well parameters: ratio of vertical to horizontal permeability, wellbore eccentricity, stratification, perforated length, formation thickness, and heterogeneous permeability. The pressure and gas saturation distributions around the wellbore are examined. The fundamental physical behavior of inflow performance for horizontal wells is described.

Cheng, A.M.

1992-04-01T23:59:59.000Z

64

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

65

Simulation study to investigate development options for a super-heavy oil reservoir  

E-Print Network [OSTI]

, the oil was simulated as a hydrocarbon consisting of three pseudo components. These cases were run using a thermal compositional simulator (ECLIPSE 300). Simulation results indicate oil recovery, for the area developed by the existing horizontal well...

Diaz Franco, Jose Manuel

2012-06-07T23:59:59.000Z

66

Development of the optimized waterflooding pattern for the naturally fractured Spraberry Trend area  

E-Print Network [OSTI]

is highly ineffective in this field and there is a need to develop unique ways in which the reservoir can be waterflooded and produced. The reservoir model used for this study was developed in two distinct steps to speed up the development and ascertain...

Dabiri, Adegoke

2002-01-01T23:59:59.000Z

67

Development of Chemical Model to Predict the Interactions between Supercritical CO2and Fluid, and Rocks in EGS Reservoirs  

Broader source: Energy.gov [DOE]

This project will develop a chemical model, based on existing models and databases, that is capable of simulating chemical reactions between supercritical (SC) CO2 and Enhanced Geothermal System (EGS) reservoir rocks of various compositions in aqueous, non-aqueous and 2-phase environments.

68

General inflow performance relationship for solution-gas reservoir wells  

SciTech Connect (OSTI)

Two equations are developed to describe the inflow performance relationship (IPR) of wells producing from solution-gas drive reservoirs. These are general equations (extensions of the currently available IPR's) that apply to wells with any drainage-area shape at any state of completion flow efficiency and any stage of reservoir depletion. 7 refs.

Dias-Couto, L.E.; Golan, M.

1982-02-01T23:59:59.000Z

69

Reservoir Characterization with Limited Sample Data using Geostatistics  

E-Print Network [OSTI]

The primary objective of this dissertation was to develop a systematic method to characterize the reservoir with the limited available data. The motivation behind the study was characterization of CO2 pilot area in the Hall Gurney Field, Lansing...

Ghoraishy, Sayyed Mojtaba

2008-01-01T23:59:59.000Z

70

Latest development in seismic texture analysis for subsurface structure, facies, and reservoir characterization: A review  

SciTech Connect (OSTI)

In exploration geology and geophysics, seismic texture is still a developing concept that has not been sufficiently known, although quite a number of different algorithms have been published in the literature. This paper provides a review of the seismic texture concepts and methodologies, focusing on latest developments in seismic amplitude texture analysis, with particular reference to the gray level co-occurrence matrix (GLCM) and the texture model regression (TMR) methods. The GLCM method evaluates spatial arrangements of amplitude samples within an analysis window using a matrix (a two-dimensional histogram) of amplitude co-occurrence. The matrix is then transformed into a suite of texture attributes, such as homogeneity, contrast, and randomness, which provide the basis for seismic facies classification. The TMR method uses a texture model as reference to discriminate among seismic features based on a linear, least-squares regression analysis between the model and the data within an analysis window. By implementing customized texture model schemes, the TMR algorithm has the flexibility to characterize subsurface geology for different purposes. A texture model with a constant phase is effective at enhancing the visibility of seismic structural fabrics, a texture model with a variable phase is helpful for visualizing seismic facies, and a texture model with variable amplitude, frequency, and size is instrumental in calibrating seismic to reservoir properties. Preliminary test case studies in the very recent past have indicated that the latest developments in seismic texture analysis have added to the existing amplitude interpretation theories and methodologies. These and future developments in seismic texture theory and methodologies will hopefully lead to a better understanding of the geologic implications of the seismic texture concept and to an improved geologic interpretation of reflection seismic amplitude

Gao, Dengliang

2011-03-01T23:59:59.000Z

71

Reservoir characterization and development opportunities in Jacob Field, South-Central Texas  

E-Print Network [OSTI]

the study, determine the oil potential, and make recommendations to improve production. Since no previous reservoir study was performed in this field, the original oil in place and the current status of depletion was unknown. Therefore a complete integrated...

Hernandez Depaz, Mirko Joshoe

2004-09-30T23:59:59.000Z

72

Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. First annual technical progress report, September 1, 1995--August 31, 1996  

SciTech Connect (OSTI)

The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

Schechter, D.S.

1996-12-17T23:59:59.000Z

73

THE INFLUENCE OF FOLD AND FRACTURE DEVELOPMENT ON RESERVOIR BEHAVIOR OF THE LISBURNE GROUP OF NORTHERN ALASKA  

SciTech Connect (OSTI)

The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. The Lisburne in the main axis of the Brooks Range is characteristically deformed into imbricate thrust sheets with asymmetrical hanging wall anticlines and footwall synclines. In contrast, the Lisburne in the northeastern Brooks Range is characterized by symmetrical detachment folds. The focus of our 2000 field studies was at the boundary between these structural styles in the vicinity of Porcupine Lake, in the Arctic National Wildlife Refuge. The northern edge of thrust-truncated folds in Lisburne is marked by a local range front that likely represents an eastward continuation of the central Brooks Range front. This is bounded to the north by a gently dipping panel of Lisburne with local asymmetrical folds. The leading edge of the flat panel is thrust over Permian to Cretaceous rocks in a synclinal depression. These younger rocks overlie symmetrically detachment-folded Lisburne, as is extensively exposed to the north. Six partial sections were measured in the Lisburne of the flat panel and local range front. The Lisburne here is about 700 m thick and is interpreted to consist primarily of the Wachsmuth and Alapah Limestones, with only a thin veneer of Wahoo Limestone. The Wachsmuth (200 m) is gradational between the underlying Missippian Kayak Shale and the overlying Mississippian Alapah, and increases in resistance upward. The Alapah consists of a lower resistant member (100 m) of alternating limestone and chert, a middle recessive member (100 m), and an upper resistant member (260 m) that is similar to Wahoo in the northeastern Brooks Range. The Wahoo is recessive and is thin (30 m) due either to non-deposition or erosion beneath the sub-Permian unconformity. The Lisburne of the area records two major episodes of transgression and shallowing-upward on a carbonate ramp. Thicknesses and facies vary along depositional strike. Asymmetrical folds, mostly truncated by thrust faults, were studied in and south of the local range front. Fold geometry was documented by surveys of four thrust-truncated folds and two folds not visibly cut by thrusts. A portion of the local range front was mapped to document changes in fold geometry along strike in three dimensions. The folds typically display a long, non-folded gently to moderately dipping backlimbs and steep to overturned forelimbs, commonly including parasitic anticline-syncline pairs. Thrusts commonly cut through the anticlinal forelimb or the forward synclinal hinge. These folds probably originated as detachment folds based on their mechanical stratigraphy and the transition to detachment folds to the north. Their geometry indicates that they were asymmetrical prior to thrust truncation. This asymmetry may have favored accommodation of increasing shortening by thrust breakthrough rather than continued folding. Fracture patterns were documented in the gently dipping panel of Lisburne and the asymmetrical folds within it. Four sets of steeply dipping extension fractures were identified, with strikes to the (1) N, (2) E, (3) N to NW, and (4) NE. The relative timing of these fracture sets is complex and unclear. En echelon sets of fractures are common, and display normal or strike-slip sense. Mesoscopic and penetrative structures are locally well developed, and indicate bed-parallel shear within the flat panel and strain within folds. Three sets of normal faults are well developed in the area, and are unusual

Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen; Michael T. Whalen

2002-01-01T23:59:59.000Z

74

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS  

SciTech Connect (OSTI)

We report on a preliminary study of wetting effects of synthetic oil-based mud components on the wetting of mica surfaces using drilling mud fractions obtained from two wells drilled with synthetic oil-based muds (SBM). We have used these SBM fractions, one a filtrate and the other a centrifugate, to develop testing protocols for studies on smooth mica surfaces. Both SBM fractions changed the wetting of clean, dry mica surfaces, making them preferentially oil-wet. Solvents were tested to clean the mica with varying degrees of success. In tests designed to simulate contact between SBM fractions and reservoir pore surface, changes of wetting of mica that had previously been exposed to brine and crude oil were examined using six different crude oils in combination with several different brine formulations. Four of the six oils produced preferentially water-wet surfaces whereas two produced fairly oil-wet conditions on mica. Exposure to the SBM fractions tended to increase decane/water advancing contact angles on the more water-wet surfaces and to decrease those on the more oil-wet surfaces. Cleaning solvents were compared for their efficacy and the possibility of wettability restoration was examined for some of the cleaned surfaces.

Jill S. Buckley; Norman R. Morrow

2002-12-01T23:59:59.000Z

75

The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska  

SciTech Connect (OSTI)

The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding and lithostratigraphy on fracture patterns, (3) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics, and (4) The influence of lithostratigraphy and deformation on fluid flow.

Wallace, W.K.; Hanks, C.L.; Whalen, M.T.; Jensen, J.; Atkinson, P.K.; Brinton, J.S.

2001-01-09T23:59:59.000Z

76

Some practical aspects of reservoir management  

SciTech Connect (OSTI)

The practical essence of reservoir management is the optimal application of available resources-people, equipment, technology, and money to maximize profitability and recovery. Success must include knowledge and consideration of (1) the reservoir system, (2) the technologies available, and (3) the reservoir management business environment. Two Reservoir Management Demonstration projects (one in a small, newly-discovered field and one in a large, mature water-flood) implemented by the Department of Energy through BDM-Oklahoma illustrate the diversity of situations suited for reservoir management efforts. Project teams made up of experienced engineers, geoscientists, and other professionals arrived at an overall reservoir management strategy for each field. in 1993, Belden & Blake Corporation discovered a regionally significant oil reservoir (East Randolph Field) in the Cambrian Rose Run formation in Portage County, Ohio. Project objectives are to improve field operational economics and optimize oil recovery. The team focused on characterizing the reservoir geology and analyzing primary production and reservoir data to develop simulation models. Historical performance was simulated and predictions were made to assess infill drilling, water flooding, and gas repressurization. The Citronelle Field, discovered in 1955 in Mobile County, Alabama, has produced 160 million barrels from fluvial sandstones of the Cretaceous Rodessa formation. Project objectives are to address improving recovery through waterflood optimization and problems related to drilling, recompletions, production operations, and regulatory and environmental issues. Initial efforts focused on defining specific problems and on defining a geographic area within the field where solutions might best be pursued. Geologic and reservoir models were used to evaluate past performance and to investigate improved recovery operations.

Fowler, M.L.; Young, M.A.; Cole, E.L.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)

1996-09-01T23:59:59.000Z

77

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

78

A reservoir management strategy for multilayered reservoirs in eastern Venezuela  

E-Print Network [OSTI]

A reservoir management strategy has been developed for a field located in eastern Venezuela. The field contains deep, high pressure, multilayer reservoirs. A thorough formation evaluation was accomplished using the log data, core data, PVT data...

Espinel Diaz, Arnaldo Leopoldo

1998-01-01T23:59:59.000Z

79

Reservoir vital signs monitoring, 1990: Physical and chemical characteristics of water and sediments  

SciTech Connect (OSTI)

As part of Tennessee Valley Authority`s (TVA`s) Reservoir Vital Signs Monitoring program, physical/chemical measurements of water and sediment were made in 1990 on twelve TVA reservoirs (the nine main steam Tennessee river reservoirs - Kentucky through Fort Loudoun and three major tributary reservoirs - Cherokee, Douglas, and Norris). The objective of this monitoring program is to assess the health or integrity of these aquatic ecosystems. The physical/chemical water quality data collected in 1990 showed the water quality of these reservoirs to be very good. However, hypolimnetic anoxia during the summer months in Watts bars, Douglas, and Cherokee reservoir continues to be a concern. High concentrations of nutrients were measured in the transition zones of Cherokee and Douglas reservoirs, resulting in highly productive and eutrophic conditions in the transition zones of these reservoirs. Fecal coliform organisms were frequently detected in the forebay area of Guntersville reservoir, and higher than expected ammonia nitrogen concentrations were found at the transition zone of Wheeler reservoir. Elevated concentrations of mercury were found in Pickwick and Watts bar reservoir sediment, and high lead concentrations were found in a sediment sample collected from Guntersville reservoir. A TVA Reservoir Water Quality Index (RWQI) was developed and used to summarize water quality conditions on a scale from 0 (worst) to 100 (best).

Meinert, D.L.

1991-05-01T23:59:59.000Z

80

Reservoir vital signs monitoring, 1990: Physical and chemical characteristics of water and sediments  

SciTech Connect (OSTI)

As part of Tennessee Valley Authority's (TVA's) Reservoir Vital Signs Monitoring program, physical/chemical measurements of water and sediment were made in 1990 on twelve TVA reservoirs (the nine main steam Tennessee river reservoirs - Kentucky through Fort Loudoun and three major tributary reservoirs - Cherokee, Douglas, and Norris). The objective of this monitoring program is to assess the health or integrity of these aquatic ecosystems. The physical/chemical water quality data collected in 1990 showed the water quality of these reservoirs to be very good. However, hypolimnetic anoxia during the summer months in Watts bars, Douglas, and Cherokee reservoir continues to be a concern. High concentrations of nutrients were measured in the transition zones of Cherokee and Douglas reservoirs, resulting in highly productive and eutrophic conditions in the transition zones of these reservoirs. Fecal coliform organisms were frequently detected in the forebay area of Guntersville reservoir, and higher than expected ammonia nitrogen concentrations were found at the transition zone of Wheeler reservoir. Elevated concentrations of mercury were found in Pickwick and Watts bar reservoir sediment, and high lead concentrations were found in a sediment sample collected from Guntersville reservoir. A TVA Reservoir Water Quality Index (RWQI) was developed and used to summarize water quality conditions on a scale from 0 (worst) to 100 (best).

Meinert, D.L.

1991-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Present Status and Future Prospects of Geothermal Development in Italy with an Appendix on Reservoir Engineering  

SciTech Connect (OSTI)

This paper consists of two parts and an appendix. In the first part a review is made of the geothermal activity in Italy from 1975 to 1982, including electrical and non-electrical applications. Remarks then follow on the trends that occurred and the operational criteria that were applied in the same period, which can be considered a transitional period of geothermal development in Italy. Information on recent trends and development objectives up to 1990 are given in the second part of the paper, together with a summary on program activities in the various geothermal areas of Italy. The appendix specifically reviews the main reseroir engineering activities carried out in the past years and the problems likely to be faced in the coming years in developing Itallian fields.

Cataldi, R.; Calamai, A.; Neri, G.; Manetti, G.

1983-12-15T23:59:59.000Z

82

The development of a correlation for determining oil density in high temperature reservoirs  

E-Print Network [OSTI]

) hydrogen su 1f ide carbon dioxide nitrogen methane ethane propane 13 iso-butane normal-butane iso-pentane normal-pentane hexane heptanes and heavier density of the heptanes and heavier fraction molecular weight of the heptanes and heavier... DIOXIDE IN THE MIXTURE (ALL SAMPLES) . . . . , . . . , . . . . . . , . . . . . . . 84 44 ? RESIDUALS FROM THE PREDICTED RESERVOIR FLUID DENSITY BEFORE FINAL NON-HYDROCARBON CORRECTIONS VERSUS THE WEIGHT FRACTION OF HYDROGEN SULFIDE IN THE MIXTURE (ALL...

Witte, Thurman William

1987-01-01T23:59:59.000Z

83

THE INFLUENCE OF FOLD AND FRACTURE DEVELOPMENT ON RESERVOIR BEHAVIOR OF THE LISBURNE GROUP OF NORTHERN ALASKA  

SciTech Connect (OSTI)

The Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults. (2) The influence of folding and lithostratigraphy on fracture patterns. (3) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. (4) The influence of lithostratigraphy and deformation on fluid flow. The results of field work during the summer of 1999 offer some preliminary insights: The Lisburne Limestone displays a range of symmetrical detachment fold geometries throughout the northeastern Brooks Range. The variation in fold geometry suggests a generalized progression in fold geometry with increasing shortening: Straight-limbed, narrow-crested folds at low shortening, box folds at intermediate shortening, and folds with a large height-to-width ratio and thickened hinges at high shortening. This sequence is interpreted to represent a progressive change in the dominant shortening mechanism from flexural-slip at low shortening to bulk strain at higher shortening. Structural variations in bed thickness occur throughout this progression. Parasitic folding accommodates structural thickening at low shortening and is gradually succeeded by penetrative strain as shortening increases. The amount of structural thickening at low to intermediate shortening may be inversely related to the local amount of structural thickening of the Kayak Shale, the incompetent unit that underlies the Lisburne. The Lisburne Limestone displays a different structural style in the south, across the boundary between the northeastern Brooks Range and the main axis of the Brooks Range fold-and-thrust belt. The steep forelimbs of angular asymmetrical folds typically have been cut and displaced by thrust faults, resulting in superposition of a fault-bend fold geometry on the truncated folds. Remnant uncut folds within trains of thrust-truncated folds and the predominance of detachment folds to the north suggest that these folds originated as detachment folds. Fold asymmetry and a more uniformly competent Lisburne Limestone may have favored accommodation of a significant proportion of shortening by thrust faulting, in contrast with the dominance of fold shortening to the north. Two dominant sets of fractures are present in the least deformed Lisburne Limestone: Early extension fractures normal to the regional fold trend and late extension and shear fractures parallel to the regional fold trend. These two major fracture sets remain as deformation increases, but they are more variable in orientation, character, and relative age. Compared to fold limbs, the fold hinges display greater density and extent of fractures, more conjugate and shear fractures, and more evidence of penetrative strain. This suggests that hinges remained fixed during fold growth. Late extension fractures normal to the fold axis are common even where penetrative strain is greatest. Fracture density is greater in fine-grained carbonates than in coarse-grained carbonates over the entire spectrum of deformation.

Wesley K. Wallace; Catherine L. Hanks; Michael T. Whalen; Jerry Jensen; Paul K. Atkinson; Joseph S. Brinton

2000-05-01T23:59:59.000Z

84

Julian, B.R. and G.R. Foulger, Improved Methods for Mapping Permeability and Heat sources in Geothermal Areas using Microearthquake Data, Thirty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University,  

E-Print Network [OSTI]

Systems (EGS) experiments and other geothermal operations. With support from the Dept. of Energy, we in Geothermal Areas using Microearthquake Data, Thirty-Fifth Workshop on Geothermal Reservoir Engineering and Heat sources in Geothermal Areas using Microearthquake Data Bruce R. Julian§ U. S. Geological Survey

Foulger, G. R.

85

Comparative evaluation of network flow programming and conventional reservoir system simulation models  

E-Print Network [OSTI]

ANALYSIS MODELS Operating river/reservoir systems in an optimal manner is an important and com- plex area of water resources planning and management. Reservoir system operation involves: allocating storage capacity and water resources between multiple... broad array of analysis capabilities, have been developed over the past several decades to support planning studies and management decisions. Reservoir system analysis models can be categorized as (I) simulation models, (2) optimization models...

Yerramreddy, Anilkumar

1993-01-01T23:59:59.000Z

86

Tourism Development in Greek Insular and Coastal Areas: Sociocultural Changes  

E-Print Network [OSTI]

Tourism Development in Greek Insular and Coastal Areas: Sociocultural Changes and Crucial Policy tourism and tourism development at local, regional and national level. The analysis focuses on the role communities regarding tourism and tourists. There is consideration of the new productive structures

Zaferatos, Nicholas C.

87

Facies architecture of the Bluejacket Sandstone in the Eufaula Lake area, Oklahoma: Implications for the reservoir characterization of the Bartlesville Sandstone  

SciTech Connect (OSTI)

Outcrop studies of the Bluejacket Sandstone (Middle Pennsylvanian) provide significant insights to reservoir architecture of the subsurface equivalent Bartlesville Sandstone. Quarry walls and road cuts in the Lake Eufaula area offer excellent exposures for detailed facies architectural investigations using high-precision surveying, photo mosaics. Directional minipermeameter measurements are being conducted. Subsurface studies include conventional logs, borehole image log, and core data. Reservoir architectures are reconstructed in four hierarchical levels: multi-storey sandstone, i.e. discrete genetic intervals; individual discrete genetic interval; facies within a discrete genetic interval; and lateral accretion bar deposits. In both outcrop and subsurface, the Bluejacket (Bartlesville) Sandstone comprises two distinctive architectures: a lower braided fluvial and an upper meandering fluvial. Braided fluvial deposits are typically 30 to 80 ft thick, and are laterally persistent filling an incised valley wider than the largest producing fields. The lower contact is irregular with local relief of 50 ft. The braided-fluvial deposits consist of 100-400-ft wide, 5-15-ft thick channel-fill elements. Each channel-fill interval is limited laterally by an erosional contact or overbank deposits, and is separated vertically by discontinuous mudstones or highly concentrated mudstone interclast lag conglomerates. Low-angle parallel-stratified or trough cross-stratified medium- to coarse-grained sandstones volumetrically dominate. This section has a blocky well log profile. Meandering fluvial deposits are typically 100 to 150 ft thick and comprise multiple discrete genetic intervals.

Ye, Liangmiao; Yang, Kexian [Univ. of Tulsa, OK (United States)

1997-08-01T23:59:59.000Z

88

Engineering Research, Development and Technology, FY95: Thrust area report  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

NONE

1996-02-01T23:59:59.000Z

89

Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California. Part of the third year report, 1980-81, of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation  

SciTech Connect (OSTI)

Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs; South San Bernardino; and Harlem Hot Springs - in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the south San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142/sup 0/C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the south San Bernardino geothermal area was 56/sup 0/C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal area was 49.5/sup 0/C at 174 meters (570 feet) in an abandoned water well. The geophysical and geological surveys delineated fault traces in association with all three of the designated geothermal areas.

Youngs, L.G.; Bezore, S.P.; Chapman, R.H.; Chase, G.W.

1981-08-01T23:59:59.000Z

90

The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)  

SciTech Connect (OSTI)

Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

1997-08-01T23:59:59.000Z

91

Geothermal Resource Area 6: Lander and Eureka Counties. Area development plan  

SciTech Connect (OSTI)

Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two county area. Eleven of these resources are considered major and have been selected for evaluation in this area development plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the geothermal sites considered are summarized.

Robinson, S.; Pugsley, M.

1981-01-01T23:59:59.000Z

92

Geothermal resource area 6: Lander and Eureka Counties. Area development plan  

SciTech Connect (OSTI)

Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two country area. Eleven of these resources are considered major and have been selected for evaluation in this Area Development Plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 11 geothermal sites considered are summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

93

Reservoir characterization, performance monitoring of waterflooding and development opportunities in Germania Spraberry Unit.  

E-Print Network [OSTI]

existing over a regional area have long been known to dominate all aspects of performance in the Spraberry Trend Area. Two stages of depletion have taken place over 46 years of production: Primary production under solution gas drive and secondary recovery...

Hernandez Hernandez, Erwin Enrique

2005-08-29T23:59:59.000Z

94

Thrust Area Report, Engineering Research, Development and Technology  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

Langland, R. T.

1997-02-01T23:59:59.000Z

95

Development of general inflow performance relationships (IPR`s) for slanted and horizontal wells producing heterogeneous solution-gas drive reservoirs  

SciTech Connect (OSTI)

Since 1968, the Vogel equation has been used extensively and successfully for analyzing the inflow performance relationship (IPR) of flowing vertical wells producing by solution-gas drive. Oil well productivity can be rapidly estimated by using the Vogel IPR curve and well outflow performance. With recent interests on horizontal well technology, several empirical IPRs for solution-gas drive horizontal and slanted wells have been developed under homogeneous reservoir conditions. This report presents the development of IPRs for horizontal and slanted wells by using a special vertical/horizontal/slanted well reservoir simulator under six different reservoir and well parameters: ratio of vertical to horizontal permeability, wellbore eccentricity, stratification, perforated length, formation thickness, and heterogeneous permeability. The pressure and gas saturation distributions around the wellbore are examined. The fundamental physical behavior of inflow performance for horizontal wells is described.

Cheng, A.M.

1992-04-01T23:59:59.000Z

96

An application of water recreation capacity standards to reservoir development planning  

E-Print Network [OSTI]

Resources 100 sq. ft. beach/swimmer unknown Michigan Department of Conservation (Preliminary data) Intensive use area Grass beach - 200 people/acre, Sand beach & water - 1 user/lineal foot of waterfront Moderate use area Grass beach - 100 people.../acre, Sand beach & water ? 1 user/2 lineal feet of waterfront Light use area Grass beach - 10 people/acre, Sand beach & water - 1 user/10 lineal feet of waterfront Texas Parks & Wiidlife Department 150 sq. ft. water/user 300 sq. ft. beach/user unknown...

Petersen, Grant Arthur

1968-01-01T23:59:59.000Z

97

Engineering research, development and technology. Thrust area report, FY93  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

Not Available

1994-05-01T23:59:59.000Z

98

Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling  

SciTech Connect (OSTI)

Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

P. K. Pande

1998-10-29T23:59:59.000Z

99

Environment of deposition and reservoir characteristics of Lower Pennsylvanian Morrowan sandstones, South Empire field area, Eddy County, New Mexico  

E-Print Network [OSTI]

New Mexico. The Lower and Middle Morrow intervals in the South Empire field area consist of stacked, fluvial to deltaic sandstones that are interbedded with thin limestones. An understanding of the complex, interfingering relation- ships... of the Tobosa basin, the thinning of Ordovician sediments suggests the initiation of uplift on the Diablo Platform. A period of quiescence punctuated by episodes of regional uplift existed from the late Ordovician to the late Devonian-early Mississ- ippian...

Lambert, Rebecca Bailey

1986-01-01T23:59:59.000Z

100

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

SciTech Connect (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to over 10,000,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intended to investigate, map and characterize field fracture patterns and the reservoir conduit system. In the first phase of the project, state of the art borehole imaging technologies including FMI, dipole sonic, interference tests and production logs were employed to characterize fractures and micro faults. These data along with the existing database were used in the construction of a new geologic model of the fracture network. An innovative fracture network reservoir simulator was developed to better understand and manage the aquifer’s role in pressure maintenance and water production. In the second phase of this project, simulation models were used to plan the redevelopment of the field using high angle wells. Correct placement of the wells is critical to intersect the best-developed fracture zones and to avoid producing large volumes of water from the water leg. Particula r attention was paid to those areas of the field that have not been adequately developed with the existing producers. In cooperation with the DOE and the PTTC, the new data and the new fracture simulation model were shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during Budget Periods I and II. Venoco elected to terminate the project after Budget Period II and not to proceed with the activities planned for Budget Period III.

Horner, Steve; Ershaghi, Iraj

2006-06-30T23:59:59.000Z

102

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-03-31T23:59:59.000Z

103

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N. P. Paulsson

2005-09-30T23:59:59.000Z

104

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2006-05-05T23:59:59.000Z

105

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-08-21T23:59:59.000Z

106

Advanced Oil Recovery Technologies for Improved Recovery From Slope Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

SciTech Connect (OSTI)

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1998-01-30T23:59:59.000Z

107

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2003-10-31T23:59:59.000Z

108

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2004-01-31T23:59:59.000Z

109

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2002-12-31T23:59:59.000Z

110

Development of Optimization Systems Analysis Technique for Texas Water Resources  

E-Print Network [OSTI]

growth asa function of resource use is developed and an example presented using the area affected by the Blackburn Crossing Reservoir in East Central Texas....

Hann, R. W.

111

Fractured reservoir discrete feature network technologies. Annual report, March 7, 1996--February 28, 1997  

SciTech Connect (OSTI)

This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.

Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.

1998-01-01T23:59:59.000Z

112

Development of photo-patterned composite structures in microchannels for oil reservoir research  

E-Print Network [OSTI]

Starting from unstructured glass microchannels, we develop a new method of micromodel fabrication. We build composite structures in a bottom-up manner with ultraviolet projection lithography where the composite structures ...

Lee, Hyundo

2014-01-01T23:59:59.000Z

113

Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization  

SciTech Connect (OSTI)

This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

Varney, Peter J.

2002-04-23T23:59:59.000Z

114

Design and Materials The Design area is a rapidly growing research area aimed at furthering the development of  

E-Print Network [OSTI]

Design and Materials Design The Design area is a rapidly growing research area aimed at furthering the development of competitive products and systems. Research in this department focuses on design theories, design methodologies

Calgary, University of

115

Development of a 2-D black-oil reservoir simulator using a unique grid-block system  

E-Print Network [OSTI]

The grid orientation effect is a long-standing problem plaguing reservoir simulators that employ finite difference schemes. A rotation of the computational grids yields a substantially different solution under certain circumstances. For example...

Chong, Emeline E

2006-04-12T23:59:59.000Z

116

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

Yusuf, Nurudeen

2008-10-10T23:59:59.000Z

117

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

Yusuf, Nurudeen

2009-05-15T23:59:59.000Z

118

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS  

SciTech Connect (OSTI)

We report on progress in three areas. In part one, the wetting effects of synthetic base oils are reported. Part two reports progress in understanding the effects of surfactants of known chemical structures, and part three integrates the results from surface and core tests that show the wetting effects of commercial surfactant products used in synthetic and traditional oil-based drilling fluids. An important difference between synthetic and traditional oil-based muds (SBM and OBM, respectively) is the elimination of aromatics from the base oil to meet environmental regulations. The base oils used include dearomatized mineral oils, linear alpha-olefins, internal olefins, and esters. We show in part one that all of these materials except the esters can, at sufficiently high concentrations, destabilize asphaltenes. The effects of asphaltenes on wetting are in part related to their stability. Although asphaltenes have some tendency to adsorb on solid surfaces from a good solvent, that tendency can be much increased near the onset of asphaltene instability. Tests in Berea sandstone cores demonstrate wetting alteration toward less water-wet conditions that occurs when a crude oil is displaced by paraffinic and olefinic SBM base oils, whereas exposure to the ester products has little effect on wetting properties of the cores. Microscopic observations with atomic forces microscopy (AFM) and macroscopic contact angle measurements have been used in part 2 to explore the effects on wetting of mica surfaces using oil-soluble polyethoxylated amine surfactants with varying hydrocarbon chain lengths and extent of ethoxylation. In the absence of water, only weak adsorption occurs. Much stronger, pH-dependent adsorption was observed when water was present. Varying hydrocarbon chain length had little or no effect on adsorption, whereas varying extent of ethoxylation had a much more significant impact, reducing contact angles at nearly all conditions tested. Preequilibration of aqueous and oleic phases appeared to have little influence over surfactant interactions with the mica surface; the solubility in water of all three structures appeared to be very limited. Commercial emulsifiers for both SBM and OBM formulations are blends of tall oil fatty acids and their polyaminated derivatives. In part three of this report, we integrate observations on smooth surfaces with those in Berea sandstone cores to show the effects of low concentrations of these products with and without the added complexity of adsorbed material from crude oils. Unlike the polyethoxylated amines studied in part two, there are significant non-equilibrium effects that can occur when water first contacts oil with dissolved surfactant. Very oil-wet conditions can be produced on first contact. Surfactant dissolved in oil had less effect on wetting alteration for one combination of crude oil and surfactant, although the generality of this observation can only be assessed by additional tests with crude oils of different composition. The wettability-altering effect of surfactants on both mica and Berea sandstone was most significant when they contacted surfaces after adsorption of crude oil components. Tests without crude oil might underestimate the extent of wetting change possible with these SBM and OBM emulsifiers.

Jill S. Buckley; Norman R. Morrow

2004-05-01T23:59:59.000Z

119

Reservoir monitoring: 1990 summary of vital signs and use impairment monitoring on Tennessee Valley Reservoirs  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA) initiated a Reservoir Monitoring Program on 12 TVA reservoirs (the nine main stream Tennessee river reservoirs -- Kentucky through Fort Loudoun and three major tributary storage reservoirs -- Cherokee, Douglas, and Norris) in autumn 1989. The objective of the Reservoir Monitoring Program is to provide basic information on the ``health`` or integrity of the aquatic ecosystem in each TVA reservoir (``Vital Signs``) and to provide screening level information for describing how well each reservoir meets the swimmable and fishable goals of the Clean Water Act (Use Impairments). This is the first time in the history of the agency that a commitment to a long-term, systematic sampling of major TVA reservoirs has been made. The basis of the Vital Signs Monitoring is examination of appropriate physical, chemical, and biological indicators in three areas of each reservoir. These three areas are the forebay immediately upstream of the dam; the transition zone (the mid-reservoir region where the water changes from free flowing to more quiescent, impounded water); and the inflow or headwater region of the reservoir. The Use Impairments monitoring provides screening level information on the suitability of selected areas within TVA reservoirs for water contact activities (swimmable) and suitability of fish from TVA reservoirs for human consumption (fishable).

Dycus, D.L.; Meinert, D.L.

1991-08-01T23:59:59.000Z

120

Reservoir monitoring: 1990 summary of vital signs and use impairment monitoring on Tennessee Valley Reservoirs  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA) initiated a Reservoir Monitoring Program on 12 TVA reservoirs (the nine main stream Tennessee river reservoirs -- Kentucky through Fort Loudoun and three major tributary storage reservoirs -- Cherokee, Douglas, and Norris) in autumn 1989. The objective of the Reservoir Monitoring Program is to provide basic information on the health'' or integrity of the aquatic ecosystem in each TVA reservoir ( Vital Signs'') and to provide screening level information for describing how well each reservoir meets the swimmable and fishable goals of the Clean Water Act (Use Impairments). This is the first time in the history of the agency that a commitment to a long-term, systematic sampling of major TVA reservoirs has been made. The basis of the Vital Signs Monitoring is examination of appropriate physical, chemical, and biological indicators in three areas of each reservoir. These three areas are the forebay immediately upstream of the dam; the transition zone (the mid-reservoir region where the water changes from free flowing to more quiescent, impounded water); and the inflow or headwater region of the reservoir. The Use Impairments monitoring provides screening level information on the suitability of selected areas within TVA reservoirs for water contact activities (swimmable) and suitability of fish from TVA reservoirs for human consumption (fishable).

Dycus, D.L.; Meinert, D.L.

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

Bjorn N. P. Paulsson

2006-09-30T23:59:59.000Z

122

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

Dutton, S.P.

1996-04-30T23:59:59.000Z

123

Regional correlations and reservoir characterization studies of the Pennsylvanian system in the Anadarko Basin area of Western Oklahoma and the Panhandle of Texas  

SciTech Connect (OSTI)

Correlations problems have long existed between the Pennsylvanian marine clastics of the northeastern half of the Anadarko Basin and Shelf and the Pennsylvanian terrigenous washes of the extreme southwestern portion of the Anadarko Basin. These correlation problems have created nomenclature problems resulting in thousands of feet of washes often referred to on completion reports and production records as {open_quotes}granite wash{close_quotes} or {open_quotes}Atoka Wash{close_quotes} when much greater accuracy and specificity is both needed and possible. Few detailed cross-sections are available. Regional and field scale cross-sections were constructed which have been correlated well by well and field by field using nearly every deep well drilled in the basin. This process has provided for a high degree of consistency. These cross-sections have greatly diminished the correlation and nomenclature problems within the Anadarko Basin. Certain markers proved to be regionally persistent from the marine clastics into the terrigenous washes making the subdivision of thousands of feet of washes possible. Those of greatest importance were the top of the Marmaton, the Cherokee Marker, the Pink {open_quotes}Limestone{close_quotes} Interval, the top of the Atoka and the top of the Morrow. Once these and other subdivisions were made, production was allocated on a much more definitive basis. Additionally, detailed reservoir characterization of the reservoirs was conducted to include geologic and engineering data. Finally, a {open_quotes}field-specific{close_quotes} reservoir type log was chosen. A series of regional cross-sections will be presented along with the results of reservoir characterization studies conducted on reservoirs within the fields located along the cross-sections. A type log for each reservoir will also be illustrated.

Hendrickson, W.J.; Smith, P.W.; Williams, C.M. [Dwights Energydata Inc., Oklahoma City, OK (United States)

1995-09-01T23:59:59.000Z

124

Procedures for Establishing and Evaluating Research Areas for Strategic Development  

E-Print Network [OSTI]

the area into a self-sustaining field of excellence, the University needs to identify and promote those

Carleton University

125

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

SciTech Connect (OSTI)

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1998-04-30T23:59:59.000Z

126

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect (OSTI)

The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Mark B.

2002-01-16T23:59:59.000Z

127

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Michael B.

2002-02-21T23:59:59.000Z

128

Plutonium Focus Area research and development plan. Revision 1  

SciTech Connect (OSTI)

The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

NONE

1996-11-01T23:59:59.000Z

129

Area of Interest 1, CO2 at the Interface: Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance  

SciTech Connect (OSTI)

We examined the influence of geologic features present at the reservoir/caprock interface on the transmission of supercritical CO2 into and through caprock. We focused on the case of deformation-band faults in reservoir lithologies that intersect the interface and transition to opening-mode fractures in caprock lithologies. Deformation-band faults are exceeding common in potential CO2 injection units and our fieldwork in Utah indicates that this sort of transition is common. To quantify the impact of these interface features on flow and transport we first described the sedimentology and permeability characteristics of selected sites along the Navajo Sandstone (reservoir lithology) and Carmel Formation (caprock lithology) interface, and along the Slickrock Member (reservoir lithology) and Earthy Member (caprock lithology) of the Entrada Sandstone interface, and used this information to construct conceptual permeability models for numerical analysis. We then examined the impact of these structures on flow using single-phase and multiphase numerical flow models for these study sites. Key findings include: (1) Deformation-band faults strongly compartmentalize the reservoir and largely block cross-fault flow of supercritical CO2. (2) Significant flow of CO2 through the fractures is possible, however, the magnitude is dependent on the small-scale geometry of the contact between the opening-mode fracture and the deformation band fault. (3) Due to the presence of permeable units in the caprock, caprock units are capable of storing significant volumes of CO2, particularly when the fracture network does not extend all the way through the caprock. The large-scale distribution of these deformation-bandfault- to-opening-mode-fractures is related to the curvature of the beds, with greater densities of fractures in high curvature regions. We also examined core and outcrops from the Mount Simon Sandstone and Eau Claire Formation reservoir/caprock interface in order to extend our work to a reservoir/caprock pair this is currently being assessed for long-term carbon storage. These analyses indicate that interface features similar to those observed at the Utah sites 3 were not observed. Although not directly related to our main study topic, one byproduct of our investigation is documentation of exceptionally high degrees of heterogeneity in the pore-size distribution of the Mount Simon Sandstone. This suggests that the unit has a greater-than-normal potential for residual trapping of supercritical CO2.

Mozley, Peter; Evans, James; Dewers, Thomas

2014-10-31T23:59:59.000Z

130

Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.  

SciTech Connect (OSTI)

The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

2006-11-01T23:59:59.000Z

131

Analysis of Field Development Strategies of CO2 EOR/Capture Projects Using a Reservoir Simulation Economic Model  

E-Print Network [OSTI]

($) Drilling cost for one well ($) Facilities cost for one pattern ($) Tubing cost for one well ($) Drilling depth (feet) EIA US Energy Information Administration EOR Enhanced Oil Recovery EOS Equation of State IEA International... in the reservoir ................................................................ 20 Figure 13: Scope of this chapter: definition of the economic model ............................... 21 Figure 14: Spot price of the oil on the WTI market from 1986 to 2013 (EIA...

Saint-Felix, Martin

2013-05-03T23:59:59.000Z

132

Wind Energy Development as an Economic Development Strategy for Rural Areas  

E-Print Network [OSTI]

Why does wind development make sense for rural areas? In many rural areas, utility scale wind energy developments can be a great way to expand and grow the economy through direct investment and job creation, in addition to significant potential spinoff development activities. Because of renewable state standards and incentives, including the Federal Production Tax Credit (PTC) and the Ohio SB 232 (which levels the playing field for wind projects by setting a property tax ceiling), more wind companies view Ohio as a new and exciting market for investment. Siting requirements for wind are also prevalent in Ohio, including good transmission lines and available land and wind resources. Ohio also has a skilled workforce that can construct and provide maintenance on wind systems as well as manufacture component parts for the industry. Utility Wind Basics Utility scale wind developments are large “wind farms ” that generate 5 megawatts per hour or greater. They are governed by the Ohio Power Siting Board (OPSB) under provisions found in House Bill 562, 2008

Nancy Bowen-ellzey

133

Prediction of future well performance, including reservoir depletion effects  

SciTech Connect (OSTI)

In the past, the reservoir material balance (voidage) effects occurring between the end of the measured (known) production history and future Inflow Performance Relationship (IPR) time levels have been commonly ignored in the computation of the future IPR behavior. Neglecting the reservoir voidage that occurs during the time interval between the end of the known production history and the future IPR time levels results in erroneous estimates of the future IPR behavior. A detailed description is given of the mathematically rigorous technique that has been used in the development of a multilayer well performance simulator that properly accounts for the reservoir voidage effects. Some of the more significant results are also presented of an extensive effort to develop an accurate and computationally efficient well performance simulation model. The reservoir can be considered to be multilayered, with mixed reservoir layer completion types and outer boundary shapes, drainage areas and boundary conditions. The well performance model can be used to simulate performance in three different operating modes: (1) constant wellhead rate, (2) constant bottomhole pressure, and (3) constant wellhead pressure. The transient performance of vertical, vertically fractured and horizontal wells can be simulated with this well performance model. The well performance model uses mathematically rigorous transient solutions and not simply the approximate solutions for each of the well types, as do most of the other commercially available well performance models.

Poe, B.D. Jr.; Elbel, J.L.; Spath, J.B.; Wiggins, M.L.

1995-12-31T23:59:59.000Z

134

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, July 1--September 30, 1996 (fourth quarter)  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. Results obtained to date are summarized on the following: geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

NONE

1996-10-31T23:59:59.000Z

135

Application of reservoir models to Cherokee Reservoir  

SciTech Connect (OSTI)

As a part of the Cherokee Reservoir Project hydrodynamic-temperature models and water quality models hav

Kim, B.R.; Bruggink, D.J.

1982-01-01T23:59:59.000Z

136

Development of Autonomous Magnetometer Rotorcraft For Wide Area Assessment  

SciTech Connect (OSTI)

Large areas across the United States and internationally are potentially contaminated with unexploded ordinance (UXO), with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with (1) near 100% coverage and (2) near 100% detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 to 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys, resulting in costs of approximately $100-$150/acre. In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide highresolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus there is a need for other systems, which can be used for effective data collection. An Unmanned Aerial Vehicle (UAV) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of dynamic acquisition, i.e. survey mission in-flight reprioritization).

Mark D. McKay; Matthew O. Anderson

2011-08-01T23:59:59.000Z

137

Area development plan of the geothermal potential in planning region 8, Roosevelt - Custer area  

SciTech Connect (OSTI)

Geothermal resource data, the Roosevelt-Custer Region development plan, and energy, economic, and institutional considerations are presented. Environmental considerations and water availability are discussed. (MHR)

Not Available

1980-07-01T23:59:59.000Z

138

Development Wells At Long Valley Caldera Geothermal Area (Holt...  

Open Energy Info (EERE)

Ben Holt, Richard G. Campbell (1984) Mammoth Geothermal Project Environmental Science Associates (1987) Mammoth Pacific Geothermal Development Projects: Units II and III...

139

area development plans: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology Websites Summary: -CDQ directed pollock fishery in the AI subarea to the Aleut Corporation for the purpose of economic development in the Aleutian Islands subarea (AI)....

140

area development plan: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology Websites Summary: -CDQ directed pollock fishery in the AI subarea to the Aleut Corporation for the purpose of economic development in the Aleutian Islands subarea (AI)....

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Factors affecting water quality in Cherokee Reservoir  

SciTech Connect (OSTI)

The purpose was to: (1) define reservoir problems related to water quality conditions; (2) identify the probable causes of these problems; and (3) recommend procedures for achieving needed reservoir water quality improvements. This report presents the project findings to date and suggests steps for upgrading the quality of Cherokee Reservoir. Section II presents background information on the characteristics of the basin, the reservoir, and the beneficial uses of the reservoir. Section III identifies the impacts of existing reservoir water quality on uses of the reservoir for water supply, fishery resources, recreation, and waste assimilation. Section IV presents an assessment of cause-effect relationships. The factors affecting water quality addressed in Section IV are: (1) reservoir thermal stratification and hydrodynamics; (2) dissolved oxygen depletion; (3) eutrophication; (4) toxic substances; and (5) reservoir fisheries. Section V presents a preliminary evaluation of alternatives for improving the quality of Cherokee Reservoir. Section VI presents preliminary conclusions and recommendations for developing and implementing a reservoir water quality management plan. 7 references, 22 figures, 21 tables.

Iwanski, M.L.; Higgins, J.M.; Kim, B.R.; Young, R.C.

1980-07-01T23:59:59.000Z

142

Geothermal Reservoir Engineering Research. Fourth annual report, October 1, 1983-September 30, 1984  

SciTech Connect (OSTI)

Reservoir definition research consisted of well test analysis and bench-scale experiments. Well testing included both single-well pressure drawdown and buildup testing, and multiple-well interference testing. The development of new well testing methods continued to receive major emphasis during the year. Work included a project on multiphase compressibility, including the thermal content of the rock. Several projects on double-porosity systems were completed, and work was done on relative-permeability. Heat extraction from rock will determine the long-term response of geothermal reservoirs to development. The work in this task area involved a combination of physical and mathematical modeling of heat extraction from fractured geothermal reservoirs. International cooperative research dealt with adsorption of water on reservoir cores, the planning of tracer surveys, and an injection and tracer test in the Los Azufres fields. 32 refs.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

1984-09-01T23:59:59.000Z

143

Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?  

SciTech Connect (OSTI)

The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

Clarkson, Christopher R [ORNL

2011-01-01T23:59:59.000Z

144

Development Wells At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpen EnergyAlum Area

145

Development Wells At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMaui Area (DOE

146

Development Wells At Raft River Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMaui Area

147

Development Wells At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMauiArea (DOE

148

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

149

Session: What can we learn from developed wind resource areas  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

Thelander, Carl; Erickson, Wally

2004-09-01T23:59:59.000Z

150

Development of autonomous magnetometer rotorcraft for wide area assessment  

SciTech Connect (OSTI)

Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of dynamic acquisition, i.e. survey mission inflight reprioritization). We describe and report on a one year effort with as primary goal to provide a recommendation to SERDP for a path forward in the implementation of one or more autonomous unmanned magnetometer rotorcraft platforms. This recommendation (which is provided in chapter 6) is based on the following three elements a) An assessment on the applicability of autonomous rotorcraft magnetometer systems to the current DoD site inventory, and an initial assessment of which type(s) of autonomous unmanned magnetometer rotorcraft platforms (in terms of performance characteristics such as payload, altitude, obstacle avoidance, production rate and flight time) would be most relevant to this inventory (chapter 3); b) An evaluation of the feasibility of assembling such platforms from commercial components (unmanned rotorcraft, control systems and sensors – both magnetometer sensors and supporting sensors). This evaluation included several highly successful field tests (chapter 4 and 5); c) A recommendation of the path forward, which includes a detailed outline of the efforts required in the design, assembly and testing of different modular platforms (chapter 6)

Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

2010-04-01T23:59:59.000Z

151

Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes  

SciTech Connect (OSTI)

Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications, Kansas Geological Survey Open-file reports, Master's theses, and postings on the project website: http://www.kgs.ku.edu/SEISKARST.

Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

2009-03-31T23:59:59.000Z

152

Area of cooperation includes: Joint research and development on  

E-Print Network [OSTI]

Technologies August 2, 2006: HCL Technologies Ltd (HCL), India's leading global IT services company, has signed projects that are using this technology currently such as BioGrid in Japan, National Grid Service in UKArea of cooperation includes: · Joint research and development on Grid computing technologies

Buyya, Rajkumar

153

Multidisciplinary reservoir description of the Batu Raja Limestone, Bima field, offshore northwest Java, Indonesia  

SciTech Connect (OSTI)

Bima field is the largest hydrocarbon reservoir producing from carbonate rocks in the offshore northwest Java area. The giant field has multiple drive mechanisms and high viscosity oil, resulting in rapid gas/oil ratio and water-cut increase after 2 yr of production. Because of high stakes and reservoir complexities, a three dimensional reservoir simulation model was used to evaluate field development options. An integrated geological, geophysical, and engineering reservoir description was done to provide input for the model. Geologically, the Oligocene-Miocene Batu Raja Limestone was deposited on the Seribu Platform, a basement-controlled, fault-bounded carbonate build-up. The reservoir consists of a series of cleaning-upwards cycles that were exposed to meteoric leaching during a lower Miocene drop in sea level. This diagenetic event enhanced porosity and permeability across the buildup. Based on reservoir quality, the reservoir was zoned into five model layers. Geophysical input included micromodeling sections (a form of seismic inversion) that were generated from a dense grid of seismic data. These were calibrated to well logs and used to define the buildup edge and map the thickness of the entire Batu Raja and the main pay zone. Engineering reservoir description integrated capillary pressure, relative permeability, production, and drill-stem test data. The three-dimensional simulation model required treatments unique to the Bima Field including varying GOC depths to honor separate gas cap closures; making permeability pressure dependent in poorly consolidated zones, and setting up horizontal well completion treatments. The synergistic approach of geological, engineering, and geophysical input into the Bima reservoir study resulted in a reservoir management tool as well as a model to aid regional Batu Raja exploration strategies.

Kaldi, J.G.; Woodling, G.S. (ARCO Oil and Gas Co., Plano, TX (USA)); Roe, R.C. (Atlantic Richfield Indonesia, Inc., Jakarta (Indonesia))

1990-05-01T23:59:59.000Z

154

Development of a dual-porosity model for vapor-dominated fractured geothermal reservoirs using a semi-analytical fracture/matrix interaction term  

SciTech Connect (OSTI)

A new type of dual-porosity model is being developed to simulate two-phase flow processes in fractured geothermal reservoirs. At this time it is assumed that the liquid phase in the matrix blocks remains immobile. By utilizing the effective compressibility of a two-phase water/steam mixture in a porous rock, flow within the matrix blocks can be modeled by a single diffusion equation. This equation in turn is replaced by a non-linear ordinary differential equation that utilizes the mean pressure and mean saturation in the matrix blocks to calculate the rate of fluid flow between the matrix blocks and fractures. This equation has been incorporated into the numerical simulator TOUGH to serve as a source/sink term for computational gridblocks that represent the fracture system. The new method has been compared with solutions obtained using fully-discretized matrix blocks, on a problem involving a three-dimensional vapor-dominated reservoir containing an injection and a production well, and has been found to be quite accurate.

Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.

1993-02-01T23:59:59.000Z

155

EM-50 Tanks Focus Area retrieval process development and enhancements. FY97 technology development summary report  

SciTech Connect (OSTI)

The Retrieval Process Development and Enhancements (RPD and E) activities are part of the US Department of Energy (DOE) EM-50 Tanks Focus Area, Retrieval and Closure program. The purpose of RPD and E is to understand retrieval processes, including emerging and existing technologies, and to gather data on these processes, so that end users have requisite technical bases to make retrieval decisions. Technologies addressed during FY97 include enhancements to sluicing, the use of pulsed air to assist mixing, mixer pumps, innovative mixing techniques, confined sluicing retrieval end effectors, borehole mining, light weight scarification, and testing of Russian-developed retrieval equipment. Furthermore, the Retrieval Analysis Tool was initiated to link retrieval processes with tank waste farms and tank geometric to assist end users by providing a consolidation of data and technical information that can be easily assessed. The main technical accomplishments are summarized under the following headings: Oak Ridge site-gunite and associated tanks treatability study; pulsed air mixing; Oak Ridge site-Old Hydrofracture Facility; hydraulic testbed relocation; cooling coil cleaning end effector; light weight scarifier; innovative tank mixing; advanced design mixer pump; enhanced sluicing; Russian retrieval equipment testing; retrieval data analysis and correlation; simulant development; and retrieval analysis tool (RAT).

Rinker, M.W.; Bamberger, J.A. [Pacific Northwest National Lab., Richland, WA (United States); Alberts, D.G. [Waterjet Technology, Inc., Kent, WA (United States)] [and others

1997-09-01T23:59:59.000Z

156

Tanks Focus Area retrieval process development and enhancements FY96 technology development summary report  

SciTech Connect (OSTI)

The Retrieval Process Development and Enhancements (RPD&E) activities are part of the Retrieval and Closure Program of the U.S. Department of Energy (DOE) EM-50 Tanks Focus Area. The purposes of RPD&E are to understand retrieval processes, including emerging and existing technologies, and to gather data on those processes, so that end users have the requisite technical basis to make retrieval decisions. Work has been initiated to support the need for multiple retrieval technologies across the DOE complex. Technologies addressed during FY96 focused on enhancements to sluicing, borehole mining, confined sluicing retrieval end effectors, the lightweight scarifier, and pulsed air mixing. Furthermore, a decision tool and database have been initiated to link retrieval processes with tank closure to assist end users in making retrieval decisions.

Rinker, M.W.; Bamberger, J.A.; Hatchell, B.K. [and others

1996-09-01T23:59:59.000Z

157

Improved Upscaling & Well Placement Strategies for Tight Gas Reservoir Simulation and Management  

E-Print Network [OSTI]

, with opportunities for improved reservoir simulation & management, such as simulation model design, well placement. Our work develops robust and efficient strategies for improved tight gas reservoir simulation and management. Reservoir simulation models are usually...

Zhou, Yijie

2013-07-29T23:59:59.000Z

158

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test  

E-Print Network [OSTI]

in unconventional reservoirs such as coalbed methane, shale gas and tight gas reservoirs. Developing these types of unconventional gas reservoirs improves our energy security, and benefits the overall economy. Also, natural gas is one of the cleanest and most...

Romero Lugo, Jose 1985-

2012-10-24T23:59:59.000Z

159

The impact of multifamily development on single family home prices in the Greater Boston Area  

E-Print Network [OSTI]

The impact of large, multifamily developments on nearby single-family home prices was tested in five towns in the Greater Boston Area. Case studies that had recent multifamily developments built near transit nodes or town ...

Schuur, Arah (Arah Louise Adele)

2005-01-01T23:59:59.000Z

160

Development of A Bayesian Geostatistical Data Assimilation Method and Application to the Hanford 300 Area  

E-Print Network [OSTI]

Development of A Bayesian Geostatistical Data Assimilation Method and Application to the Hanford to the Hanford 300 Area Copyright Fall 2010 by Haruko Murakami #12;1 Abstract Development of A Bayesian Geostatistical Data Assimilation Method and Application to the Hanford 300 Area by Haruko Murakami Doctor

Rubin, Yoram

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Carpenteria reservoir redevelopment project  

SciTech Connect (OSTI)

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop a simulation-based reservoir management system that could be used to guide the redevelopment of the Carpenteria Offshore Field, which is located just seven miles from Santa Barbara. The system supports geostatistical and geological modeling and reservoir forecasting. Moreover, it is also a shared resource between the field operator, Pacific Operators Offshore, and the mineral owners, the U.S. Department of the Interior and the State of California.

Kendall, R.P.; Whitney, E.M.; Krogh, K.E. [Los Alamos National Lab., NM (United States); Coombs, S. [Pacific Operators Offshore, Inc., Carpinteria, CA (United States); Paul, R.G. [Dept. of the Interior (United States); Voskanian, M.M. [California State Lands Commission, Sacramento, CA (United States); Ershaghi, I. [University of Southern California, Los Angeles, CA (United States)

1997-08-01T23:59:59.000Z

162

AREA  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartmentNo.7-052 ofFocusAREA FAQ #

163

Water quality management plan for Cherokee Reservoir  

SciTech Connect (OSTI)

The management plan provides an assessment of Cherokee Reservoir's current water quality, identifies those factors which affect reservoir water quality, and develops recommendations aimed at restoring or maintaining water quality at levels sufficient to support diverse beneficial uses. 20 references, 8 figures, 15 tables. (ACR)

Not Available

1984-01-01T23:59:59.000Z

164

Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Project Summary. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate quantitative characterization of temperature distributions and surface area available for heat transfer in EGS.

165

Extracting maximum petrophysical and geological information from a limited reservoir database  

SciTech Connect (OSTI)

The characterization of old fields lacking sufficient core and log data is a challenging task. This paper describes a methodology that uses new and conventional tools to build a reliable reservoir model for the Sulimar Queen field. At the fine scale, permeability measured on a fine grid with a minipermeameter was used in conjunction with the petrographic data collected on multiple thin sections. The use of regression analysis and a newly developed fuzzy logic algorithm led to the identification of key petrographic elements which control permeability. At the log scale, old gamma ray logs were first rescaled/calibrated throughout the entire field for consistency and reliability using only four modem logs. Using data from one cored well and the rescaled gamma ray logs, correlations between core porosity, permeability, total water content and gamma ray were developed to complete the small scale characterization. At the reservoir scale, outcrop data and the rescaled gamma logs were used to define the reservoir structure over an area of ten square miles where only 36 wells were available. Given the structure, the rescaled gamma ray logs were used to build the reservoir volume by identifying the flow units and their continuity. Finally, history-matching results constrained to the primary production were used to estimate the dynamic reservoir properties such as relative permeabilities to complete the characterization. The obtained reservoir model was tested by forecasting the waterflood performance and which was in good agreement with the actual performance.

Ali, M.; Chawathe, A.; Ouenes, A. [New Mexico Institute of Mining and Technology, Socorro, NM (United States)] [and others

1997-08-01T23:59:59.000Z

166

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996  

SciTech Connect (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

Dutton, S.P.

1996-10-01T23:59:59.000Z

167

Reservoir characterization of the Mississippian Ratcliffe, Richland County, Montana, Williston Basin. Topical report, September 1997  

SciTech Connect (OSTI)

This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout the cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.

Sippel, M.; Luff, K.D.; Hendricks, M.L.

1998-07-01T23:59:59.000Z

168

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

Mark B. Murphy

2002-09-30T23:59:59.000Z

169

Protected areas in Northern Colombia on track to sustainable development? Carla Marchant & Axel Borsdorf  

E-Print Network [OSTI]

Protected areas in Northern Colombia ­ on track to sustainable development? Carla Marchant & Axel Borsdorf Keywords: sustainable development, livelihood, tourism, subsistence, coffee, Sierra Nevada de of sustainable development. On the basis of case studies in the Sierra Nevada de Santa Marta, Northern Colombia

Borsdorf, Axel

170

The verification of a semi-analytical reservoir simulator using a finite difference reservoir simulator  

E-Print Network [OSTI]

reduction in CPU time and computer memory, when compared to using finite difference reservoir simulators and mainframe computers, to solve the same problem. Development of Computers The advances that have been made in computing power and the improved...THE VERIFICATION OF A SEMI-ANALYTICAL RESERVOIR SIMULATOR USING A FINITE DIFFERENCE RESERVOIR SIMULATOR A Thesis by HANS GERHARDT DUBE Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment of the requirements...

Dube, Hans Gerhardt

1990-01-01T23:59:59.000Z

171

BERNAL et al Local development in peri-urban and rural areas  

E-Print Network [OSTI]

BERNAL et al Local development in peri-urban and rural areas based on co-management for small water, and propose predefined variables to analyze some Colombian small communities located in rural areas in order management; Colombia INTRODUCTION The sector of water and sewage services in Colombia have experimented

Paris-Sud XI, Université de

172

Assessment of Rooftop Area in Austin Energy's Service Territory Suitable for PV Development  

Broader source: Energy.gov [DOE]

As part of the Solar America Cities program, Austin Energy proposed to perform an assessment of the rooftop area available for PV development within its service area. Austin Energy contracted with Clean Energy Associates (CEA) to perform the analysis. This report summarizes the project objectives, data sources and methodological approach employed, and results.

173

Issues Associated with the Development of a Wide-Area Analysis and Visualization Environment  

E-Print Network [OSTI]

node-breaker model. Since the node-breaker model is much more dynamic than the simpler bus-branch type of the issues associated with the development of a wide-area analysis and visualization environment (WAVE data from multiple control areas, combine it into a unified model, analyze the model, and visualize

174

Status of Cherokee Reservoir  

SciTech Connect (OSTI)

This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

Not Available

1990-08-01T23:59:59.000Z

175

Geothermal resource areas database for monitoring the progress of development in the United States  

SciTech Connect (OSTI)

The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

1981-01-01T23:59:59.000Z

176

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the fifth quarter of Budget Period I.

Steve Horner; Iraj Ershaghi

2002-01-31T23:59:59.000Z

177

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the third quarter of Budget Period II.

Steve Horner

2004-07-30T23:59:59.000Z

178

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re- injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the fourth quarter of Budget Period II.

Steve Horner

2004-10-29T23:59:59.000Z

179

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the second quarter of Budget Period II.

Steve Horner

2004-04-29T23:59:59.000Z

180

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the twelfth quarter of Budget Period I.

Steve Horner; Iraj Ershaghi

2003-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the fifth quarter of Budget Period II.

Steve Horner

2005-01-31T23:59:59.000Z

182

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the final quarter of Budget Period I.

Steve Horner; Iraj Ershaghi

2003-10-31T23:59:59.000Z

183

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the tenth quarter of Budget Period I.

Steve Horner; Iraj Ershaghi

2003-01-31T23:59:59.000Z

184

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the seventh quarter of Budget Period II.

Steve Horner

2005-08-01T23:59:59.000Z

185

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the eleventh quarter of Budget Period I.

Steve Horner; Iraj Ershaghi

2003-05-15T23:59:59.000Z

186

An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the ninth quarter of Budget Period II.

Steve Horner

2006-01-31T23:59:59.000Z

187

Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms  

E-Print Network [OSTI]

University Co-Chairs of Advisory Committee, Dr. Ding Zhu Dr. Hadi Nasrabadi Horizontal well placement determination within a reservoir is a significant and difficult step... optimization is an important criterion during the reservoir development phase of a horizontal-well project in gas reservoirs, but it is less significant to vertical wells in a homogeneous reservoir. It is also shown that genetic algorithms are an extremely...

Gibbs, Trevor Howard

2011-08-08T23:59:59.000Z

188

Production management techniques for water-drive gas reservoirs. Field number 1, onshore gulf coast over-pressured, high yield condensate reservoir. Topical report, July 1993  

SciTech Connect (OSTI)

To develop improved completion and reservoir management strategies for water-drive gas reservoirs, the study conducted on an overpressured high yield gas condensate reservoir is reported. The base recovery factor for the field was projected to be only 47.8%, due to high residual gas saturation and a relatively strong aquifer which maintained reservoir pressure.

Hower, T.L.

1993-07-01T23:59:59.000Z

189

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

190

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

During this quarter, work began on the regional structural and geologic analysis of the greater Green River basin (GGRB) in southwestern Wyoming, northwestern Colorado and northeastern Utah. The ultimate objective of the regional analysis is to apply the techniques developed and demonstrated during earlier phases of the project to sweet-spot delineation in a relatively new and underexplored play: tight gas from continuous-type Upper Cretaceous reservoirs of the GGRB. The primary goal of this work is to partition and high-grade the greater Green River basin for exploration efforts in the Cretaceous tight gas play. The work plan for the quarter of January 1, 1998--March 31, 1998 consisted of three tasks: (1) Acquire necessary data and develop base map of study area; (2) Process data for analysis; and (3) Initiate structural study. The first task and second tasks were completed during this reporting period. The third task was initiated and work continues.

NONE

1998-09-30T23:59:59.000Z

191

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful redevelopment and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the seventh quarter of Budget Period I.

Steve Horner; Iraj Ershaghi

2002-04-30T23:59:59.000Z

192

Sizing of a hot dry rock reservoir from a hydraulic fracturing experiment  

SciTech Connect (OSTI)

Hot dry rock (HDR) reservoirs do not lend themselves to the standard methods of reservoir sizing developed in the petroleum industry such as the buildup/drawdown test. In a HDR reservoir the reservoir is created by the injection of fluid. This process of hydraulic fracturing of the reservoir rock usually involves injection of a large volume (5 million gallons) at high rates (40BPM). A methodology is presented for sizing the HDR reservoir created during the hydraulic fracturing process. The reservoir created during a recent fracturing experiment is sized using the techniques presented. This reservoir is then investigated for commercial potential by simulation of long term power production. 5 refs., 7 figs.

Zyvoloski, G.

1985-01-01T23:59:59.000Z

193

Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf San Andres Reservoir.  

SciTech Connect (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l. Advanced petrophysics 2. Three-dimensional (3-D) seismic 3. Cross-well bore tomography 4. Advanced reservoir simulation 5. Carbon dioxide (CO{sub 2}) stimulation treatments 6. Hydraulic fracturing design and monitoring 7. Mobility control agents. West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982-86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible C0 injection project at the South Welch Unit. The reservoir quality at the West Welch Unit is poorer than other San Andres reservoirs due to its relative position to sea level during deposition. Because of the proximity of a C0{sub 2} source and the C0{sub 2} operating experience that would be available from the South Welch Unit, West Welch Unit is an ideal location for demonstrating methods for enhancing economics of IOR projects in lower quality SSC reservoirs. This Class 2 project concentrates on the efficient design of a miscible C0{sub 2} project based on detailed reservoir characterization from advanced petrophysics, 3- D seismic interpretations and cross wellbore tomography interpretations. During the quarter, the project area was expanded to include an area where the seismic attribute mapping indicated potential for step-out locations. Progress was made on interpreting the crosswell seismic data and the C0{sub 2} performance simulation was further improved. Construction of facilities required for C0{sub 2} injection were completed.

Taylor, A.R.; Hickman, T.S. [T. SCOTT HICKMAN AND ASSOCIATES 550 WEST TEXAS STREET SUITE 950 MIDLAND, TX (United States) 79701; Justice, J.J. [ADVANCED RESERVOIR TECHNOLOGIES P. O. BOX 985 ADDISON, TX (United States) 75001-0985

1997-07-30T23:59:59.000Z

194

Application of integrated reservoir management and reservoir characterization to optimize infill drilling  

SciTech Connect (OSTI)

This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

NONE

1997-04-01T23:59:59.000Z

195

Fifteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

Not Available

1990-01-01T23:59:59.000Z

196

Reservoir characterization using nonparametric regression techniques  

E-Print Network [OSTI]

reservoirs, but a simple and computationally efficient correlation is developed using only commonly available well log responses. Accurate permeability correlations are essential to understand, forecast, manage, and control production operations...

Mathisen, Trond

2000-01-01T23:59:59.000Z

197

Reservoir fracture characterizations from seismic scattered waves  

E-Print Network [OSTI]

The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

Fang, Xinding

2012-01-01T23:59:59.000Z

198

Study of induced seismicity for reservoir characterization  

E-Print Network [OSTI]

The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...

Li, Junlun, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

199

Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield  

SciTech Connect (OSTI)

These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

Zhoa Han-Qing [Daqing Research Institute, Helongjiang (China)

1997-08-01T23:59:59.000Z

200

SUSTAINABLE DEVELOPMENT AND FORESTRY RESOURCES ADMINISTRATION IN THE APUSENI MOUNTAINS AREA  

E-Print Network [OSTI]

SUSTAINABLE DEVELOPMENT AND FORESTRY RESOURCES ADMINISTRATION IN THE APUSENI MOUNTAINS AREA and despite the sustainable development principles, the Romanian forestry environment has suffered a real is taken into account (Giddens, 2000). 1.1. Forestry resources administration The main problem in terms

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method  

E-Print Network [OSTI]

In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under...

Lee, Byungtark

2011-10-21T23:59:59.000Z

202

Predicting spatial distribution of critical pore types and their influence on reservoir quality, Canyon (Pennsylvanian) Reef reservoir, Diamond M field, Texas  

E-Print Network [OSTI]

Subject: Geology iii ABSTRACT Predicting Spatial Distribution of Critical Pore Types and Their Influence on Reservoir Quality, Canyon (Pennsylvanian) Reef Reservoir, Diamond M Field, Texas... scale. Ultimately slice maps of reservoir quality at a 10 ft interval for a 150 ft section of the Canyon Reef reservoir were developed. These iv reservoir quality maps will provide a useful tool for the design and implementation of accurate...

Fisher, Aaron Jay

2007-04-25T23:59:59.000Z

203

Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

1997-05-11T23:59:59.000Z

204

Natural resources development in Mexico: biological diversity conservation and protected areas  

E-Print Network [OSTI]

of the country's exceptional natural diversity and changes to which it has been subjected, a history of its protected areas, current administrative conditions and policy developments, a summary report on the available knowledge and status of biological... Parks and protected areas are still widely perceived as land- locked islands which are neither productive nor congruent with the spirit of the land reform movement. Third, 70% of Mexico's territory has been distributed to ej idos and comunidades...

Goebel, John Martin

1989-01-01T23:59:59.000Z

205

Characterization of facies and permeability patterns in carbonate reservoirs based on outcrop analogs. Final report  

SciTech Connect (OSTI)

The primary objective of this research is to develop methods for better describing the three-dimensional geometry of carbonate reservoir flow units as related to conventional or enhanced recovery of oil. San Andres and Grayburg reservoirs were selected for study because of the 13 Bbbl of remaining mobile oil and 17 Bbbl of residual oil in these reservoirs. The key data base is provided by detailed characterization of geologic facies and rock permeability in reservior-scale outcrops of the Permian San Andres Formation in the Guadalupe Mountains of New Mexico. Emphasis is placed on developing an outcrop analog for San Andres strata that can be used as (1) a guide to interpreting the regional and local geologic framework of the subsurface reservoirs (2) a data source illustrating the scales and patterns of variability of rock-fabric facies and petrophysical properties, particularly in lateral dimension, and on scales that cannot be studied during subsurface reservoir characterization. The research approach taken to achieve these objectives utilizes the integration of geologic description, geostatistical techniques, and reservoir flow simulation experiments. Results from this research show that the spatial distribution of facies relative to the waterflood direction can significantly affect how the reservoir produces. Bypassing of unswept oil occurs due to cross flow of injected water from high permeability zones into lower permeability zones were high permeability zones terminate. An area of unswept oil develops because of the slower advance of the water-injection front in the lower permeability zones. When the injection pattern is reversed, the cross-flow effect changes due to the different arrangements of rock-fabric flow units relative to the flow of injected water, and the sweep efficiency is significantly different. Flow across low-permeability mudstones occurs showing that these layers do not necessarily represent flow barriers.

Kerans, C.; Lucia, F.J.; Senger, R.K.; Fogg, G.E.; Nance, H.S.; Hovorka, S.D.

1993-07-01T23:59:59.000Z

206

Engineering Research and Development and Technology thrust area report FY92  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

Langland, R.T.; Minichino, C. [eds.

1993-03-01T23:59:59.000Z

207

Simulation of Radon Transport in Geothermal Reservoirs  

SciTech Connect (OSTI)

Numerical simulation of radon transport is a useful adjunct in the study of radon as an in situ tracer of hydrodynamic and thermodynamic numerical model has been developed to assist in the interpretation of field experiments. The model simulates transient response of radon concentration in wellhead geofluid as a function of prevailing reservoir conditions. The radon simulation model has been used to simulate radon concentration response during production drawdown and two flowrate transient tests in vapor-dominated systems. Comparison of model simulation with experimental data from field tests provides insight in the analysis of reservoir phenomena such as propagation of boiling fronts, and estimates of reservoir properties of porosity and permeability thickness.

Semprini, Lewis; Kruger, Paul

1983-12-15T23:59:59.000Z

208

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

SciTech Connect (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

209

INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT  

SciTech Connect (OSTI)

This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

2002-02-28T23:59:59.000Z

210

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR...  

Open Energy Info (EERE)

RESERVOIR ASSESSMENT PRELIMINARY RESULTS Abstract Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids....

211

ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS  

SciTech Connect (OSTI)

Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore); and (3) accurate approaches to account for the effects of reservoir heterogeneity and for the optimization of nonconventional well deployment. An overview of our progress in each of these main areas is as follows. A general purpose object-oriented research simulator (GPRS) was developed under this project. The GPRS code is managed using modern software management techniques and has been deployed to many companies and research institutions. The simulator includes general black-oil and compositional modeling modules. The formulation is general in that it allows for the selection of a wide variety of primary and secondary variables and accommodates varying degrees of solution implicitness. Specifically, we developed and implemented an IMPSAT procedure (implicit in pressure and saturation, explicit in all other variables) for compositional modeling as well as an adaptive implicit procedure. Both of these capabilities allow for efficiency gains through selective implicitness. The code treats cell connections through a general connection list, which allows it to accommodate both structured and unstructured grids. The GPRS code was written to be easily extendable so new modeling techniques can be readily incorporated. Along these lines, we developed a new dual porosity module compatible with the GPRS framework, as well as a new discrete fracture model applicable for fractured or faulted reservoirs. Both of these methods display substantial advantages over previous implementations. Further, we assessed the performance of different preconditioners in an attempt to improve the efficiency of the linear solver. As a result of this investigation, substantial improvements in solver performance were achieved.

Louis J. Durlofsky; Khalid Aziz

2004-08-20T23:59:59.000Z

212

Reservoir management using streamline simulation  

E-Print Network [OSTI]

of information and sparsity of data. Quantifying this uncertainty in terms of reservoir performance forecast poses a major reservoir management challenge. One solution to this problem is flow simulation of a large number of these plausible reservoir descriptions...

Choudhary, Manoj Kumar

2000-01-01T23:59:59.000Z

213

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

214

Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma  

SciTech Connect (OSTI)

The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

Wheeler,David M.; Miller, William A.; Wilson, Travis C.

2002-03-11T23:59:59.000Z

215

Thermopolis/East Thermopolis, Wyoming site-specific development analysis  

SciTech Connect (OSTI)

Some of the topics addressed are: what the area is like currently in terms of its land use, economics, and demographics; reservoir potentials; how the reservoir might be developed; marketing the final product; financial assistance for development; the legal aspects of development; and barriers to possible development. Some specific topics discussed are: leasing and permitting; heat exchangers for geothermal heating systems; and corrosion, scaling, and materials selection. (MHR)

Burgess-Lyon, P.

1981-06-01T23:59:59.000Z

216

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

217

Selecting ground-motion models developed for induced seismicity in geothermal areas1 Benjamin Edwards1  

E-Print Network [OSTI]

: geothermal power, induced seismicity, ground-motion prediction, seismic hazard, spectral35 analysis3642 Landau (Germany) geothermal power plant in 2009, which caused macroseismic intensities up to V+,431 Selecting ground-motion models developed for induced seismicity in geothermal areas1 Benjamin

Paris-Sud XI, Université de

218

DEVELOPMENT OF LASSA: A LARGE AREA SILICON STRIP ARRAY FOR NUCLEAR REACTION STUDIES AND  

E-Print Network [OSTI]

DEVELOPMENT OF LASSA: A LARGE AREA SILICON STRIP ARRAY FOR NUCLEAR REACTION STUDIES family for their support during my journey. My parents, sister and parents-in-law who never failed ARRAY FOR NUCLEAR REACTION STUDIES AND INVESTIGATION OF MID-VELOCITY FRAGMENT EMISSION IN 114 Cd + 92

de Souza, Romualdo T.

219

Business Continuity Project Project Summary: Develop Business Continuity Plans for all critical functional areas of  

E-Print Network [OSTI]

Business Continuity Project Project Summary: Develop Business Continuity Plans for all critical functional areas of the corporation. Project Requirements: Individual and Corporate plans that allow organization- · Integrate stand-by generator into plans- · Improve evacuation procedures- · Integrate other

220

Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.  

SciTech Connect (OSTI)

Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

Chisholm, Ian

1989-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Tanks Focus Area Alternative Salt Processing Research and Development Program Plan  

SciTech Connect (OSTI)

In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

Harmon, Harry D.

2000-11-30T23:59:59.000Z

222

Tanks Focus Area Alternative Salt Processing Research and Development Program Plan  

SciTech Connect (OSTI)

In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

Harmon, Harry D.

2000-05-15T23:59:59.000Z

223

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form ViewBlack Diamond Power CoWolf,(Redirected from

224

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE ISJump to:Blackfeet Nation Wind Farm

225

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

226

Heat deliverability of homogeneous geothermal reservoirs  

SciTech Connect (OSTI)

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

Iglesias, Eduardo R.; Moya, Sara L.

1991-01-01T23:59:59.000Z

227

Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions  

SciTech Connect (OSTI)

An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

1997-08-01T23:59:59.000Z

228

Imperial Reservoir KOFA NATIONAL  

E-Print Network [OSTI]

247 79 79 7 115 62 72 78 79 86 115 163 18 72 74 78 115 18 62 95 371 95 94 247 Solar Energy Study Areas of 7/21/2009) Solar Energy Study Area (as of 6/5/2009) BLM Lands Being Analyzed for Solar Development Imperial Plaster City Live Oak Springs Seeley Coyote Wells El Centro Holtville Boulevard Campo Tecate Heber

Laughlin, Robert B.

229

Fractured gas reservoirs in the Devonian shale of the Illinois and Appalachian basins  

SciTech Connect (OSTI)

The Devonian and Lower Mississippian black shale sequence of Kentucky includes the New Albany Shale of Illinois basin and the Ohio Shale of the Appalachian basin. Fractured reservoirs in the Ohio Shale contain a major gas resource, but have not been so prolific in the New Albany Shale. The authors propose two models of fractured shale reservoirs in both the Illinois and the Appalachian basins, to be tested with gas production data. (1) Where reactivated basement faults have propagated to the surface, the lack of an effective seal has prevented the development of overpressure. The resulting fracture system is entirely tectonic is origin, and served mainly as a conduit for gas migration from the basin to the surface. Gas accumulations in such reservoirs typically are small and underpressured. (2) Where basement faults have been reactivated but have not reached the surface, a seal on the fractured reservoir is preserved. In areas where thermal maturity has been adequate, overpressuring due to gas generation resulted in a major extension of the fracture system, as well as enhanced gas compression and adsorption. Such gas accumulations are relatively large. Original overpressuring has been largely lost, due both to natural depletion and to uncontrolled production. The relative thermal immaturity of the Illinois basin accounts for the scarcity of the second type of fractured reservoir and the small magnitude of the New Albany Shale gas resource.

Hamilton-Smith, T.; Walker, D.; Nuttall, B. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

230

Reservoir/fluid characteristics favor enormous long-term recovery potential  

SciTech Connect (OSTI)

This article on the giant Sho-Vel-Tum field focuses on reservoir and fluid characteristics and production statistics history. Shallow Permian reservoirs were the first oil and gas producing zones discovered in the Sho-Vel-Tum field. In 1905, the Santa Fe Railway Co. completed the first commercial well within the Sho-Vel-Tum field boundaries; it was located in Sect. 21, T3S, R2W of Carter County, in what was then known as the Wheeler field. The field produced heavy asphaltic oil and gas from several Permian Pontotoc sands which ranged in depth from 300 to 1,025 ft. Rapid development of Pontotoc oil reserves occurred throughout the Sho-Vel-Tum field area through the 1920s, when many of the early pools were discovered. The economically depressed times of the 1930s and the war years of the early 1940s slowed drilling activities, but exploration for shallow Permian reservoirs rapidly rebounded by the mid-1940s. Waterflooding projects began in the mid-1950s and expanded significantly in Pontotoc reservoirs through 1970. Through 1984, over 3,400 acres were under waterflood, which represents 6% of the field's total waterflood acreage. Polymer applications have been limited in Pontotoc reservoirs. By 1985, only 310 acres were reported under polymer flood. This represents only 2% of the total polymer-flooded acres at Sho-Vel-Tum.

Johnson, H.R.; Biglarbigi, K.; Schmidt, L.; Ray, R.M.; Kyser, S.C.

1987-01-19T23:59:59.000Z

231

Geological and petrophysical characterization of the ferron sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1994--September 30, 1995  

SciTech Connect (OSTI)

The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data is being integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1994-95, the second year of the project. Most work consisted of developing field methods and collecting large quantities of existing and new data. We also continued to develop preliminary regional and case-study area interpretations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies.

Chidsey, T.C. Jr.; Allison, M.L.

1996-05-01T23:59:59.000Z

232

Reservoir Operation in Texas  

E-Print Network [OSTI]

management of the surface water resources of the various river basins of the state. The operation of these essential water control facilities is examined in this report. Reservoir operation is viewed here from the perspective of deciding how much water...

Wurbs, Ralph A.

233

Reservoir Protection (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Water Resource Board has the authority to make rules for the control of sanitation on all property located within any reservoir or drainage basin. The Board works with the Department...

234

Fourteenth workshop geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-01-01T23:59:59.000Z

235

Fourteenth workshop geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-12-31T23:59:59.000Z

236

Session: Reservoir Technology  

SciTech Connect (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

237

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric reservoirs  

E-Print Network [OSTI]

LETTERS PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric * Hydroelectric reservoirs cover an area of 3.4 Ã? 105 km2 and comprise about 20% of all reservoirs. In addition dioxide and methane from hydroelectric reservoirs, on the basis of data from 85 globally distributed

238

Fourth Annual Technical Progress Report ADVANCED RESERVOIR CHARACTERIZATION AND EVALUATION OF CO2  

E-Print Network [OSTI]

to conducting waterflooding in naturally fractured reservoirs. As the flow rate increases, contact time betweenFourth Annual Technical Progress Report ADVANCED RESERVOIR CHARACTERIZATION AND EVALUATION OF CO2 is being accomplished by conducting research in four areas: 1) extensive characterization of the reservoirs

Schechter, David S.

239

Oxygenation cost estimates for Cherokee, Douglas, and Norris reservoirs  

SciTech Connect (OSTI)

The capital and annual costs associated with reoxygenation of the turbine releases at Cherokee, Douglas and Norris Reservoirs using the small bubble injection technique developed for Ft. Patrick Henry Dam were computed. The weekly average dissolved oxygen (DO) deficits were computed for each reservoir for an average year (based on 16 years of records). The total annual cost of an oxygen supply and injection system for each reservoir is presented. 5 refs., 6 figs., 5 tabs.

Fain, T.G.

1980-10-01T23:59:59.000Z

240

The Role of Acidizing in Proppant Fracturing in Carbonate Reservoirs  

E-Print Network [OSTI]

of the most widely considered alternatives for application in carbonate reservoirs. Especially in areas that have high closure stress, the non-smoothly etched surface created by acid fracturing may not remain open upon closing, resulting in decrease...

Densirimongkol, Jurairat

2010-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs...  

Open Energy Info (EERE)

approach for exploration of gas hydrate reservoirs in marine areas. Authors C. Y. Sun, B. H. Niu, P. F. Wen, Y. Y. Huang, H. Y. Wang, X. W. Huang and J. Li Published Journal...

242

Measuring and predicting reservoir heterogeneity in complex deposystems. The fluvial-deltaic Big Injun Sandstone in West Virginia. Final report, September 20, 1991--October 31, 1993  

SciTech Connect (OSTI)

Non-uniform composition and permeability of a reservoir, commonly referred to as reservoir heterogeneity, is recognized as a major factor in the efficient recovery of oil during primary production and enhanced recovery operations. Heterogeneities are present at various scales and are caused by various factors, including folding and faulting, fractures, diagenesis and depositional environments. Thus, a reservoir consists of a complex flow system, or series of flow systems, dependent on lithology, sandstone genesis, and structural and thermal history. Ultimately, however, fundamental flow units are controlled by the distribution and type of depositional environments. Reservoir heterogeneity is difficult to measure and predict, especially in more complex reservoirs such as fluvial-deltaic sandstones. The Appalachian Oil and Natural Gas Research Consortium (AONGRC), a partnership of Appalachian basin state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and West Virginia University, studied the Lower Mississippian Big Injun sandstone in West Virginia. The Big Injun research was multidisciplinary and designed to measure and map heterogeneity in existing fields and undrilled areas. The main goal was to develop an understanding of the reservoir sufficient to predict, in a given reservoir, optimum drilling locations versus high-risk locations for infill, outpost, or deeper-pool tests.

Hohn, M.E.; Patchen, D.G.; Heald, M.; Aminian, K.; Donaldson, A.; Shumaker, R.; Wilson, T.

1994-05-01T23:59:59.000Z

243

Solar Energy Study Areas in Colorado Map Prepared June 5, 2009  

E-Print Network [OSTI]

Solar Energy Study Areas in Colorado Map Prepared June 5, 2009 State Line County Boundary Solar and Implement Agency-Specific Programs for Solar Energy Development Platoro Reservoir Alamosa National Wildlife Energy Study Area (As of 6/5/2009) Existing Designated Corridor (See Note 2) (As of 6/5/2009) BLM Lands

Laughlin, Robert B.

244

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents  

SciTech Connect (OSTI)

This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

2003-02-11T23:59:59.000Z

245

Identification and evaluation of fluvial-dominated deltaic (Class 1 oil) reservoirs in Oklahoma. Yearly technical progress report, January 1--December 31, 1994  

SciTech Connect (OSTI)

The Oklahoma Geological Survey and the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection, evaluation, and distribution of information on all of Oklahoma`s FDD oil reservoirs and the recovery technologies that can be applied to those reservoirs with commercial success. To date, the lead geologists have defined the initial geographic extents of Oklahoma`s FDD plays, and compiled known information about those plays. Nine plays have been defined, all of them Pennsylvanian in age and most from the Cherokee Group. A bibliographic database has been developed to record the literature sources and their related plays. Trend maps are being developed to identify the FDD portions of the relevant reservoirs, through accessing current production databases and through compiling the literature results. A reservoir database system also has been developed, to record specific reservoir data elements that are identified through the literature, and through public and private data sources. The project team is working with the Oklahoma Nomenclature Committee of the Mid-Continent Oil and Gas Association to update oil field boundary definitions in the project area. Also, team members are working with several private companies to develop demonstration reservoirs for the reservoir characterization and simulation activities. All of the information gathered through these efforts will be transferred to the Oklahoma petroleum industry through a series of publications and workshops. Additionally, plans are being developed, and hardware and software resources are being acquired, in preparation for the opening of a publicly-accessible computer users laboratory, one component of the technology transfer program.

Mankin, C.J. [Oklahoma Geological Survey, Norman, OK (United States)] [Oklahoma Geological Survey, Norman, OK (United States); Banken, M.K. [Oklahoma Univ., Norman, OK (United States)] [Oklahoma Univ., Norman, OK (United States)

1995-11-21T23:59:59.000Z

246

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and potential field data, the GGRB was divided into partitions that will be used to analyze the resource potential of the Frontier and Mesaverde Upper Cretaceous tight gas play. A total of 20 partitions were developed, which will be instrumental for examining the Upper Cretaceous play potential. (5) Partition Analysis. Resource assessment associated with individual partitions was initiated starting with the Vermilion Sub-basin and the Green River Deep (which include the Stratos well) partitions (see Chapter 5). (6) Technology Transfer. Tech transfer was achieved by documenting our research and presenting it at various conferences.

NONE

1998-11-30T23:59:59.000Z

247

High-Resolution Characterization of Reservoir Heterogeneity and Connectivity in Clastic Environments  

E-Print Network [OSTI]

This study developed new concepts and interpretative methods for mapping reservoir heterogeneity and connectivity of a fault controlled Wilcox clastic reservoir in Texas, USA. The application of high-resolution seismic enhancement in this study...

Hull, Thomas Frederick

2011-10-21T23:59:59.000Z

248

Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas - Near-Term, Class II  

SciTech Connect (OSTI)

The focus of this project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent.

Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

2001-10-30T23:59:59.000Z

249

Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity  

Broader source: Energy.gov [DOE]

This project will develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics; finite element modeling; geo-statistical concepts to establish relationships between micro-seismicity; reservoir flow and geomechanical characteristics.

250

GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79  

E-Print Network [OSTI]

that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

Pruess, Karsten

2012-01-01T23:59:59.000Z

251

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect (OSTI)

The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

Not Available

1991-01-01T23:59:59.000Z

252

Calibration of Seismic Attributes for Reservoir Characterization  

SciTech Connect (OSTI)

The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

Wayne D. Pennington

2002-09-29T23:59:59.000Z

253

CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION  

SciTech Connect (OSTI)

The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

2002-10-01T23:59:59.000Z

254

Final Scientific/Technical Report Development of Large-Area Photo-Detectors  

SciTech Connect (OSTI)

This proposal requested ADR funds for two years to make measurements and detector proto-types in the context of planning a program in conjunction with Argonne National Laboratory to develop very large-area planar photodetectors. The proposed detectors have integrated transmission-line readout and sampling electronics able to achieve timing and position resolutions in the range of 1-50 psec and 1-10 mm, respectively. The capability for very precise time measurements is inherent in the design, and provides a ?third? coordinate, orthogonal to the two in the plane, for the point of origin of photons or charged particles, allowing ?tomographic? reconstruction in 3-dimensions inside a volume.

Frisch, Henry J. [The University of Chicago

2013-07-15T23:59:59.000Z

255

Optoelectronic Reservoir Computing  

E-Print Network [OSTI]

Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.

Yvan Paquot; François Duport; Anteo Smerieri; Joni Dambre; Benjamin Schrauwen; Marc Haelterman; Serge Massar

2011-11-30T23:59:59.000Z

256

Fractured shale reservoirs: Towards a realistic model  

SciTech Connect (OSTI)

Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

257

Continuity and internal properties of Gulf Coast sandstones and their implications for geopressured energy development. Annual report, November 1, 1980-October 31, 1981  

SciTech Connect (OSTI)

Systematic investigation, classification, and differentiation of the intrinsic properties of genetic sandstone units that typify many geopressured geothermal aquifers and hydrocarbon reservoirs of the Gulf Coast region are provided. The following are included: structural and stratigraphic limits of sandstone reservoirs; characteristics and dimensions of Gulf Coast Sandstones; fault compartment areas; comparison of production and geologic estimates of aquifer volume; geologic setting and reservoir characteristics, wells of opportunity; internal properties of sandstones and implications for geopressured energy development. (MHR)

Morton, R.A.; Ewing, T.E.; Tyler, N.

1982-06-01T23:59:59.000Z

258

Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995  

SciTech Connect (OSTI)

This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

Pande, P.K.

1996-11-01T23:59:59.000Z

259

Altering Reservoir Wettability to Improve Production from Single Wells  

SciTech Connect (OSTI)

Many carbonate reservoirs are naturally fractured and typically produce less than 10% original oil in place during primary recovery. Spontaneous imbibition has proven an important mechanism for oil recovery from fractured reservoirs, which are usually weak waterflood candidates. In some situations, chemical stimulation can promote imbibition of water to alter the reservoir wettability toward water-wetness such that oil is produced at an economic rate from the rock matrix into fractures. In this project, cores and fluids from five reservoirs were used in laboratory tests: the San Andres formation (Fuhrman Masho and Eagle Creek fields) in the Permian Basin of Texas and New Mexico; and the Interlake, Stony Mountain, and Red River formations from the Cedar Creek Anticline in Montana and South Dakota. Solutions of nonionic, anionic, and amphoteric surfactants with formation water were used to promote waterwetness. Some Fuhrman Masho cores soaked in surfactant solution had improved oil recovery up to 38%. Most Eagle Creek cores did not respond to any of the tested surfactants. Some Cedar Creek anticline cores had good response to two anionic surfactants (CD 128 and A246L). The results indicate that cores with higher permeability responded better to the surfactants. The increased recovery is mainly ascribed to increased water-wetness. It is suspected that rock mineralogy is also an important factor. The laboratory work generated three field tests of the surfactant soak process in the West Fuhrman Masho San Andres Unit. The flawlessly designed tests included mechanical well clean out, installation of new pumps, and daily well tests before and after the treatments. Treatments were designed using artificial intelligence (AI) correlations developed from 23 previous surfactant soak treatments. The treatments were conducted during the last quarter of 2006. One of the wells produced a marginal volume of incremental oil through October. It is interesting to note that the field tests were conducted in an area of the field that has not met production expectations. The dataset on the 23 Phosphoria well surfactant soaks was updated. An analysis of the oil decline curves indicted that 4.5 lb of chemical produced a barrel of incremental oil. The AI analysis supports the adage 'good wells are the best candidates.' The generally better performance of surfactant in the high permeability core laboratory tests supports this observation. AI correlations were developed to predict the response to water-frac stimulations in a tight San Andres reservoir. The correlations maybe useful in the design of Cedar Creek Anticline surfactant soak treatments planned for next year. Nuclear Magnetic Resonance scans of dolomite cores to measure porosity and saturation during the high temperature laboratory work were acquired. The scans could not be correlated with physical measurement using either conventional or AI methods.

W. W. Weiss

2006-09-30T23:59:59.000Z

260

Reinjection into geothermal reservoirs  

SciTech Connect (OSTI)

Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

Bodvarsson, G.S.; Stefansson, V.

1987-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of A Bayesian Geostatistical Data Assimilation Method and Application to the Hanford 300 Area  

E-Print Network [OSTI]

4.3.1 Hanford 300Area IFRC Site . . . . . . . . . . . .aquifer characterization at the Hanford 300 area 3.14.4 Data Assimilation at the Hanford IFRC

Murakami, Haruko

2010-01-01T23:59:59.000Z

262

Integral cesium reservoir: Design and transient operation  

SciTech Connect (OSTI)

An electrically heated thermionic converter has been designed built and successfully tested in air (Homer et.al., 1995). One of the unique features of this converter was an integral cesium reservoir thermally coupled to the emitter. The reservoir consisted of fifteen cesiated graphite pins located in pockets situated in the emitter lead with thermal coupling to the emitter, collector and the emitter terminal; there were no auxiliary electric heaters on the reservoir. Test results are described for conditions in which the input thermal power to the converter was ramped up and down between 50% and 100% of full power in times as short as 50 sec, with data acquisition occurring every 12 sec. During the ramps the emitter and collector temperature profiles. the reservoir temperature and the electric output into a fixed load resistor are reported. The converter responded promptly to the power ramps without excessive overshoot and with no tendency to develop instabilities. This is the rust demonstration of the performance of a cesium-graphite integral reservoir in a fast transient

Smith, J.N. Jr.; Horner, M.H.; Begg, L.L. [General Atomics, San Diego, CA (United States); Wrobleski, W.J. [Westinghouse Electric Corp., West Mifflin, PA (United States). Bettis Atomic Power Lab.

1995-01-01T23:59:59.000Z

263

Reservoir characterization and enhanced oil recovery research  

SciTech Connect (OSTI)

The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

Lake, L.W.; Pope, G.A.; Schechter, R.S.

1992-03-01T23:59:59.000Z

264

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS Henry J. Ramey, Jr., and A. Louis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Stanford Geothermal Project Reports . . . . . . . . . . . . . . 69 Papers Presented a t the Second United Nations Symposium on t h e Development and Use of Geothermal Resources, May 19-29, 1975, San

Stanford University

265

Quantification of Hungry Horse Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1985 Summary Report.  

SciTech Connect (OSTI)

The Pacific Northwest Electric Power Planning and Conservation Act passed in 1980 by Congress has provided a mechanism which integrates and provides for stable energy planning in the Pacific Northwest. The Act created the Northwest Power Planning Council and charged the Council with developing a comprehensive fish and wildlife program to protect and enhance fish and wildlife impacted by hydroelectric development in the Columbia River Basin. Implementation of the plan is being carried out by the Bonneville Power Administration. The Hungry Horse Reservoir study is part of that Council's plan. This study proposes to quantify seasonal water levels needed to maintain or enhance principal gamefish species in Hungry Horse Reservoir. The specific study objects are listed below. (1) Quantify the amount of reservoir habitat available at different water level elevations; (2) Estimate recruitment of westslope cutthroat trout juveniles from important spawning and nursery tributaries; (3) Determine the abundance, growth, distribution and use of available habitat by major game species in the reservoir; (4) Determine the abundance and availability of fish food organisms in the reservoir; (5) Quantify the seasonal use of available food items by major fish species; (6) Develop relationships between reservoir drawdown and reservoir habitat used by fish and fish food organisms; and (7) Estimate the impact of reservoir operation on major gamefish species.

May, Bruce

1985-06-01T23:59:59.000Z

266

Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration  

SciTech Connect (OSTI)

The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

John Rogers

2011-12-31T23:59:59.000Z

267

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

SciTech Connect (OSTI)

The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; M. Michnick; R. Reynolds

1997-10-15T23:59:59.000Z

268

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

SciTech Connect (OSTI)

The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; R. Reynolds; m. Michnick

1998-04-15T23:59:59.000Z

269

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

SciTech Connect (OSTI)

The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; M. Cichnick; R. Reynolds

1998-07-15T23:59:59.000Z

270

The MMOCAA for Reservoir Flow Problems Jim Douglas, Jr. \\Lambda Frederico Furtado y Felipe Pereira z  

E-Print Network [OSTI]

disconnected matrix blocks. This model corresponds to waterflooding a naturally­fractured petroleum reservoirThe MMOCAA for Reservoir Flow Problems Jim Douglas, Jr. \\Lambda Frederico Furtado y Felipe Pereira which has been developed to study flow in possibly fractured, heterogeneous reservoirs is described

Douglas Jr., Jim

271

CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

c c c i i c I CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS to calculate the steam/water relative permeabilities in geothermal reservoirs was developed and applied curves as a basis for analysis of future well tests for geothermal reservoirs. c ii #12;TABLE OF CONTENTS

Stanford University

272

Development of a Large-Area Aerogel Cherenkov Counter Onboard BESS  

E-Print Network [OSTI]

This paper describes the development of a threshold type aerogel Cherenkov counter with a large sensitive area of 0.6 m$^2$ to be carried onboard the BESS rigidity spectrometer to detect cosmic-ray antiprotons. The design incorporates a large diffusion box containing 46 finemesh photomultipliers, with special attention being paid to achieving good performance under a magnetic field and providing sufficient endurance while minimizing material usage. The refractive index of the aerogel was chosen to be 1.03. By utilizing the muons and protons accumulated during the cosmic-ray measurements at sea level, a rejection factor of 10$^4$ was obtained against muons with $\\beta \\approx 1$, while keeping 97% efficiency for protons below the threshold.

Y. Asaoka; K. Abe; K. Yoshimura; M. Ishino; M. Fujikawa; S. Orito

1998-05-01T23:59:59.000Z

273

Reservoir vital signs monitoring, 1991: Physical and chemical characteristics of water and sediment  

SciTech Connect (OSTI)

In the second year of TVA's Reservoir Vital signs Monitoring program, physical/chemical measurements of water and sediment were made on fourteen TVA reservoirs (the nine mainstem Tennessee river reservoirs - Kentucky through Fort Loudoun and five tributary reservoirs - Cherokee, Douglas, Norris, Melton Hill and Tellico). In addition in 1991, limited water quality monitoring was initiated on ten tributary storage impoundments. The objective of the Vital Signs monitoring program is to assess the health or integrity of these aquatic ecosystems. Physical/chemical data collected in 1991 showed the water quality of the majority of TVA's reservoirs to be very good, but pointed out areas for improvement and further investigation.

Meinert, D.L.; Fehring, J.P.

1992-07-01T23:59:59.000Z

274

An Intelligent Systems Approach to Reservoir Characterization  

SciTech Connect (OSTI)

Today, the major challenge in reservoir characterization is integrating data coming from different sources in varying scales, in order to obtain an accurate and high-resolution reservoir model. The role of seismic data in this integration is often limited to providing a structural model for the reservoir. Its relatively low resolution usually limits its further use. However, its areal coverage and availability suggest that it has the potential of providing valuable data for more detailed reservoir characterization studies through the process of seismic inversion. In this paper, a novel intelligent seismic inversion methodology is presented to achieve a desirable correlation between relatively low-frequency seismic signals, and the much higher frequency wireline-log data. Vertical seismic profile (VSP) is used as an intermediate step between the well logs and the surface seismic. A synthetic seismic model is developed by using real data and seismic interpretation. In the example presented here, the model represents the Atoka and Morrow formations, and the overlying Pennsylvanian sequence of the Buffalo Valley Field in New Mexico. Generalized regression neural network (GRNN) is used to build two independent correlation models between; (1) Surface seismic and VSP, (2) VSP and well logs. After generating virtual VSP's from the surface seismic, well logs are predicted by using the correlation between VSP and well logs. The values of the density log, which is a surrogate for reservoir porosity, are predicted for each seismic trace through the seismic line with a classification approach having a correlation coefficient of 0.81. The same methodology is then applied to real data taken from the Buffalo Valley Field, to predict inter-well gamma ray and neutron porosity logs through the seismic line of interest. The same procedure can be applied to a complete 3D seismic block to obtain 3D distributions of reservoir properties with less uncertainty than the geostatistical estimation methods. The intelligent seismic inversion method should help to increase the success of drilling new wells during field development.

Shahab D. Mohaghegh; Jaime Toro; Thomas H. Wilson; Emre Artun; Alejandro Sanchez; Sandeep Pyakurel

2005-08-01T23:59:59.000Z

275

Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field  

SciTech Connect (OSTI)

Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.

Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang [Institute of Petroleum Exploration and Development, Daqing (China)

1997-08-01T23:59:59.000Z

276

The Ahuachapan geothermal field, El Salvador: Reservoir analysis  

SciTech Connect (OSTI)

The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA); Lawrence Berkeley Lab., CA (USA))

1989-08-01T23:59:59.000Z

277

Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report  

SciTech Connect (OSTI)

The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

Ikwuakor, K.C.

1994-03-01T23:59:59.000Z

278

Use of east Texas reservoirs by wintering bald eagles  

E-Print Network [OSTI]

to Human Activities CONCLUSION Lakeshore Disturbances and Management Recommendations Public Attitude The Future . LITERATURE CITED APPENDIX - OTHER AVIAN SPECIES THIS RESEARCHER COMMONLY OBSERVED SHARING EAST TEXAS RESERVOIRS WITH BALD EAGLES... for the presence of late-departing eagles. 28 Project managers for each Corps of Engineers reservoir in the study area, river authorities, power plant personnel, regional U. S. Forest Service offices, and lumber- companies were contacted in person...

Russell, Sandra Joy

1982-01-01T23:59:59.000Z

279

Geologic characterization of tight gas reservoirs  

SciTech Connect (OSTI)

The objectives of US Geological Survey (USGS) work during FY 89 were to conduct geologic research characterizing tight gas-bearing sandstone reservoirs and their resources in the western United States. Our research has been regional in scope but, in some basins, our investigations have focused on single wells or small areas containing several wells where a large amount of data is available. The investigations, include structure, stratigraphy, petrography, x-ray mineralogy, source-rock evaluation, formation pressure and temperature, borehole geophysics, thermal maturity mapping, fission-track age dating, fluid-inclusion thermometry, and isotopic geochemistry. The objectives of these investigations are to provide geologic models that can be compared and utilized in tight gas-bearing sequences elsewhere. Nearly all of our work during FY 89 was devoted to developing a computer-based system for the Uinta basin and collecting, analyzing, and storage of data. The data base, when completed will contain various types of stratigraphic, organic chemistry, petrographic, production, engineering, and other information that relate to the petroleum geology of the Uinta basin, and in particular, to the tight gas-bearing strata. 16 refs., 3 figs.

Law, B.E.

1990-12-01T23:59:59.000Z

280

Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir  

SciTech Connect (OSTI)

Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the reservoir.

Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands  

E-Print Network [OSTI]

(P) cycling in Itezhi-Tezhi Reservoir (ITT; area ¼ 364 km2 , hydraulic residence time ¼ 0.7 yr in the reservoir, involving the installation of turbines driven by hypolimnetic water, will likely result [Harrison et al., 2009]). Finally, reservoir sediments have been shown to efficiently trap phosphorus (P

Wehrli, Bernhard

282

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect (OSTI)

Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

1992-10-01T23:59:59.000Z

283

100-N Area Decision Unit Target Analyte List Development for Soil  

SciTech Connect (OSTI)

This report documents the process used to identify source area target analytes in support of the 100-N Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

Ovink, R.

2012-09-18T23:59:59.000Z

284

Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs  

Broader source: Energy.gov [DOE]

Project objective: to develop a 3-D numerical model for simulating mode I; II; and III (tensile; shear; and tearing propagation of multiple fractures using the virtual multi-dimensional internal bond (VMIB); to predict geothermal reservoir stimulation.

285

Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement  

SciTech Connect (OSTI)

The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.

Dershowitz, William S.; Curran, Brendan; Einstein, Herbert; LaPointe, Paul; Shuttle, Dawn; Klise, Kate

2002-07-26T23:59:59.000Z

286

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents  

SciTech Connect (OSTI)

This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

2003-02-11T23:59:59.000Z

287

Putting integrated reservoir characterization into practice - in house training  

SciTech Connect (OSTI)

The need for even more efficient reservoir characterization and management has forced a change in the way Mobil Oil provides technical support to its production operations. We`ve learned that to be successful, a good understanding of the reservoir is essential. This includes an understanding of the technical and business significance of reservoir heterogeneities at different stages of field development. A multi-disciplinary understanding of the business of integrated reservoir characterization is essential and to facilitate this understanding, Mobil has developed a highly successful {open_quotes}Reservoir Characterization Field Seminar{close_quotes}. Through specific team based case studies that incorporate outcrop examples and data the program provides participants the opportunity to explore historic and alternative approaches to reservoir description, characterization and management. We explore appropriate levels and timing of data gathering, technology applications, risk assessment and management practices at different stages of field development. The case studies presented throughout the course are a unique element of the program which combine real life and hypothetical problem sets that explore how different technical disciplines interact, the approaches to a problem solving they use, the assumptions and uncertainties contained in their contributions and the impact those conclusions may have on other disciplines involved in the overall reservoir management process. The team building aspect of the course was an added bonus.

Wright, F.M. Jr.; Best, D.A.; Clarke, R.T. [Mobile Exploration and Producing Technical Center, Dallas, TX (United States)

1997-08-01T23:59:59.000Z

288

Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf San Andres reservoir. Quarterly progress report, October 1--December 31, 1997  

SciTech Connect (OSTI)

West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4,800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982--86 pilot CO{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a CO{sub 2} pipeline near the field allowed the phased development of a miscible CO{sub 2} injection project at the South Welch Unit. The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: advanced petrophysics; three-dimensional seismic; cross-well bore tomography; advanced reservoir simulation; CO{sub 2} stimulation treatments; hydraulic fracturing design and monitoring; and mobility control agents. During the quarter, development of the project`s south expansion area was undertaken, work was continued on interpreting the crosswell seismic data and CO{sub 2} injection into 11 wells was initiated.

Taylor, A.R.; Hickman, T.S.; Justice, J.J.

1998-01-31T23:59:59.000Z

289

Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"  

SciTech Connect (OSTI)

The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

Scott Hara

2007-03-31T23:59:59.000Z

290

Post Waterflood CO{sub 2} Miscible Flood in Light Oil Fluvial-Dominated Deltaic Reservoirs  

SciTech Connect (OSTI)

Texaco terminated the CO{sub 2} purchase agreement with Cardox due to the declining production from the project during 1995. This decision was supported by the DOE and the Exploration and Production Technology Department (EPTD) who developed the model to simulate reservoir performance. Texaco is planning to continue recycling produced CO{sub 2} to recover the remaining 400 MBO from the Marg Area 1 reservoir. Currently one well is remaining on production Kuhn {number_sign}15R after the second producing well Kuhn {number_sign}38 sanded up. Changing the water and CO{sub 2} injection patterns should improve the sweep efficiency and restore production from other existing wells.

NONE

1996-04-30T23:59:59.000Z

291

Aquatic Studies at the Proposed George Parkhouse I Reservoir Site on the South Sulphur River in Northeast Texas  

E-Print Network [OSTI]

In 1997, the Texas Water Development Board identified George Parkhouse I on the South Sulphur River in northeast Texas as a potential reservoir site. This aquatic survey of a future reservoir site is designed to provide information about stream fish...

Gelwick, Frances P.; Burgess, Christine C.

2002-12-31T23:59:59.000Z

292

Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas  

SciTech Connect (OSTI)

Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring data constraints afflicting mature Mississippian fields. A publicly accessible databank of representative petrophysical properties and relationships was developed to overcome the paucity of such data that is critical to modeling the storage and flow in these reservoirs. Studies in 3 Mississippian fields demonstrated that traditional reservoir models built by integrating log, core, DST, and production data from existing wells on 40-acre spacings are unable to delineate karst-induced compartments, thus making 3D-seismic data critical to characterize these fields. Special attribute analyses on 3D data were shown to delineate reservoir compartments and predict those with pay porosities. Further testing of these techniques is required to validate their applicability in other Mississippian reservoirs. This study shows that detailed reservoir characterization and simulation on geomodels developed by integrating wireline log, core, petrophysical, production and pressure, and 3D-seismic data enables better evaluation of a candidate field for horizontal infill applications. In addition to reservoir compartmentalization, two factors were found to control the economic viability of a horizontal infill well in a mature Mississippian field: (a) adequate reservoir pressure support, and (b) an average well spacing greater than 40-acres.

Saibal Bhattacharya

2005-08-31T23:59:59.000Z

293

Prediction of Gas Injection Performance for Heterogeneous Reservoirs  

SciTech Connect (OSTI)

This report describes research into gas injection processes in four main areas: laboratory experiments to measure three-phase relative permeability; network modeling to predict three-phase relative permeability; benchmark simulations of gas injection and water flooding at the field scale; and the development of fast streamline techniques to study field-scale ow. The aim of the work is to achieve a comprehensive description of gas injection processes from the pore to the core to the reservoir scale. To this end, measurements of three-phase relative pemeability have been made and compared with predictions from pore scale modeling. At the field scale, streamline-based simulation has been extended to compositional displacements, providing a rapid method to predict oil recovery from gas injection.

Franklin M. Orr, Jr.; Martin J. Blunt

1998-04-30T23:59:59.000Z

294

DOE-Funded Research at Stanford Sees Results in Reservoir Characteriza...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Systems (EGS). This research will help developers learn more about the fracture systems in geothermal reservoirs, so that they may better predict the results of...

295

Scale-up of miscible flood processes for heterogeneous reservoirs. Quarterly report, April 1--June 30, 1995  

SciTech Connect (OSTI)

The current project is a systematic research effort aimed at quantifying relationships between process mechanisms that can lead to improved recovery from gas injection processes performed in heterogeneous Class 1 and Class 2 reservoirs. It will provide a rational basis for the design of displacement processes that take advantage of crossflow due to capillary, gravity and viscous forces to offset partially the adverse effects of heterogeneity. In effect, the high permeability zones are used to deliver fluid by crossflow to zones that would otherwise be flooded only very slowly. Thus, the research effort is divided into five areas: Development of miscibility in multicomponent systems; Design estimates for nearly miscible displacements; Design of miscible floods for fractured reservoirs; Compositional flow visualization experiments; Simulation of near-miscible flow in heterogeneous systems The status of the research effort in each area is reviewed briefly in the following section.

Orr, F.M. Jr.

1995-06-01T23:59:59.000Z

296

Scale-up of miscible flood processes for heterogeneous reservoirs. Quarterly report, July 1, 1995--September 30, 1995  

SciTech Connect (OSTI)

The current project is a systematic research effort aimed at quantifying relationships between process mechanisms that can lead to improved recovery from gas injection processes performed in heterogeneous Class 1 and Class 2 reservoirs. It will provide a rational basis for the design of displacement processes that take advantage of crossflow due to capillary, gravity and viscous forces to offset partially the adverse effects of heterogeneity. In effect, the high permeability zones are used to deliver fluid by crossflow to zones that would otherwise be flooded only very slowly. Thus, the research effort is divided into five areas: Development of miscibility in multicomponent systems; Design estimates for nearly miscible displacements; Design of miscible floods for fractured reservoirs; Compositional flow visualization experiments; and Simulation of near-miscible flow in heterogeneous systems. The status of the research effort in each area is reviewed briefly in the following section.

Orr, F.M. Jr.

1995-10-01T23:59:59.000Z

297

IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT  

SciTech Connect (OSTI)

Work associated with Budget Period 1 of the East Binger (Marchand) Unit project is nearing completion. A major aspect of this project is accurate modeling of the performance of horizontal wells. Well EBU 37-3H, the first horizontal well drilled in the unit, was drilled in the second quarter of 2001. After much difficulty establishing economic production from the well, the well was hydraulically fractured in November 2001. Post-treatment production has been very encouraging and is significantly better than a vertical well drilled in a similar setting. International Reservoir Technologies, Inc. has completed the final history match of the pilot area reservoir simulation model, including tuning to the performance of the horizontal well. The model's predicted reservoir pressure gradient between injection and production wells accurately matches observed data from the field, a significant improvement from prior model predictions. The model's predicted gas injection profiles now also more accurately match field data. Work has begun toward evaluating the optimum development scenario with the pilot model. Initially, four scenarios will be evaluated--two involving all horizontal infill wells, one involving all vertical infill wells, and one involving a combination of vertical and horizontal infill wells. The model cases for these scenarios have been defined, and construction of them is underway.

Joe Sinner

2002-01-16T23:59:59.000Z

298

Fluid Flow Simulation in Fractured Reservoirs  

E-Print Network [OSTI]

The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

Sarkar, Sudipta

2002-01-01T23:59:59.000Z

299

Launois, L., Veslot, J., Irz, P., and Argillier, C. (2010) Selecting fish-based metrics responding to human pressures in French natural lakes and reservoirs:towards the development of a fish-based index (FBI) for French lakes, Ecology of Freshwater Fish 2  

E-Print Network [OSTI]

Launois, L., Veslot, J., Irz, P., and Argillier, C. (2010) Selecting fish-based metrics responding to human pressures in French natural lakes and reservoirs:towards the development of a fish-based index (FBI) for French lakes, Ecology of Freshwater Fish 2010. _ 2010 John Wiley & Sons A/ S. Accepted

Boyer, Edmond

300

Department of Earth Sciences www.rhul.ac.uk/earthsciences Page 1 of 2 Developing reservoir presence probability mapping using stratigraphic  

E-Print Network [OSTI]

research, specialist service provider, exploration, and production geosciences areas within the oil and gas code to run and post- process multiple model scenarios to produce conditional frequency maps., 2008,Stratigraphic modelling of turbidite prospects to reduce exploration risk, Petroleum Geoscience, v

Sheldon, Nathan D.

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

302

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents  

SciTech Connect (OSTI)

This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.

D. O. Hitzman; A. K. Stepp; D. M. Dennis; L. R. Graumann

2003-03-31T23:59:59.000Z

303

Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

1997-08-01T23:59:59.000Z

304

Identification and quantification of fracture behavior through reservoir simulation  

SciTech Connect (OSTI)

This study demonstrated the use of reservoir simulation as a tool for quantifying and describing the relative significance of fracture and matrix flow units to overall reservoir storage capacity and transmissibility in a field development example. A high matrix porosity Pennsylvanian age sandstone oil reservoir, that is currently undergoing the early stages of secondary recovery by waterflood, was studied. Unexpected early water breakthrough indicated the presence of a high directional permeability fracture system superimposed on the high porosity matrix system. To further understand the reservoir behavior, improve field performance and to quantify the relative contributions of fracture and matrix units to permeability and storage capacity, a reservoir simulation and characterization project was initiated. Well test, well log, tracer and geologic data were integrated into the simulation project. The integrated study indicated that the fractures exhibited high directional permeability but low storage capacity relative to the matrix portion of the reservoir. Although fractures heavily influenced overall fluid flow behavior, they did not contain large storage capacity. The system had a low calculated fracture intensity index. Reservoir simulation enabled the quantification of the relative importance of the two flow systems which in turn had a large impact on total reserves estimates and production forecasting. Simulation results indicated a need to realign injector and producer patterns which improved production rates and ultimate recovery.

Cline, S. [Univ. of Oklahoma, Oklahoma City, OK (United States)]|[Hefner Corporation, Oklahoma City, OK (United States)

1995-08-01T23:59:59.000Z

305

Analysis of stress sensitivity and its influence on oil productionfrom tight reservoirs  

SciTech Connect (OSTI)

This paper presents a study of the relationship betweenpermeability and effective stress in tight petroleum reservoirformations. Specifically, a quantitative method is developed to describethe correlation between permeability and effective stress, a method basedon the original in situ reservoir effective stress rather than ondecreased effective stress during development. The experimental resultsshow that the relationship between intrinsic permeability and effectivestress in reservoirs in general follows a quadratic polynomial functionalform, found to best capture how effective stress influences formationpermeability. In addition, this experimental study reveals that changesin formation permeability, caused by both elastic and plasticdeformation, are permanent and irreversible. Related pore-deformationtests using electronic microscope scanning and constant-rate mercuryinjection techniques show that while stress variation generally has smallimpact onrock porosity, the size and shape of pore throats have asignificant impact on permeability-stress sensitivity. Based on the testresults and theoretical analyses, we believe that there exists a cone ofpressure depression in the area near production within suchstress-sensitive tight reservoirs, leading to a low-permeability zone,and that well production will decrease under the influence of stresssensitivity.

Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

2007-08-28T23:59:59.000Z

306

Data requirements and acquisition for reservoir characterization  

SciTech Connect (OSTI)

This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

Jackson, S.; Chang, Ming Ming; Tham, Min.

1993-03-01T23:59:59.000Z

307

Analysis of Geothermal Reservoir Stimulation using Geomechanics...  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using...

308

INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION  

SciTech Connect (OSTI)

Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

2003-11-12T23:59:59.000Z

309

FRACTURED PETROLEUM RESERVOIRS  

SciTech Connect (OSTI)

The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

Abbas Firoozabadi

1999-06-11T23:59:59.000Z

310

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

311

TEXAS A&M UNIVERSITY Reservoir Geophysics Program  

E-Print Network [OSTI]

includes applications to clastic reservoirs, heavy oil reservoirs, gas/oil shale, gas hydrates. Basic

312

OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law,  

E-Print Network [OSTI]

About OGEL OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law, regulation, treaties, judicial and arbitral cases, voluntary guidelines, tax and contracting, including the oil-gas- energy geopolitics. For full Terms & Conditions and subscription rates

Dixon, Juan

313

Data Integration for the Generation of High Resolution Reservoir Models  

SciTech Connect (OSTI)

The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

2009-01-07T23:59:59.000Z

314

Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood  

SciTech Connect (OSTI)

Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and res

Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

2012-12-21T23:59:59.000Z

315

Depositional framework and reservoir distribution of Red Fork sandstone in Oklahoma  

SciTech Connect (OSTI)

The Middle Pennsylvanian Red Fork sandstone formed as a result of southward progradation across most of Oklahoma. The Red Fork is one of several cyclothemic (transgressive-regressive) sequences developed within the Desmoinesian Cherokee Group. Sea level changes and stability of the depositional area were dominant factors in determining the general stratigraphic characteristics of the Red Fork interval. Progradation was episodic, with sand deposition in the distal, more subsident part of the basin during lower sea level stands, and valley-fill deposition in the more stable areas during sea level rises. Red Fork sandstone trends depict an alluvial-deltaic complex covering most of Oklahoma. The Red Fork consists primarily of alluvial-valley and plain (fluvial) bodies in the northern part of northeastern Oklahoma, alluvial-deltaic bodies in most of the remaining parts of the shelf area, and off-shelf submarine-fan and slope/basin-floor complexes within the deeper part of the Anadarko basin. Determination of reservoir trend and genesis requires integration of rock data and log data, with logs calibrated to cores for estimating depositional environments and assessing diagenetic overprints. Much of the oil and gas has been trapped in stratigraphic traps, some of which represent channelized sandstones with trends at high angles to the structural grain. Secondary chlorite, in particular, is associated locally with development of productive reservoirs showing microporosity, high water saturation, and correspondingly low resistivities.

Shelton, J.W.; Fritz, R.D.; Johnson, C. (Masera Corp., Tulsa, OK (USA))

1989-08-01T23:59:59.000Z

316

The South Wilmington Area remedial cost estimating methodology (RCEM) -- A planning tool and reality check for brownfield development  

SciTech Connect (OSTI)

The South Wilmington Area (SWA), which is comprised of 200 acres of multi-use urban lowlands adjacent to the Christina River, is a brownfields area that has been targeted for redevelopment/restoration as part of a major waterfront revitalization project for the City of Wilmington, Delaware. The vision for this riverfront development, which is being promoted by a state-funded development corporation, includes plans for a new harbor, convention and entertainment facilities, upscale residences, an urban wildlife refuge, and the restoration of the Christina River. However, the environmental quality of the SWA has been seriously impacted by an assortment of historic and current heavy industrial land-uses since the late 1800`s, and extensive environmental cleanup of this area will be required as part of any redevelopment plan. Given that the environmental cleanup cost will be a major factor in determining the overall economic feasibility of brownfield development in the SWA, a reliable means of estimating potential preliminary remedial costs, without the expense of costly investigative and engineering studies, was needed to assist with this redevelopment initiative. The primary chemicals-of-concern (COCs) area-wide are lead and petroleum compounds, however, there are hot-spot occurrences of polynuclear aromatic hydrocarbons (PAHs), PCBs, and other heavy metals such as arsenic and mercury.

Yancheski, T.B. [Tetra Tech, Inc., Christiana, DE (United States); Swanson, J.E. [Tetra Tech, Inc., Fairfax, VA (United States)

1996-12-31T23:59:59.000Z

317

Core image analysis of matrix porosity in The Geysers reservoir  

SciTech Connect (OSTI)

Adsorption is potentially an important consideration when calculating reserves at The Geysers. Our investigations of the mineralogical relationships in core samples have shown matrix pore spaces to be largely associated with fractures. Dissolution of calcite from hydrothermal veins increases porosity in the graywacke reservoir. The high relative surface area of secondary alteration phases could promote adsorption. In order to quantify porosity distribution and surface area, Scanning Electron Microscope (SEM) images were analyzed using software developed for the interpretation of satellite imagery, This software classifies the images as either crystal or pore and then accumulates data on pore size, total porosity and surface area of the mineral-pore interface. Review of literature shows that data on thickness of adsorbed water layer does not exist for many of the mineral phases of interest in The Geysers. We have assumed thicknesses of 10, 100, and 5300 Angstroms for the adsorbed layer and calculated the relative proportions of adsorbed water. These calculations show 0.005%, 0.05%, and 2.5% of total water would be adsorbed using the above thicknesses.

Nielson, Dennis L.; Nash, Greg; Hulen, Jeffrey B.; Tripp, Alan C.

1993-01-28T23:59:59.000Z

318

Red Fork sandstone of Oklahoma: depositional history and reservoir distribution  

SciTech Connect (OSTI)

The Middle Pennsylvanian Red Fork sandstone formed as a result of progradation across eastern Kansas and most of Oklahoma. The Red Fork is one of several transgressive-regressive sequences (cyclothems) developed within the Desmoinesian Cherokee Group. Sea level changes, together with varying subsidence, were dominant factors controlling the general stratigraphic (correlative) characteristics of the Red Fork interval. Progradation was episodic, with sand deposition in the more active part of the basin during lower sea level stands and valley-fill deposition in the more stable areas during sea level rises. A map of Red Fork sand trends reveals an alluvial-deltaic complex covering most of Oklahoma. The Red Fork consists primarily of alluvial-valley and plain (fluvial) bodies in the northernmost part of northeastern Oklahoma, alluvial-deltaic bodies in most of the remaining parts of the shelf area, and off-shelf submarine-fan and slope basinal-floor complexes within the deeper part of the Anadarko basin. Determination of reservoir trend and genesis requires integration of rock and log data. Logs need to be calibrated to cores in order to estimate depositional environments accurately and to make a reasonable assessment of diagenetic overprints. Much of the oil and gas has been trapped in stratigraphic traps, and a significant amount of oil is in channel sandstones with trends at high angles to the structural grain. In some areas, secondary clay, in particular chloritic clay, has resulted in microporosity, high water saturation, and correspondingly low resistivities in oil reserves.

Shelton, J.W.; Fritz, R.D.; Johnson, C.

1989-03-01T23:59:59.000Z

319

Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.

ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

1999-10-01T23:59:59.000Z

320

REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES  

SciTech Connect (OSTI)

Ongoing Phase 2 work comprises the development and field-testing of a real-time reservoir stimulation diagnostic system. Phase 3 work commenced in June 2001, and involved conducting research, development and field-testing of real-time enhanced dual-fluid stimulation processes. Experimental field-testing to date includes three well tests. Application of these real-time stimulation processes and diagnostic technologies has been technically successful with commercial production from the ''marginal'' reservoirs in the first two well tests. The third well test proved downhole-mixing is an efficient process for acid stimulation of a carbonate reservoir that produced oil and gas with 2200 psi bottomhole reservoir pressure, however, subsequent shut-in pressure testing indicated the reservoir was characterized by low-permeability. Realtimezone continues to seek patent protection in foreign markets to the benefit of both RTZ and NETL. Realtimezone and the NETL have licensed the United States patented to Halliburton Energy Services (HES). Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies, from well testing conducted over the last 12-month work period and including well test scheduled for year-end of 2002. Technical data transfer to industry is ongoing via Internet tech-transfer, public presentations and industry publications. Final Phase 3 test work will be focused on further field-testing the innovational process of blending stimulation fluids downhole. This system provides a number of advantages in comparison to older industry fracturing techniques and allows the operator to control reservoir fracture propagation and concentrations of proppant placed in the reservoir, in real-time. Another observed advantage is that lower friction pressures result, which results in lower pump treating pressures and safer reservoir hydraulic fracturing jobs.

George Scott III

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING  

SciTech Connect (OSTI)

Excellent progress has been made on all project objectives and goals. All tasks have been completed in the Phase 1 study area, the initial area of project focus. Primary elements of this work include the following: The stratigraphic architecture has been established through correlation of wireline logs guided by core and outcrop studies of facies and cyclicity. A porosity model has been developed that creates a basis for calculation of porosity for wells in the study area. Rock fabrics have been defined by sampling, analysis, and description of cores and used to create transforms for calculating permeability and oil saturation from porosity data. Finally, a preliminary 3-D model has been constructed that incorporates stratigraphic architecture, rock-fabric data, and petrophysical data. Reservoir volumetrics calculated from the model show that a very large fraction of the original oil in place remains.

Stephen C. Ruppel

2003-01-01T23:59:59.000Z

322

Developments in Petroleum Science, 6 FUNDAMENTALS OF NUMERICAL  

E-Print Network [OSTI]

Developments in Petroleum Science, 6 FUNDAMENTALS OF NUMERICAL RESERVOIR SIMULATION DONALD WCongressCatalogingin PublicationData Peaceman, Donald W Fundamentals of numerical reservoir simulation. (develrpents in petroleum

Santos, Juan

323

Improved oil recovery in Mississippian carbonate reservoirs of Kansas - near term -- Class 2. Quarterly progress report, July 1, 1995--September 30, 1995  

SciTech Connect (OSTI)

The objective of this project is to demonstrate incremental reserves from Osagian and Meramecian dolomite reservoirs in western Kansas through application of reservoir characterization to identify areas of unrecovered mobile petroleum. Specific reservoirs targeted are the Schaben Field in Ness County and the Bindley Field in Hodgeman County.

Carr, T.; Green, D.W.; Willhite, G.P.

1995-11-01T23:59:59.000Z

324

Production-management techniques for water-drive gas reservoirs. Annual Report, August 1990-December 1991  

SciTech Connect (OSTI)

The project was designed to investigate production management strategies through a field study approach. The initial task was to prepare a summary of industry experience with water-drive gas and water-drive gas storage reservoirs. This activity was necessary to define the variety of reservoir situations in which water influx occurs, to identify those cases where alternative production practices will increase ultimate recovery, and to develop techniques to better characterize these reservoirs for further analysis. Four fields were selected for study: 1 onshore Gulf Coast gas reservoir, 2 offshore Gulf Coast reservoirs, and 1 mid-continent aquifier gas storage field. A modified material balance technique was developed and validated which predicts the pressure and production performance of water-drive gas reservoirs. This method yields more accurate results than conventional water influx techniques.

Hower, T.L.; Abbott, W.A.; Arsenault, J.W.; Jones, R.E.

1992-01-01T23:59:59.000Z

325

Development Wells At Soda Lake Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMaui AreaWells

326

Development Wells At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type Term TitleSilver Peak Area (DOE GTP)

327

IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT  

SciTech Connect (OSTI)

Progress on the East Binger Unit (EBU) project has slowed as difficulties have been encountered with obtaining satisfactory production from well EBU 37G-3H, the new horizontal well. Remedial operations have been conducted and stimulation operations were about to get under way at the end of the reporting period. International Reservoir Technologies, Inc. has made additional progress on the pilot area simulation model, reaching a point with the history match that we are awaiting more definitive production data from the horizontal well. Planning future development of the EBU hinges on evaluating the results of well EBU 37G-3H. Performance of this well must be understood in order to evaluate development scenarios involving horizontal wells and compare them with development scenarios involving vertical wells.

Joe Sinner

2001-10-26T23:59:59.000Z

328

Reservoir characterization of the Upper and Lower Repetto reservoirs of the Santa Clara field-federal waters, offshore California  

E-Print Network [OSTI]

are based on the analysis of field production data. These reservoir characterization approaches include: The application of the Fetkovich/McCray decline type curve to estimate original oil-in-place, drainage area, flow capacity, and a skin factor for each...

Roco, Craig Emmitt

2000-01-01T23:59:59.000Z

329

Reservoir characterization of the Ordovician Red River Formation in southwest Williston Basin Bowman County, ND and Harding County, SD  

SciTech Connect (OSTI)

This topical report is a compilation of characterizations by different disciplines of the Red River Formation in the southwest portion of the Williston Basin and the oil reservoirs which it contains in an area which straddles the state line between North Dakota and South Dakota. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity, and methods for improved recovery. The report is divided by discipline into five major sections: (1) geology, (2) petrography-petrophysical, (3) engineering, (4) case studies and (5) geophysical. Interwoven in these sections are results from demonstration wells which were drilled or selected for special testing to evaluate important concepts for field development and enhanced recovery. The Red River study area has been successfully explored with two-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) and has been investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Targeted drilling from predictions using 3D seismic for porosity development were successful in developing significant reserves at close distances to old wells. Short-lateral and horizontal drilling technologies were tested for improved completion efficiency. Lateral completions should improve economics for both primary and secondary recovery where low permeability is a problem and higher density drilling is limited by drilling cost. Low water injectivity and widely spaced wells have restricted the application of waterflooding in the past. Water injection tests were performed in both a vertical and a horizontal well. Data from these tests were used to predict long-term injection and oil recovery.

Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E.

1998-07-01T23:59:59.000Z

330

An evaluation of Florida largemouth bass introductions into selected Texas reservoirs  

E-Print Network [OSTI]

on the remaining 13 reservoirs again indicated no significant difference between age groups. Since reservoirs differed in their year of last FLMB stocking, differences in percent intergradation (and percent F 1 genotypes) between age groups were plotted against... can be established more successfully in newer reservoirs. The stepwise regression of percent F genotypes again produced no 1 significant regression coefficients. No significant overall model was developed. 33 CONCLUSIONS AND RECOMMENDATIONS...

Palachek, Kathryn Elizabeth Kulzer

1984-01-01T23:59:59.000Z

331

Applications of Level Set and Fast Marching Methods in Reservoir Characterization  

E-Print Network [OSTI]

history matching of shale gas reservoirs. The computation is orders of magnitude faster than conventional numerical simulation and provides a foundation for future work in reservoir characterization and field development optimization. In chapter III...) and Holditch (2006) showed flow regimes for a vertical well with hydraulic fracture. In shale gas reservoirs, Al-Kobaisi et al. (2006), Bello and Wattenbarger (2010), Clarkson et al. (2009) and Freeman et al. (2009) analyzed flow regimes for multi...

Xie, Jiang

2012-10-19T23:59:59.000Z

332

Application of horizontal drilling to tight gas reservoirs  

SciTech Connect (OSTI)

Vertical fractures and lithologic heterogeneity are extremely important factors controlling gas flow rates and total gas recovery from tight (very low permeability) reservoirs. These reservoirs generally have in situ matrix permeabilities to gas of less than 0.1 md. Enhanced gas recovery methods have usually involved hydraulic fracturing; however, the induced vertical hydraulic fractures almost always parallel the natural fracture and may not be an efficient method to establish a good conduit to the wellbore. Horizontal drilling appears to be an optimum method to cut across many open vertical fractures. Horizontal holes will provide an efficient method to drain heterogeneous tight reservoirs even in unfractured rocks. Although many horizontal wells have now been completed in coalbed methane and oil reservoirs, very few have been drilled to exclusively evaluate tight gas reservoirs. The U.S. Department of Energy (DOE) has funded some horizontal and slanthole drilling in order to demonstrate the applicability of these techniques for gas development. Four DOE holes have been drilled in Devonian gas shales in the Appalachian basin, and one hole has been drilled in Upper Cretaceous tight sandstones in the Piceance basin of Colorado. The Colorado field experiment has provided valuable information on the abundance and openness of deeply buried vertical fractures in tight sandstones. These studies, plus higher gas prices, should help encourage industry to begin to further utilize horizontal drilling as a new exploitation method for tight gas reservoirs.

Spencer, C.W. (U.S. Geological Survey, Lakewood, CO (United States)); Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Brown, C.A. (Synder Oil Co., Denver, CO (United States))

1991-03-01T23:59:59.000Z

333

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

West Carney Field produces from Hunton Formation. All the wells produce oil, water and gas. The main objective of this study is to understand the unique behavior observed in the field. This behavior includes: (1) Decrease in WOR over time; (2) Decrease in GOR at initial stages; (3) High decline rates of oil and gas; and (4) strong hydrodynamic connectivity between wells. This report specifically addresses two issues relevant to our understanding of the West Carney reservoir. By using core and log data as well as fluorescence information, we demonstrate that our hypothesis of how the reservoir is formed is consistent with these observations. Namely, oil migrated in water wet reservoir, over time, oil changed the wettability of some part of the reservoir, oil eventually leaked to upper formations prompting re-introduction of water into reservoir. Because of change in wettability, different pore size distributions responded differently to water influx. This hypothesis is consistent with fluorescence and porosity data, as we explain it in this quarterly report. The second issue deals with how to best calculate connected oil volume in the reservoir. The log data does not necessarily provide us with relevant information regarding oil in place. However, we have developed a new material balance technique to calculate the connected oil volume based on observed pressure and production data. By using the technique to four different fields producing from Hunton formation, we demonstrate that the technique can be successfully applied to calculate the connected oil in place.

Mohan Kelkar

2003-04-01T23:59:59.000Z

334

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

Kujawa, P.

1981-02-01T23:59:59.000Z

335

Analysis of condensate banking dynamics in a gas condensate reservoir under different injection schemes  

E-Print Network [OSTI]

condensate reservoir under natural depletion, and injection of methane, injection of carbon dioxide, produced gas recycling and water injection. To monitor the condensate banking dynamics near the wellbore area, such as oil saturation and compositional...

Sandoval Rodriguez, Angelica Patricia

2002-01-01T23:59:59.000Z

336

Hydrogen storage for vehicular applications: Technology status and key development areas  

SciTech Connect (OSTI)

The state-of-the-art of hydrogen storage technology is reviewed, including gaseous, liquid, hydride, surface adsorbed media, glass microsphere, chemical reaction, and liquid chemical technologies. The review of each technology includes a discussion of advantages, disadvantages, likelihood of success, and key research and development activities. A preferred technological path for the development of effective near-term hydrogen storage includes both cur-rent DOT qualified and advanced compressed storage for down-sized highly efficient but moderate range vehicles, and liquid storage for fleet vehicle applications. Adsorbate media are also suitable for fleet applications but not for intermittent uses. Volume-optimized transition metal hydride beds are also viable for short range applications. Long-term development of coated nanoparticulate or metal matrix high conductivity magnesium alloy, is recommended. In addition, a room temperature adsorbate medium should be developed to avoid cryogenic storage requirements. Chemical storage and oxidative schemes present serious obstacles which must be addressed for these technologies to have a future role.

Robinson, S.L.; Handrock, J.L.

1994-04-01T23:59:59.000Z

337

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index  

SciTech Connect (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

NONE

1988-12-01T23:59:59.000Z

338

Development of Water Supply and Sanitation Facility in The Rural Areas of Nepal: An Overview  

E-Print Network [OSTI]

for irrigation and drinking water were separated and the Department of Water Supply and Sewerage (DWSS) was created. At that time, the Ministry of Panchayat and Local Development (MPLD) had been given the responsibility for small-scale village level water supply... . The notion of people's participation in drinking water supply was initiated by MPLD, which had taken responsibility of the construction of small-scale drinking water supply projects like others such as roads, suspension bridges, and foot-trials. However...

Prasain, Jiba Nath

2003-01-01T23:59:59.000Z

339

Improved Efficiency of Miscible CO(2) Floods and Enhanced Prospects for CO(2) Flooding Heterogeneous Reservoirs.  

SciTech Connect (OSTI)

The overall goal of this project was to improve the efficiency of miscible C0{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective was accomplished through experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs,( 2) reduction of the amount of C0{sub 2} required in C0{sub 2} floods, and (3) low IFT processe and the possibility of C0{sub 2} flooding in fractured reservoirs. This report provides results from the three-year project for each of the three task areas.

Grigg, R.B.; Schechter, D.S.

1997-08-01T23:59:59.000Z

340

Feasibility of Optimizing and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore California Reservoir Through the Drilling and Completion of a Trilateral Horizontal Well.  

SciTech Connect (OSTI)

The main objective of this project is to devise an effective redevelopment strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field`s low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: (1) Develop an integrated database of all existing data from work done by the former ownership group. (2) Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. (3) Operate and validate reservoirs` conceptual model by incorporating new data from the proposed trilateral well. (4) Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs. Since the last progress report (January - March, 1997) additional work has been completed in the area of well log interpretation and geological modeling. During this period an extensive effort was made to refine our 3-D geological model both in the area of a refined attribute model and an enhanced structural model. Also, efforts to refine our drilling plans for budget period 11 were completed during this reporting period.

NONE

1997-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING  

SciTech Connect (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

2002-11-18T23:59:59.000Z

342

Efficient Geomechanical Simulations of Large-Scale Naturally Fractured Reservoirs Using the Fast Multipole-Displacement Discontinuity Method (FM-DDM)  

E-Print Network [OSTI]

Geothermal and unconventional reservoirs play an important role in supplying fuel for a growing energy demand in the United States. The development of such reservoirs relies on creating a fracture network to provide flow and transport conduits...

Verde Salas, Alexander José

2014-04-28T23:59:59.000Z

343

Development and Testing of a Groundwater Management Model for the Faultless Underground Nuclear Test, Central Nevada Test Area  

SciTech Connect (OSTI)

This document describes the development and application of a user-friendly and efficient groundwater management model of the Central Nevada Test Area (CNTA) and surrounding areas that will allow the U.S. Department of Energy and state personnel to evaluate the impact of future proposed scenarios. The management model consists of a simple hydrologic model within an interactive groundwater management framework. This framework is based on an object user interface that was developed by the U.S. Geological Survey and has been used by the Desert Research Institute researchers and others to couple disparate environmental resource models, manage the necessary temporal and spatial data, and evaluate model results for management decision making. This framework was modified and applied to the CNTA and surrounding Hot Creek Valley. The utility of the management model was demonstrated through the application of hypothetical future scenarios including mineral mining, regional expansion of agriculture, geothermal energy production, and export of water to large urban areas outside the region. While the results from some of the scenarios indicated potential impacts to the region near CNTA and others did not, together they demonstrate the usefulness of the management tool for managers who need to evaluate the impact proposed changes in groundwater use in or near CNTA may have on radionuclide migration.

Douglas P. Boyle; Gregg Lamorey; Scott Bassett; Greg Pohll; Jenny Chapman

2006-01-25T23:59:59.000Z

344

A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS  

E-Print Network [OSTI]

FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

Anderson, C.

2011-01-01T23:59:59.000Z

345

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

Howard, J. H.

2012-01-01T23:59:59.000Z

346

A dual-porosity reservoir model with a nonlinear coupling term  

SciTech Connect (OSTI)

Since their introduction by Barenblatt et al. (1960), double-porosity models have been widely used for simulating flow in fractured reservoirs, such as geothermal reservoirs. In a dual-porosity system, the matrix blocks provide most of the storage of the reservoir, whereas the fractures provide the global transmissivity. Initially, most work on dual-porosity models emphasized the development of analytical solutions to idealized reservoir problems. Increasingly, the dual-porosity approach is being implemented by numerical reservoir simulators. Accurate numerical simulation of a dual-porosity problem often requires a prohibitively large number of computational cells in order to resolve the transient pressure gradients in the matrix blocks. We discuss a new dual-porosity model that utilizes a nonlinear differential equation to approximate the fracture/matrix interactions, When implemented into a numerical simulator, it eliminates the need to discretize the matrix blocks, and thereby allows more efficient simulation of reservoir problems.

Zimmerman, R.W.; Chen, G.; Hadgu, T.; Bodvarsson, G.S.

1992-09-01T23:59:59.000Z

347

US Geological Survey publications on western tight gas reservoirs  

SciTech Connect (OSTI)

This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

Krupa, M.P.; Spencer, C.W.

1989-02-01T23:59:59.000Z

348

INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS  

SciTech Connect (OSTI)

This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

2003-09-01T23:59:59.000Z

349

Wildlife Management Areas (Florida)  

Broader source: Energy.gov [DOE]

Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

350

Wildlife Management Areas (Minnesota)  

Broader source: Energy.gov [DOE]

Certain areas of the State are designated as wildlife protection areas and refuges; new construction and development is restricted in these areas.

351

Geometry and continuity of fine-grained reservoir sandstones deformed within an accretionary prism - Basal Unit, West Woodbourne  

E-Print Network [OSTI]

be difficult to distinguish reservoir from non-reservoir intervals in successions of thinly interbedded sandstones and shales using conventional well logs; (3) There is limited outcrop analogue data that could be used to estimate the geometry and lateral... the depositional geometry and continuity of deep-water reservoir sandstones within the Basal Unit of the Scotland Formation in Woodbourne Trough, beneath Barbados. Observations in the study area were combined with observations of local outcrops of the Scotland...

Blackman, Ingrid Maria

2004-09-30T23:59:59.000Z

352

Reservoir Characterization, Formation Evaluation, and 3D Geologic Modeling of the Upper Jurassic Smackover Microbial Carbonate Reservoir and Associated Reservoir Facies at Little Cedar Creek Field, Northeastern Gulf of Mexico  

E-Print Network [OSTI]

characterization, formation evaluation, and 3D geologic modeling provides a sound framework in the establishment of a field/reservoir-wide development plan for optimal primary and enhanced recovery for these Upper Jurassic microbial carbonate and associated...

Al Haddad, Sharbel

2012-10-19T23:59:59.000Z

353

Seismic and Rockphysics Diagnostics of Multiscale Reservoir Textures  

SciTech Connect (OSTI)

This final technical report summarizes the results of the work done in this project. The main objective was to quantify rock microstructures and their effects in terms of elastic impedances in order to quantify the seismic signatures of microstructures. Acoustic microscopy and ultrasonic measurements were used to quantify microstructures and their effects on elastic impedances in sands and shales. The project led to the development of technologies for quantitatively interpreting rock microstructure images, understanding the effects of sorting, compaction and stratification in sediments, and linking elastic data with geologic models to estimate reservoir properties. For the public, ultimately, better technologies for reservoir characterization translates to better reservoir development, reduced risks, and hence reduced energy costs.

Gary Mavko

2005-07-01T23:59:59.000Z

354

Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

Fernandez, Carlos A.

355

Development of a Series of National Coalbed Methane Databases  

E-Print Network [OSTI]

Development of a Series of National Coalbed Methane Databases Mohaghegh, S. D., Nunsavathu, U Growing Interest in Coalbed Methane ­ Elevated natural gas prices ­ Demand for clean energy sources DatabaseDatabase One Location Reservoir & Sorption Collection ­ 126 Coalbed Areas ­ 34 Parameters Ordered

Mohaghegh, Shahab

356

Recent progress in the development of large area silica aerogel for use as RICH radiator in the Belle II experiment  

E-Print Network [OSTI]

We report recent progress in the development of large-area hydrophobic silica aerogels for use as radiators in the aerogel-based ring-imaging Cherenkov (A-RICH) counter to be installed in the forward end cap of the Belle II detector, which is currently being upgraded at the High Energy Accelerator Research Organization (KEK), Japan. The production of approximately 450 aerogel tiles with refractive indices of either 1.045 or 1.055 was completed in May, 2014, and the tiles are now undergoing optical characterization. Installation of the aerogels was tested by installing them into a partial mock-up of the support structure.

Makoto Tabata; Ichiro Adachi; Hideyuki Kawai; Shohei Nishida; Takayuki Sumiyoshi

2014-11-16T23:59:59.000Z

357

Recent progress in the development of large area silica aerogel for use as RICH radiator in the Belle II experiment  

E-Print Network [OSTI]

We report recent progress in the development of large-area hydrophobic silica aerogels for use as radiators in the aerogel-based ring-imaging Cherenkov (A-RICH) counter to be installed in the forward end cap of the Belle II detector, which is currently being upgraded at the High Energy Accelerator Research Organization (KEK), Japan. The production of approximately 450 aerogel tiles with refractive indices of either 1.045 or 1.055 was completed in May, 2014, and the tiles are now undergoing optical characterization. Installation of the aerogels was tested by installing them into a partial mock-up of the support structure.

Tabata, Makoto; Kawai, Hideyuki; Nishida, Shohei; Sumiyoshi, Takayuki

2014-01-01T23:59:59.000Z

358

Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit  

SciTech Connect (OSTI)

The reservoir characterization and investigation of the benefits of horizontal wells in the East Binger Unit miscible nitrogen flood as been completed. A significant work program was implemented from 2002 to 2005 in an effort to reduce gas cycling and economically increase ultimate oil recovery. Horizontal and vertical infill wells were drilled and existing producers were converted to injection. Due to successful infill drilling based on the improved flow characterization, more drilling was done than originally planned, and further drilling will occur after the project is completed. Through the drilling of wells and reservoir characterization work, it was determined that poor areal sweep efficiency is the primary factor causing nitrogen cycling and limiting oil recovery. This is in contrast to the perception prior to the initiation of development, which was that gravity segregation was causing poor vertical sweep efficiency. Although not true of all infill wells, most were drilled in areas with little sweep and came online producing gas with much lower nitrogen contents than previously drilled wells in the field and in the pilot area. Seven vertical and three horizontal wells were drilled in the pilot area throughout the project. As previously reported, the benefits of horizontal drilling were found to be insufficient to justify their increased cost. Nitrogen recycle, defined as nitrogen production as a percentage of injection, decreased from 72% prior to initiation of the project to about 25% before rising back to a current rate of 40%. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, increased 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas both decreased.

Joe Sinner

2006-06-30T23:59:59.000Z

359

Post Doctoral Research Fellowship Simulating the greenhouse gas emission from boreal region reservoirs  

E-Print Network [OSTI]

of greenhouse gases from northern boreal reservoirs as part of a Natural Sciences and Engineering Research modified the DeNitrification-DeComposition (DNDC) model to simulate the exchange of CO2 between boreal by the creation of reservoirs for the production of hydro-electricity. We have recently developed a water column

360

MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA  

SciTech Connect (OSTI)

Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. The volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade. The techniques developed in this research will make it easier to use all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. In this project, we have developed computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Specifically, we have developed methods for adjusting porosity and permeability fields to match both production and time-lapse seismic data and have also developed a procedure to adjust the locations of boundaries between facies to match production data. In all cases, the history matched rock property fields are consistent with a prior model based on static data and geologic information. Our work also indicates that it is possible to adjust relative permeability curves when history matching production data.

Albert C. Reynolds; Dean S. Oliver; Yannong Dong; Ning Liu; Guohua Gao; Fengjun Zhang; Ruijian Li

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Seventeenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

1992-01-31T23:59:59.000Z

362

Hydrological and geochemical investigations of selenium behavior at Kesterson Reservoir  

SciTech Connect (OSTI)

From 1985 to the present we have studied the behavior of selenium in various habitats and environments at Kesterson reservoir, shifting emphasis as remedial actions altered the physical setting. Investigations have evaluated the efficacy of several remedial alternatives, from innovative techniques relying on the complex geochemical behavior of selenium alternatives, from innovative techniques relying on the complex geochemical behavior of selenium in aquatic environments to conventional excavation schemes. Results of these studies supported two cost-effective remedial measures; drain water deliveries were terminated in 1986 and, in 1988, 1 million cubic yards of soil were imported and used to fill the low lying areas of the former Kesterson Reservoir. To date, these two actions appear to have eliminated the aquatic habitat that caused waterfowl death and deformity at Kesterson from the early 1980's to 1987. Biological, surface water and groundwater monitoring data collected by the USBR indicate that Kesterson is now a much safer environment than in past years when drainage water containing 300{mu}g/l of selenium was delivered to the Reservoir. The continued presence of a large inventory of selenium within the upper portions of unfilled areas of Kesterson Reservoir and immediately below the fill material requires that a continued awareness of the status of this inventory be maintained and improved upon. 83 refs., 130 figs., 19 tabs.

Benson, S.M.; Tokunaga, T.K.; Zawislanski, P.; Yee, A.W.; Daggett, J.S.; Oldfather, J.M.; Tsao, L.; Johannis, P.W.

1990-10-01T23:59:59.000Z

363

IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS  

SciTech Connect (OSTI)

A three-year contract for the project, DOE Contract No. DE-FG26-01BC15364, ''Improving CO{sub 2} Efficiency for Recovering Oil in Heterogeneous Reservoirs,'' was awarded and started on September 28, 2001. This project examines three major areas in which CO2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. This report discusses the activity during the six-month period covering October 1, 2002 through March 31, 2003 that covers the first and second fiscal quarters of the project's second year. During these two quarters of the project we have been working in several areas: reservoir fluid/rock interactions and their relationships to changing injectivity, and surfactant adsorption on quarried core and pure component granules, foam stability, and high flow rate effects. We also had a very productive project review in Midland, Texas. A paper on CO{sub 2}-brine-reservoir rock interaction was presented and included in the proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, 5-8 February, 2003. Papers have been accepted for the Second Annual Conference on Carbon Sequestration in Alexandria, VA in May, the Society of Core Analysis meeting in Pau, France in September, and two papers for the SPE Annual Meeting in Denver, CO in October.

Reid B. Grigg; Robert K. Svec; Zheng-Wen Zeng; Liu Yi; Baojun Bai

2003-05-01T23:59:59.000Z

364

Production management teachniques for water-drive gas reservoirs. Field No. 3. Offshore gulf coast normally pressured, dry gas reservoir. Topical report, July 1993  

SciTech Connect (OSTI)

To develop improved completion and reservoir management strategies for water-drive gas reservoir, the study conducted on an offshore, normally pressured, dry gas reservoir is reported. The strategies that were particularly effective in increasing both the ultimate recovery and the net present value of the field are high volume water production from strategically located downdip wells and the recompletion of an upstructure well to recover trapped attic gas. High volume water production lowered the average reservoir pressure, which liberated residual gas trapped in the invaded region. Recompleting a new well into the reservoir also lowered the pressure and improved the volumetric displacement efficiency by recovering trapped attic gas. Ultimate recovery is predicted to increase 5-12% of the original gas-in-place.

Hower, T.L.; Uttley, S.J.

1993-07-01T23:59:59.000Z

365

Reservoir vital signs monitoring, 1991: Physical and chemical characteristics of water and sediment  

SciTech Connect (OSTI)

In the second year of TVA`s Reservoir Vital signs Monitoring program, physical/chemical measurements of water and sediment were made on fourteen TVA reservoirs (the nine mainstem Tennessee river reservoirs - Kentucky through Fort Loudoun and five tributary reservoirs - Cherokee, Douglas, Norris, Melton Hill and Tellico). In addition in 1991, limited water quality monitoring was initiated on ten tributary storage impoundments. The objective of the Vital Signs monitoring program is to assess the health or integrity of these aquatic ecosystems. Physical/chemical data collected in 1991 showed the water quality of the majority of TVA`s reservoirs to be very good, but pointed out areas for improvement and further investigation.

Meinert, D.L.; Fehring, J.P.

1992-07-01T23:59:59.000Z

366

Hydrocarbon provinces and productive trends in Libya and adjacent areas  

SciTech Connect (OSTI)

According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural relief and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.

Missallati, A.A. (Agip (N.A.M.E.)Ltd., Tripoli (Libya))

1988-08-01T23:59:59.000Z

367

Optimizing injected solvent fraction in stratified reservoirs  

E-Print Network [OSTI]

Waterflooding has become standard practice for extending the productive life of many solution gas drive reservoirs, but has the disadvantage of leaving a substantial residual oil volume in the reservoir. Solvent flooding has been offered as a...

Moon, Gary Michael

1993-01-01T23:59:59.000Z

368

Comparative Evaluation of Generalized River/Reservoir System Models  

E-Print Network [OSTI]

This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

Wurbs, Ralph A.

369

IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2  

SciTech Connect (OSTI)

This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small independent producer to identify efficiently candidate reservoirs and also to predict the performance of horizontal well applications.

Timothy R. Carr; Don W. Green; G. Paul Willhite

2000-04-30T23:59:59.000Z

370

Optimization Online - Managing Hydroelectric Reservoirs over an ...  

E-Print Network [OSTI]

Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss ...

Pierre-Luc Carpentier

2013-07-07T23:59:59.000Z

371

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

372

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

373

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES Paul Kruger and Henry J . Ramey, Jr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 THE GEOTHERMAL CHIMNEY MODEL . . . . . . . . . . . . . . . . . . . 3 Current Design of t h e . . . . . . . . . . . . . . . 67 Geothermal Reservoir Phy.Sica1 PIodels . . . . . . . . . . . . 73 RAD3N I N GEOTHERMAL RESERVOIRS

Stanford University

374

Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III  

SciTech Connect (OSTI)

This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

2001-08-07T23:59:59.000Z

375

This paper was prepared for presentation at the 2002 Naturally Fractured Reservoir Conference held in Oklahoma City, 34 June 2003.  

E-Print Network [OSTI]

This paper was prepared for presentation at the 2002 Naturally Fractured Reservoir Conference held-acre CO2 pilot in the Spraberry Trend Area in west Texas. Spraberry reservoirs originally contained 10 Bbbls OOIP of which less than 10% has been recovered. Waterflooding has been documented as a poor

Schechter, David S.

376

Depositional Environment, Reservoir Properties, and EOR Potential of an Incised-valley-fill Sandstone, Pleasant Prairie Oilfield, Haskell County, Kansas  

E-Print Network [OSTI]

of modeled original oil in place to production data suggests inaccuracy of reservoir models at the scale of individual well drainage areas. Waterflooding of the reservoir has proven successful for >10 years, and remaining oil in place ranges from 7.8&ndash...

Senior, Peter

2012-12-31T23:59:59.000Z

377

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

Mohan Kelkar

2002-03-31T23:59:59.000Z

378

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

NONE

1998-11-30T23:59:59.000Z

379

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

NONE

1999-06-01T23:59:59.000Z

380

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Broader source: Energy.gov [DOE]

Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Bakken - An Unconventional Petroleum and Reservoir System  

SciTech Connect (OSTI)

An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar effective stress as the Middle Bakken suggesting that the shale will not contain induced fractures, and will contribute hydrocarbons from interconnected micro-fractures. Organic-rich shale impedance increases with a reduction in porosity and an increase in kerogen stiffness during the burial maturation process. Maturation can be directly related to impedance, and should be seismically mappable. Fractures enhance permeability and production. Regional fractures form an orthogonal set with a dominant NE-SW trend, and a less prominent NW-SE trend. Many horizontal 1 direction to intersect these fractures. Local structures formed by basement tectonics or salt dissolution generate both hinge parallel and hinge oblique fractures that may overprint and dominate the regional fracture signature. Horizontal microfractures formed by oil expulsion in the Bakken shales, and connected and opened by hydrofracturing provide permeability pathways for oil flow into wells that have been hydro-fractured in the Middle Bakken lithofacies. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

Sarg, J.

2011-12-31T23:59:59.000Z

382

The Bakken-An Unconventional Petroleum and Reservoir System  

SciTech Connect (OSTI)

An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar effective stress as the Middle Bakken suggesting that the shale will not contain induced fractures, and will contribute hydrocarbons from interconnected micro-fractures. Organic-rich shale impedance increases with a reduction in porosity and an increase in kerogen stiffness during the burial maturation process. Maturation can be directly related to impedance, and should be seismically mappable. Fractures enhance permeability and production. Regional fractures form an orthogonal set with a dominant NE-SW trend parallel to Ï?1, and a less prominent NW-SE trend. Many horizontal wells are drilled perpendicular to the Ï?1 direction to intersect these fractures. Local structures formed by basement tectonics or salt dissolution generate both hinge parallel and hinge oblique fractures that may overprint and dominate the regional fracture signature. Horizontal microfractures formed by oil expulsion in the Bakken shales, and connected and opened by hydrofracturing provide permeability pathways for oil flow into wells that have been hydro-fractured in the Middle Bakken lithofacies. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

Frederick Sarg

2011-12-31T23:59:59.000Z

383

Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Annual report, April 18, 1995--April 17, 1996  

SciTech Connect (OSTI)

The overall goal of this project is to improve the efficiency of miscible CO{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective is being accomplished by extending experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low IFT processes and the possibility of CO{sub 2} flooding in fractured reservoirs. This report provides results of the second year of the three-year project for each of the three task areas. In the first task, we are investigating a desirable characteristic of CO{sub 2}-foam called Selective Mobility Reduction (SMR) that results in an improvement in displacement efficiency by reducing the effects of reservoir heterogeneity. Research on SMR of foam during the past year has focused on three subjects: (1) to verify SMR in different rock permeabilities that are in capillary contact; (2) to test additional surfactants for the SMR property; and (3) to develop a modeling approach to assess the oil recovery efficiency of SMR in CO{sub 2}-foam on a reservoir scale. The experimental results from the composite cores suggest that the rock heterogeneity has significant effect on two phase (CO{sub 2}/brine) flow behavior in porous media, and that foam can favorably control CO{sub 2} mobility. The numerical modeling results suggest that foam with SMR can substantially increase the sweep efficiency and therefore improve oil recovery.

Grigg, R.B.; Schechter, D.S.

1996-10-01T23:59:59.000Z

384

4. International reservoir characterization technical conference  

SciTech Connect (OSTI)

This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

NONE

1997-04-01T23:59:59.000Z

385

Progress in the development of large area sub-millimeter resolution CdZnTe strip detectors  

SciTech Connect (OSTI)

The authors report progress in ongoing measurements of the performance of a sub-millimeter pitch CdZnTe strip detector developed as a prototype for astronomical instruments. Strip detectors can be used to provide two-dimensional position resolution with fewer electronic channels than pixellated arrays. Arrays of this type are under development for the position-sensitive image plane detector for a coded-aperture telescope operating in the hard x-ray range of 20--200 keV. The prototype is a 1.5 mm thick, 64 x 64 orthogonal stripe CdZnTe detector of 0.375 mm pitch in both dimensions, approximately one square inch of sensitive area. In addition to energy and spatial resolution capabilities, as reported last year, the authors demonstrate the imaging capabilities and discuss uniformity of response across an 8 x 8 stripe, 64 pixel, segment of detector. A technique for determination of the depth of photon interaction is discussed and initial results related to depth determination are presented. Issues related to the design and development of readout electronics, the packaging and production of strip detectors and the production of compact strip detector modules, including detector and readout electronics, are also discussed.

Macri, J.R.; Boykin, D.V.; Larson, K. [Univ. of New Hampshire, Durham, NH (United States). Space Science Center] [and others

1996-12-31T23:59:59.000Z

386

Saving an Underground Reservoir  

E-Print Network [OSTI]

and climato- logical data into a GIS format and corrected errors. ? Developed Web interfaces to distribute hydrologic and climatological data. ? Used GIS data to show and understand water flow in crops and soils. TECHNOLOGY TRANSFER EDUCATION... rotations increases net profitability by $45 per acre. ? Identified forage sorghums that have similar digestibility and yield as corn silage, but require 40 percent less irrigation water. HYDROLOGY / CLIMATOLOGY ? Compiled existing relevant hydrologic...

Wythe, Kathy

2006-01-01T23:59:59.000Z

387

Interdisciplinary study of reservoir compartments. [Quarterly report, April 1, 1994--June 30, 1994  

SciTech Connect (OSTI)

This DOE research project was established to document the integrated team approach for solving reservoir engineering problems. A field study integrating the disciplines of geology, geophysics, and petroleum engineering will be the mechanism for documenting the integrated approach. This is an area of keen interest to the oil and gas industry. The goal will be to provide tools and approaches that can be used to detect reservoir compartments, reach a better reserve estimate, and improve profits early in the life of a field. Progress reports are presented for the following tasks: reservoir selection and data gathering; outcrop/core/log analysis/ and correlations, internal architecture description; seismic analysis; and permeability experimental work.

Van Kirk, C.W.; Thompson, R.S.

1994-07-26T23:59:59.000Z

388

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect (OSTI)

This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

Maria Cecilia Bravo

2006-06-30T23:59:59.000Z

389

Foinaven development - breaking the mould  

SciTech Connect (OSTI)

Foinaven Phase I, the first oil field development West of Shetland, had produced a new standard in the time required between discovery and development. The bedrock of this performance improvement stems from the clarity of hydrocarbon imaging available with new technology based on the 3D seismic data. Oil in the Foinaven field (discovered in late 1992) lies within Palaeocene reservoir sands interbedded with impermeable mudstones. Reservoir quality is excellent, although the sands are relatively thin, distributed over a large area, and are overlain by a gas cap. Prior to appraisal drilling, 3D seismic data were acquired over Foinaven as part of an extensive 2000 sq km survey shot in the summer of 1993. The conventional 3D seismic data have been inverted to produce an acoustic impedance (AI) dataset. Comparisons of predicted vs. actual hydrocarbon pore thickness during appraisal drilling using the AI data have shown a typical variance of +/- 10%. An horizontal appraisal well, was spudded in mid-1994. Once the target reservoir was entered, directional information from the MWD tool was used to steer the well along a desired path in real time to interact with specific targets. Once the hole had been cleaned, it was then completed using a pre-packed production liner. To further evaluate the reservoir, following an initial horizontal well drill-stem test, an extended well test, using a semi-submersible linked to a shuttle tanker was undertaken. Over 400,000 bbl oil were produced from the Foinaven reservoir. Foinaven Phase I will be developed by Petrojarl IV, a ship shaped Floating Production, Storage and Off loading (FPSO) facility, currently being rebuilt in Northern Spain. In conjunction with the FPSO horizontal production wells will be used with subsea completions and following processing the crude oil will be exported by shuttle tanker to the refinery. Development drilling started in November 1994. First oil is programmed for early 1996 at a plateau rate around 85 mbd.

Maclean, C. [BP exploration, Aberdeen (United Kingdom)

1995-08-01T23:59:59.000Z

390

Post waterflood CO{sub 2} miscible flood in light oil fluvial: Dominated deltaic reservoirs. Third quarterly report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

Production from the Marg Area 1 at Port Neches is averaging 337 BOPD for this quarter. The production drop is due to fluctuation in both GOR and BS&W on various producing wells, low water injectivity in the reservoir and shut-in one producing well to perform a workover to replace a failed gravel pack setting. Coil tubing work was performed on 2 injection wells in order to resume injection of water and CO{sub 2} in the reservoir. The Marg Area 2 did not respond favorably to CO{sub 2} injection in the Kuhn No. 6 well. For this reason Texaco will not pursue any further development of this section of the reservoir due mainly to low target reserves. Instead Texaco will reallocate the money to a new Marg segment (Marg Area 3) in order to test a new process that will utilize the CO{sub 2} to accelerate the primary production rates and reduce cycle time. Also the process should reduce water disposal cost, cash lifting cost, operating cost and increase the NPV of the reserves.

NONE

1995-07-15T23:59:59.000Z

391

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

Mohan Kelkar

2005-02-01T23:59:59.000Z

392

Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes  

SciTech Connect (OSTI)

Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.

Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev

2007-12-31T23:59:59.000Z

393

Sixth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

Ramey, H.J. Jr.; Kruger, P. (eds.)

1980-12-18T23:59:59.000Z

394

Twentieth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

None

1995-01-26T23:59:59.000Z

395

Characterization of Thin-Bedded Reservoir in the Gulf of Mexico: An Integrated Approach.  

E-Print Network [OSTI]

of Petroleum Geologists. 2 Macintyrei sequence. The younger reservoirs (Trim A and Trim B) in the Trimosina sequence (0.8-0.3 Ma) are middle Pleistocene. Producing operations started in May 1987. As of October 1999, Green Canyon 18 reservoirs had produced 70... ................................................................................................................................58 viii LIST OF FIGURES FIGURE Page 1. Green Canyon cumulative productions from 1987 to 1999 ...................................2 2. Northern Gulf of Mexico map showing the outer continental shelf leasing areas. GC-Green Canyon. The star indicates...

Lalande, Severine

2004-09-30T23:59:59.000Z

396

Interdisciplinary study of reservoir compartments. Quarterly technical progress report, July 1, 1994--September 30, 1994  

SciTech Connect (OSTI)

This DOE research project was established to document the integrated team approach for solving reservoir engineering problems. A field study integrating the disciplines of geology, geophysics, and petroleum engineering will be the mechanism for documenting the integrated approach. This is an area of keen interest to the oil and gas industry. The goal will be to provide tools and approaches that can be used to detect reservoir compartments, reach a better reserve estimate, and improve profits early in the life of a field.

Van Kirk, C.W.

1994-10-28T23:59:59.000Z

397

Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah  

SciTech Connect (OSTI)

The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.; Bereskin, S. Robert; Deo, Milind D.

2002-12-02T23:59:59.000Z

398

Hydrological, geochemical, and ecological characterization of Kesterson Reservoir  

SciTech Connect (OSTI)

This report describes Kesterson Reservoir related research activities carried out under a cooperative program between Lawrence Berkeley Laboratory and the Division of Agriculture and Natural Resources at the University of California during FY89. The primary objectives of these investigations are: Predict the extent, probability of the occurrence, and selenium concentrations in surface water of temporary wetland habitat at Kesterson; assess rates and direction of migration of the drainage water plume that seeped into the aquifer under Kesterson; monitor and predict changes in quantity and speciation of selenium in surface soils and vadose zone pore-waters; and develop a comprehensive strategy through soil, water, and vegetation management to safely dissipate the high concentrations of selenium accumulated in Kesterson soils. This report provides an up-date on progress made in each of these areas. Chapter 2 describes results of recent investigations of water table fluctuations and plume migration. Chapter 3 describes results of ongoing monitoring of soil water selenium concentrations and evaporative accumulation of selenium at the soil surface. Chapter 4 describes early results from the soil, water, and vegetation management field trials as well as supporting laboratory and theoretical studies. In Chapter 5, new analytical methods for selenium speciation are described and quality assurance/quality control statistics for selenium and boron are provided. 110 refs., 138 figs., 62 tabs.

Not Available

1990-06-01T23:59:59.000Z

399

Ninth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The attendance at the Workshop was similar to last year's with 123 registered participants of which 22 represented 8 foreign countries. A record number of technical papers (about 60) were submitted for presentation at the Workshop. The Program Committee, therefore, decided to have several parallel sessions to accommodate most of the papers. This format proved unpopular and will not be repeated. Many of the participants felt that the Workshop lost some of its unique qualities by having parallel sessions. The Workshop has always been held near the middle of December during examination week at Stanford. This timing was reviewed in an open discussion at the Workshop. The Program Committee subsequently decided to move the Workshop to January. The Tenth Workshop will be held on January 22-24, 1985. The theme of the Workshop this year was ''field developments worldwide''. The Program Committee addressed this theme by encouraging participants to submit field development papers, and by inviting several international authorities to give presentations at the Workshop. Field developments in at least twelve countries were reported: China, El Salvador, France, Greece, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, the Philippines, and the United States. There were 58 technical presentations at the Workshop, of which 4 were not made available for publication. Several authors submitted papers not presented at the Workshop. However, these are included in the 60 papers of these Proceedings. The introductory address was given by Ron Toms of the U.S. Department of Energy, and the banquet speaker was A1 Cooper of Chevron Resources Company. An important contribution was made to the Workshop by the chairmen of the technical sessions. Other than Stanford Geothermal Program faculty members, they included: Don White (Field Developments), Bill D'Olier (Hydrothermal Systems), Herman Dykstra (Well Testing), Karsten Pruess (Well Testing), John Counsil (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S. (Stanford Geothermal Program)

1983-12-15T23:59:59.000Z

400

A reservoir management plan  

SciTech Connect (OSTI)

There are numerous documented cases of extraction of fluids from the ground causing surface subsidence. The cases include groundwater, oil and gas, as well as geothermal fluid withdrawal. A recent comprehensive review of all types of man-induced land subsidence was published by the Geological Survey of America. At the early stages of a geothermal power development project it is standard practice in most countries for an environmental impact report to be required. The possibility of geothermal subsidence has to be addressed, and usually it falls on the geophysicists and/or geologists to make some predictions. The advice given is vital for planning the power plant location and the borefield pipe and drain layout. It is not so much the vertical settlement that occurs with subsidence but the accompanying horizontal ground strains that can do the most damage to any man-made structure.

Allis, R.G.

1989-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "reservoir development area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geophysical remote sensing of water reservoirs suitable for desalinization.  

SciTech Connect (OSTI)

In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at a lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics problems that has application beyond the present use. A limited field experiment was conducted to assess the seismo-electric effect. Due to a variety of problems, the observation of the electric field due to a seismic source is not definitive.

Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra; Engler, Bruce Phillip

2009-12-01T23:59:59.000Z

402

Characterization of oil and gas reservoir heterogeneity. Final report  

SciTech Connect (OSTI)

Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

1992-10-01T23:59:59.000Z

403

Reservoir management strategy for East Randolph Field, Randolph Township, Portage County, Ohio  

SciTech Connect (OSTI)

The primary objective of the Reservoir Management Field Demonstration Program is to demonstrate that multidisciplinary reservoir management teams using appropriate software and methodologies with efforts scaled to the size of the resource are a cost-effective method for: Increasing current profitability of field operations; Forestalling abandonment of the reservoir; and Improving long-term economic recovery for the company. The primary objective of the Reservoir Management Demonstration Project with Belden and Blake Corporation is to develop a comprehensive reservoir management strategy to improve the operational economics and optimize oil production from East Randolph field, Randolph Township, Portage County, Ohio. This strategy identifies the viable improved recovery process options and defines related operational and facility requirements. In addition, strategies are addressed for field operation problems, such as paraffin buildup, hydraulic fracture stimulation, pumping system optimization, and production treatment requirements, with the goal of reducing operating costs and improving oil recovery.

Safley, L.E.; Salamy, S.P.; Young, M.A.; Fowler, M.L.; Wing, J.L.; Thomas, J.B.; Mills, J.; Wood, D.

1998-07-01T23:59:59.000Z

404

Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa Jump to:TricityOpen Energy

405

Compound and Elemental Analysis At Blackfoot Reservoir Area (Hutsinpiller &  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD)2010) |

406

West Valley Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrek Maar

407

Geothermometry At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A Survey ofJumpEnergy

408

Geysers Hi-T Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fue