Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

2

Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

3

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

4

New Mexico Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

5

Louisiana--North Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

6

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

7

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

8

Kentucky Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

9

Kansas Natural Gas Plant Liquids, Reserves Based Production ...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

10

Utah Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

11

Florida Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

12

Montana Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

13

North Dakota Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

14

Oklahoma Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

15

Michigan Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

16

Utah Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

17

Arkansas Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

18

New Mexico--East Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

19

New Mexico--West Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

20

U.S. Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Based Production (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table 7. Crude oil proved reserves, reserves changes, and production...  

Gasoline and Diesel Fuel Update (EIA)

: Crude oil proved reserves, reserves changes, and production, 2011 million barrels Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves...

22

Miscellaneous States Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

23

Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

24

Colorado Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

25

Arkansas Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

26

Wyoming Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

27

Michigan Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

28

New Mexico Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

29

,"NM, West Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

30

,"Alaska Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

31

,"Alabama Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

32

,"NM, East Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

33

,"Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

34

,"Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

35

,"Montana Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

36

,"Texas Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

37

,"Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

38

,"Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

39

,"Michigan Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

40

,"Colorado Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

42

Texas--State Offshore Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

43

Table 7: Crude oil proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Crude oil proved reserves, reserves changes, and production, 2011" : Crude oil proved reserves, reserves changes, and production, 2011" "million barrels" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

44

Table 17. Coalbed methane proved reserves, reserves changes, and production, 201  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011" Coalbed methane proved reserves, reserves changes, and production, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

45

,"Pennsylvania Dry Natural Gas Reserves Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

46

,"Mississippi Dry Natural Gas Reserves Estimated Production ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

47

,"Dry Natural Gas Reserves Estimated Production "  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Dry Natural Gas Reserves Estimated Production ",52,"Annual",2011,"6301977" ,"Release Date:","81...

48

PEMEX production and reserves soar  

Science Conference Proceedings (OSTI)

Increasing oil flow from the Gulf of Campeche and Chiapas/Tabasco fields in Mexico's southern zone has raised Petroleos Mexicanos' (PEMEX) production to more than 533 million bbl in 1979. That is an increase of 20.8% - despite a decline for the country's other important producing areas in the northern and central zones. Fields in the north zone were down roughly 10%, and those in the central zone were down approximately 5%. Waterflooding accounted for more than 41 million bbl of oil produced in Mexico in 1979. The daily average of 113,295 bpd was 50% greater than in 1978. Water injection operations were launched in 3 more fields. The company's gas-gathering program also moved ahead. Total gas production for the year was up 14% over 1978. Average gas production last year was 2.917 billion cfd. Today, only 6% of total gas production is being flared, compared with approximately 21% in 1976. Total proved hydrocarbon reserves were reported as 45,803 billion bbl equivalent at the end of 1979, up 14% from 1978.

Not Available

1980-08-25T23:59:59.000Z

49

Coal Reserves Data Base report  

SciTech Connect

The Coal Reserves Data Base (CRDB) Program is a cooperative data base development program sponsored by the Energy Information Administration (EIA). The objective of the CRDB Program is to involve knowledgeable coal resource authorities from the major coal-bearing regions in EIA's effort to update the Nation's coal reserves data. This report describes one of two prototype studies to update State-level reserve estimates. The CRDB data are intended for use in coal supply analyses and to support analyses of policy and legislative issues. They will be available to both Government and non-Government analysts. The data also will be part of the information used to supply United States energy data for international data bases and for inquiries from private industry and the public. (VC)

Jones, R.W.; Glass, G.B.

1991-12-05T23:59:59.000Z

50

Table 15: Shale natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

51

Table 10: Total natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in reserves during 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

52

Utah Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

53

Table 16: Coalbed methane proved reserves and production, 2007...  

U.S. Energy Information Administration (EIA) Indexed Site

: Coalbed methane proved reserves and production, 2007 - 2011" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2007,2008,2009,2010,2011,,2007,2008,2009...

54

Table 18. Natural gas plant liquids proved reserves and production...  

Gasoline and Diesel Fuel Update (EIA)

: Natural gas plant liquids proved reserves and production, 2009 - 2011 (excludes Lease Condensate) million barrels Reserves Production State and Subdivision 2009 2010 2011 2009...

55

Table 13. Shale Gas Proved Reserves and Production, 2007 - 2009 ...  

U.S. Energy Information Administration (EIA)

Table 13. Shale Gas Proved Reserves and Production, 2007 - 2009 (Billion Cubic Feet at 14.73 psia and 60° Fahrenheit) Reserves Production State and Subdivision 2007 ...

56

Top 100 Operators: Proved Reserves and Production, Operated vs ...  

U.S. Energy Information Administration (EIA)

The operator of an oil or gas field is the company ... Operators in the United States are obligated to ... Reserves Production Reserves Production ...

57

Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 147 1980's 159 161 157 157 179 168 169 162 162 165 1990's 158 153 147 153 157 145 162 174 178 199 2000's 208 215 207 191 182 174 182 181 173 178 2010's 224 211 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Estimated Production Lower 48 States Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate

58

,"U.S. Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

59

Texas--RRC District 6 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 6 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

60

Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

62

Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

63

Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

64

Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

65

Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

66

Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

67

Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

68

Florida Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Florida Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0...

69

Kentucky Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Kentucky Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0...

70

Montana Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Montana Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0...

71

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6/30/1989" ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","ng_enr_coalbed_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_enr_coalbed_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

72

U.S. Natural Gas Plant Liquids Reserves, Estimated Production...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Reserves, Estimated Production (Million Barrels) U.S. Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

73

Utah Lease Condensate Proved Reserves, Reserve Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 View History Proved Reserves as of Dec. 31 52 62 90 69 78 2007-2011 Adjustments 2 3 -3 2009-2011 Revision Increases 36 6 9 2009-2011 Revision Decreases 7...

74

California Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

2011 View History Proved Reserves as of Dec. 31 855 2011-2011 Adjustments 1 2011-2011 Revision Increases 912 2011-2011 Revision Decreases 0 2011-2011 Sales 0 2011-2011...

75

Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

5 2006 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 1 1 1 0 0 2005-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 1 0...

76

Ohio Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 0 0 2009-2010 Sales...

77

Alabama Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 1 2 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 2 0 2009-2010 Sales...

78

Alaska Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 View History Proved Reserves as of Dec. 31 0 0 0 0 0 2007-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0...

79

Table 16. Coalbed methane proved reserves and production, 2007 - 2011  

U.S. Energy Information Administration (EIA)

Table 16: Coalbed methane proved reserves and production, 2007 – 2011 billion cubic feet State and Subdivision 2007 2008 2009 2010 2011 2007 2008 2009 2010 2011

80

,"Montana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,"Arkansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

82

,"Wyoming Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

83

,"Alabama Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

84

,"Oklahoma Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

85

,"Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

86

,"Texas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

87

,"Kansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

88

,"Michigan Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

89

,"Kentucky Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

90

,"Utah Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

91

,"Florida Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

92

,"Virginia Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

93

,"Louisiana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

94

,"Colorado Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

95

,"California Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

96

,"Ohio Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

97

Top 100 Operators: Proved Reserves and Production, Operated vs ...  

U.S. Energy Information Administration (EIA)

Top 100 Operators: Proved Reserves and Production, Operated vs Owned, 2008 . The operator of an oil or gas field is the company responsible for the field’s ...

98

,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011...

99

WORLD OIL SUPPLY – PRODUCTION, RESERVES, AND EOR  

E-Print Network (OSTI)

“The weakness of intelligence is in discerning the turning points” (J. Schlesinger: former CIA Director and Ex-Secretary of Defense and of Energy) World Oil Consumption: Since 1980, the world has consumed far more oil than has been discovered. We are now finding only one barrel of new oil for every four barrels that we consume. As Donald Hodel, Ex-U.S. Secretary of Energy said: “We are sleepwalking into a disaster.” Global R/P: (Figure 1-A). Economists and laymen routinely view the future of global oil production as being directly related to a simple global Reserves/Production (R/P) ratio. This implies that oil produced in all of the world’s fields will abruptly stop when the R/P date (40 years in the future) is reached. This is as unrealistic as to expect all humans to die off suddenly, instead of gradually. Global R/Ps should NOT be used to estimate timing of future oil supplies. National R/P: (Figure 1-B). Instead of posting one average Global R/P of 40 years for the entire world, Figure 1-B shows (“National R/P”) for individual nations. This results in a very different, but a much more realistic semi-quantitative picture of the distribution of the world’s claimed oil reserves and future global oil supply than does Figure 1-A. Scale: All of these graphs are drawn to scale, which puts tight limits on their construction and analysis. A 40,000-million-barrels (4 BBO/year x 10 years) rectangle in the upper left corner of each figure shows the graphic scale for the area under the World Production Curve (WPC). (BBO =

M. King; Hubbert Center; M. King; Hubbert Center; L. F. Ivanhoe

2000-01-01T23:59:59.000Z

100

Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA)

Shale Gas (Billion Cubic Feet) Area: ... Annual : Download Series History: ... Estimated Production : 0: 0: 0: 0: 0: 2007-2011

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

California Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

102

Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

103

Florida Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

104

Mississippi Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

105

Louisiana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

106

Kentucky Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

107

Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

108

Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

109

Michigan Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

110

Virginia Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

111

Kansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

112

Montana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

113

Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

114

Alabama Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

115

Colorado Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

116

New Mexico - West Dry Natural Gas Reserves Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

117

Texas Dry Natural Gas Reserves Estimated Production (Billion...  

Annual Energy Outlook 2012 (EIA)

Estimated Production (Billion Cubic Feet) Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

118

U.S. Crude Oil + Lease Condensate Estimated Production from Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production from Reserves (Million Barrels) U.S. Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

119

Developing Refined Products Storage in the Strategic Petroleum Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refined Products Storage in the Strategic Petroleum Refined Products Storage in the Strategic Petroleum Reserve Developing Refined Products Storage in the Strategic Petroleum Reserve May 12, 2009 - 3:14pm Addthis Statement of David F. Johnson, Deputy Assistant Secretary for Petroleum Reserves before the Committee on Energy and Natural Resources, United States Senate. Mr. Chairman and members of the Committee, I am pleased to be here today to discuss the issue of developing refined products storage in the Strategic Petroleum Reserve. As you know, the SPR was established by Congress through passage of the Energy Policy and Conservation Act in 1975 in response to the Arab oil embargoes. The primary policy of the U.S. petroleum stockpiling program has been to store crude oil. The SPR has served to protect our Nation from crude oil supply interruptions for over three

120

Top 100 Operators: Proved Reserves and Production, Operated vs...  

Annual Energy Outlook 2012 (EIA)

Total Operators: Roughly 14,000 Natural Gas: 252 Tcf (89% of U.S. Total) Source: U.S. Energy Information Administration Top 100 Operators: Proved Reserves and Production,...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 15. Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old FieldsProduction Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 97,449 1,584 25,993 23,455 22,694 27,038 32,764 232 699 7,994 131,616 Alabama 0 0 0 0 0 0 0 0 0 0 0 Arkansas 12,526 655 502 141 6,087 6,220 2,073 0 0 940 14,808 California 0 1 912 0 0 0 43 0 0 101 855 Colorado 4 0 4 0 0 0 5 0 0 3 10 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 0 0 0 0 0 0 0 0 0 0 0 Kentucky 10 0 44 11 45 45 2 0 0 4 41 Louisiana 20,070 -172 2,002 3,882 3,782 4,291 5,367 0 140 2,084 21,950 North Onshore 20,070 -172 2,002 3,882 3,782 4,291 5,367

122

Table 10. Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,917 -2 938 207 36 222 4 0 3 328 9,511 Lower 48 States 308,730 2,717 55,077 55,920 44,539 47,651 47,631 987 1,257 24,293 339,298 Alabama 2,724 -45 472 163 595 398 3 2 0 226 2,570 Arkansas 14,181 729 631 324 6,762 6,882 2,094 0 23 1,080 16,374 California 2,785 917 1,542 1,959 49 55 75 0 0 324 3,042 Coastal Region Onshore 180 15 21 32 0 0 1 0 0 12 173 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 2,447 895 1,498

123

Table 11. Dry natural gas proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Dry natural gas proved reserves, reserves changes, and production, 2011 : Dry natural gas proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,838 -1 928 206 36 221 4 0 3 327 9,424 Lower 48 States 295,787 1,732 52,673 53,267 43,150 46,020 45,905 947 1,224 23,228 324,643 Alabama 2,629 -49 455 157 573 383 3 2 0 218 2,475 Arkansas 14,178 728 631 324 6,760 6,880 2,093 0 23 1,079 16,370 California 2,647 923 1,486 1,889 47 52 73 0 0 311 2,934 Coastal Region Onshore 173 13 20 31 0 0 1 0 0 11 165 Los Angeles Basin Onshore 87 7 11 4 0 2 0 0 0 6 97 San Joaquin Basin Onshore 2,321 902 1,444 1,854 45 42 69 0 0 289 2,590 State Offshore

124

Table 12. Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases SalesAcquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 1,021 -1 95 128 34 171 1 0 3 152 976 Lower 48 States 280,880 2,326 47,832 50,046 43,203 45,818 41,677 376 1,097 21,747 305,010 Alabama 2,686 -48 470 163 586 378 3 0 0 218 2,522 Arkansas 14,152 705 581 311 6,724 6,882 2,094 0 23 1,074 16,328 California 503 -12 118 32 48 44 1 0 0 64 510 Coastal Region Onshore 2 0 0 1 0 0 0 0 0 0 1 Los Angeles Basin Onshore 0 0 0 0 0 0 0 0 0 0 0 San Joaquin Basin Onshore 498 -12 116 31 47 44 1 0 0 63 506 State Offshore

125

Reserves  

Gasoline and Diesel Fuel Update (EIA)

1993 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 165,015 162,415 163,837 165,146 166,474 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 275,414 282,152 291,773 298,541 301,811 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 16,164,874 16,691,139 17,351,060 17,282,032 17,680,777 From Oil Wells ........................................... 5,967,376 6,034,504 6,229,645 6,461,596 6,370,888 Total.............................................................. 22,132,249 22,725,642 23,580,706 23,743,628 24,051,665 Repressuring ................................................ -2,972,552 -3,103,014 -3,230,667 -3,565,023 -3,510,330

126

Table 17. Coalbed methane proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011 Coalbed methane proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 17,508 -15 2,071 1,668 1,775 1,710 736 0 13 1,763 16,817 Alabama 1,298 -45 23 86 104 219 3 0 0 98 1,210 Arkansas 28 0 0 3 0 0 0 0 0 4 21 California 0 0 0 0 0 0 0 0 0 0 0 Colorado 6,485 73 698 367 1,034 1,021 220 0 0 516 6,580 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 258 -6 24 14 0 0 3 0 0 37 228 Kentucky 0 0 0 0 0 0 0 0 0 0 0 Louisiana 0 0 0 0 0 0 0 0 0 0 0 North Onshore 0 0 0 0 0 0 0 0 0 0 0 South Onshore 0 0 0 0 0 0 0 0 0 0 0 State Offshore 0 0 0 0 0 0 0 0 0 0 0 Michigan 0 0 0 0 0 0 0 0 0 0 0 Mississippi 0 0 0 0 0 0 0 0 0

127

Natural gas liquids consumption, production, and reserves  

Science Conference Proceedings (OSTI)

Natural gas liquids are condensates that occur during production and liquids recovered during processing, and they are classified as lease condensate or natural gas plant liquids (NGPL). There has been a decline in total domestic production, but an increase in ethane and liquefied petroleum gas (LPG) during the past decade. Statistical tables illustrate trends in the production of NGPLs and liquefied refinery gases (LRG), imports and exports, and marketing and sales. World production data show that, while the US now produces close to 41% of world output, the production trends in other areas are increasing as ours decline. 10 tables. (DCK)

Sala, D.

1983-03-28T23:59:59.000Z

128

Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade...

129

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

130

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

131

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

132

New Mexico--East Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

133

New Mexico--West Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

134

Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

135

Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

136

North Sea reserve appreciation, production, and depletion  

E-Print Network (OSTI)

Oil field "growth" has become a well-recognized phenomenon in mature, well-explored provinces such as the United States leading to the continual under-estimation in oil production forecasts. This working paper explores the ...

Sem, Tone

1999-01-01T23:59:59.000Z

137

New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1,099 1,149 1980's 1,064 1,086 942 799 856 843 628 728 731 760 1990's 887 1,013 1,143 1,337 1,362 1,397 1,423 1,547 1,449 1,539 2000's 1,508 1,536 1,524 1,415 1,527 1,493 1,426 1,349 1,349 1,350 2010's 1,220 1,170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves Dry Natural Gas Estimated Production

138

Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production Oklahoma Dry Natural Gas Proved Reserves

139

Teanaway Solar Reserve | Open Energy Information  

Open Energy Info (EERE)

Sector Solar Product Washington State-based privately-held developer of the Teanaway Solar Reserve PV plant project. References Teanaway Solar Reserve1 LinkedIn Connections...

140

Table 16. Coalbed Methane Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

aIncludes Illinois and Indiana. Note: The above table is based on coalbed methane proved reserves and production volumes as reported to the EIA on ...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Maps: Exploration, Resources, Reserves, and Production - Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Maps: Exploration, Resources, Reserves, and Production Maps: Exploration, Resources, Reserves, and Production Summary Maps: Natural Gas in the Lower 48 States and North America Gas Production in Conventional Fields, Lower 48 States PDF (2.8 MB) JPG (2.5 MB) Gas Production in Offshore Fields, Lower 48 States PDF (0.4 MB) JPG (1.5 MB) Shale Gas and Oil Plays, Lower 48 States Updated 5/9/2011 PDF (1.6 MB) JPG (2.1 MB) Shale Gas and Oil Plays, North America Updated 5/9/2011 PDF (0.4 MB) JPG (1.2 MB) Major Tight Gas Plays, Lower 48 States PDF (1.6 MB) JPG (2.2 MB) Coalbed Methane Fields, Lower 48 States PDF (1.8 MB) JPG (2.7 MB) Oil- and Gas-Related Maps, Geospatial Data, and Geospatial Software Oil and Gas Field Maps in Portable Document Format Oil and Gas Field Data in Shapefile Format EIA's Oil and Gas Field Boundary Generation Scripts

142

US COALBED METHANE The Past: Production The Present: Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Panel 2 of 2 Panel 2 of 2 US COALBED METHANE The Past: Production The Present: Reserves The Future: Resources Annual coalbed methane gas production data through 12/31/2006 was obtained from 17 state oil & gas regulatory entities or geological surv eys and one producing company. Data for 2006 were not yet av ailable for West Virginia and Pennsy lvania so the 2005 v olumes were assumed to repeat in 2006. Produced CBM gas v olumes from each state were clas sified by basin. The cumulative production pie chart to the left shows the sum of all reported CBM gas volumes by basin through 2006. The San Juan Bas in dominates the chart. The only other bas in to ex ceed 10% is the Pow der River Basin (12%). Relative cumulative production volumes by basin are spatially depicted in the c

143

Determination of uncertainty in reserves estimate from analysis of production decline data  

E-Print Network (OSTI)

Analysts increasingly have used probabilistic approaches to evaluate the uncertainty in reserves estimates based on a decline curve analysis. This is because the results represent statistical analysis of historical data that usually possess significant amounts of noise. Probabilistic approaches usually provide a distribution of reserves estimates with three confidence levels (P10, P50 and P90) and a corresponding 80% confidence interval. The question arises: how reliable is this 80% confidence interval? In other words, in a large set of analyses, is the true value of reserves contained within this interval 80% of the time? Our investigation indicates that it is common in practice for true values of reserves to lie outside the 80% confidence interval much more than 20% of the time using traditional statistical analyses. This indicates that uncertainty is being underestimated, often significantly. Thus, the challenge in probabilistic reserves estimation using a decline curve analysis is not only how to appropriately characterize probabilistic properties of complex production data sets, but also how to determine and then improve the reliability of the uncertainty quantifications. This thesis presents an improved methodology for probabilistic quantification of reserves estimates using a decline curve analysis and practical application of the methodology to actual individual well decline curves. The application of our proposed new method to 100 oil and gas wells demonstrates that it provides much wider 80% confidence intervals, which contain the true values approximately 80% of the time. In addition, the method yields more accurate P50 values than previously published methods. Thus, the new methodology provides more reliable probabilistic reserves estimation, which has important impacts on economic risk analysis and reservoir management.

Wang, Yuhong

2003-05-01T23:59:59.000Z

144

Table 13. Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 7,896 -1 843 79 2 51 3 0 0 176 8,535 Lower 48 States 27,850 391 7,245 5,874 1,336 1,833 5,954 611 160 2,546 34,288 Alabama 38 3 2 0 9 20 0 2 0 8 48 Arkansas 29 24 50 13 38 0 0 0 0 6 46 California 2,282 929 1,424 1,927 1 11 74 0 0 260 2,532 Coastal Region Onshore 178 15 21 31 0 0 1 0 0 12 172 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 1,949 907 1,382 1,892 0 0 70 0 0 237 2,179 State Offshore 63 1 9 0 1 8 3 0 0 4 79

145

Texas--RRC District 5 Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 5 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

146

Texas--RRC District 1 Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 1 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

147

Texas--RRC District 8 Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

148

Texas--RRC District 6 Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 6 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

149

Texas--RRC District 9 Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 9 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

150

Coal Reserves Data Base report. Final report on the Demonstrated Reserve Base (DRB) of coal in Wyoming  

SciTech Connect

The Coal Reserves Data Base (CRDB) Program is a cooperative data base development program sponsored by the Energy Information Administration (EIA). The objective of the CRDB Program is to involve knowledgeable coal resource authorities from the major coal-bearing regions in EIA`s effort to update the Nation`s coal reserves data. This report describes one of two prototype studies to update State-level reserve estimates. The CRDB data are intended for use in coal supply analyses and to support analyses of policy and legislative issues. They will be available to both Government and non-Government analysts. The data also will be part of the information used to supply United States energy data for international data bases and for inquiries from private industry and the public. (VC)

Jones, R.W.; Glass, G.B.

1991-12-05T23:59:59.000Z

151

OPEC production: Untapped reserves, world demand spur production expansion  

Science Conference Proceedings (OSTI)

To meet projected world oil demand, almost all members of the Organization of Petroleum Exporting Countries (OPEC) have embarked on ambitious capacity expansion programs aimed at increasing oil production capabilities. These expansion programs are in both new and existing oil fields. In the latter case, the aim is either to maintain production or reduce the production decline rate. However, the recent price deterioration has led some major OPEC producers, such as Saudi Arabia and Iran, to revise downward their capacity plans. Capital required for capacity expansion is considerable. Therefore, because the primary source of funds will come from within each OPEC country, a reasonably stable and relatively high oil price is required to obtain enough revenue for investing in upstream projects. This first in a series of two articles discusses the present OPEC capacity and planned expansion in the Middle East. The concluding part will cover the expansion plans in the remaining OPEC countries, capital requirements, and environmental concerns.

Ismail, I.A.H. (Organization of the Petroleum Exporting Countries, Vienna (Austria))

1994-05-02T23:59:59.000Z

152

Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve  

Science Conference Proceedings (OSTI)

Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal early market for nuclear hydrogen.

Forsberg, C.W.

2005-01-20T23:59:59.000Z

153

Table 4. Principal shale gas plays: natural gas production and proved reserves,  

U.S. Energy Information Administration (EIA) Indexed Site

Principal shale gas plays: natural gas production and proved reserves, 2010-2011" Principal shale gas plays: natural gas production and proved reserves, 2010-2011" "trillion cubic feet" ,,, 2010,, 2011,," Change 2011-2010" "Basin","Shale Play","State(s)","Production","Reserves","Production","Reserves","Production","Reserves" "Fort Worth","Barnett","TX",1.9,31,2,32.6,0.1,1.6 "Appalachian","Marcellus","PA, WV, KY, TN, NY, OH",0.5,13.2,1.4,31.9,0.9,18.7 "Texas-Louisiana Salt","Haynesville/Bossier","TX, LA",1.5,24.5,2.5,29.5,1,5 "Arkoma","Fayetteville","AR",0.8,12.5,0.9,14.8,0.1,2.3

154

Figure 4. U.S. crude oil and lease condensate reserves, production...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Imports (MMBbl)","Crude Reserves (MMBbl)","Crude Production (MMBbl)" 1604.703,31006,3128.624 1273.214,29459,3156.715 1215.225,29348,3170.999 1253.949,29968,3249.696...

155

Investigation on the continued production of the Naval Petroleum Reserves beyond April 5, 1991  

SciTech Connect

The authority to produce the Naval Petroleum Reserves (NPRs) is due to expire in April 1991, unless extended by Presidential finding. As provided in the Naval Petroleum Reserves Production act of 1976 (Public Law 94-258), the President may continue production of the NPRs for a period of up to three years following the submission to Congress, at least 180 days prior to the expiration of the current production period, of a report that determines that continued production of the NPRs is necessary and a finding by the President that continued production is in the national interest. This report assesses the need to continue production of the NPRs, including analyzing the benefits and costs of extending production or returning to the shut-in status that existed prior to 1976. This continued production study considers strategic, economic, and energy issues at the local, regional, and national levels. 15 figs., 13 tabs.

Not Available

1990-09-01T23:59:59.000Z

156

Demonstrated reserve base of coal in the United States on January 1, 1980  

Science Conference Proceedings (OSTI)

This is the second in a series of annual summaries on minable coal in the United States, pursuant to the power plant and industrial fuel use act. The demonstrated reserve base of coal in the United States on January 1, 1980 by area, rank, and potential method of mining is given. Reserve data are given by state and by type of coal (anthracite, bithiminous, subbituminous, and lignite). An introduction, summary, and a glossary of selected coal classification terms is also included. The appendix provides the demonstrated reserve base adjustments and related notions by state. References are also included. Coal reserves for 1979 are given for comparison. 7 figures, 6 tables.

Not Available

1982-05-01T23:59:59.000Z

157

Table 14: Shale natural gas proved reserves and production, 2008 - 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves and production, 2008 - 2011" : Shale natural gas proved reserves and production, 2008 - 2011" "billion cubic feet" ,,"Reserves",,,,,"Production" "State and Subdivision",,2008,2009,2010,2011,,2008,2009,2010,2011 "Alaska",,0,0,0,0,,0,0,0,0 "Lower 48 States",,34428,60644,97449,131616,,2116,3110,5336,7994 "Alabama",,2,0,0,0,,0,0,0,0 "Arkansas",,3833,9070,12526,14808,,279,527,794,940 "California",,0,0,0,855,,0,0,0,101 "Colorado",,0,4,4,10,,0,1,1,3 "Florida",,0,0,0,0,,0,0,0,0 "Kansas",,0,0,0,0,,0,0,0,0 "Kentucky",,20,55,10,41,,2,5,4,4 "Louisiana",,858,9307,20070,21950,,23,293,1232,2084 " North",,858,9307,20070,21950,,23,293,1232,2084 " South",,0,0,0,0,,0,0,0,0

158

Bio-Based Products  

Energy.gov (U.S. Department of Energy (DOE))

Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often...

159

,"Miscellaneous Shale Gas Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

160

Habitat Quality and Anadromous Fish Production on the Warm Springs Reservation. Final Report.  

DOE Green Energy (OSTI)

The number of anadromous fish returning to the Columbia River and its tributaries has declined sharply in recent years. Changes in their freshwater, estuarine, and ocean environments and harvest have all contributed to declining runs of anadromous fish. Restoration of aquatic resources is of paramount importance to the Confederated Tribes of the Warm Springs (CTWS) Reservation of Oregon. Watersheds on the Warm Springs Reservation provide spawning and rearing habitat for several indigenous species of resident and anadromous fish. These streams are the only ones in the Deschutes River basin that still sustain runs of wild spring chinook salmon, Oncorhynchus, tshawytscha. Historically, reservation streams supplied over 169 km of anadromous fish habitat. Because of changes in flows, there are now only 128 km of habitat that can be used on the reservation. In 1981, the CTWS began a long-range, 3-phase study of existing and potential fish resources on the reservation. The project, consistent with the Northwest Power Planning Council`s Fish and Wildlife Program, was designed to increase the natural production of anadromous salmonids on the reservation.

Fritsch, Mark A.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Direct estimation of gas reserves using production data  

E-Print Network (OSTI)

This thesis presents the development of a semi-analytical technique that can be used to estimate the gas-in-place for volumetric gas reservoirs. This new methodology utilizes plotting functions, plots, extrapolations, etc. - where all analyses are based on the following governing identity. The 'governing identity' is derived and validated by others for pi less than 6000 psia. We have reproduced the derivation of this result and we provide validation using numberical simulation for cases where pi greater than 6000 psia. The relevance of this work is straightforward using a simple governing relation, we provide a series of plotting functions which can be used to extrapolate or interpret an estimate of gas-in-place using only production data (qg and Gp). The proposed methodology does not require a prior knowledge of formation and or fluid compressibility data, nor does it require average reservoir pressure. In fact, no formation or fluid properties are directly required for this analysis and interpretation approach. The new methodology is validated demonstrated using results from numerical simulation (i.e., cases where we know the exact answer), as well as for a number of field cases. Perhaps the most valuable component of this work is our development of a "spreadsheet" approach in which we perform multiple analyses interpretations simultaneously using MS Excel. This allows us to visualize all data plots simultaneously - and to "link" the analyses to a common set of parameters. While this "simultaneous" analysis approach may seem rudimentary (or even obvious), it provides the critical (and necessary) "visualization" that makes the technique functional. The base relation (given above) renders different behavior for different plotting functions, and we must have a "linkage" that forces all analyses to "connect" to one another. The proposed multiplot spreadsheet approach provides just such a connection.

Buba, Ibrahim Muhammad

2003-08-01T23:59:59.000Z

162

Documentation of the demonstrated reserve base of coal in the United States. Volume 2. Final report  

SciTech Connect

The purpose of this report is to document the methodologies used to develop the 1979 Demonstrated Reserve Base (DRB) of coal. The main body of this report summarizes the methodological procedures used to develop each state reserve estimate. The appendices to the report provide a detailed description of the entire DRB process for each state.

Herhal, A J; Britton, S G; Minnucci, C A

1982-03-01T23:59:59.000Z

163

Table 4. Principal shale gas plays: natural gas production and proved reserves, 2010-1011  

U.S. Energy Information Administration (EIA) Indexed Site

Principal shale gas plays: natural gas production and proved reserves, 2010-2011 Principal shale gas plays: natural gas production and proved reserves, 2010-2011 trillion cubic feet Basin Shale Play State(s) Production Reserves Production Reserves Production Reserves Fort Worth Barnett TX 1.9 31.0 2.0 32.6 0.1 1.6 Appalachian Marcellus PA, WV, KY, TN, NY, OH 0.5 13.2 1.4 31.9 0.9 18.7 Texas-Louisiana Salt Haynesville/Bossier TX, LA 1.5 24.5 2.5 29.5 1.0 5.0 Arkoma Fayetteville AR 0.8 12.5 0.9 14.8 0.1 2.3 Anadarko Woodford TX, OK 0.4 9.7 0.5 10.8 0.1 1.1 Western Gulf Eagle Ford TX 0.1 2.5 0.4 8.4 0.3 5.9 Sub-total 5.2 93.4 7.7 128.0 2.5 34.6 Other shale gas plays 0.2 4.0 0.3 3.6 0.1 -0.4 All U.S. Shale Plays 5.4 97.4 8.0 131.6 2.6 34.2 Change 2011-2010 2010 2011 Notes: Some columns may not add up to its subtotal because of independent rounding. Natural gas is wet after lease separation. The above table is

164

http://www.ogj.com/articles/print/volume-111/issue-9/drilling-production/barnett-study-determines-full-field-reserves.html BARNETT SHALE MODEL-2 (Conclusion): Barnett study  

E-Print Network (OSTI)

-production/barnett-study-determines-full-field-reserves.html BARNETT SHALE MODEL-2 (Conclusion): Barnett study determines full-field reserves, production forecast John shale integrates engineering, geology, and economics into a numerical model that allows f or scenario

Patzek, Tadeusz W.

165

Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

166

Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

167

Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

168

Grid-based Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid-based Production Grid-based Production Grid-based Production PDSF is a Tier 2 site for ALICE and as such has the infrastructure in place to run automated grid-based ALICE production jobs. The main components of this infrastructure are listed below. Grid-Enabled Storage Elements There are currently a set of 10 servers running XRootD with a total capacity of 720TB. Included in XRootD are the data transfer tools used to transfer the input and output files for the production jobs running at PDSF. In addition to the 10 servers there is also the XRootD redirector which is currently running on pc1801.nersc.gov (pdsf5.nersc.gov). VO Box A VO (Virtual Organization) box is a dedicated node (palicevo1.nersc.gov) that coordinates the production. It runs the grid-monitoring tool MonALISA, the AliEn grid framework software, a Condor-G client and does job

169

Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-Hourly Variability Analysis: Preprint  

DOE Green Energy (OSTI)

Increasing penetrations of wind a solar energy are raising concerns among electric system operators because of the variability and uncertainty associated with power sources. Previous work focused on the quantification of reserves for systems with wind power. This paper presents a new methodology that allows the determination of necessary reserves for high penetrations of photovoltaic (PV) power and compares it to the wind-based methodology. The solar reserve methodology is applied to Phase 2 of the Western Wind and Solar Integration Study. A summary of the results is included.

Ibanez, E.; Brinkman, G.; Hummon, M.; Lew, D.

2012-08-01T23:59:59.000Z

170

Analysis of the effects of section 29 tax credits on reserve additions and production of gas from unconventional resources  

SciTech Connect

Federal tax credits for production of natural gas from unconventional resources can stimulate drilling and reserves additions at a relatively low cost to the Treasury. This report presents the results of an analysis of the effects of a proposed extension of the Section 29 alternative fuels production credit specifically for unconventional gas. ICF Resources estimated the net effect of the extension of the credit (the difference between development activity expected with the extension of the credit and that expected if the credit expires in December 1990 as scheduled). The analysis addressed the effect of tax credits on project economics and capital formation, drilling and reserve additions, production, impact on the US and regional economies, and the net public sector costs and incremental revenues. The analysis was based on explicit modeling of the three dominant unconventional gas resources: Tight sands, coalbed methane, and Devonian shales. It incorporated the most current data on resource size, typical well recoveries and economics, and anticipated activity of the major producers. Each resource was further disaggregated for analysis based on distinct resource characteristics, development practices, regional economics, and historical development patterns.

Not Available

1990-09-01T23:59:59.000Z

171

Table 14. Shale Gas Proved Reserves, Reserves Changes, and ...  

U.S. Energy Information Administration (EIA)

aIncludes Indiana, Missouri, and Tennessee. Note: The above table is based on shale gas proved reserves and production volumes as reported to the EIA on Form EIA-23 ...

172

NREL Variability and Reserves Analysis for the Western Interconnect (Presentation)  

DOE Green Energy (OSTI)

Additional variability and uncertainty increase reserve requirements. In this light, this presentation discusses how use of generation reserves can be optimized for managing variability and uncertainty. Conclusions of this presentation are: (1) Provided a method for calculating additional reserve requirements due to wind and solar production; (2) Method is based on statistical analysis of historical time series data; (3) Reserves are dynamic, produced for each hour; (4) Reserve time series are calculated from and synchronized to simulation data; (5) PROMOD can not model directly, but workarounds exist for regulation and spin; and (6) Other production modeling packages have varying capability for reserves modeling.

Milligan, M.; King, J.

2011-10-01T23:59:59.000Z

173

Modeling Capacity Reservation Contract  

E-Print Network (OSTI)

In this paper we model a scenario where a chip designer (buyer) buys capacity from chip manufacturers (suppliers) in the presence of demand uncertainty faced by the buyer. We assume that the buyer knows the probability distribution of his demand. The supplier offers the buyer to reserve capacity in advance at a price that is lower than the historical average of the spot price. The supplier’s price (if the buyer reserves capacity in advance) is function of her capacity, demand for her capacity, unit production cost, the average spot market price and the amount of capacity reserved by the buyer. Based on these parameters we derive the price the suppliers will charge. We formulate the problem from the buyer’s perspective. The buyer’s decisions are how much capacity to reserve and from how many suppliers. The optimal solution is obtained numerically. Our model addresses the following issues that are not covered in the current literature on capacity reservation models. In the existing literature the supplier’s price is an exogenous parameter. We model the supplier’s price from relevant parameters mentioned above. This makes our model richer. For example, if the expected capacity utilization for the supplier is likely to be low then the supplier will charge a lower price for capacity reservation. In reality, the buyer sources from multiple suppliers. Most mathematical models on capacity reservation, we are aware of, assumes a single buyer and a single supplier. We generalize this to a single buyer and multiple suppliers.

Jishnu Hazra; B. Mahadevan; Sudhi Seshadri

2002-01-01T23:59:59.000Z

174

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

175

Management plan for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base  

SciTech Connect

The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base management plan documents the development and maintenance of the ORRHAGS Groundwater Data Base and contains information on data base objectives; roles and responsibilities of the personnel involved; and flow, updating, and storage of the data.

Thompson, B.K.

1993-04-01T23:59:59.000Z

176

SolarReserve | Open Energy Information  

Open Energy Info (EERE)

SolarReserve SolarReserve Jump to: navigation, search Name SolarReserve Place Santa Monica, California Zip 90404 Sector Renewable Energy Product A joint venture between United Technologies (NYSE: UTX) subsidiary Hamilton Sundstrand and project developer US Renewables Group (USRG) for developing STEG projects using molten salt thermal storage. References SolarReserve[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarReserve is a company located in Santa Monica, California . References ↑ "SolarReserve" Retrieved from "http://en.openei.org/w/index.php?title=SolarReserve&oldid=351420" Categories: Clean Energy Organizations Companies Organizations Stubs

177

Documentation of the demonstrated reserve base of coal in the United States. Final report, Volume 1  

SciTech Connect

The purpose of this report is to document the methodologies used to develop the 1979 Demonstrated Reserve Base (DRB) of coal. All primary source documents used to prepare the 1979 DRB were reviewed. Using the methodologies and documentation found in the 1979 DRB published report as a guide, each of the state-level published reserve estimates were re-derived. In those cases where the estimates could not be reproduced, EIA personnel from the Eastern and Western Energy Data Offices were consulted and the differences, for the most part, were resolved. Throughout this report an attempt was made to describe the information flow that was an integral part of the DRB development. Particular attention and emphasis was given to those instances where deviations from standard, published EIA procedures were used to derive the DRB estimates. The main body of this report summarizes the methodological procedures used to develop each state reserve estimate.

Herhal, A J; Britton, S G; Minnucci, C A

1982-03-01T23:59:59.000Z

178

Increased oil production and reserves from improved completion techniques in the Bluebell Field, Unita Basin, Utah. Quarterly technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect

This project aspires to increase the productivity and reserves in the Uinta Basin by demonstration of improved completion techniques. Subsurface studies were performed this period.

Allison, M.L.

1995-04-07T23:59:59.000Z

179

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6...

180

,"Utah Lease Condensate Proved Reserves, Reserve Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2011,"6...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6301989"...

182

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"...

183

,"TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

184

,"TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

185

,"California Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

186

,"TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

187

,"TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

188

,"TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

189

,"TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

190

,"North Dakota Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

191

,"West Virginia Shale Gas Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

192

,"Pennsylvania Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

193

,"TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

194

,"TX, State Offshore Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

195

,"LA, South Onshore Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

196

,"North Louisiana Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

197

,"TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

198

,"New Mexico Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

199

,"TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

200

Table 6. Crude oil and lease condensate proved reserves, reserves...  

Gasoline and Diesel Fuel Update (EIA)

: Crude oil and lease condensate proved reserves, reserves changes, and production, 2011 million barrels Published New Reservoir Proved Revision Revision New Field Discoveries...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"U.S. Lease Condensate Proved Reserves, Reserve Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2011,"...

202

Table 14. Shale natural gas proved reserves and production, 2008-2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves and production, 2008 - 2011 : Shale natural gas proved reserves and production, 2008 - 2011 billion cubic feet State and Subdivision 2008 2009 2010 2011 2008 2009 2010 2011 Alaska 0 0 0 0 0 0 0 0 Lower 48 States 34,428 60,644 97,449 131,616 2,116 3,110 5,336 7,994 Alabama 2 0 0 0 0 0 0 0 Arkansas 3,833 9,070 12,526 14,808 279 527 794 940 California 0 0 0 855 0 0 0 101 Colorado 0 4 4 10 0 1 1 3 Florida 0 0 0 0 0 0 0 0 Kansas 0 0 0 0 0 0 0 0 Kentucky 20 55 10 41 2 5 4 4 Louisiana 858 9,307 20,070 21,950 23 293 1,232 2,084 North 858 9,307 20,070 21,950 23 293 1,232 2,084 South 0 0 0 0 0 0 0 0 State Offshore 0 0 0 0 0 0 0 0 Michigan 2,894 2,499 2,306 1,947 122 132 120 106 Mississippi 0 0 0 0 0 0 0 0 Montana 125 137 186 192 13 7 13 13 New Mexico 0 36 123 144 0 2 6 9 East 0 7 35 23 0 1 3 5 West 0 29 88 121 0 1 3 4 New York 0 0 0 0 0 0 0 0 North Dakota 24 368 1,185 1,649 3 25 64 95 Ohio 0 0 0 0 0 0 0 0 Oklahoma 3,845 6,389 9,670 10,733 168 249 403 476 Pennsylvania 88 3,790 10,708

203

Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Underground - Minable Coal Surface - Minable Coal Total Coal-Resource State Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base

204

Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996  

SciTech Connect

The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

NONE

1997-09-01T23:59:59.000Z

205

Energy Basics: Bio-Based Products  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Bio-Based Products Almost all of the products...

206

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

207

Table 11: Dry natural gas proved reserves, reserves changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908...

208

Table 8. Lease Condensate Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908...

209

Table 13: Associated-dissolved natural gas proved reserves, reserves changes, an  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

210

Table 6: Crude oil and lease condensate proved reserves, reserves changes, and p  

U.S. Energy Information Administration (EIA) Indexed Site

: Crude oil and lease condensate proved reserves, reserves changes, and production, 2011" : Crude oil and lease condensate proved reserves, reserves changes, and production, 2011" "million barrels" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

211

Table 12: Nonassociated natural gas proved reserves, reserves changes, and produ  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 " : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 " "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

212

Michigan Crude Oil plus Lease Condensate Proved Reserves  

U.S. Energy Information Administration (EIA)

Crude Oil plus Lease Condensate Proved Reserves, Reserves Changes, and Production (Million Barrels) Area: ... New Reservoir Discoveries in Old Fields ...

213

Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

1999-06-25T23:59:59.000Z

214

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

215

Stretched Exponential Decline Model as a Probabilistic and Deterministic Tool for Production Forecasting and Reserve Estimation in Oil and Gas Shales  

E-Print Network (OSTI)

Today everyone seems to agree that ultra-low permeability and shale reservoirs have become the potentials to transform North America's oil and gas industry to a new phase. Unfortunately, transient flow is of long duration (perhaps life of the well) in ultra-low permeability reservoirs, and traditional decline curve analysis (DCA) models can lead to significantly over-optimistic production forecasts without additional safeguards. Stretched Exponential decline model (SEDM) gives considerably more stabilized production forecast than traditional DCA models and in this work it is shown that it produces unchanging EUR forecasts after only two-three years of production data are available in selected reservoirs, notably the Barnett Shale. For an individual well, the SEDM model parameters, can be determined by the method of least squares in various ways, but the inherent nonlinear character of the least squares problem cannot be bypassed. To assure a unique solution to the parameter estimation problem, this work suggests a physics-based regularization approach, based on critical velocity concept. Applied to selected Barnett Shale gas wells, the suggested method leads to reliable and consistent EURs. To further understand the interaction of the different fracture properties on reservoir response and production decline curve behavior, a series of Discrete Fracture Network (DFN) simulations were performed. Results show that at least a 3-layer model is required to reproduce the decline behavior as captured in the published SEDM parameters for Barnett Shale. Further, DFN modeling implies a large number of parameters like fracture density and fracture length are in such a way that their effect can be compensated by the other one. The results of DFN modeling of several Barnett Shale horizontal wells, with numerous fracture stages, showed a very good agreement with the estimated SEDM model for the same wells. Estimation of P90 reserves that meet SEC criteria is required by law for all companies that raise capital in the United States. Estimation of P50 and P10 reserves that meet SPE/WPC/AAPG/SPEE Petroleum Resources Management System (PRMS) criteria is important for internal resource inventories for most companies. In this work a systematic methodology was developed to quantify the range of uncertainty in production forecast using SEDM. This methodology can be used as a probabilistic tool to quantify P90, P50, and P10 reserves and hence might provide one possible way to satisfy the various legal and technical-society-suggested criteria.

Akbarnejad Nesheli, Babak

2012-05-01T23:59:59.000Z

216

How large are U.S. coal reserves? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How large are U.S. coal reserves? There are three separate components for U.S. coal reserves. Recoverable reserves; Demonstrated reserve base; ...

217

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

218

Risk-Based Production Optimization  

Science Conference Proceedings (OSTI)

This report documents the pilot application of a risk-informed approach to production optimization at fossil power plants. In this project, EPRI worked with a U.S. utility to develop risk profiles for plant components at two of the utilitys coal-fired generating units. The information was then used as a basis for identifying timing strategies for performing outage-based maintenance. The primary objective was to apply a risk-informed approach to identifying an optimal sequence of outage intervals and scop...

2011-04-29T23:59:59.000Z

219

Naval Petroleum and Oil Shale Reserves annual report of operations for fiscal year 1996  

SciTech Connect

During fiscal year 1996, the Department of Energy continued to operate Naval Petroleum Reserve No. 1 in California and Naval Petroleum Reserve No. 3 in Wyoming through its contractors. In addition, natural gas operations were conducted at Naval Petroleum Reserve No. 3. All productive acreage owned by the Government at Naval Petroleum Reserve No. 2 in California was produced under lease to private companies. The locations of all six Naval Petroleum and Oil Shale Reserves are shown in a figure. Under the Naval Petroleum Reserves Production Act of 1976, production was originally authorized for six years, and based on findings of national interest, the President was authorized to extend production in three-year increments. President Reagan exercised this authority three times (in 1981, 1984, and 1987) and President Bush authorized extended production once (in 1990). President Clinton exercised this authority in 1993 and again in October 1996; production is presently authorized through April 5, 2000. 4 figs. 30 tabs.

1996-12-31T23:59:59.000Z

220

INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

Thomas C. Chidsey, Jr.

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"TX, RRC District 7C Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

222

,"TX, RRC District 7B Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

223

Gulf of Mexico Proved Reserves By Water Depth, 2008  

U.S. Energy Information Administration (EIA)

Gulf of Mexico Proved Reserves and Production by Water Depth 1 Gulf of Mexico Proved Reserves and Production by Water Depth, 2008 . The Gulf of Mexico Federal ...

224

Codes base on unambiguous products  

Science Conference Proceedings (OSTI)

In this paper, we propose the notion of +-unambiguous product which is expanded from unambiguous product and the definitions of alternative product, alternative code, even alternative code on a pair (X, Y) of languages. Some basic properties of ... Keywords: +-unambiguous product, alt-code, ealt-code, generations of code, independency of conditions

Ho Ngoc Vinh; Vu Thanh Nam; Phan Trung Huy

2010-11-01T23:59:59.000Z

225

Economics of Operating Reserve Markets  

Science Conference Proceedings (OSTI)

In electricity markets, the tradable products are energy services, reserve services, and their derivatives. Although the lion's share of the dollars is in energy-related services, the cost and value of reserve-related services can be large enough to affect the achieved returns on equity of regulated utilities and to be the difference between profit and loss for competitive generation and merchant firms. This report will help electric power firms understand how reserve markets work, how reserve prices dep...

2003-11-26T23:59:59.000Z

226

Long Term World Oil Supply (A Resource Base/Production Path Analysis)  

Gasoline and Diesel Fuel Update (EIA)

Long Term World Oil Supply Long Term World Oil Supply (A Resource Base/Production Path Analysis) 07/28/2000 Click here to start Table of Contents Long Term World Oil Supply (A Resource Base/Production Path Analysis) Executive Summary Executive Summary (Continued) Executive Summary (Continued) Overview The Year of Peak Production..When will worldwide conventional oil production peak?... Lower 48 Crude Oil Reserves & Production 1945-2000 Texas Oil and Condensate Production, and Texas First Purchase Price (FPP), 1980-1999 Published Estimates of World Oil Ultimate Recovery Different Interpretations of a Hypothetical 6,000 Billion Barrel World Original Oil-in-Place Resource Base Campbell-Laherrère World Oil Production Estimates, 1930-2050 Laherrere’s Oil Production Forecast, 1930-2150

227

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

228

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-09-04T23:59:59.000Z

229

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-06-04T23:59:59.000Z

230

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

231

Federal Reserve Bank of of Kansas City Markets, Not Mandates, Shape Ethanol Production  

E-Print Network (OSTI)

The 2012 drought has reignited the food versus fuel debate. After cutting U.S. corn production below recent years ’ consumption, the drought sparked a U.S. grain shortage and sent global food prices soaring. As the grain shortage intensified, pressure to relieve the shortage by easing ethanol mandates mounted. Escalating ethanol mandates under the Renewable Fuel Standard (RFS), which fueled the expansion of the U.S. ethanol industry, will soon exceed the amount of ethanol than can be used in current U.S. gasoline blends. Some industry participants believe that a waiver of the mandate has the potential to reduce ethanol production and relieve high corn prices. However, ethanol production may not decline significantly, even if the mandates are waived temporarily,

Main Street; Nathan Kauffman

2012-01-01T23:59:59.000Z

232

Community Based Renewable Energy Production Incentive (Pilot...  

Open Energy Info (EERE)

History Share this page on Facebook icon Twitter icon Community Based Renewable Energy Production Incentive (Pilot Program) (Maine) This is the approved revision of this...

233

Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption  

Science Conference Proceedings (OSTI)

Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

Korkmaz, S.; Kara-Gulbay, R.; Turan, M. [Karadeniz Technical University, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

234

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

1998-03-03T23:59:59.000Z

235

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

Scott Hara

1997-08-08T23:59:59.000Z

236

Increasing Heavy Oil Reservers in the Wilmington Oil field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, Scott [Tidelands Oil Production Co., Long Beach, CA (United States)

1997-05-05T23:59:59.000Z

237

Bio-Based Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones....

238

Reservation Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservation Management The ORR is home to three major facility complexes: the East Tennessee Technology Park (ETTP), the National Nuclear Security Administration's (NNSA's) Y-12...

239

Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane New Field Discoveries Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production...

240

European Demonstration of CIM-Based Products  

Science Conference Proceedings (OSTI)

EPRI cosponsored demonstrations of Common Information Model (CIM)-based products in May 2006 during the first European meeting of the new CIM User Group. Nine vendors including ABB, Areva T&D, EDF and SUPELEC, ELES and Jelovac Solutions, KEMA, Siemens PTI, SISCO, SNC Lavalin and ENSICO, and the University of Strathclyde participated. Each vendor brought one or more products incorporating CIM standards. This report describes those products, the results of product demonstrations at the meeting, and attende...

2006-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

242

Resource management plan for the Oak Ridge Reservation: Volume 26, Resource Management Organization data base and bibliography  

Science Conference Proceedings (OSTI)

A reference collection was developed by the Information Support Unit of the Information Services Division for the Resource Management Organization. Located in Building 4500N, the reference collection contains print copies of documents dealing with environmental aspects of the Oak Ridge Reservation from 1942 to the present. Subjects in this collection include environmental monitoring, hydrology, wildlife management, geology, environmental assessment, and area studies. Information for this collection was retrieved by searching internal and external data bases; conducting personal interviews; and by cross-referencing bibliographies (including those already in the collection), indexes, and Laboratory Records report lists. This is a dynamic collection that will continue to expand to include new and additional documents as they are identified. A data base containing a bibliographic citation and an abstract (when available) for each document in the collection has also been constructed. The data base was established to create bibliographies on specific environmental aspects of the Oak Ridge Reservation. The data base includes search capabilities by several specific fields as well as by free text. For example, the data base can be searched by author, title, descriptor, report number, conference title, date of publication, document type, or any combination of the above. Additionally, the data base can be searched ''free-text'' by a single word or phase found in the citation or abstract. For additional information, the Information Support Unit can be reached at (615)574-9150 or (615)574-0819. Any comments or suggestions concerning items for inclusion should also be directed to the Information Support Unit /approximately/1200 items.

Lahmon, J.A.

1988-09-01T23:59:59.000Z

243

Energy Basics: Bio-Based Products  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for...

244

Vision-based production of personalized video  

Science Conference Proceedings (OSTI)

In this paper we present a novel vision-based system for the automated production of personalized video souvenirs for visitors in leisure and cultural heritage venues. Visitors are visually identified and tracked through a camera network. The system ... Keywords: Automated content production, Human identification, Tracking

D. I. Kosmopoulos; A. Doulamis; A. Makris; N. Doulamis; S. Chatzis; S. E. Middleton

2009-03-01T23:59:59.000Z

245

Sustainable growth and valuation of mineral reserves  

E-Print Network (OSTI)

The annual change in the value of an in-ground mineral is equal to the increase or decrease of inventories ("reserves"), multiplied by the market value of a reserve unit. The limited shrinking resource base does not exist. ...

Adelman, Morris Albert

1994-01-01T23:59:59.000Z

246

Rerouting in advance reservation networks  

Science Conference Proceedings (OSTI)

The advance reservation of network connections is an area of growing interest and a range of service models and algorithms have been proposed to achieve various scheduling objectives, i.e., including optimization-based strategies and heuristic schemes. ... Keywords: Advance reservation, Bandwidth migration, Load-balancing, Rerouting

Chongyang Xie; Hamed Alazemi; Nasir Ghani

2012-07-01T23:59:59.000Z

247

Petroleum production at Maximum Efficient Rate Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California. Final Supplemental Environmental Impact Statement  

SciTech Connect

This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).

Not Available

1993-07-01T23:59:59.000Z

248

Strategic Petroleum Reserve quarterly report  

SciTech Connect

The Strategic Petroleum Reserve was created pursuant to the Energy Policy and Conservation Act of December 22, 1975 (Public Law 94-163). Its purposes are to reduce the impact of disruptions in supplies of petroleum products and to carry out obligations of the United States under the Agreement on an International Energy Program. Section 165(a) of the Act requires the submission of Annual Reports and Section 165(b)(1) requires the submission of Quarterly Reports. This Quarterly Report highlights activities undertaken during the third quarter of calendar year 1995, including: inventory of petroleum products stored in the Reserve; current storage capacity and ullage available; current status of the Strategic Petroleum Reserve storage facilities, major projects and the acquisition of petroleum products; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

1995-11-15T23:59:59.000Z

249

Gulf of Mexico Proved Reserves By Water Depth, 2009  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM...

250

Grain & Wood Based Technologies for Production of Ethanol  

U.S. Energy Information Administration (EIA)

Outline Sources of Ethanol Grain Based Dry Mill Process Cellulosic Based Processes Costs Conclusions The Production of Ethanol Bioethanol ...

251

California--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0...

252

Report to the Congress: strategic alcohol fuel reserve  

Science Conference Proceedings (OSTI)

The feasibility of developing a Strategic Alcohol Fuel Reserve (SAFURE) is examined in this report. The analysis compares each of three different ethanol storage program options to that portion of the currently-planned Strategic Petroleum Reserve (SPR) which could be replaced by a particular SAFURE program. These options are: Ethanol Spare Production Capacity Utilization using essentially uneconomical, existing production capacity; Market Diversion through government purchases of ethanol for SAFURE storage, and Dedicated Plants using federal contracts to procure the entire output of five new plants. Based on this most recent analysis and other information currently available, it was concluded that the costs of acquiring, storing and managing an alcohol fuel reserve are substantially higher than the costs of the current SPR program. The net economic and security benefits of the current SPR program are also higher, and the budget costs of the SPR program are lower.

Not Available

1982-12-31T23:59:59.000Z

253

HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

2003-07-01T23:59:59.000Z

254

Spring Chinook Salmon Production for Confederated Tribes of the Umatilla Indian Reservation, Little White Salmon National Fish Hatchery, Annual Report 2006.  

DOE Green Energy (OSTI)

This annual report covers the period from January 1, 2006 through December 31, 2006. Work completed supports the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) effort to restore a locally-adapted stock of spring Chinook to the Umatilla River Basin. During the year, staff at the Little White Salmon/Willard National Fish Hatchery Complex have completed the rearing of 218,764 Brood Year 2004 spring Chinook salmon for release into the Umatilla River during spring 2006 and initiated production of approximately 220,000 Brood Year 2005 spring Chinook for transfer and release into the Umatilla River during spring 2007. All work under this contract is performed at the Little White Salmon and Willard National Fish Hatcheries (NFH), Cook, WA.

Doulas, Speros

2007-01-01T23:59:59.000Z

255

Microbial Diversity-Based Novel Crop Protection Products  

E-Print Network (OSTI)

ial divers ity- based new crop protection products andicultural production of major crop plan ts and industrialand insect pests major crop plants. If the of cell- free

Yalpani, Ronald Flannagan, Rafael Herrmann, James Presnail, Tamas Torok, and Nasser

2011-01-01T23:59:59.000Z

256

Gulf of Mexico Proved Reserves By Water Depth, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved reserves from the GOM Fed have gradually diminished, both volumetrically and as a percentage of overall U.S. proved reserves. The latter is especially true in recent years as onshore additions (particularly those associated with shale gas activity) have increased considerably. Proved oil reserves from

257

U.S. Coal Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Data - U.S. Energy Information Administration (EIA) Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

258

Undulator-Based Production of Polarized Photons  

Science Conference Proceedings (OSTI)

"Project Title: Undulator-Based Production of Polarized Photons" DOE Contract Number: FG02-04ER41355 Principal Investigator: Prof. Kirk McDonald Period of Performance: 09/10/2004 thru 08/31/2006 This award was to fund Princeton's activity on SLAC experiment E166, "Undulator-Based Production of Polarized Positrons" which was performed at SLAC during June and September 2005. Princeton U. fabricated a magnetic spectrometer for this experiment, and participated in the commissioning, operation, and analysis of the experiment, for which Prof. McDonald was a co-spokesperson. The experiment demonstrated that an intense positron beam with 80% longitudinal polarization could be generated by conversion of MeVenergy circularly polarized photons in a thin target, which photons were generated by passage of high-energy electrons through a helical undulator. This technique has since been adopted as the baseline for the polarized positron source of the proposed International Linear Collider. Results of the experiment have been published in Physical Review Letters, vol 100, p 210801 (2008) [see attached .pdf file], and a longer paper is in preparation.

Professor Kirk McDonald

2008-05-29T23:59:59.000Z

259

Naval petroleum and oil shale reserves: Annual report of operations, FY 1987  

SciTech Connect

Production and reserves, development and exploration, revenues and expenditures, sales, environment and safety, and litigation are discussed for naval petroleum reserves numbers one through three and for naval oil shale reserves. 28 figs., 21 tabs. (ACT)

Not Available

1987-01-01T23:59:59.000Z

260

Stochastic Reserve Determination: Case Study with the California ISO  

Science Conference Proceedings (OSTI)

This report describes an evaluation of using a stochastic optimal power flow for determining reserve requirements when the power system is operated in the presence of error-prone forecasts of renewable energy production. This technique is applicable for all sorts of forecast errors, such as resource availability and demand forecasting, in addition to renewable energy production. The simulations are being conducted on a model of U.S. Western Interconnection in the year 2012. It is based on a model of ...

2013-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Demand Response Spinning Reserve  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Spinning Reserve Title Demand Response Spinning Reserve Publication Type Report Year of Publication 2007 Authors Eto, Joseph H., Janine Nelson-Hoffman, Carlos...

262

Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"  

Science Conference Proceedings (OSTI)

The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

Scott Hara

2007-03-31T23:59:59.000Z

263

Thermochemical hydrogen production based on magnetic fusion  

DOE Green Energy (OSTI)

Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO/sub 3/ decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars.

Krikorian, O.H.; Brown, L.C.

1982-06-10T23:59:59.000Z

264

Oil reserves  

SciTech Connect

As of March 1988, the Strategic Petroleum Reserve inventory totaled 544.9 million barrels of oil. During the past 6 months the Department of Energy added 11.0 million barrels of crude oil to the SPR. During this period, DOE distributed $208 million from the SPR Petroleum Account. All of the oil was purchased from PEMEX--the Mexican national oil company. In FY 1988, $164 million was appropriated for facilities development and management and $439 million for oil purchases. For FY 1989, DOE proposes to obligate $173 million for facilities development and management and $236 million for oil purchases. DOE plans to postpone all further drawdown exercises involving crude oil movements until their effects on cavern integrity are evaluated. DOE and the Military Sealift Command have made progress in resolving the questions surrounding nearly $500,000 in payments for demurrage charges.

Not Available

1988-01-01T23:59:59.000Z

265

Automating Software Product Line Development: A Repository-Based Approach  

Science Conference Proceedings (OSTI)

Component-based software engineering (CBSE) focuses on the reuse of already available software assets aiming better productivity and quality. By adopting software product line (SPL) practices, an organization is able to develop a family of products, ... Keywords: Software Product Line, Component-based software development, Ginga middleware

Sindolfo Miranda Filho; Heitor Mariano; Uira Kulesza; Thais Batista

2010-09-01T23:59:59.000Z

266

Alternative Fuels Data Center: Agriculturally-Based Fuel Production Wage  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Based Based Fuel Production Wage and Salary Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Agriculturally-Based Fuel Production Wage and Salary Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Agriculturally-Based Fuel Production Wage and Salary Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Agriculturally-Based Fuel Production Wage and Salary Tax Credit on Google Bookmark Alternative Fuels Data Center: Agriculturally-Based Fuel Production Wage and Salary Tax Credit on Delicious Rank Alternative Fuels Data Center: Agriculturally-Based Fuel Production Wage and Salary Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Agriculturally-Based Fuel Production Wage and Salary Tax Credit on AddThis.com...

267

Annual Strategic Petroleum Reserve report  

SciTech Connect

The annual report on the Strategic Petroleum reserve for the period covering February 16, 1977 to February 18, 1978 contains the following: (1) a detailed statement of the status of the Strategic Petroleum Reserve; (2) a summary of the actions taken to develop and implement the Strategic Petroleum Reserve Plan and the Early Storage Reserve Plan; (3) an analysis of the impact and effectiveness of such actions on the vulnerability of the United States to interruption in supplies of petroleum products; (4) a summary of existing problems with respect to further implementation of the Early Storage Reserve Plan and the Strategic Petroleum Reserve Plan. Four sites with existing underground storage capacity were acquired in 1977. They are: (1) West Hackberry salt dome, Cameron Parish, Louisiana, with estimated existing capacity of 50 MMB; (2) Bryan Mound salt dome, Brazoria County, Texas, with estimated existing capacity of 62 MMB; (3) Bayou Choctaw salt dome, Iberville Parish, Louisiana, with estimated existing capacity of 74 MMB; and (4) Weeks Island salt mine, New Iberia Parish, Louisiana, with estimated existing capacity of 89 MMB. The status of each site is summarized.

1978-02-16T23:59:59.000Z

268

Copyright© 2013, Intel Corporation. All rights reserved  

NLE Websites -- All DOE Office Websites (Extended Search)

Copyright© 2013, Intel Corporation. All rights reserved. Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Performance Analysis for Intel architecture 10/24/13 1 Copyright© 2013, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Intel ® VTune(tm) Amplifier XE 2013 Second Generation VTune(tm) Analyzer Fast, Accurate Performance Profiles * Hotspot (Statistical call tree) * Hardware-Event Based Sampling 1 Thread Profiling * Visualize thread interactions on timeline * Balance workloads Easy set-up * Pre-defined performance profiles * Use a normal production build Compatible * Microsoft, GCC, Intel compilers * C/C++, Fortran, Assembly, .NET, Java* * Latest Intel ® processors

269

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

Scott Hara

2002-01-31T23:59:59.000Z

270

Increasing heavy oil reserves in the Wilmington Oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, April 1, 1996--June 30, 1996  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The technologies include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S.

1996-08-05T23:59:59.000Z

271

Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

1997-05-11T23:59:59.000Z

272

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

Scott Hara

2002-04-30T23:59:59.000Z

273

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

Scott Hara

2001-11-01T23:59:59.000Z

274

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

275

Strategic petroleum reserve. Quarterly report  

SciTech Connect

The Strategic Petroleum Reserve serves as one of our most important investments in reducing the Nation`s vulnerability to oil supply disruptions. Its existence provides an effective response mechanism should a disruption occur and a formidable deterrent to the use of oil as a political instrument. The Strategic Petroleum Reserve was created pursuant to the Energy Policy and Conservation Act of December 22, 1975, (Public Law 94-163) as amended, to reduce the impact of disruptions in supplies of petroleum products and to carry out obligations of the United States under the Agreement on an International Energy Program. Section 165(a) of the Act requires the submission of Annual Reports and Section 165(b)(1) requires the submission of Quarterly Reports. This Quarterly Report highlights activities undertaken during the first quarter of calendar year 1994, including: (1) inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; (2) fill rate for the current quarter and projected fill rate for the next calendar quarter; (3) average price of the petroleum products acquired during the calendar quarter; (4) current and projected storage capacity; (5) analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; (6) funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and (7) major environmental actions completed, in progress, or anticipated.

1994-05-15T23:59:59.000Z

276

Petroleum - Exploration & Production - EIA  

U.S. Energy Information Administration (EIA)

Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity. ... Oil Production Capacity Expansion Costs for the Persian Gulf.

277

Bio-Based Products Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are...

278

Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah  

SciTech Connect

The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

Jr., Chidsey, Thomas C.; Allison, M. Lee

1999-11-02T23:59:59.000Z

279

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

280

Bio-Based Product Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Based Product Basics Bio-Based Product Basics Bio-Based Product Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for making biofuels also can be used to make antifreeze, plastics, glues, artificial sweeteners, and gel for toothpaste. Other important building blocks for bio-based products are carbon monoxide and hydrogen. When biomass is heated with a small amount of oxygen, these two gases are produced in abundance. Scientists call this mixture biosynthesis gas. Biosynthesis gas can be used to make plastics and acids,

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Bio-Based Product Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Based Product Basics Bio-Based Product Basics Bio-Based Product Basics August 14, 2013 - 1:19pm Addthis Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones. Researchers have discovered that the process for making biofuels also can be used to make antifreeze, plastics, glues, artificial sweeteners, and gel for toothpaste. Other important building blocks for bio-based products are carbon monoxide and hydrogen. When biomass is heated with a small amount of oxygen, these two gases are produced in abundance. Scientists call this mixture biosynthesis gas. Biosynthesis gas can be used to make plastics and acids,

282

Measurement of Hydrogen Production Rate Based on Dew Point Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

MP-150-42237 U. S. Department of Energy Hydrogen Program Measurement of Hydrogen Production Rate Based on Dew Point Temperatures National Renewable Energy Laboratory 1617 Cole...

283

Renewable Hydrogen Production at Hickam Air Force Base  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production at Hickam Air Force Base November 2009 Hawaii Center for Advanced Transportation Technologies *&1; Established by the High Technology Development Corporation (a...

284

Strategic petroleum reserve. Quarterly report  

SciTech Connect

The Strategic Petroleum Reserve reduces the Nation`s vulnerability to oil supply disruptions. Its existence provides a formidable deterrent to the use of oil as a political instrument and an effective response mechanism should a disruption occur. The Strategic Petroleum Reserve was created pursuant to the Energy Policy and Conservation Act of December 22, 1975 (Public Law 94-163). Its purposes are to reduce the impact of disruptions in supplies of petroleum products and to carry out obligations of the United States under the Agreement on an International Energy Program. Section 165(a) of the Act requires the submission of Annual Reports and Section 165(b)(1) requires the submission of Quarterly Reports. This Quarterly Report highlights activities undertaken during the second quarter of calendar year 1995, including: inventory of petroleum products stored in the Reserve; current and projected storage capacity, analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

1995-08-15T23:59:59.000Z

285

Discovering Attractive Products based on Influence Sets  

E-Print Network (OSTI)

Skyline queries have been widely used as a practical tool for multi-criteria decision analysis and for applications involving preference queries. For example, in a typical online retail application, skyline queries can help customers select the most interesting, among a pool of available, products. Recently, reverse skyline queries have been proposed, highlighting the manufacturer's perspective, i.e. how to determine the expected buyers of a given product. In this work we develop novel algorithms for two important classes of queries involving customer preferences. We first propose a novel algorithm, termed as RSA, for answering reverse skyline queries. We then introduce a new type of queries, namely the k-Most Attractive Candidates k-MAC query. In this type of queries, given a set of existing product specifications P, a set of customer preferences C and a set of new candidate products Q, the k-MAC query returns the set of k candidate products from Q that jointly maximizes the total number of expected buyers, ...

Arvanitis, Anastasios

2011-01-01T23:59:59.000Z

286

Federal Reserve System. Filename  

E-Print Network (OSTI)

* Any views expressed represent those of the author only and not necessarily those of the Federal Reserve

Til Schuermann; Fannie Mae; Freddie Mac; Wells Fargo; Morgan Stanley; Deutsche Bank

2010-01-01T23:59:59.000Z

287

Allocating Reserve Requirements (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of present and possible future ways to allocate and assign benefits for reserve requirements.

Milligan, M.; Kirby, B.; King, J.

2011-07-01T23:59:59.000Z

288

Strategic Petroleum Reserve quarterly report  

SciTech Connect

This Quarterly Report highlights activities undertaken during the second quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the current quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

1993-08-15T23:59:59.000Z

289

Filling the Strategic Petroleum Reserve | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Strategic Petroleum Reserve Petroleum Reserves Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International Cooperation Natural Gas Regulation Advisory...

290

Strategic Petroleum Reserve: Annual/quarterly report  

SciTech Connect

Section 165 of the Energy Policy and Conservation Act (Public Law 94-163), as amended, requires the Secretary of Energy to submit annual and quarterly reports to the President and the Congress on activities of the Strategic Petroleum Reserve. This report combines the fourth quarter 1993 Quarterly Report with the 1993 Annual Report. Key activities described include appropriations; life extension planning; expansion planning; Strategic Petroleum Reserve oil acquisition; the oil stabilization program; and the refined petroleum product reserve test programs. Sections of this report also describe the program mission; the storage facility development program; environmental compliance; budget and finance; and drawdown and distribution.

1994-02-16T23:59:59.000Z

291

Condition-based Maintenance and the product improvement process  

Science Conference Proceedings (OSTI)

The evolution of enterprise services is changing the approach for enabling Product Lifecycle Management (PLM) and Supply Chain Management (SCM) business processes. Enabling systems are migrating to process- and service-oriented solutions. In particular, ... Keywords: Composite applications, Condition-based Maintenance (CBM), Product Lifecycle Management (PLM), Service-oriented architecture (SOA)

Thomas Gulledge; Scott Hiroshige; Raj Iyer

2010-12-01T23:59:59.000Z

292

,"Utah Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Proved Nonproducing Reserves",5,"Annual",2011,"6301996" ,"Release Date:","812013"...

293

Reservation Form (PDF)  

Science Conference Proceedings (OSTI)

Jun 1, 2005 ... Street: City: State/Province: ______ Zip/Postal Code: Country: E-Mail: Telephone: Fax: PLEASE RESERVE _____ (Quantity) 10' X 10' SPACES ...

294

Exhibit Space Reservation (PDF)  

Science Conference Proceedings (OSTI)

Zip: Country: E-mail Address: Telephone Number: Fax Number: Signature: Date: Please reserve _____ (quantity) 10' x 10' space at $1,100 each. Exhibit space ...

295

,"Ohio Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Proved Nonproducing Reserves",5,"Annual",2011,"6301996" ,"Release Date:","812013"...

296

EMC 2007: Housing Reservations  

Science Conference Proceedings (OSTI)

... basis; therefore, early registrations and reservations are essential. ... Food facilities on campus close at 7 p.m.; no refunds are made for late arrivals, early ...

297

Northeast Home Heating Oil Reserve - Online Bidding System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Petroleum Reserves » Heating Oil Reserve » Northeast Services » Petroleum Reserves » Heating Oil Reserve » Northeast Home Heating Oil Reserve - Online Bidding System Northeast Home Heating Oil Reserve - Online Bidding System The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve. We invite prospective bidders and other interested parties to try out this system and give us your views. You must register to use the system to practice or to participate in an actual emergency sale. Registration assures that you will receive e-mail alerts of sales or other pertinent news. You will also have the opportunity to establish a user ID and password to submit bids. If you establish a user ID, you will receive a temporary password by

298

Oak Ridge Reservation environmental report for 1989  

SciTech Connect

This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

Jacobs, V.A.; Wilson, A.R. (eds.)

1990-10-01T23:59:59.000Z

299

Oak Ridge Reservation environmental report for 1989  

SciTech Connect

This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

Jacobs, V.A.; Wilson, A.R. (eds.)

1990-10-01T23:59:59.000Z

300

Fundamental Drivers of the Cost and Price of Operating Reserves  

SciTech Connect

Operating reserves impose a cost on the electric power system by forcing system operators to keep partially loaded spinning generators available for responding to system contingencies variable demand. In many regions of the United States, thermal power plants provide a large fraction of the operating reserve requirement. Alternative sources of operating reserves, such as demand response and energy storage, may provide more efficient sources of these reserves. However, to estimate the potential value of these services, the cost of reserve services under various grid conditions must first be established. This analysis used a commercial grid simulation tool to evaluate the cost and price of several operating reserve services, including spinning contingency reserves and upward regulation reserves. These reserve products were evaluated in a utility system in the western United States, considering different system flexibilities, renewable energy penetration, and other sensitivities. The analysis demonstrates that the price of operating reserves depend highly on many assumptions regarding the operational flexibility of the generation fleet, including ramp rates and the fraction of fleet available to provide reserves.

Hummon, M. R.; Denholm, P.; Jorgenson, J.; Palchak, D.; Kirby, B.; Ma, O.

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Study on Real Options Model of Operating Capital Value of Generator for Spinning Reserve and Risk Assessment Based on Monte Carlo Methods  

Science Conference Proceedings (OSTI)

Electricity market has complex market rules, and its operation with great uncertainty. In this paper, the real options model of operating capital value of generator for spinning reserve is constructed under uncertainty market conditions including uncertainty ...

Xin Ma

2008-10-01T23:59:59.000Z

302

Utah Natural Gas, Wet After Lease Separation Reserves Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

303

Ethanol production using a soy hydrolysate-based medium or a yeast autolysate-based medium  

DOE Patents (OSTI)

This invention presents a method for the production of ethanol that utilizes a soy hydrolysate-based nutrient medium or a yeast autolysate-based medium nutrient medium in conjunction with ethanologenic bacteria and a fermentable sugar for the cost-effective production of ethanol from lignocellulosic biomass. The invention offers several advantages over presently available media for use in ethanol production, including consistent quality, lack of toxins and wide availability.

Ingram, Lonnie O. (Gainesville, FL)

2000-01-01T23:59:59.000Z

304

World Proved Crude Oil Reserves  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Crude Oil Reserves 1980-2009 Energy Information Administration (Important Note on Sources of Foreign Reserve Estimates) (Billion Barrels)

305

United States Producing and Nonproducting Crude Oil and Natural Gas Reserves From 1985 Through 2004  

Gasoline and Diesel Fuel Update (EIA)

United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004 By Philip M. Budzik Abstract The Form EIA-23 survey of crude oil and natural gas producer reserves permits reserves to be differentiated into producing reserves, i.e., those reserves which are available to the crude oil and natural gas markets, and nonproducing reserves, i.e., those reserves which are unavailable to the crude oil and natural gas markets. The proportion of nonproducing reserves relative to total reserves grew for both crude oil and natural gas from 1985 through 2004, and this growth is apparent in almost every major domestic production region. However, the growth patterns in nonproducing crude oil and natural gas reserves are

306

Techno-Economic Analysis of Biofuels Production Based on Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Production Based on Biofuels Production Based on Gasification Ryan M. Swanson, Justinus A. Satrio, and Robert C. Brown Iowa State University Alexandru Platon ConocoPhillips Company David D. Hsu National Renewable Energy Laboratory Technical Report NREL/TP-6A20-46587 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Techno-Economic Analysis of Biofuels Production Based on Gasification Ryan M. Swanson, Justinus A. Satrio, and Robert C. Brown Iowa State University Alexandru Platon

307

Case Western Reserve University's Institute for Advanced Materials | Open  

Open Energy Info (EERE)

Reserve University's Institute for Advanced Materials Reserve University's Institute for Advanced Materials Jump to: navigation, search Name The Institute for Advanced Materials at Case Western Reserve University Address 2061 Cornell Rd Place Cleveland, Ohio Zip 44106-3808 Website http://case.edu/advancedmateri References The Institute for Advanced Materials at Case Western Reserve University [1] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. Case Western Reserve University's Institute for Advanced Materials is a research institution based in Cleveland, Ohio. References ↑ "The Institute for Advanced Materials at Case Western Reserve University" Retrieved from "http://en.openei.org/w/index.php?title=Case_Western_Reserve_University%27s_Institute_for_Advanced_Materials&oldid=367381"

308

Florida Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves Changes, and...

309

Michigan Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Michigan Coalbed Methane Proved Reserves, Reserves Changes, and...

310

Kentucky Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and...

311

Measuring oil-price shocks using market-based information’, Federal Reserve Bank of San Francisco Working Paper No  

E-Print Network (OSTI)

This paper takes on a narrative and quantitative approach to examine the dynamic effects of oil-price shocks to the U.S. economy. Based on market information collected from various oil-industry trade journals, we separate different kinds of oilprice shocks, and construct measures of exogenous oil shocks that are free of endogeneity and anticipatory problems. Estimation results indicate that oil shocks have had substantial and statistically significant impacts on the U.S. economy during the past two and a half decades. By contrast, traditional VAR identification strategies lead to a much weaker and insignificant real effect for the same period. Further investigation suggests that this discrepancy is possibly due to a lack of identification on the VAR approach, originating from mixing the exogenous oil-supply shocks with endogenous oil-price movements driven by changes in oil demand.

Tao Wu; Michele Cavallo

2006-01-01T23:59:59.000Z

312

Table 8. Lease condensate proved reserves , reserves changes, and prodction, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Lease condensate proved reserves, reserves changes, and production, 2011 Lease condensate proved reserves, reserves changes, and production, 2011 million barrels Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 1 55 0 0 0 0 0 0 20 36 Lower 48 States 1,914 7 486 452 216 273 536 4 29 211 2,370 Alabama 18 3 1 1 0 0 0 0 0 2 19 Arkansas 2 0 0 0 0 0 0 0 0 0 2 California 1 0 3 0 0 0 0 0 0 0 4 Coastal Region Onshore 0 0 0 0 0 0 0 0 0 0 0 Los Angeles Basin Onshore 0 0 0 0 0 0 0 0 0 0 0 San Joaquin Basin Onshore 1 0 0 0 0 0 0 0 0 0 1 State Offshore 0 0 3 0 0 0 0 0 0 0 3 Colorado 115 -1 34 8 10 3 7 0 0 8 132 Florida 1 -1 0 0 0 0 0 0 0 0 0 Kansas 7 0 2 1 0 0 0 0 0 1 7 Kentucky 1 1 4 1 3 3 0 0 0 0 5 Louisiana 106 -6 30 14 20 17 7 1 1 14 108 North 27 -1 12 2 7 7 0 0 0 3 33

313

Strategic Petroleum Reserve. Quarterly report  

SciTech Connect

The Strategic Petroleum Reserve serves as one of the most important investments in reducing the Nation`s vulnerability to oil supply disruptions. This Quarterly Report highlights activities undertaken during the third quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated. Samples of the oil revealed two problems that, although readily correctable, have reduced the availability of some of the oil inventory for drawdown in the near-term. These problems are: (1) a higher-than-normal gas content in some of the crude oil, apparently from years of intrusion of methane form the surrounding salt formation; and (2) elevated temperatures of some of the crude oil, due to geothermal heating, that has increased the vapor pressure of the oil. Investigations are proceeding to determine the extent to which gas intrusion and geothermal heating are impacting the availability of oil for drawdown. Preliminary designs have been developed for systems to mitigate both problems.

1993-11-15T23:59:59.000Z

314

Strategic Petroleum Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Petroleum Reserve Emergency Crude Oil Supply Requests Points of Contact Program Office - Washington Jim Gruber (202) 586-1547 James.Gruber@hq.doe.gov Nate Harvey (202)...

315

Strategic Petroleum Reserve  

Energy.gov (U.S. Department of Energy (DOE))

The Strategic Petroleum Reserve (SPR) is the world's largest supply of emergency crude oil. The federally-owned oil stocks are stored in huge underground salt caverns along the coastline of the...

316

Regional Reserve Margins  

Science Conference Proceedings (OSTI)

This report explores the status of reserve margins across the country. Reserve margins represent the margin of excess capacity compared to demand. It is commonly calculated as the fraction of unused capacity during the summer peak. Simple in concept, the numbers can be difficult to calculate because of changes in geographic boundaries between regions, different views of what capacity qualifies to be counted, and changes in estimates of demand. This report provides a comprehensive and consistently calcula...

2009-03-23T23:59:59.000Z

317

Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product  

DOE Green Energy (OSTI)

Western Research Institute (WRI) of Laramie, Wyoming and AeRock, LLC of Eagar, Arizona (formerly of Bellevue, Washington) partnered, under sponsorship of the U.S. Department of Energy National Energy Technology Laboratory (U.S. DOE-NETL), to support the development of rapid-setting, ash-based, fiber-incorporated ''green'' building products. Green building materials are a rapidly growing trend in the building and construction industry in the US. A two phase project was implemented wherein Phase I assessed, through chemical and physical testing, ash, ash-based cement and fiber composites exhibiting superior structural performance when applied to the AeRock mixing and extrusion process and involved the conduct of pilot-scale production trials of AeRock products, and wherein Phase II involved the design, construction, and operation of a commercial-scale plant to confirm production issues and to produce panels for performance evaluations. Phase I optimized the composite ingredients including ash-based cement, Class F and Class C DFGD ash, and various fiber reinforcements. Additives, such as retardants and accelerators, were also evaluated as related to extruder performance. The optimized composite from the Phase I effort was characterized by a modulus of rupture (MOR) measured between 1,931 and 2,221 psi flexural strength, comparable to other wood and non-wood building materials. Continuous extrusion of the optimum composite in the AeRock pilot-scale facility produced an excellent product that was assembled into a demonstration for exhibit and durability purposes. Finishes, from plain to marbled, from bright reds to muted earth tones and with various textures, could easily be applied during the mixing and extrusion process. The successful pilot-scale demonstration was in turn used to design the production parameters and extruder dies for a commercial scale demonstration at Ultrapanel Pty, Ltd of Ballarat, Australia under Phase II. The initial commercial-scale production trials showed green product sagging, as a result of the die design. After the third die was acquired and fitted to the extruder, satisfactory decking and structural panels were produced. Cured decking was shipped to the US but experienced significant breakage and damage during transport. Subsequent evaluations concluded that an alternative die design was needed that would produce a more robust product resistant to damage. In summary, AeRock Decking can be a commercially-viable non-wood alternative decking product. This project has provided WRI and AeRock the knowledge and understanding to make AeRock Decking a commercial success. However, a commercial demonstration that produces quality product and the subsequent evaluation of its performance is needed before commercial acceptance of the AeRock product.

Alan E. Bland; Jesse Newcomer

2007-06-30T23:59:59.000Z

318

How Required Reserve Ratio Affects Distribution and Velocity of Money  

E-Print Network (OSTI)

In this paper the dependence of wealth distribution and the velocity of money on the required reserve ratio is examined based on a random transfer model of money and computer simulations. A fractional reserve banking system is introduced to the model where money creation can be achieved by bank loans and the monetary aggregate is determined by the monetary base and the required reserve ratio. It is shown that monetary wealth follows asymmetric Laplace distribution and latency time of money follows exponential distribution. The expression of monetary wealth distribution and that of the velocity of money in terms of the required reserve ratio are presented in a good agreement with simulation results.

Xi, N; Wang, Y; Xi, Ning; Ding, Ning; Wang, Yougui

2005-01-01T23:59:59.000Z

319

Pennsylvania drives Northeast natural gas production growth ...  

U.S. Energy Information Administration (EIA)

Exploration and reserves, storage, imports and exports, production, prices, sales ... in Northeastern Pennsylvania, ... gas production in West Virginia ...

320

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound facies of the upper Ismay zone, where microporosity is well developed. In Bug field, the most productive wells are located structurally downdip from the updip porosity pinch out in the dolomitized lower Desert Creek zone, where micro-box-work porosity is well developed. Microporosity and micro-box-work porosity have the greatest hydrocarbon storage and flow capacity, and potential horizontal drilling target in these fields. Diagenesis is the main control on the quality of Ismay and Desert Creek reservoirs. Most of the carbonates present within the lower Desert Creek and Ismay have retained a marine-influenced carbon isotope geochemistry throughout marine cementation as well as through post-burial recycling of marine carbonate components during dolomitization, stylolitization, dissolution, and late cementation. Meteoric waters do not appear to have had any effect on the composition of the dolomites in these zones. Light oxygen values obtained from reservoir samples for wells located along the margins or flanks of Bug field may be indicative of exposure to higher temperatures, to fluids depleted in {sup 18}O relative to sea water, or to hypersaline waters during burial diagenesis. The samples from Bug field with the lightest oxygen isotope compositions are from wells that have produced significantly greater amounts of hydrocarbons. There is no significant difference between the oxygen isotope compositions from lower Desert Creek dolomite samples in Bug field and the upper Ismay limestones and dolomites from Cherokee field. Carbon isotopic compositions for samples from Patterson Canyon field can be divided into two populations: isotopically heavier mound cement and isotopically lighter oolite and banded cement. Technology transfer activities consisted of exhibiting a booth display of project materials at the annual national convention of the American Association of Petroleum Geologists, a technical presentation, a core workshop, and publications. The project home page was updated on the Utah Geological Survey Internet web site.

Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

2003-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation  

E-Print Network (OSTI)

predecessor agencies was the production of nuclear weapons for the nation's defense. Production of materials for nuclear weapons, which began in 1943, pro- duced hazardous and radioactive waste and re- sulted-ORO responsible for cleanup of the reservation. CERCLA also requires public involvement to ensure that citi- zens

Pennycook, Steve

322

Petroleum Reserves | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Services » Petroleum Reserves Services » Petroleum Reserves Petroleum Reserves Strategic Petroleum Reserve The SPR is the largest stockpile of government-owned emergency crude oil in the world. Read more Northeast Home Heating Oil Reserve The existence of the NEHHOR provides an important safety cushion for millions of Americans. Read more Naval Petroleum Reserves The only remaining naval petroleum reserve managed by DOE is the Teapot Dome field (NPR-3) in Casper, Wyoming. Read more Strategic Petroleum Reserve With a capacity of 727-million-barrels, the U.S. Strategic Petroleum Reserve is the largest stockpile of government-owned emergency crude oil in the world. Established in the aftermath of the 1973-74 oil embargo, the SPR provides the President with a powerful response option should a disruption

323

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release Petroleum Reserves Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International...

324

EIA - Natural Gas Exploration & Reserves Data and Analysis  

Annual Energy Outlook 2012 (EIA)

Exploration & Reserves Reserves Summary Proved reserves for natural gas and natural gas liquids by U.S., region, and State (annual). Proved Reserves, Reserves Changes, and...

325

Stewardship on the Oak Ridge Reservation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stewardship Stewardship on the on the Oak Ridge Reservation Oak Ridge Reservation * * End Use Working Group End Use Working Group formed in 1997 formed in 1997 - - a broad a broad based community based community constituency determined in constituency determined in its 1998 Final Report that its 1998 Final Report that some contamination would some contamination would remain in place at certain remain in place at certain locations with adequate locations with adequate groundwater protection and groundwater protection and long long - - term stewardship term stewardship ORSSAB Established in 1995 ORSSAB Established in 1995 The Stakeholder The Stakeholder ' ' s Report on Stewardship (1998) s Report on Stewardship (1998)

326

Compute Reservation Request Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Queue Look Queue Wait Times Hopper Queues and Policies Edison Queues and Policies Carver Queues and Policies Dirac Queues and Policies Compute Reservation Request Form Job Logs & Analytics Training & Tutorials Software Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Queues and Scheduling » Compute Reservation Request Form Compute Reservation Request Form

327

Techno-Economic Analysis of Biofuels Production Based on Gasification  

DOE Green Energy (OSTI)

This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

2010-11-01T23:59:59.000Z

328

Process Intensification in Base-Catalyzed Biodiesel Production  

DOE Green Energy (OSTI)

Biodiesel is considered a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. Recent interest has resulted in biodiesel manufacture becoming more widely undertaken by commercial enterprises that are interested in minimizing the cost of feedstock materials and waste production, as well as maximizing the efficiency of production. Various means to accelerate batch processing have been investigated. Oak Ridge National Laboratory has experience in developing process intensification methods for nuclear separations, and this paper will discuss how technologies developed for very different applications have been modified for continuous reaction/separation of biodiesel. In collaboration with an industrial partner, this work addresses the aspect of base-catalyzed biodiesel production that limits it to a slow batch process. In particular, we have found that interfacial mass transfer and phase separation control the transesterification process and have developed a continuous two-phase reactor for online production of a methyl ester and glycerol. Enhancing the mass transfer has additional benefits such as being able to use an alcohol-to-oil phase ratio closer to stoichiometric than in conventional processing, hence minimizing the amount of solvent that has to be recycled and reducing post-processing clean up costs. Various technical issues associated with the application of process intensification technology will be discussed, including scale-up from the laboratory to a pilot-scale undertaking.

McFarlane, Joanna [ORNL; Birdwell Jr, Joseph F [ORNL; Tsouris, Costas [ORNL; Jennings, Hal L [ORNL

2008-01-01T23:59:59.000Z

329

Valuation of potash reserves at the Waste Installation Pilot Plant  

Science Conference Proceedings (OSTI)

Monte Carlo simulation was used in conjunction with several random walk price and cost models to value potash reserves at the Waste Installation Pilot Plant (WIPP) site new Carlsbad, New Mexico. Selection of market price and product processing cost models ...

Peter C. Anselmo

1996-11-01T23:59:59.000Z

330

Vehicle Technologies Office: Fact #125: April 24, 2000 Reserve...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production for 1998: Table G1; reserves as of Jan. 1, 1999: Table 8.1, original source Oil & Gas Journal. Return to Favorite Facts of the Week Contacts | Web Site Policies |...

331

Reserve's Deputy Assistant Secretary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, First Quarter, 2012 5, First Quarter, 2012 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 Energy Security for the Nation A Column from the Strategic Petroleum Reserve's Deputy Assistant Secretary 3 SPR Completes Drawdown An Inside Look at the Strategic Petroleum Reserve's Operations 6 International Efforts in Clean Energy Fossil Energy Staff Participate in International Organizations to Share Energy Efforts 7 Methane Hydrate Technology Tested International Efforts to Test Technologies in Alaska's North Slope 8 Secretary of Energy Achievement Awards Two NETL Teams Recognized for Significant Environmental Efforts Researchers at the National Energy Technology Laboratory (NETL) are em- ploying conventional technology normally associated with medical proce-

332

Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves,  

NLE Websites -- All DOE Office Websites (Extended Search)

0: June 10, 2002 0: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 to someone by E-mail Share Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Facebook Tweet about Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Twitter Bookmark Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Google Bookmark Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Delicious Rank Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Digg Find More places to share Vehicle Technologies Office: Fact #220:

333

Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves,  

NLE Websites -- All DOE Office Websites (Extended Search)

8: May 11, 1999 8: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 to someone by E-mail Share Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Facebook Tweet about Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Twitter Bookmark Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Google Bookmark Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Delicious Rank Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Digg Find More places to share Vehicle Technologies Office: Fact #88: May

334

Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves,  

NLE Websites -- All DOE Office Websites (Extended Search)

80: July 11, 2005 80: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 to someone by E-mail Share Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Facebook Tweet about Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Twitter Bookmark Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Google Bookmark Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Delicious Rank Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Digg Find More places to share Vehicle Technologies Office: Fact #380:

335

Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves,  

NLE Websites -- All DOE Office Websites (Extended Search)

6: May 5, 2003 6: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 to someone by E-mail Share Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Facebook Tweet about Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Twitter Bookmark Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Google Bookmark Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Delicious Rank Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Digg Find More places to share Vehicle Technologies Office: Fact #266:

336

Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves,  

NLE Websites -- All DOE Office Websites (Extended Search)

6: July 14, 2003 6: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 to someone by E-mail Share Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 on Facebook Tweet about Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 on Twitter Bookmark Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 on Google Bookmark Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 on Delicious Rank Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 on Digg Find More places to share Vehicle Technologies Office: Fact #276:

337

Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

750 922 893 725 718 679 2000-2011 Adjustments 0 8 9 2009-2011 Revision Increases 9 77 46 2009-2011 Revision Decreases 110 30 31 2009-2011 Sales 0 0 130 2009-2011 Acquisitions 0 0...

338

Michigan Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3,281 2,894 2,499 2,306 1,947 2007-2011 Adjustments -167 305 31 2009-2011 Revision Increases 149 165 140 2009-2011 Revision Decreases 276 325 151 2009-2011 Sales 0 553 682...

339

Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 1 0 2007-2011 Adjustments 1 -1 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 1 2 1 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 4 0 2009-2011 Extensions 0...

340

NM, East Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

12 0 7 35 23 2007-2011 Adjustments 10 3 66 2009-2011 Revision Increases 0 1 68 2009-2011 Revision Decreases 2 2 146 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Montana Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

140 125 137 186 192 2007-2011 Adjustments 8 40 14 2009-2011 Revision Increases 42 14 14 2009-2011 Revision Decreases 34 16 14 2009-2011 Sales 2 1 42 2009-2011 Acquisitions 2 0 41...

342

NM, West Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

0 29 88 121 2007-2011 Adjustments 0 0 3 2009-2011 Revision Increases 2 0 15 2009-2011 Revision Decreases 0 9 44 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

343

Colorado Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

0 0 4 4 10 2007-2011 Adjustments 1 -1 0 2009-2011 Revision Increases 0 1 4 2009-2011 Revision Decreases 0 2 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

344

Texas Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

17,256 22,667 28,167 38,048 49,588 2007-2011 Adjustments 990 2,940 450 2009-2011 Revision Increases 2,052 3,580 12,185 2009-2011 Revision Decreases 1,267 2,425 10,263 2009-2011...

345

Louisiana Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

6 858 9,307 20,070 21,950 2007-2011 Adjustments 131 2,347 -172 2009-2011 Revision Increases 636 1,856 2,002 2009-2011 Revision Decreases 826 1,878 3,882 2009-2011 Sales 3 11 3,782...

346

Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

21 20 55 10 41 2007-2011 Adjustments -1 -1 0 2009-2011 Revision Increases 44 3 44 2009-2011 Revision Decreases 3 43 11 2009-2011 Sales 0 0 45 2009-2011 Acquisitions 0 0 45...

347

New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

12 0 36 123 144 2007-2011 Adjustments 10 3 69 2009-2011 Revision Increases 2 1 83 2009-2011 Revision Decreases 2 11 190 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

348

Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

1,460 3,833 9,070 12,526 14,808 2007-2011 Adjustments 2 63 655 2009-2011 Revision Increases 1,585 861 502 2009-2011 Revision Decreases 261 126 141 2009-2011 Sales 3 336 6,087...

349

Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

44 3,845 6,389 9,670 10,733 2007-2011 Adjustments 1 713 216 2009-2011 Revision Increases 1,373 1,352 3,709 2009-2011 Revision Decreases 865 2,117 5,024 2009-2011 Sales 0 0 1,591...

350

Texas Crude Oil Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous includes ...

351

California Crude Oil Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous includes ...

352

Ohio Crude Oil Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous includes ...

353

Colorado Crude Oil Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous includes ...

354

Louisiana Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

355

Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

356

Colorado Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

357

Montana Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

358

Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

359

California Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

360

Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NM, West Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

362

Ohio Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

363

Alaska Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

364

New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

365

Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

366

Texas Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

367

NM, East Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

368

Alabama Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

369

Michigan Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

370

Palm Oil: Production, Processing, Uses, and CharacterizationChapter 21 Oil Palm Biomass for Various Wood-based Products  

Science Conference Proceedings (OSTI)

Palm Oil: Production, Processing, Uses, and Characterization Chapter 21 Oil Palm Biomass for Various Wood-based Products Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Health - Nutrition - Bioc

371

U.S. Coal Reserves  

Reports and Publications (EIA)

U.S. Coal Reserves presents detailed estimates of U.S. coal reserves by State, as well as descriptions of the data, methods, and assumptions used to develop such estimates.

Information Center

2012-11-20T23:59:59.000Z

372

Petroleum Reserves | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States, a region heavily dependent upon the use of heating oil. Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserve (NPOSR) has a storied history...

373

Strategic Petroleum Reserve quarterly report  

SciTech Connect

The Strategic Petroleum Reserve Quarterly Report is submitted in accordance with section 165(b) of the Energy Policy and Conservation Act, as amended, which requires that the Secretary of Energy submit quarterly reports to Congress on Activities undertaken with respect to the Strategic Petroleum Reserve. This August 15, 1990, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1990, through June 30, 1990. 3 tabs.

1990-08-15T23:59:59.000Z

374

Exploiting heavy oil reserves  

E-Print Network (OSTI)

the behaviour of oil and gas prices and the fruits of future exploration. The rate of technological progress. How optimistic are you that the North Sea remains a viable source of oil and gas? A) Our new researchNorth Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen

Levi, Ran

375

Reservation DOE/ORO/2204  

E-Print Network (OSTI)

............................................................ 4-22 4.14 Percentage of DOE derived concentration guides for ETTP surface water monitoring locations2 0 0 4 Reservation DOE/ORO/2204 Reservation #12;Justasthebeautifulredfox pupfocusesonthedandelion'sEnvironment--Today'sFocus ORRASER2004 ABOUTTHECOVER: #12;DOE/ORO/2204 Oak Ridge Reservation Annual Site Environmental Report

Pennycook, Steve

376

Louisiana--South Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production LA, South Onshore Coalbed Methane Proved Reserves, Reserves...

377

California (with State off) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes,...

378

Texas (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved Reserves, Reserves Changes, and...

379

Texas--RRC District 8 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8 Coalbed Methane Proved Reserves, Reserves...

380

Texas--RRC District 5 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 5 Coalbed Methane Proved Reserves, Reserves...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Texas--RRC District 6 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 6 Coalbed Methane Proved Reserves, Reserves...

382

Lower 48 Federal Offshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Federal Offshore U.S. Coalbed Methane Proved Reserves, Reserves...

383

Texas--RRC District 9 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 9 Coalbed Methane Proved Reserves, Reserves...

384

Texas--RRC District 1 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 1 Coalbed Methane Proved Reserves, Reserves...

385

New York Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves Changes, and...

386

Texas--RRC District 10 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

387

North Dakota Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production North Dakota Coalbed Methane Proved Reserves, Reserves Changes,...

388

Louisiana--State Offshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production LA, State Offshore Coalbed Methane Proved Reserves, Reserves...

389

Alaska (with Total Offshore) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves Changes, and...

390

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, State Offshore Coalbed Methane Proved Reserves, Reserves...

391

Mississippi (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes,...

392

Department of Energy Update on Strategic Petroleum Reserve Sale |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update on Strategic Petroleum Reserve Sale Update on Strategic Petroleum Reserve Sale Department of Energy Update on Strategic Petroleum Reserve Sale June 30, 2011 - 1:00pm Addthis Washington, DC - On June 23, 2011, the International Energy Agency (IEA) announced that its 28 member countries would release 60 million barrels of crude oil and refined products into the global market. As part of that action, the President directed the Department of Energy to auction 30.237 million barrels of light, sweet crude oil from the Strategic Petroleum Reserve. Yesterday, bids were received. Industry interest in the Department of Energy's sale of Strategic Petroleum Reserve (SPR) oil was very high. Over 90 offers to purchase oil were received yesterday and the Department's offering of 30.2 million barrels of light, sweet crude oil was substantially oversubscribed. The

393

© 2012 ATI. All Rights Reserved  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATI. All Rights Reserved. ATI. All Rights Reserved.  11,200 employees - worldwide  $5 billion in Sales in 2012  Global presence - Operations in 18 countries  Provides customer focused specialty metals solutions * Titanium and titanium alloys * Nickel-based alloys and superalloys * Stainless steels, grain oriented electrical steel & duplex alloys * Zirconium, Hafnium and Niobium alloys * Tungsten metals & carbide cutting tools * Powdered metals * High performance forgings, castings and machining capabilities Allegheny Technologies (ATI) Overview ATI is one of the largest and most diversified specialty metals producers in the world. We use innovative technologies to offer global markets a wide range of specialty metals solutions. ATI US Operating Facilities

394

Northeast Home Heating Oil Reserve  

Gasoline and Diesel Fuel Update (EIA)

Northeast Home Heating Oil Reserve Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy Information Administration publications, such as the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve Terminal Operator Location (Thousand Barrels) Hess Corp. Groton, CT 500*

395

FE Petroleum Reserves News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

petroleum-reserves-news Office of Fossil Energy petroleum-reserves-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en President Requests $638.0 Million for Fossil Energy Programs http://energy.gov/fe/articles/president-requests-6380-million-fossil-energy-programs President Requests $638.0 Million for Fossil Energy Programs

396

The Strategic Petroleum Reserve  

SciTech Connect

The Strategic Petroleum Reserve program was set into motion by the 1975 Energy Policy and Conservation Act (EPCA). By 1990, 590 million barrels of oil had been placed in storage. Salt domes along the Gulf Coast offered ideal storage. Both sweet'' and sour'' crude oil have been acquired using various purchase options. Drawdown, sale, and distribution of the oil would proceed according to guidelines set by EPCA in the event of a severe energy supply disruption. (SM)

1991-01-01T23:59:59.000Z

397

December 2000CHARACTERISTICS OF NORTH SEA OIL RESERVE APPRECIATION *  

E-Print Network (OSTI)

Abstract. In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve appreciation in both the UK and Norwegian sectors of the North Sea. It examines the change in reserves attributed to North Sea fields over time, seeking to reveal patterns of reserve appreciation both for individual fields and for groups of fields classified by potentially relevant common elements. These include field size, year of production start-up, geological age, gravity, depth and depletion rate. The paper emphasises the statistical analysis of reserve appreciation. It contrasts the Norwegian and UK experience. An important distinction is drawn between appreciation of oil-in-place and changes in recovery factors. North Sea oil reserve appreciation between production start-up and the last observation year (usually 1996) is found to be substantial, but it generally lacks a consistent profile. Appreciation recorded for the Norwegian fields on average is considerably greater than for the UK. Most UK appreciation is

G. C. Watkins; G. C. Watkins; G. C. Watkins

2000-01-01T23:59:59.000Z

398

Strategic Petroleum Reserve quarterly report  

SciTech Connect

This August 15, 1991, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1991, through June 30, 1991. The Strategic Petroleum Reserve storage facilities development program is proceeding on schedule. The Reserve's capacity is currently 726 million barrels. A total of 5.5 million barrels of new gross cavern volume was developed at Big Hill and Bayou Choctaw during the quarter. There were no crude oil deliveries to the Strategic Petroleum Reserve during the calendar quarter ending June 30, 1991. Acquisition of crude oil for the Reserve has been suspended since August 2, 1990, following the invasion of Kuwait by Iraq. As of June 30, 1991, the Strategic Petroleum Reserve inventory was 568.5 million barrels. The reorganization of the Office of the Strategic Petroleum Reserve became effective June 28, 1991. Under the new organization, the Strategic Petroleum Reserve Project Management Office in Louisiana will report to the Strategic Petroleum Reserve Program Office in Washington rather than the Oak Ridge Field Office in Tennessee. 2 tabs.

1991-08-15T23:59:59.000Z

399

Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production  

SciTech Connect

The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of succinic acid production were such that it could not compete with current commercial practice. To allow recovery of commercial amounts of ethanol from bagasse fermentation, research was conducted on high solids loading fermentations (using S. cerevisiae) with commercial cellulase on pretreated material. A combination of SHF/SSF treatment with fed-batch operation allowed fermentation at 30% solids loading. Supplementation of the fermentation with a small amount of black-strap molasses had results beyond expectation. There was an enhancement of conversion as well as production of ethanol levels above 6.0% w/w, which is required both for efficient distillation as well as contaminant repression. The focus of fermentation development was only on converting the cellulose to ethanol, as this yeast is not capable of fermenting both glucose and xylose (from hemicellulose). In anticipation of the future development of such an organism, we screened the commercially available xylanases to find the optimum mix for conversion of both cellulose and hemicellulose. A different mixture than the spezyme/novozyme mix used in our fermentation research was found to be more efficient at converting both cellulose and hemicellulose. Efforts were made to select a mutant of Pichia stipitis for ability to co-ferment glucose and xylose to ethanol. New mutation technology was developed, but an appropriate mutant has not yet been isolated. The ability to convert to stillage from biomass fermentations were determined to be suitable for anaerobic degradation and methane production. An economic model of a current sugar factory was developed in order to provide a baseline for the cost/benefit analysis of adding cellulosic ethanol production.

Donal F. Day

2009-03-31T23:59:59.000Z

400

SEDS: State Energy Production Estimates  

U.S. Energy Information Administration (EIA)

Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity. ... Production. by state and for the United States; by energy source;

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table 8. Crude Oil Proved Reserves, Reserves Changes, and ...  

U.S. Energy Information Administration (EIA)

Title: Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 Author: Energy Information Administration Created Date

402

Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, September 30, 1993--September 30, 1994  

SciTech Connect

The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment, sandstones deposited in fluvial-dominated deltas; and carbonates and some interbedded sandstones of the lower Wasatch transition deposited in mud flats. Bluebell project personnel are studying ways to improve completion techniques used in the field to increase primary production in both new wells and recompletions. The study includes detailed petrographic examination of the different lithologic reservoir types in both the outcrop and core. Outcrop, core, and geophysical logs are being used to identify and map important depositional cycles. Petrographic detail will be used to improve log calculation methods which are currently highly questionable due to varying water chemistry and clay content in the Green River and Wasatch Formations. Field mapping of fractures and their relationship to basin tectonics helps predict the orientation of open fractures in the subsurface. The project includes acquiring bore-hole imaging logs from new wells in the Bluebell field thereby obtaining detailed subsurface fracture data previously not available. Reservoir simulation models are being constructed to improve the understanding of pressure and fluid flow within the reservoir. A detailed database of well completion histories has been compiled and will be studied to determine which were the most and the least effective methods used in the past.

Allison, M.

1995-07-01T23:59:59.000Z

403

SunEdison First Reserve JV | Open Energy Information  

Open Energy Info (EERE)

venture that plans to acquire and develop solar projects in the US, Italy, Spain and Canada. References SunEdison & First Reserve JV1 LinkedIn Connections CrunchBase Profile No...

404

Maximum Utility Product Pricing Models and Algorithms Based on ...  

E-Print Network (OSTI)

Apr 15, 2007 ... Let Cj be the set of customer segments who buy Product j, i.e.,. Cj = {i : ?ij = 1} and let Mj be the total number of customers buying Product j, i.e.,.

405

Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming  

SciTech Connect

U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

James Bauder

2008-09-30T23:59:59.000Z

406

Greenhouse effect and nature reserves  

SciTech Connect

Global warming would diminish biological diversity by causing extinctions among reserve species. Patterns of climatic change are discussed, including global patterns of surface temperature increase, as predicted by the Goddard Institute for Space Studies, and global changes in moisture patterns. The concept of biological reserves (essentially the same concept as biological refugia) is discussed, and the effect of climatic changes on reserves is discussed. The types of biological communities particularly at risk due to climatic changes are identified. 67 references, 3 figures.

Peters, R.L.; Darling, J.D.S.

1985-12-01T23:59:59.000Z

407

An agent-based approach for coordinating product design workflows  

Science Conference Proceedings (OSTI)

New product development processes in manufacturing organizations are distributed and knowledge-intensive. Such product development processes interleave complex manual and software-enabled design decision-making activities. In current approaches to product ... Keywords: Coordination, Design process plans, Flexible workflow systems, Process integration

Therani Madhusudan

2005-04-01T23:59:59.000Z

408

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release Petroleum Reserves Strategic...

409

Reservations | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

System Overview Data Storage & File Systems Compiling & Linking Queueing & Running Jobs Reservations Cobalt Job Control How to Queue a Job Running Jobs FAQs Queuing and Running on...

410

Oak Ridge Reservation Fishes (2006)  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge Reservation Fishes (2006) 1 Family 2 Genus Species Common Name Petromyzontidae Ichthyomyzon castaneus Girard Chestnut lamprey Polyodontidae Polyodon spathula (Walbaum)...

411

Habitat reclamation plan to mitigate for the loss of habitat due to oil and gas production activities under maximum efficient rate, Naval Petroleum Reserve No. 1, Kern County, California  

Science Conference Proceedings (OSTI)

Activities associated with oil and gas development under the Maximum Efficiency Rate (MER) from 1975 to 2025 will disturb approximately 3,354 acres. Based on 1976 aerial photographs and using a dot grid methodology, the amount of land disturbed prior to MER is estimated to be 3,603 acres. Disturbances on Naval Petroleum Reserve No. 1 (NPR-1) were mapped using 1988 aerial photography and a geographical information system. A total of 6,079 acres were classified as disturbed as of June, 1988. The overall objective of this document is to provide specific information relating to the on-site habitat restoration program at NPRC. The specific objectives, which relate to the terms and conditions that must be met by DOE as a means of protecting the San Joaquin kit fox from incidental take are to: (1) determine the amount and location of disturbed lands on NPR-1 and the number of acres disturbed as a result of MER activities, (2) develop a long term (10 year) program to restore an equivalent on-site acres to that lost from prior project-related actions, and (3) examine alternative means to offset kit fox habitat loss.

Anderson, D.C.

1994-11-01T23:59:59.000Z

412

The possibility for micro algae based biofuel production on Bonaire.  

E-Print Network (OSTI)

??Microalgae are a promising alternative source of lipid and biofuel production in the future. Renewable, carbon neutral, transport fuels are necessary for environmental and economic… (more)

Ebbing, A.P.J.

2012-01-01T23:59:59.000Z

413

Artificial neural network based life cycle assessment model for product concepts using product classification method  

Science Conference Proceedings (OSTI)

Many companies are beginning to change the way they develop products due to increasing awareness of environmentally conscious product development. To copy with these trends, designers are being asked to incorporate environmental criteria into the design ...

Kwang-Kyu Seo; Sung-Hwan Min; Hun-Woo Yoo

2005-05-01T23:59:59.000Z

414

Reserves hike to buoy Bontang LNG  

SciTech Connect

This paper reports that a redetermination of reserves in an Indonesian production sharing contract (PSC) will boost liquefied natural gas sales for an Indonesian joint venture (IJV) of Lasmo plc, Union Texas (South East Asia) Inc., Chinese Petroleum Corp. (CPC), and Japex Rantau Ltd. The Indonesian reserves increase involves the Sanga PSC operated by Virginia Indonesia Co., a 50-50 joint venture of Lasmo and Union Texas. Union Texas holds a 38% interest in the IJV and Lasmo 37.8%, with remaining interests held by CPC and Japex. meantime, in US LNG news: Shell LNG Co. has shelved plans to buy an added interest in the LNG business of Columbia Gas System Inc. Panhandle Eastern Corp. units Trunkline Gas Co., Trunkline LNG Co., and Panhandle Eastern Pipe Line Co. (PEPL) filed settlement agreements with the Federal Energy Regulatory Commission to recover from customers $243 million in costs associated with Panhandle's Trunkline LNG operation at Lake Charles, Louisiana.

Not Available

1992-07-27T23:59:59.000Z

415

Characteristics of North Sea oil reserve appreciation  

E-Print Network (OSTI)

In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve ...

Watkins, G. C.

2000-01-01T23:59:59.000Z

416

Operating Reserves and Variable Generation  

DOE Green Energy (OSTI)

This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

Ela, E.; Milligan, M.; Kirby, B.

2011-08-01T23:59:59.000Z

417

Formalizing production systems with rule-based ontologies  

Science Conference Proceedings (OSTI)

In this paper we proposed a new semantics for the combination of production systems with arbitraryDL ontologies. Unlike previous approaches, the semantics presented here allow looping rules and can handle inconsistencies produced by the ... Keywords: knowledge representation, ontologies, production systems, transaction logic, well-founded semantics

Martín Rezk; Michael Kifer

2012-03-01T23:59:59.000Z

418

Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992  

SciTech Connect

During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

1992-12-31T23:59:59.000Z

419

Crude Oil plus Lease Condensate Reserves Sales  

U.S. Energy Information Administration (EIA)

Crude Oil plus Lease Condensate Proved Reserves, Reserves Changes, ... Michigan : 0: 0: 0: 2009-2011: Mississippi : 4: 8: 0: 2009-2011: Montana : 3: ...

420

Advance Network Reservation and Provisioning for Science  

E-Print Network (OSTI)

such as Internet 2 [1] and ESnet (Energy Sciences Network) [advanced bandwidth reservation in ESnet for on-demand highto improve the current ESnet advance network reservation

Balman, Mehmet

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Montana Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Montana Shale Proved Reserves (Billion Cubic Feet) Montana Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

422

Wyoming Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Shale Proved Reserves (Billion Cubic Feet) Wyoming Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

423

Kentucky Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Kentucky Shale Proved Reserves (Billion Cubic Feet) Kentucky Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

424

Pennsylvania Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Pennsylvania Shale Proved Reserves (Billion Cubic Feet) Pennsylvania Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

425

Michigan Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Michigan Shale Proved Reserves (Billion Cubic Feet) Michigan Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

426

Arkansas Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Arkansas Shale Proved Reserves (Billion Cubic Feet) Arkansas Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

427

Colorado Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Colorado Shale Proved Reserves (Billion Cubic Feet) Colorado Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

428

Oklahoma Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Oklahoma Shale Proved Reserves (Billion Cubic Feet) Oklahoma Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

429

Texas--RRC District 8A Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8A Coalbed Methane Proved Reserves, Reserves...

430

Texas--RRC District 7B Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7B Coalbed Methane Proved Reserves, Reserves...

431

Texas--RRC District 7C Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC Distict 7C Coalbed Methane Proved Reserves, Reserves...

432

Activity based scheduling simulator for product transport using pipeline networks  

Science Conference Proceedings (OSTI)

Oil companies often rely on scheduling algorithms to increase the throughput of oil derivatives and other products which are transported through pipeline networks. This work presents an architecture for a scheduling simulator for pipeline networks, and ...

Danilo Shibata; Daniel Alfenas; Ricardo Guiraldelli; Marcos R. Pereira-Barretto; Fernando Marcellino

2012-12-01T23:59:59.000Z

433

Using Decline Curve Analysis, Volumetric Analysis, and Bayesian Methodology to Quantify Uncertainty in Shale Gas Reserve Estimates  

E-Print Network (OSTI)

Probabilistic decline curve analysis (PDCA) methods have been developed to quantify uncertainty in production forecasts and reserves estimates. However, the application of PDCA in shale gas reservoirs is relatively new. Limited work has been done on the performance of PDCA methods when the available production data are limited. In addition, PDCA methods have often been coupled with Arp’s equations, which might not be the optimum decline curve analysis model (DCA) to use, as new DCA models for shale reservoirs have been developed. Also, decline curve methods are based on production data only and do not by themselves incorporate other types of information, such as volumetric data. My research objective was to integrate volumetric information with PDCA methods and DCA models to reliably quantify the uncertainty in production forecasts from hydraulically fractured horizontal shale gas wells, regardless of the stage of depletion. In this work, hindcasts of multiple DCA models coupled to different probabilistic methods were performed to determine the reliability of the probabilistic DCA methods. In a hindcast, only a portion of the historical data is matched; predictions are made for the remainder of the historical period and compared to the actual historical production. Most of the DCA models were well calibrated visually when used with an appropriate probabilistic method, regardless of the amount of production data available to match. Volumetric assessments, used as prior information, were incorporated to further enhance the calibration of production forecasts and reserves estimates when using the Markov Chain Monte Carlo (MCMC) as the PDCA method and the logistic growth DCA model. The proposed combination of the MCMC PDCA method, the logistic growth DCA model, and use of volumetric data provides an integrated procedure to reliably quantify the uncertainty in production forecasts and reserves estimates in shale gas reservoirs. Reliable quantification of uncertainty should yield more reliable expected values of reserves estimates, as well as more reliable assessment of upside and downside potential. This can be particularly valuable early in the development of a play, because decisions regarding continued development are based to a large degree on production forecasts and reserves estimates for early wells in the play.

Gonzalez Jimenez, Raul 1988-

2012-12-01T23:59:59.000Z

434

Dry Natural Gas Reserves Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 Federal Offshore U.S. 2,775 2,731 2,250 2,377 2,154 1,660 1990-2011 Pacific (California) 37 40 36 37 28 31 1977-2011 Louisiana & Alabama 1,973 2,066 1,752 1,886 1,717 1,311 1981-2011 Texas 765 625 462 454 409 318 1981-2011 Alaska 408 388 354 358 317 327 1977-2011 Lower 48 States 18,137 19,078 20,169 21,236 21,922 23,228 1977-2011 Alabama 287 274 257 254 223 218 1977-2011 Arkansas 188 269 456 698 951 1,079 1977-2011 California 255 253 237 239 243 311 1977-2011 Coastal Region Onshore 9 12 11 12 12 11 1977-2011 Los Angeles Basin Onshore 8 8 6 7 6 6 1977-2011 San Joaquin Basin Onshore 232 227 217 214 220 289 1977-2011 State Offshore 6 6 3 6 5 5 1977-2011

435

Dry Natural Gas Reserves Estimated Production  

U.S. Energy Information Administration (EIA) Indexed Site

8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 Federal Offshore U.S. 2,775 2,731 2,250 2,377 2,154 1,660 1990-2011 Pacific (California) 37 40 36 37 28 31 1977-2011 Louisiana & Alabama 1,973 2,066 1,752 1,886 1,717 1,311 1981-2011 Texas 765 625 462 454 409 318 1981-2011 Alaska 408 388 354 358 317 327 1977-2011 Lower 48 States 18,137 19,078 20,169 21,236 21,922 23,228 1977-2011 Alabama 287 274 257 254 223 218 1977-2011 Arkansas 188 269 456 698 951 1,079 1977-2011 California 255 253 237 239 243 311 1977-2011 Coastal Region Onshore 9 12 11 12 12 11 1977-2011 Los Angeles Basin Onshore 8 8 6 7 6 6 1977-2011 San Joaquin Basin Onshore 232 227 217 214 220 289 1977-2011 State Offshore 6 6 3 6 5 5 1977-2011

436

Maps: Exploration, Resources, Reserves, and Production - Energy ...  

U.S. Energy Information Administration (EIA)

Granite Wash Play, Texas and Oklahoma: United States Shale Oil Maps: Bakken Shale Play, Williston Basin, North Dakota, Montana, Saskatchewan & Manitoba Updated 3/20/2011:

437

Algae-Based Biofuels: Applications and Co-Products | Open Energy  

Open Energy Info (EERE)

Algae-Based Biofuels: Applications and Co-Products Algae-Based Biofuels: Applications and Co-Products Jump to: navigation, search Tool Summary Name: Algae-Based Biofuels: Applications and Co-Products Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Energy Focus Area: Renewable Energy, Biomass Topics: Implementation, Technology characterizations Resource Type: Guide/manual Website: www.fao.org/docrep/012/i1704e/i1704e.pdf References: Algae-Based Biofuels [1] Logo: Algae-Based Biofuels: Applications and Co-Products This article is a stub. You can help OpenEI by expanding it. References ↑ "Algae-Based Biofuels" Retrieved from "http://en.openei.org/w/index.php?title=Algae-Based_Biofuels:_Applications_and_Co-Products&oldid=328382" Categories:

438

Long Term World Oil Supply (A Resource Base/Production Path ...  

U.S. Energy Information Administration (EIA)

Table of Contents. Long Term World Oil Supply (A Resource Base/Production Path Analysis) Executive Summary. Executive Summary (Continued) Executive ...

439

TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

2010 2011 View History Proved Reserves as of Dec. 31 395 1,692 2010-2011 Adjustments 6 237 2010-2011 Revision Increases 6 388 2010-2011 Revision Decreases 5 402 2010-2011 Sales 0...

440

TX, State Offshore Shale Gas Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 2007-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 0 0 2009-2010 Sales...

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wyoming Lease Condensate Proved Reserves, Reserve Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 View History Proved Reserves as of Dec. 31 211 234 272 256 259 2007-2011 Adjustments 7 8 -6 2009-2011 Revision Increases 56 66 31 2009-2011 Revision...

442

CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves...  

Annual Energy Outlook 2012 (EIA)

2011 View History Proved Reserves as of Dec. 31 855 2011-2011 Adjustments 1 2011-2011 Revision Increases 912 2011-2011 Revision Decreases 0 2011-2011 Sales 0 2011-2011...

443

Simplified Production of Ni-Based Oxide Dispersion Strengthened  

Science Conference Proceedings (OSTI)

Austenitic Steel Oxidation in Steam: Alloy Composition and Surface Modification ... Ni-Base Alloys for Use as Components in Advanced-USC Steam Turbines.

444

Automatic thumbnail extraction for DVR based on production technique estimation  

Science Conference Proceedings (OSTI)

The automatic recording function of DVR is a powerful tool for users. However, increase of the stored content makes it difficult to access desired content. To solve this issue, this paper proposes a new method of providing suitable thumbnails of TV programs ... Keywords: DVR, STB, Object detection, Production technique estimation

T. Takahashi; M. Sugano; S. Sakazsawa

2010-05-01T23:59:59.000Z

445

Agent-based collaborative product design engineering: an industrial case study  

Science Conference Proceedings (OSTI)

Globalization and rapid evolving of Internet and Web-based technologies have revolutionized the product development process. Engineering a product is a complex process involving the integration of distributed resources, such as human beings, engineering ... Keywords: collaboration, internet-aided design, product design engineering, software agents, workflow

Qi Hao; Weiming Shen; Zhan Zhang; Seong-Whan Park; Jai-Kyung Lee

2006-01-01T23:59:59.000Z

446

Agent-based collaborative product design engineering: An industrial case study  

Science Conference Proceedings (OSTI)

Globalization and rapid evolving of Internet and Web-based technologies have revolutionized the product development process. Engineering a product is a complex process involving the integration of distributed resources, such as human beings, engineering ... Keywords: Collaboration, Internet-aided design, Product design engineering, Software agents, Workflow

Qi Hao; Weiming Shen; Zhan Zhang; Seong-Whan Park; Jai-Kyung Lee

2006-01-01T23:59:59.000Z

447

Estimation of resources and reserves  

E-Print Network (OSTI)

This report analyzes the economics of resource and reserve estimation. Current concern about energy problems has focused attention on how we measure available energy resources. One reads that we have an eight-year oil ...

Massachusetts Institute of Technology. Energy Laboratory.

1982-01-01T23:59:59.000Z

448

Reserves Overstatements: History, Enforcement, Identification, and Implications of New SEC Disclosure Requirements  

E-Print Network (OSTI)

Despite the need for accurate oil and gas reserves estimates which honor disclosure requirements of the United States Securities and Exchange Commission (SEC), a number of exploration and production companies have allegedly overstated and subsequently written down their reserves during the last 20 years. Reserves write-downs are of great interest to numerous groups involved in the reserves estimation process and outcome, including estimators, managers, investors, creditors, and regulators. Considering the magnitude and nature of some alleged overstatement cases, it appears that some of these parties may benefit from a better understanding of reserves reporting, the relative risk of overstatements, the regulatory environment and enforcement procedures, and identifying questionable reserves data. After discussing the context and importance of reserves and write-downs, there is a detailed examination of the SEC, including the agency's reserves reporting requirements, and their enforcement methods. A number of alleged overstatement and write-down "case studies" are presented, with details on the specific Federal Laws alleged to have been violated by corporations or individuals and then cited by the SEC and shareholder lawsuits. We also conclude that there may be greater write-down potential due to the updated SEC reserves reporting guidelines. A comprehensive series of systematic questions have been compiled and quick-look graphical techniques have been developed that may be used to gain insight into -and potentially raise questions about- an operator's reserves data.

Olsen, Grant

2010-05-01T23:59:59.000Z

449

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

450

Trace Impurities and Activation Products in Base Metals  

Science Conference Proceedings (OSTI)

This report documents the results of research related to the concentrations of trace impurities and activation products in stainless steel alloys used for reactor vessels and internals. While present in extremely low concentrations, these trace elements and radionuclides can impact radioactive waste disposal of the components upon decommissioning.BackgroundThe primary basis of activity in a decommissioning source term is activated metals from the reactor and ...

2012-10-30T23:59:59.000Z

451

How CLP relates to product-based laws  

Science Conference Proceedings (OSTI)

The transition period from the old European classification system defined by the dangerous preparations Directive to the new GHS-based system laid out in the Regulation on classification, labelling and packaging (CLP) of substances and mixtures is about to

452

Community Based Renewable Energy Production Incentive (Pilot Program)  

Energy.gov (U.S. Department of Energy (DOE))

In June 2009, Maine established the Community-based Renewable Energy Pilot Program. As the name suggests, this program is intended to encourage the development of locally owned, in-state renewable...

453

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Crude Oil and Natural Gas Proved Reserves U.S. Crude Oil and Natural Gas Proved Reserves With Data for 2011 | Release Date: August 1, 2013 | Next Release Date: Early 2014 | full report Previous Issues: Year: 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 Go Summary In 2011, oil and gas exploration and production companies operating in the United States added almost 3.8 billion barrels of crude oil and lease condensate proved reserves, an increase of 15 percent, and the greatest volume increase since the U.S. Energy Information Administration (EIA) began publishing proved reserves estimates in 1977 (Table 1). Proved reserves of crude oil and lease condensate increased by 2.9 billion barrels in 2010, the previous record. Proved reserves of U.S. wet natural gas1 rose

454

Assessing the Economic Viability of Bio-based Products for Missouri Value-added Crop Production  

DOE Green Energy (OSTI)

While research and development on biobased products has continued strong over the years, parallel attention on the economics and management of such product innovation has been lacking. With the financial support of the Department of Energy, the Economics and Management of Agrobiotechnology Center at the University of Missouri-Columbia has launched a pilot graduate education program that seeks to fill the gap. Within this context, a multi-disciplinary research and teaching program has been structured with an emphasis on new product and innovation economics and management. More specifically, this pilot graduate education program has the following major objectives: (1) To provide students with a strong background in innovation economics, management, and strategy. (2) To diversify the students academic background with coursework in science and technology. (3) To familiarize the student with biobased policy initiatives through interaction with state and national level organizations and policymakers. (4) To facilitate active collaboration with industry involved in the development and production of biobased products. The pilot education program seeks to develop human capital and research output. Although the research is, initially, focused on issues related to the State of Missouri, the results are expected to have national implications for the economy, producers, consumers and environment.

Nicholas Kalaitzandonakes

2005-11-30T23:59:59.000Z

455

Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin  

SciTech Connect

The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

Scott R. Reeves; Randal L. Billingsley

2004-02-26T23:59:59.000Z

456

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

DOE Green Energy (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

457

Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production  

DOE Green Energy (OSTI)

Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of succinic acid production were such that it could not compete with current commercial practice. To allow recovery of commercial amounts of ethanol from bagasse fermentation, research was conducted on high solids loading fermentations (using S. cerevisiae) with commercial cellulase on pretreated material. A combination of SHF/SSF treatment with fed-batch operation allowed fermentation at 30% solids loading. Supplementation of the fermentation with a small amount of black-strap molasses had results beyond expectation. There was an enhancement of conversion as well as production of ethanol levels above 6.0% w/w, which is required both for efficient distillation as well as contaminant repression. The focus of fermentation development was only on converting the cellulose to ethanol, as this yeast is not capable of fermenting both glucose and xylose (from hemicellulose). In anticipation of the future development of such an organism, we screened the commercially available xylanases to find the optimum mix for conversion of both cellulose and hemicellulose. A different mixture than the spezyme/novozyme mix used in our fermentation research was found to be more efficient at converting both cellulose and hemicellulose. Efforts were made to select a mutant of Pichia stipitis for ability to co-ferment glucose and xylose to ethanol. New mutation technology was developed, but an appropriate mutant has not yet been isolated. The ability to convert to stillage from biomass fermentations were determined to be suitable for anaerobic degradation and methane production. An economic model of a current sugar factory was developed in order to provide a baseline for the cost/benefit analysis of adding cellulosic ethanol production.

Donal F. Day

2009-03-31T23:59:59.000Z

458

Strategic petroleum reserve, quarterly report  

SciTech Connect

As of December 31, 1981, the cumulative fill capability for the storage of crude oil for the SPR was 257 million barrels. Development of Phase I of the program consisting of 250 million barrels of capacity is complete and development of Phase II, consisting of 290 million barrels of capacity, is continuing. During 1981, the design of Phase III commenced. Phase III will increase the SPR capacity by 210 million barrels. The cumulative fill capability is expected to be 750 million barrels by 1990. The SPR was filled at a rate of 338,391 barrels per day during the last quarter of 1981, and had a total of 230.3 million barrels of oil in storage at the end of 1981. The Department of Energy has aggressively pursued oil purchases during 1981 in order to take advantage of the favorable international oil market. A long-term commercial contract was signed on August 20, 1981, with Petroleos Mexicanos (PEMEX), Mexico's state-owned oil company, for purchase of 110 million barrels of crude oil through 1986. The contract provided for the SPR to purchase 24 million barrels between September 1, 1981, and December 31, 1981. Thereafter PEMEX will supply crude oil to the SPR at the rate of 50,000 barrels a day through August 31, 1986. In addition, under the terms of a settlement of an overcharge allegation, Chevron USA agreed to supply 1,029,000 barrels of oil to the Reserve without cost. Deliveries under this settlement were completed in January 1982. The Omnibus Budget Reconciliation Act also requires the Secretary of the Treasury to establish an account to be known as the SPR Petroleum Account which may be obligated for the acquisition, transportation, and injection of petroleum products into the SPR. For FY 1982, Congress appropriated $3.7 billion to this account. The amount of funds obligated from the SPR Petroleum Account during the first quarter FY 1982 ending December 31, 1981, was $2056 million.

Not Available

1982-02-16T23:59:59.000Z

459

Throughput-competitive advance reservation with bounded path dispersion  

Science Conference Proceedings (OSTI)

In response to the high throughput needs of grid and cloud computing applications, several production networks have recently started to support advance reservation of dedicated circuits. An important open problem within this context is to devise advance ... Keywords: approximation algorithms, high-speed networks, routing, scheduling

Reuven Cohen; Niloofar Fazlollahi; David Starobinski

2011-10-01T23:59:59.000Z

460

Definition: Spinning Reserve | Open Energy Information  

Open Energy Info (EERE)

Spinning Reserve Spinning Reserve Jump to: navigation, search Dictionary.png Spinning Reserve Unloaded generation that is synchronized and ready to serve additional demand.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the largest generator plus a fraction of the peak load. The operating reserve is made up of the spinning reserve as well as the non-spinning or supplemental reserve: The spinning reserve is the extra generating capacity

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"U.S. Total Crude Oil Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil Proved Reserves",1,"Annual",2011,"6301899" ,"Data 2","Changes in Reserves During...

462

Proved Reserves as of 12/31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of 12/31 Adjustments (+,-) Revision Increases (+) Revision Decreases (-) Sales (-) Acquisitions (+) Extensions (+) New Field Discoveries (+) New Reservoir Discoveries in Old Fields (+) Estimated Production (-) Period: Data Series: Proved Reserves as of 12/31 Adjustments (+,-) Revision Increases (+) Revision Decreases (-) Sales (-) Acquisitions (+) Extensions (+) New Field Discoveries (+) New Reservoir Discoveries in Old Fields (+) Estimated Production (-) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. Total 20,972 21,317 19,121 20,682 23,267 26,544 1899-2011 Lower 48 States 17,093 17,154 15,614 17,116 19,545 22,728 1977-2011 Federal Offshore 4,096 3,905 3,903 4,129 4,496 4,976 1980-2011 Pacific (California) 441 441 357 348 361 350 1977-2011 Gulf of Mexico (Louisiana) 3,500 3,320 3,388 3,570 3,914 4,438 1981-2011

463

Microbial Diversity-Based Novel Crop Protection Products  

Science Conference Proceedings (OSTI)

Extremophilic microorganisms are adapted to survive in ecological niches with high temperatures, extremes of pH, high salt concentrations, high pressure, radiation, etc. Extremophiles produce unique biocatalysts and natural products that function under extreme conditions comparab le to those prevailing in various industrial processes. Therefore, there is burgeoning interest in bioprospecting for extremophiles with potential immediate use in agriculture, the food, chemical, and pharm aceutical industries, and environmental biotechnology. Over the years, several thousand extremophilic bacteria, archaea, and filamentous fungi were collected at extreme environmental sites in the USA, the Chernobyl Exclusion Zone surrounding the faeild nuclear power plant in Ukraine, in and around Lake Baikal in Siberia, and at geothermal sites on the Kamchatka peninsula in Russia. These organisms were cultured under proprietary conditions, and the cell- free supernatants were screened for biological activities against plant pathogenic fungi and major crop damaging insects. Promising peptide lead molecules were isolated, characterized, and sequenced. Relatively high hit rates characterized the tested fermentation broths. Of the 26,000 samples screened, over thousand contained biological activity of interest. A fair number of microorganisms expressed broad- spectrum antifungal or insecticidal activity. Two- dozen broadly antifungal peptides (AFPs) are alr eady patent protected, and many more tens are under further investigation. Tapping the gene pool of extremophilic microorganisms to provide novel ways of crop protection proved a successful strategy.

Pioneer Hi-Bred International Inc.; DuPont Experimental Station; Yalpani, Ronald Flannagan, Rafael Herrmann, James Presnail, Tamas Torok, and Nasser; Herrmann, Rafael; Presnail, James; Torok, Tamas; Yalpani, Nasser

2007-05-10T23:59:59.000Z

464

Classification of oil reserves and resources in the former Soviet Union  

SciTech Connect

The terminology and principles of classification of oil reserves and resources that are presently used in Russia and other countries of the former Soviet Union (FSU) differ from those in the Western countries. This difference stems from the specificity of the Soviet practice in exploration, assessment, and keeping a record of resources that were controlled by the centralized government. In the FSU, the fundamental approach to the assessment of hydrocarbon resources is traditionally based on the extent to which the resources are explored. Such important factors as thickness of separate reservoir beds, their quality, physical characteristics of oil, the recovery factor, and the economic efficiency are not considered. Owing to this approach, the resource base appeared to be strongly exaggerated due to inclusion of reserves and resources that are neither reliable nor technologically and economically viable. A critical analysis of the long-term dynamics of reserves in the leading oil-producing regions of Russia, including west Siberia, shows a negative effect of the obsolete classification and errors in resource assessment on the development and production of oil fields. The classification of hydrocarbon resources presently used in Russia should be changed so that the principles of the new classification would be similar to those commonly accepted in the oil business. A proposed new classification scheme will make the assessment of resource base for oil production in Russia more reliable. This scheme uses the principles of differentiation and assessment of hydrocarbon resources that are conventional in the world. Because no method of resource assessment is precise, the results of assessment should be presented in a probabilistic form or, at least, as an interval, but not as a single number assessment that is a common practice at present.

Khalimov, E.M. (Institute of Geology and Exploration of Combustible Fuels, Moscow (Russian Federation))

1993-09-01T23:59:59.000Z

465

Proved Oil Reserves: 2010 CIA: World Factbook assessment of ...  

Open Energy Info (EERE)

Proved Oil Reserves: 2010 CIA: World Factbook assessment of proved reserves of crude oil in barrels (bbl). Proved reserves are those quantities of...

466

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves, Reserves...

467

North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves...

468

Mississippi (with State off) Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Mississippi Coalbed Methane Proved Reserves, Reserves...

469

Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kentucky Coalbed Methane Proved Reserves, Reserves...

470

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

471

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

472

Proved Natural Gas Reserves: 2010

Open Energy Info (EERE)

Proved Natural Gas Reserves: 2010 CIA: World Factbook assessment of proved reserves of natural gas in cubic meters (cu m). Proved reserves are those...

473

A Generic Framework for a Combined Agent-based Market and Production Model  

Science Conference Proceedings (OSTI)

Agent-based market models are in general based on a-priori defined supply and demand schemes. Likewise, production models assume that prices are known a-priori. In reality prices depend on variable demands and supplies, while demand and supply depend ... Keywords: Agent-based computational economics, Invisible hand, Markets, Price mechanism, Von Neumann technology matrices

Bas Straatman; Danielle J. Marceau; Roger White

2013-04-01T23:59:59.000Z

474

Strategic Petroleum Reserve annual report for calendar year 1998  

SciTech Connect

The Strategic Petroleum Reserve was established in 1975 as an emergency response to the 1973 Arab oil embargo. It is authorized by the Energy Policy and Conservation Act (EPCA), and by the comprehensive energy plans of all Administrations since 1975, in recognition of the long-term dependence of the US on imported crude oil and petroleum products. Section 165 of EPCA requires the Secretary of Energy to submit an Annual Report to the President and the Congress. On May 13, 1998, the Department published a Statement of Administration Policy which reaffirmed its commitment to maintain a Government-owned and controlled, centrally located Strategic Petroleum Reserve of crude oil. The Reserve is to be used solely for responding to the types of severe oil supply interruptions presently contemplated in EPCA. Over the past twenty years, the Reserve has grown as large as 592 million barrels--a peak reached in 1994. From 1994 to 1996, nearly 28 million barrels were sold to raise revenues for the U S Treasury. As of December 31, 1998, the crude oil inventory was 561,108,127 barrels which equated to 60 days of net oil imports during 1998. The US now relies on a combination of both the Reserve and private stocks to meet its oil storage obligations to the International Energy Agency.

1998-12-31T23:59:59.000Z

475

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2000 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2000, as well as production volumes for the United States and selected States and State subdivisions for the year 2000.

Rafi Zeinalpour

2001-12-01T23:59:59.000Z

476

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1998 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1998, as well as production volumes for the United States and selected States and State subdivisions for the year 1998.

Rafi Zeinalpour

1999-12-01T23:59:59.000Z

477

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2002 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2002, as well as production volumes for the United States and selected States and State subdivisions for the year 2002.

Rafi Zeinalpour

2003-12-01T23:59:59.000Z

478

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2006 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2006

Information Center

2007-12-31T23:59:59.000Z

479

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1996 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the United States and selected States and State subdivisions for the year 1996.

Rafi Zeinalpour

1997-11-01T23:59:59.000Z

480

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2005 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2005

Rafi Zeinalpour

2006-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "reserves based production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1997 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the United States and selected States and State subdivisions for the year 1997.

Rafi Zeinalpour

1998-12-01T23:59:59.000Z

482

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1995 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the United States and selected States and State subdivisions for the year 1995.

Rafi Zeinalpour

1996-11-01T23:59:59.000Z

483

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1993 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1993, as well as production volumes for the United States and selected States and State subdivisions for the year 1993.

Rafi Zeinalpour

1994-11-01T23:59:59.000Z

484

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2003 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2003, as well as production volumes for the United States and selected States and State subdivisions for the year 2003.

Rafi Zeinalpour

2004-11-01T23:59:59.000Z

485

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2007 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2007

Information Center

2009-02-10T23:59:59.000Z

486

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1999 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1999, as well as production volumes for the United States and selected States and State subdivisions for the year 1999.

Rafi Zeinalpour

2000-12-01T23:59:59.000Z

487

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2001 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2001, as well as production volumes for the United States and selected States and State subdivisions for the year 2001.

Rafi Zeinalpour

2002-11-01T23:59:59.000Z

488

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1994 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1994, as well as production volumes for the United States and selected States and State subdivisions for the year 1994.

Rafi Zeinalpour

1995-10-01T23:59:59.000Z

489

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2004 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2004.

Rafi Zeinalpour

2005-11-30T23:59:59.000Z

490

NNSA Awards Funding to Accelerate Non-HEU-Based Production of Molybdenum-99  

National Nuclear Security Administration (NNSA)

Funding to Accelerate Non-HEU-Based Production of Molybdenum-99 Funding to Accelerate Non-HEU-Based Production of Molybdenum-99 in the United States | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Awards Funding to Accelerate Non-HEU-Based Production ... Press Release NNSA Awards Funding to Accelerate Non-HEU-Based Production of Molybdenum-99

491

Production of Mixed Alcohols from Bio-syngas over Mo-based Catalyst  

Science Conference Proceedings (OSTI)

A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas

Song-bai Qiu; Wei-wei Huang; Yong Xu; Lu Liu; Quan-xin Li

2011-01-01T23:59:59.000Z

492

SUPPORTING INFORMATION to Large-Scale Gasification-Based Co-Production of Fuels and  

E-Print Network (OSTI)

started production from coal syngas as vehicle fuel (Dry, 2002). Subsequently a coal-to-fuels program (derived by natural gas F-T conversion) are now beginning to be blended with conventional diesel fuels resurgence of interest in F-T fuels from gasified coal. Coal-based FT fuel production was commercialized

493

Knowledge representation and case-based reasoning in a knowledge management system for ambient intelligence products  

Science Conference Proceedings (OSTI)

The paper presents the theoretical background and realization of a KM system for the technically advanced customer and product support in the Ambient Intelligence (AmI) domain. Current products include more and more elements of AmI. AmI area is still ... Keywords: ambient intelligence, case-based reasoning, customer support system, diagnostics system, knowledge management system, knowledge representation

Ljubisa Urosevic; Sandor Kopacsi; Dragan Stokic; Ana Rita Campos; Geza Bognar

2006-02-01T23:59:59.000Z

494

Development of an Enhanced GenVARR™ (Generator Volt Ampere Reactive Reserve) System  

SciTech Connect

Transmission system operators require near real time knowledge of reactive power capability to reliably operate large electric power transmission systems. Reactive power produced by, or capable of being produced by, a power generator is often estimated based on a series of mega volt amperes (MVA) capability curves for the generator. These curves indicate the ability of the generator to produce real and reactive power under a variety of conditions. In transmission planning and operating studies, it is often assumed, based on estimates for these capability curves, that the generator can provide its rated MVA capability output when needed for system stability However, generators may not always operate at levels depicted by the maximum MVA capability curve due to present constraints. Transmission system operators utilizing the generators’ capability curves for operation decisions regarding transmission system stability or for planning horizons may overestimate the capability of the generators to supply reactive power when required. Southern Company has enhanced GenVARR(TM), the system of plant data query, retrieval, and analysis and calculates the actual – not estimated -- remaining reactive power output capability. The remaining reactive output is considered spinning reserve and is displayed graphically to transmission control center and generating plant operators to identify real time VAR limits. GenVARR is capable of aggregating generators from a defined region, or other user selectable combinations, to represent the available reserves that the operators are specifically interested in. GenVARR(TM) has been put into live production operation and is expected to significantly improve the overall visibility of the reactive reserve capability of the system. This new version of GenVARR(TM) significantly enhances the products structure and performance, and enables links to other key transmission system operation tools.

Schatz, Joe E.

2009-03-12T23:59:59.000Z

495

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

496

Naval Petroleum Reserves | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Petroleum Reserves For much of the 20th century, the Naval Petroleum and Oil Shale Reserves served as a contingency source of fuel for the Nation's military. All that...

497

Table 1. Changes to proved reserves, 2011  

Gasoline and Diesel Fuel Update (EIA)

Changes to proved reserves, 2011 Crude Oil and Lease Condensate Wet Natural Gas (billion barrels) (trillion cubic feet) U.S. proved reserves at December 31, 2011 25.2 317.6 Total...

498

Performance Analysis of a Priority Queue with Place Reservation and General Transmission Times  

Science Conference Proceedings (OSTI)

In this paper, we analyze a discrete-time single-server queue with two classes of packet arrivals and a reservation-based scheduling discipline. The objective of this discipline is to give a certain priority to (delay-sensitive) packets of class 1 and ... Keywords: Discrete-time queueing model, delay analysis, place reservation, priority scheduling

Bart Feyaerts; Sabine Wittevrongel

2008-08-01T23:59:59.000Z

499

A new dynamic guard channel reservation scheme for cellular wireless networks  

Science Conference Proceedings (OSTI)

In this paper, a new dynamic guard channel reservation scheme, based on conditional real-time channel availability, is proposed to achieve better handoff performance and higher utilisation of system resources (radio spectrum) in cellular ... Keywords: blocking, cellular wireless networks, dynamic guard channel, forced termination probability, guard channel reservation, handoff performance, radio spectrum

Raj Kumar Samanta; Gautam Sanyal; Partha Bhattacharjee

2010-09-01T23:59:59.000Z

500

Dominant Middle East oil reserves critically important to world supply  

Science Conference Proceedings (OSTI)

This paper reports that the location production, and transportation of the 60 million bbl of oil consumed in the world each day is of vital importance to relations between nations, as well as to their economic wellbeing. Oil has frequently been a decisive factor in the determination of foreign policy. The war in the Persian Gulf, while a dramatic example of the critical importance of oil, is just the latest of a long line of oil-influenced diplomatic/military incidents, which may be expected to continue. Assuming that the world's remaining oil was evenly distributed and demand did not grow, if exploration and development proceeded as efficiently as they have in the U.S., world oil production could be sustained at around current levels to about the middle of the next century. It then would begin a long decline in response to a depleting resource base. However, the world's remaining oil is very unevenly distributed. It is located primarily in the Eastern Hemisphere, mostly in the Persian Gulf, and much is controlled by the Organization of Petroleum Exporting Countries. Scientific resource assessments indicate that about half of the world's remaining conventionally recoverable crude oil resource occurs in the Persian Gulf area. In terms of proved reserves (known recoverable oil), the Persian Gulf portion increase to almost two-thirds.

Riva, J.P. Jr. (Library of Congress, Washington, DC (United States). Congressional Research Service)

1991-09-23T23:59:59.000Z