Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Refinery Capacity Report  

Gasoline and Diesel Fuel Update (EIA)

Refinery Capacity Report Released: June 15, 2006 Refinery Capacity Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006...

2

(Data in kilograms of germanium content, unless noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1995  

E-Print Network [OSTI]

: The value of domestic refinery production of germanium, based on the 1995 producer price, was approximately industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania. World Refinery Production, Reserves, and Reserve Base: Refinery production Reserves6 Reserve base6 1994

3

Multiperiod Refinery Planning Optimization  

E-Print Network [OSTI]

Multiperiod Refinery Planning Optimization with Nonlinear CDU Models Abdulrahman Alattas, Advisor #12;Refinery Planning Model Development 2 Extension to Multiperiod Planning #12;3 Multiperiod Refinery: refinery configuration Determine · What crude oil to process and in which time period? · The quantities

Grossmann, Ignacio E.

4

Reserves  

E-Print Network [OSTI]

Oct 5, 2006 ... Statutory reserve using methods specified by state insurance .... after the valuation date is discounted with interest to the date of valuation.

Miles, James

2006-10-05T23:59:59.000Z

5

Analysis Patterns for Oil Refineries  

E-Print Network [OSTI]

We present analysis patterns to describe the structure of oil refineries. The Refinery Produc tion Unit Pattern describes the structure of units and unit groups. The Oil Storage Pattern describes the structure of tanks and tank groups. The Oil Delivery Pattern describes the structure of stations for import and export of oil. The Production Process Pattern describes the productionprocess. The audience for this paper includes analysts, designers, and programmers who are involved in developing Refinery Information Systems.

Lei Zhen; Guangzhen Shao

6

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on Cokers Catalytic

7

Storage tracking refinery trends  

SciTech Connect (OSTI)

Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

Saunders, J. [ed.

1996-05-01T23:59:59.000Z

8

Refinery, petrochemical plant injuries decline  

SciTech Connect (OSTI)

The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

Not Available

1994-07-25T23:59:59.000Z

9

A Louisiana Refinery Success Story  

E-Print Network [OSTI]

manager, operations manager and production manager. From 2004 through 2006, the team presented a series of ESG seminars at the refinery site. The numerous models demonstrated quantitative savings with 3- to 12-mo paybacks. For a complete SSI turnkey...

Kacsur, D.

10

Encon Motivation in European Refineries  

E-Print Network [OSTI]

One essential element in a successful energy conservation or Encon program is effective motivation of employees and organizations to conserve energy. Encon motivation in our European refineries is a continuing effort that requires utilization...

Gambera, S.; Lockett, W., Jr.

1982-01-01T23:59:59.000Z

11

Hulett's South African Refineries Ltd.  

E-Print Network [OSTI]

The improvement in the quality of raw sugars sent to Hulett's Refinery during the three seasons, 1963164 to 1965166, was the subject of a paper presented to this association last year. (1) These

R. P. Jennings

12

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1

13

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity

14

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on

15

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on Cokers Catalytic Crackers Hydrocrackers

16

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on Cokers Catalytic Crackers

17

Refinery Outages: Fall 2014  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on Cokers Catalytic CrackersProduct:

18

Integration of Nonlinear CDU Models in RefineryCDU Models in Refinery  

E-Print Network [OSTI]

Integration of Nonlinear CDU Models in RefineryCDU Models in Refinery Planning Optimization Carnegie Mellon University EWO Meeting ­ March 2011 1 #12;I t d tiIntroduction Refinery production planning models Optimizing refinery operation C d l ti Crude selection Maximizing profit; minimizing cost

Grossmann, Ignacio E.

19

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network [OSTI]

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery...

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

20

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Report June 2014

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Report June

22

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Report

23

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Report Operable

24

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Report

25

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Reportof Last

26

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity Reportof

27

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1Capacity ReportofVacuum

28

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1CapacityCORPORATION /

29

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1CapacityCORPORATION

30

A Texas Refinery Success Story  

E-Print Network [OSTI]

A Texas Refinery Success Story Dennis Kacsur Spirax Sarco Common knowledge rules that maintenance is the key to long-lasting machinery performance. Yet steam traps are often left to their own devices, to fail or succeed alone. And without... steam trap programs, plants are certain to experience a high failure rate. An oil refinery in Texas was continuously experiencing a high failure rate on its 4,790-steam trap system. Finally, the steam losses were judged to be too high, and plant...

Kacsur, D.

31

Motiva Refinery | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department of EnergyDepartmentJulyRefinery Motiva Refinery

32

Integration of Nonlinear CDU Models in Refinery  

E-Print Network [OSTI]

Integration of Nonlinear CDU Models in Refinery Planning Optimization Abdulrahman Alattas, Advisor #12;Refinery Planning Model Development Fixed-yieldModels SwingcutsModels LPPlanningModels Aggregate for the CDU #12;Planning Model Example Typical Refinery Configuration (Adapted from Aronofsky, 1978) Cat Ref

Grossmann, Ignacio E.

33

Refinery Fuel Balancing with Cogeneration  

E-Print Network [OSTI]

in order to tie-in during a scheduled refinery wide turnaround and to be on line during the summer 1990 operating period. The two gas turbines exhaust to two existing boilers where the oxygen in the turbine exhaust is utilized for combustion. Supplementary...

Passman, K. W.; Taylor, R. I.; Williams, D. E.; Emanuel, D.

34

Fluidized bed controls refinery emissions  

SciTech Connect (OSTI)

In early 1983, two fluidized bed, waste heat boilers entered into service at the Ashland Petroleum Company refinery site in Ashland, Kentucky. These fluidized bed units are coupled to the regeneration end of a newly developed reduced crude conversion (RCC) process and served the purpose of reducing CO, SO/sub 2/ and NO/sub x/ emissions while recuperating waste heat from the regenerator process off gases.

Abdulally, I.F.; Kersey, B.R.

1986-05-01T23:59:59.000Z

35

Refinery Production Planning: Multiperiod MINLP with Nonlinear CDU  

E-Print Network [OSTI]

1 Refinery Production Planning: Multiperiod MINLP with Nonlinear CDU Model-Rivera (2011) developed a single-period, nonlinear programing refinery planning model production, distribution, sales and inventory management1,2. The refinery

Grossmann, Ignacio E.

36

Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work...  

Broader source: Energy.gov (indexed) [DOE]

Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control is Not Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control...

37

FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE  

SciTech Connect (OSTI)

A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

John D. Jones

2004-10-01T23:59:59.000Z

38

Refinery burner simulation design architecture summary.  

SciTech Connect (OSTI)

This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

2011-10-01T23:59:59.000Z

39

Implementing an Energy Management System at TOTAL Prot Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility.  

E-Print Network [OSTI]

PROPRIETARY INFORMATION? 2011 KBC Advanced Technologies plc. All Rights Reserved. Implementing an Energy Management System at TOTAL Port Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility May... Improvements ? Cost-savings initiatives ? Increasing environmental awareness ? Increasing throughput by debottlenecking processes ? Increasing government mandates 2May 2013 Energy Costs for a 200kBPD Complex refinery Typically, energy efficiency programs...

Hoyle, A.

2013-01-01T23:59:59.000Z

40

Recent trends in refinery hydrogen production  

SciTech Connect (OSTI)

Refiners are experiencing a rise in hydrogen requirements to improve product quality and process heavy sour crudes. Fuel reformulation has disrupted refinery hydrogen balance in two ways: more hydrogen is needed for hydroprocessing and less hydrogen is coproduced from catalytic naphtha reforming. The purpose of this paper is to review trends in maximizing refinery hydrogen production by modifications and alternatives to the conventional steam methane reforming, recovery from refinery off gases and {open_quote}across-the-fence{close_quote} hydrogen supply. 11 refs., 2 tabs.

Aitani, A.M.; Siddiqui, M.A.B. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Texas facility treats, recycles refinery, petrochemical wastes  

SciTech Connect (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

42

Upgrade Your Refinery for Energy Conservation  

E-Print Network [OSTI]

Upgrading existing refineries for efficient energy utilization imposes strict restraints upon design engineers. Present and future production requirements must be defined. Reliable operating data must be obtained from historical records and test...

Johnnie, D. H., Jr.; Klooster, H. J.

1983-01-01T23:59:59.000Z

43

From the Woods to the Refinery  

Broader source: Energy.gov [DOE]

Breakout Session 2DBuilding Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

44

Iran to build new refinery at Arak  

SciTech Connect (OSTI)

This paper reports Iranian plans to construct a grassroots 150,000-b/d refinery in Arak. The plant, to be completed in early 1993, will be capable of producing unleaded gasoline and other light products.

Not Available

1990-01-01T23:59:59.000Z

45

Application of Pinch Technology in Refinery Retrofits  

E-Print Network [OSTI]

APPLICATION OF PINCH TECHNOLOGY IN REFINERY RETROFITS W. R. L. Thomas, J. H. Siegell, T. Sideropoulos, J. L. Robertson, S. A. Papoulias Exxon Research and Engineering Company Florham Park, New Jersey ABSTRACT This paper reviews... the application of pinch technology in the identification of the most attractive retrofit prospects in typical refineries. In the first part of the paper, methodology is described to identify attractive inter-unit heat integration opportunities as well...

Thomas, W. R.; Siegell, J. H.; Sideropoulos, T.; Robertson, J. L.; Papoulias, S. A.

46

Monitoring and Management of Refinery Energy Consumption  

E-Print Network [OSTI]

MONITORING AND MANAGEMENT OF REFINERY ENERGY CONSUMPTION Roger O. Pelham Richard D. Moriarty Patrie D. Hudgens Profimatics, Inc. Thousand Oaks, California ABSTRACT Since 1972, the u.s. refining industry has made much progress in reduci... ng energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and man age the daily use...

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

47

Refinery siting workbook: appendices A and B  

SciTech Connect (OSTI)

The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

Not Available

1980-07-01T23:59:59.000Z

48

Refinery Outages: First Half 2015  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on Cokers Catalytic CrackersProduct:First

49

Steam System Management Program Yields Fuel Savings for Refinery  

E-Print Network [OSTI]

The Phillips refinery at Borger, Texas, determined the need to develop a utility monitoring system. Shortly after this commitment was made, the refinery was introduced to a flowsheet modeling program that could be used to model and optimize steam...

Gaines, L. D.; Hagan, K. J.

1983-01-01T23:59:59.000Z

50

Software communications integrated into refinery system  

SciTech Connect (OSTI)

Ashland Oil Co. is integrating software communications, using real-time data, into the computerized information system at its Catlettsburg, Ky., refinery. The Ashland real-time information system (Artis) was designed to improve timeliness and accuracy of yield accounting to the refinery, and to standardize software communications between applications. With the system, real-time data are collected in a central data server and used to feed normal data reconciliation software for validation. This part of the system has been successfully implemented. Standardization of software communications is still under design, but most of the communication paths have been defined because a highly evolved information system already exists at the refinery. And efforts are under way to integrate information from the process to optimization.

Goodpaster, R.; Kennedy, J.P.

1989-01-16T23:59:59.000Z

51

Soil cleaning at Czechowice Refinery A. Worsztynowicz1  

E-Print Network [OSTI]

Soil cleaning at Czechowice Refinery A. Worsztynowicz1 , A. Tien2 , K. Ulfig1 , K. Zacharz1 , M Refinery, a partner in the project has provided appropriate site and necessary technical assistance of environmental remediation. The Czechowice Oil Refinery located in southern Poland (Fig. 1.) was chosen

Hazen, Terry

52

Global Optimization for Scheduling Refinery Crude Oil Operations Ramkumar Karuppiaha  

E-Print Network [OSTI]

Global Optimization for Scheduling Refinery Crude Oil Operations Ramkumar Karuppiaha , Kevin C at the front-end of a petroleum refinery. The model relies on a continuous time representation making use-412-268-7139. Email address: grossmann@cmu.edu (I.E. Grossmann) #12;2 Keywords: Refinery scheduling; Nonconvex MINLP

Grossmann, Ignacio E.

53

Wireless Critical Process Control in oil and gas refinery plants  

E-Print Network [OSTI]

Wireless Critical Process Control in oil and gas refinery plants Stefano Savazzi1, Sergio Guardiano control in in- dustrial plants and oil/gas refineries. In contrast to wireline communication, wireless of an oil refinery is illustrated in Fig. 1: typical locations of wireless devices used for re- mote control

Savazzi, Stefano

54

U.S. Refinery Net Production  

Gasoline and Diesel Fuel Update (EIA)

13,987 12,813 12,516 12,287 12,009 12,148 2005-2013 Liquefied Refinery Gases 630 623 659 619 630 623 2005-2013 EthaneEthylene 18 19 20 20 18 7 2005-2013 Ethane 13 14 14 14 13 7...

55

Refinery siting workbook: appendices C to O  

SciTech Connect (OSTI)

Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

Not Available

1980-07-01T23:59:59.000Z

56

Determinants of HR Effectiveness and Refinery Performance  

E-Print Network [OSTI]

This paper has not undergone formal review or approval of the faculty of the ILR School. It is intended to make results of Center research available to others interested in preliminary form to encourage discussion and suggestions. Page 1SHRM and Refinery Performance WP 97-16 Strategy, Core Competence and HR Involvement as

Blaine Mccormick; Gary C. Mcmahan; W. Scott Sherman; Patrick M. Wright; Patrick M. Wright; Gary C. Mcmahan; Blaine Mccormick; W. Scott Sherman

57

Opportunities for Biorenewables in Oil Refineries  

SciTech Connect (OSTI)

Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

Marker, T.L.

2005-12-19T23:59:59.000Z

58

Naphthenic acid corrosion in the refinery  

SciTech Connect (OSTI)

Field tests and laboratory studies of refinery process streams are presented. The effects of temperature, velocity and physical state were studied with respect to alloy selection for corrosion resistant service. The amount of molybdenum in the austenitic stainless steel alloys is the dominant factor in conferring corrosion resistance. The Naphthenic Acid Corrosion Index (NACI) is useful in assessing the severity of corrosion under a variety of circumstances.

Craig, H.L. Jr. [Mobil Research and Development Corp., Paulsboro, NJ (United States)

1995-11-01T23:59:59.000Z

59

Fuel-Flexible Combustion System for Refinery and Chemical Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. Displacing Natural Gas Consumption and Lowering...

60

Projection and Reaction for Decision Support in Refineries: Combining Multiple Theories  

E-Print Network [OSTI]

Projection and Reaction for Decision Support in Refineries: Combining Multiple Theories Kurt D system to provide decision support for refinery operations personnel (Krebsbach & Musliner 1997; Musliner to provide sufficiently flexible decision support in complex environments. Background: Refinery Control

Krebsbach, Kurt D.

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Naphthenic acid corrosion in refinery settings  

SciTech Connect (OSTI)

Naphthenic acid corrosion has been a problem in the refining industry for many years. Recently interest in this problem has grown because crudes that contain naphthenic acid are being recovered from areas which were not known to produce this type of crude, such as china, India, and Africa. New techniques for identifying naphthenic acid corrosion and chemical treatments for preventing this attack are presented. Refinery case studies include stream analysis, failure analysis, and inhibitor use. Laboratory tests to show the effect of hydrogen sulfide and phosphorus-based inhibitors are discussed.

Babaian-Kibala, E. (Nalco Chemical Co., Sugar Land, TX (United States)); Craig, H.L. Jr. (Mobil Research and Development Corp., Paulsboro, NJ (United States)); Rusk, G.L. (Mobil Oil Co., Torrance, CA (United States)); Blanchard, K.V.; Rose, T.J.; Uehlein, B.L. (Nalco Chemical Co., Paulsboro, NJ (United States)); Quinter, R.C. (Sun Co., Newtown Square, PA (United States)); Summers, M.A. (Sun Co., Marcus Hook, PA (United States))

1993-04-01T23:59:59.000Z

62

U.S. Refinery Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c :0.17.1Year Jan FebYearRefineriesSep-14Sep-14

63

Firing Excess Refinery Butane in Peaking Gas Turbines  

E-Print Network [OSTI]

normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

Pavone, A.; Schreiber, H.; Zwillenberg, M.

64

Reformulated gasoline: Costs and refinery impacts  

SciTech Connect (OSTI)

Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

Hadder, G.R.

1994-02-01T23:59:59.000Z

65

RCC complex now cornerstone of Ashland refinery  

SciTech Connect (OSTI)

Performance of the first grassroots RCC process unit during its initial 1 1/2 years of operation at Ashland's principal refinery at Catlettsburg, Ky., has confirmed the commercial viability and process advantages of this new technology for heavy oil conversion. The unit has successfully processed untreated atmospheric residuum having Ramsbottom carbon content as high as 7.1 wt%, and metals contamination up to 70 ppm nickel plus vanadium into high yields of transportation and distillate fuels and other light products. The startup of this 40,000 b/d facility in March 1983 brought to fruition nearly 8 years of diligent process development and a 3-year accelerated engineering and construction program. The commercial unit was expressly designed and built to exploit process, hardware, and catalyst innovations flowing from the development effort and demonstrated to be especially applicable to converting long resids. The unit has generally met and exceeded technical expectations.

Busch, L.E.; Hettinger, W.P.; Krock, R.P.

1984-12-10T23:59:59.000Z

66

Saber's heavy oil cracking refinery project  

SciTech Connect (OSTI)

Perhaps more than any other industry, petroleum refining has been subjected to the radical swings in business and political climates of the past several decades. Because of the huge investments and long lead times to construct refining facilities, stable government policies, predictable petroleum prices, secure feedstock supplies and markets, and reliable cost estimates are necessary ingredients to effectively plan new refinery projects. However, over the past ten years the political and economic climates have provided anything but these conditions. Yet, refiners have demonstrated a willingness to undertake risks by continuing to expand and modernize their refineries. The refining business -- just as most businesses -- responds to economic incentives. These incentives, when present, result in new technology and capacity additions. In the 1940's, significant technology advances were commercialized to refine higher-octane motor gasolines. Such processes as continuous catalytic cracking (Houdry Process Corporation), fluid catalytic cracking (Standard Oil Development Company), HF alkylation (UOP and Phillips Petroleum Company), and catalytic reforming (UOP) began to supply a growing gasoline market, generated from the war effort and the ever increasing numbers of automobiles on the road. The post-war economy of the 1950's and 1960's further escalated demand for refined products, products which had to meet higher performance specifications and be produced from a wider range of raw materials. The refining industry met the challenge by introducing hydro-processing technology, such as hydrocracking developed in 1960. But, the era must be characterized by the large crude processing capacity additions, required to meet demand from the rapidly expanding U.S. economy. In 1950, refining capacity was 6.2 million BPD. By 1970, capacity had grown to 11.9 million BPD, an increase of 91%.

Benefield, C.S.; Glasscock, W.L.

1983-03-01T23:59:59.000Z

67

Implementing an Energy Management Strategy for a Houston Refinery  

E-Print Network [OSTI]

and maintained energy management program translates to PROFIT added directly to the BOTTOM LINE. Woodward-Clyde Consultants (WCC) recently implemented and energy management program at the Lyondell-Citgo Refinery in Houston, Texas. The basis of the program...

Wood, S. C.; Agrawal, R. K.; Canon, D.

68

Refinery Energy Conservation Experience with Enhanced Surface Reboilers  

E-Print Network [OSTI]

Examples of refinery services where existing reboilers were retubed or replaced with enhanced High Flux tubing to better utilize or conserve energy are reported. (1) Retubing an existing toluene column reboiler permitted the use of low cost 115...

Ragi, E. G.; O'Neill, P. S.

1981-01-01T23:59:59.000Z

69

Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs  

E-Print Network [OSTI]

. It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors...

Viar, W. L.

1979-01-01T23:59:59.000Z

70

Gas Separation Membrane Use in the Refinery and Petrochemical Industries  

E-Print Network [OSTI]

Membranes have gained commercial acceptance as proven methods to recover valuable gases from waste gas streams. This paper explores ways in which gas separation membranes are used in the refinery and petrochemical industries to recover and purify...

Vari, J.

71

Obstacles and Opportunity: Turbine Motorization in Refineries Today  

E-Print Network [OSTI]

Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned...

Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

2012-01-01T23:59:59.000Z

72

Integrating NABC bio-oil intermediates into the petroleum refinery  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory

73

Steps taken at Malelane refinery to improve refined sugar quality  

E-Print Network [OSTI]

The refinery at Malelane has in the past produced refined sugar for the consumer market. A decision was taken by the management of Transvaal Sugar (TSB) to produce a quality of refined sugar that would also be acceptable to the industrial and the export markets. The processes that were evaluated and implemented at the Malelane refinery during the past three seasons to achieve this objective, are described.

M Moodley; Pm Schorn

1997-01-01T23:59:59.000Z

74

Assessment of coal liquids as refinery feedstocks  

SciTech Connect (OSTI)

The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

75

Assessment of coal liquids as refinery feedstocks  

SciTech Connect (OSTI)

The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

76

VarPetrRef 1 VARIETY AND THE EVOLUTION OF REFINERY PROCESSING  

E-Print Network [OSTI]

VarPetrRef 1 VARIETY AND THE EVOLUTION OF REFINERY PROCESSING Phuong NGUYEN*, Pier-Paolo SAVIOTTI, refinery processes, variety, niche theory, Weitzman measure. JEL classification : L15 -L93 -O3 1

Paris-Sud XI, Université de

77

STAMP-Based Analysis of a Refinery Overflow Accident Nancy Leveson, Margaret Stringfellow, and John Thomas  

E-Print Network [OSTI]

1 STAMP-Based Analysis of a Refinery Overflow Accident Nancy Leveson, Margaret Stringfellow, and John Thomas As an example of STAMP, we have taken an accident report produced for a real refinery

Leveson, Nancy

78

Gross Error Detection in Chemical Plants and Refineries for On-Line Optimization  

E-Print Network [OSTI]

Gross Error Detection in Chemical Plants and Refineries for On-Line Optimization Xueyu Chen, Derya) British Petroleum Applications mainly crude units in refineries and ethylene plants #12;Companies

Pike, Ralph W.

79

Mixed reality training application for an oil refinery: user requirements  

E-Print Network [OSTI]

Introducing mixed reality (MR) into safety-critical environment like oil refinery is difficult, since the environment and organization lays demanding restrictions for the application. In order to develop usable and safe MR application, we need to study the context of use and derive user requirements from it. This paper describes the user requirements for an MR based oil refinery training tool. The application is aimed to train employees of a specific process unit in the refinery. Training is currently done mainly in a classroom and on-site only when the process is closed down. On-site training is necessary, but expensive and rarely possible. The use of mixed reality offers a way to train employees on-site while the process is running. Users can virtually see inside the columns and can modify virtually the process..

Marjaana Trskbck

2004-01-01T23:59:59.000Z

80

Ashland outlines $261 million in refinery unit construction  

SciTech Connect (OSTI)

This paper reports that Ashland Petroleum Co. has spelled out $261 million in projects completed, under way, or planned to produce cleaner fuel and further reduce emissions at two U.S. refineries. The company: Started up at $13 million pollution control system at its 213,400 b/cd Catlettsburg, Ky., plant. Started construction on six projects at its 67,100 b/cd St. Paul Park, Minn., refinery that will cost about $114 million and enable the plant to produce cleaner burning diesel fuel and further reduce emissions.

Not Available

1992-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning  

E-Print Network [OSTI]

1 GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning (Performance Analysis. Grossmann #12;2 Motivation · Refinery planning is an active area in process systems that strongly relies HF REFINERY FUEL RG LPG LN HN KN GO1 GO2 VGO VR1 VR2 C1 LPG LIGHT NAPHTHA PMS 98 MOGAS 95 JET FUEL

Grossmann, Ignacio E.

82

The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils  

E-Print Network [OSTI]

The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils Aerial deposition of Ni from a refinery in Port Colborne, Ontario, Canada has resulted in the enrichment in vegetable crops grown in the vicinity of the refinery. Conversely, dolomitic lime- stone additions resulted

83

Optimal Industrial Load Control in Smart Grid: A Case Study for Oil Refineries  

E-Print Network [OSTI]

Optimal Industrial Load Control in Smart Grid: A Case Study for Oil Refineries Armen Gholian, Hamed units finish their operations. Considering an oil refinery industry as an example, we not only identify Terms­Demand response, load management, manufactur- ing industries, oil refineries, optimal scheduling

Mohsenian-Rad, Hamed

84

Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)  

E-Print Network [OSTI]

Treatability studies on different refinery wastewater samples using high-throughput microbial, University Park, PA 16802, USA h i g h l i g h t s Refinery wastewaters were tested as fuels in MECs effective for treatment or pre-treatment of some refinery wastewaters. The best way to start up MECs

85

Wireless channel characterization and modeling in oil and gas refinery plants  

E-Print Network [OSTI]

Wireless channel characterization and modeling in oil and gas refinery plants Stefano Savazzi1 modeling approach is validated by experimental measurements in two oil refinery sites using industry and gas refinery sites are characterized by harsh environments where radio signals are prone to blockage

Savazzi, Stefano

86

Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition  

E-Print Network [OSTI]

Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition Sylvain: refinery planning and crude-oil operations scheduling. The proposed approach consists of using Lagrangian-study and a larger refinery problem show that the Lagrangian decomposition algorithm is more robust than the other

Grossmann, Ignacio E.

87

Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations  

E-Print Network [OSTI]

Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced 2013 Available online 5 November 2013 Keywords: Microbial fuel cells Refinery wastewater Biodegradability Separator electrode assembly a b s t r a c t The effectiveness of refinery wastewater (RW

88

JANUARY 2007 THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL  

E-Print Network [OSTI]

OF JANUARY 2007 THE REPORT THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL #12;From left;PANEL STATEMENT The B.P. U.S. Refineries Independent Safety Review Panel i Process safety accidents can be prevented. On March 23, 2005, the BP Texas City refinery experienced a catastrophic process accident

Leveson, Nancy

89

Perception of an emergency Situation by operators in an oil refinery L.Pioche&J.RPineau  

E-Print Network [OSTI]

Perception of an emergency Situation by operators in an oil refinery L.Pioche&J.RPineau Institut de the operators' behaviour during an emergency Situation m an oil refinery. The aim ofthis stage the general objective is to analyse the operators' behaviour during an emergency Situation in an oil refinery

Paris-Sud XI, Université de

90

Outlook for Refinery Outages and Available Refinery Capacity in the First Half of 2014  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYearAugust 2009DecadeOutlook

91

U.S. Refinery and Blender Net Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

18,146 17,882 18,452 18,673 18,564 19,106 1983-2013 Liquefied Refinery Gases 630 623 659 619 630 623 1984-2013 EthaneEthylene 18 19 20 20 18 7 1985-2013 Ethane 13 14 14 14 13 7...

92

Low temperature thermal treatment for petroleum refinery waste sludges  

SciTech Connect (OSTI)

Treatment requirements for waste sludges generated by petroleum refinery operations and designated as waste codes K048, K049, K050, K051 and K052 under the Resource Conservation and Recovery Act (RCRA) became effective in November, 1990 under the Landban regulations. An experimental program evaluated low temperature thermal treatment of filter cakes produced from these sludges using laboratory and pilot-scale equipment. One set of experiments on waste samples from two different refineries demonstrated the effective removal of organics of concern from the sludges to meet the RCRA Best Demonstrated Available Technology (BDAT) treatment standards. Cyanides were also within the acceptable limit. Combined with stabilization of heavy metals in the treatment residues, low temperature thermal treatment therefore provides an effective and efficient means of treating refinery sludges, with most hydrocarbons recovered and recycled to the refinery. A milder thermal treatment was used to remove the bulk of the water from a previously filtered waste sludge, providing effective waste minimization through a 40% decrease in the mass of sludge to be disposed. The heating value of the sludge was increased simultaneously by one-third, thereby producing a residue of greater value in an alternative fuels program. A process based on this approach was successfully designed and commercialized.

Ayen, R.J.; Swanstrom, C.P. (Geneva Research Center, IL (United States))

1992-05-01T23:59:59.000Z

93

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

SciTech Connect (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

94

Kidney cancer and hydrocarbon exposures among petroleum refinery workers  

SciTech Connect (OSTI)

To evaluate the hypothesis of increased kidney cancer risk after exposure to hydrocarbons, especially those present in gasoline, we conducted a case-control study in a cohort of approximately 100,000 male refinery workers from five petroleum companies. A review of 18,323 death certificates identified 102 kidney cancer cases, to each of whom four controls were matched by refinery location and decade of birth. Work histories, containing an average of 15.7 job assignments per subject, were found for 98% of the cases and 94% of the controls. Tb each job, industrial hygienists assigned semiquantitative ratings for the intensity and frequency of exposures to three hydrocarbon categories: nonaromatic liquid gasoline distillates, aromatic hydrocarbons, and the more volatile hydrocarbons. Ratings of {open_quotes}present{close_quotes} or {open_quotes}absent{close_quotes} were assigned for seven additional exposures: higher boiling hydrocarbons, polynuclear aromatic hydrocarbons, asbestos, chlorinated solvents, ionizing radiation, and lead. Each exposure had either no association or a weak association with kidney cancer. For the hydrocarbon category of principal a priori interest, the nonaromatic liquid gasoline distillates, the estimated relative risk (RR) for any exposure above refinery background was 1.0 (95% confidence interval [CI] 0.5-1.9). Analyses of cumulative exposures and of exposures in varying time periods before kidney cancer occurrence also produced null or near-null results. In an analysis of the longest job held by each subject (average duration 9.2 years or 40% of the refiner&y work history), three groups appeared to be at increased risk: laborers (RR = 1.9,95% CI 1.0-3.9); workers in receipt, storage, and movements (RR = 2.5,95% CI 0.9-6.6); and unit cleaners (RR = 2.3, 95% CI 0.5-9.9). 53 refs., 7 tabs.

Poole, C.; Dreyer, N.A.; Satterfield, M.H. [Epidemiology Resources Inc., Newton Lower Falls, MA (United States); Levin, L. [Drexel Univ., Philadelphia, PA (United States)

1993-12-01T23:59:59.000Z

95

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

96

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

97

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

98

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

99

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

100

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

102

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

103

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

104

University of Maine Integrated Forest Product Refinery (IFPR) Technology Research  

SciTech Connect (OSTI)

This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

Pendse, Hemant P.

2010-11-23T23:59:59.000Z

105

The MTBE solution: Octanes, technology, and refinery profitability  

SciTech Connect (OSTI)

This paper has been developed to provide refiners with business decision insight regarding the production of methyl tertiary butyl ether (MTBE) from refinery - (FCC) produced isobutylene. The driving forces making MTBE an attractive investment are examined with regard to the increasing demand for higher octane unleaded gasolines. The decision to proceed with MTBE production depends on the profitability of such an investment and the refiner's ability to meet market demands using available processing equipment, refinery produced streams and external feedstocks. The factors affecting this decision are analyzed in this paper and include: industry ability to meet rising octane demand; profit potential realized by diverting isobutylene to MTBE; availability of technology for producing MTBE; and investment and operating costs required to produce MTBE. Chemical Research and Licensing and NEOCHEM have developed a simple, low cost process to produce MTBE, reducing the excessive equipment and high operating costs that were associated with conventional MTBE designs. The economics and process benefits of installing a CRandL/NEOCHEM MTBE process are examined within the framework of a generalized medium-sized refinery configuration.

Lander, E.P.; Hubbard, J.N.; Smith, L.A.

1983-03-01T23:59:59.000Z

106

Controlling Silver Dust and Fumes at Mine Refinery  

E-Print Network [OSTI]

ABSTRACT: As part of the refining of gold and silver molten metal, silver dust and fumes are released into the atmosphere. The Mine Safety and Health Administration (MSHA) enforces an 8-hour, equivalent Time Weighted Average concentration limit for silver dust and fumes of 10 g/m 3. MSHA initiated a program to assess the controls that were being used to control silver dust and fume exposure. Refineries were visited at six mines. The layout of each refinery and the controls used varied at each refinery. At each operation, personal and area silver fume and dust samples were collected to assess worker exposures and to determine sources of fume. Primary source of silver dust and fume exposure was the pouring of molten metal from the furnace. Secondary sources of exposure included: precipitate mixing, bar cooling, and housekeeping. Guidelines were developed addressing housekeeping, exhaust ventilation, general ventilation, administrative controls, and system monitoring. In most cases, housekeeping and general ventilation were adequate; however, the exhaust ventilation systems needed to be improved. 1 INRODUCTION Silver dust and fumes become airborne during the refining step of producing gold and silver. The dust

R. A. Haney; M. P. Valoski

107

GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning  

E-Print Network [OSTI]

1 GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning Department of Chemical · Refinery planning is an active area in process systems that strongly relies on the accuracy of the CDU REFINERY FUEL RG LPG LN HN KN GO1 GO2 VGO VR1 VR2 C1 LPG LIGHT NAPHTHA PMS 98 MOGAS 95 JET FUEL AGO HGO HFO

Grossmann, Ignacio E.

108

Exergy Analysis of the Steam Network in Tehran Oil Refinery and Evaluation with New Scenario  

E-Print Network [OSTI]

Exergy Analysis of the Steam Network in Tehran Oil Refinery and evaluation with New Scenario Hassan Khodaei JA Ramin Taheri seresht Reza Arghandeh Energy system Lab Chairman of the Board of Directors... oil refinery, Exergy Analysis, Steam Network, Retrofit, Optimization 1. INTRODUCTION Refinery steam network is considered as a unit that consumes energy greatly. The main objective of the network is to produce the steam, which is required...

Khodaei, H.; Taheri, R.; Arghandeh, R.

109

Updated estimation of energy efficiencies of U.S. petroleum refineries.  

SciTech Connect (OSTI)

Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

Palou-Rivera, I.; Wang, M. Q. (Energy Systems)

2010-12-08T23:59:59.000Z

110

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2000. Domestically  

E-Print Network [OSTI]

Statistics--United States: 1996 1997 1998 1999 2000e Production, refinery -- -- -- -- -- Imports fluctuations. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves2 Reserve

111

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2002. Domestically  

E-Print Network [OSTI]

Statistics--United States: 1998 1999 2000 2001 2002e Production, refinery -- -- -- -- -- Imports. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves3 Reserve base3 2001

112

(Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon an estimated 2004 producer refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery

113

Evaluation audit report. Romanian petroleum refinery, Petrobrazi, Ploiesti. A selective refinery analysis for operation, energy use, environmental impacts, and improvement opportunities, May 1992. Export trade information  

SciTech Connect (OSTI)

The objective of the report is to present opportunities for energy improvement and reduction of emissions for the Petrobrazi refinery which is located 12 kilometers southwest of Ploiesti, Romania. Other defined and specified goals of the study include a consideration of the refinery's operating flexibility; an evaluation of fuel switching including the use of coal as a substitute for energy supply; and an observation of the refinery's general condition and its maintenance practice for its effect on operations. A further objective is to characterize the modifications for achieving expected benefits in accordance with the magnitude of effort and the capital requirements anticipated.

Jurish, R.A.

1992-05-01T23:59:59.000Z

114

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c :0.17.1Year Jan FebYearRefineriesSep-14 Oct-14

115

U.S. Refinery Crude Oil Input Qualities  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c :0.17.1Year Jan FebYearRefineriesSep-14

116

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural Gas PipelinesBiodiesel30, to19571,157RefineryCORPORATIONProduct: Crude

117

Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy  

SciTech Connect (OSTI)

The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

Not Available

1981-03-01T23:59:59.000Z

118

Bioremediation of a Process Waste Lagoon at a Southern Polish Oil Refinery -DoE's First Demonstration Project in Poland  

E-Print Network [OSTI]

Bioremediation of a Process Waste Lagoon at a Southern Polish Oil Refinery - DoE's First by the Czechowice Oil Refinery, located in southern Poland, has produced an estimated 120 thousand tons of acidic company thereby eliminating the contaminants while providing the refinery an additional revenue source

Hazen, Terry

119

The Energy Minimization Method: A Multiobjective Fitness Evaluation Technique and Its Application to the Production Scheduling in a Petroleum Refinery  

E-Print Network [OSTI]

to the Production Scheduling in a Petroleum Refinery Mayron Rodrigues de Almeida Sílvio Hamacher Industrial applied to production scheduling of a petroleum refinery. The experimental results are presented of the method when applied to the production scheduling in a petroleum refinery. Section 5 discusses

Coello, Carlos A. Coello

120

High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

None

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)  

SciTech Connect (OSTI)

Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

French, R. J.

2013-09-01T23:59:59.000Z

122

Copyright 1997. All rights reserved. Copyright 1997. All rights reserved.  

E-Print Network [OSTI]

Copyright © 1997. All rights reserved. #12;Copyright © 1997. All rights reserved. #12;Copyright © 1997. All rights reserved. #12;Copyright © 1997. All rights reserved. #12;Copyright © 1997. All rights reserved. #12;Copyright © 1997. All rights reserved. #12;Copyright © 1997. All rights reserved. #12

Bataillon, Thomas

123

Copyright 2000 All Rights Reserved Copyright 2000 All Rights Reserved  

E-Print Network [OSTI]

Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000

Kari, Lila

124

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

125

Opportunities for Biomass-Based Fuels and Products in a Refinery  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Corinne Valkenburg, Staff Engineer, Pacific Northwest National Laboratory

126

CO2 Reduction through Optimization of Steam Network in Petroleum Refineries: Evaluation of New Scenario  

E-Print Network [OSTI]

Steam network of petroleum refinery is energy intensive, and consequently contribute significantly to the greenhouse gases emissions. A simple model for the estimation of CO2 emissions associated with operation of steam network as encountered...

Manesh, M. H. K; Khodaie, H.; Amidpour, M.

2008-01-01T23:59:59.000Z

127

Steels for hydrogen service at elevated temperatures and pressures in petroleum refineries and petrochemical plants  

SciTech Connect (OSTI)

This book presents suggested operating limits for steels used in equipment at petroleum refineries and petrochemical plants in which hydrogen or hydrogen-containing fluids are processed at elevated temperatures and pressures.

Not Available

1990-01-01T23:59:59.000Z

128

SELECTED TOPICS in APPLIED COMPUTER SCIENCE Data Mining and Data Gathering in a Refinery  

E-Print Network [OSTI]

This article handles one of critical steps of data mining, which is data collection. It will show how the researcher could get access to the valuable data of a refinery. And it explains the procedures of refining criteria for data collection. It also briefly explains the oil refining procedures to make the concept of data gathering at the refinery easier to understand. Each manufacturing company has its own specifications and rules that are needed to be considered when collecting data. As such the result of data gathering is almost always different for different manufacturing companies. Key-Words: Data gathering, data collection, data mining, oil refinery Data mining algorithms play an important and successful role in many manufacturing companies including oil refineries. Profit management, quality and process control in

Mahmoud Reza Saybani A; Teh Ying Wah B

129

Affordability analysis of lead emission controls for a smelter-refinery. Final report  

SciTech Connect (OSTI)

This document evaluates the affordability and economic impact of additional control measures deemed necessary for a smelter-refinery to meet the lead emission standard. The emphasis in the analysis is on the impact of control costs on the smelter-refinery's profitability. The analysis was performed using control-cost data from two different lead-smelter studies in conjunction with other existing industry data.

Scherer, T.M.

1989-10-01T23:59:59.000Z

130

Technologies for the separation and recovery of hydrogen from refinery streams  

SciTech Connect (OSTI)

The effective use and recovery of hydrogen from the major hydrogen-containing streams in the refinery is an important strategy to meet the refining demands of the 1990`s. Hydrogen upgrading in refinery applications can be achieved by pressure swing adsorption (PSA), selective permeation using polymer membranes, and cryogenic separation. Each of these processes has different characteristics which are of advantage in different situations. Process selection and specific application examples are discussed.

Wilcher, F.P.; Miller, G.Q.; Mitariten, M.J. [UOP, Des Plaines, IL (United States)

1995-12-31T23:59:59.000Z

131

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network [OSTI]

REFINERY FURNACES RETROFIT WITH GAS TURBINES ACHIEVE BOTH ENERGY SAVINGS AND EMISSION REDUCTIONS F. Giacobbe*, G. Iaquaniello**, R. G. Minet*, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI Sp...A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented...

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

132

Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide  

SciTech Connect (OSTI)

The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

Goldberg, M.

2013-12-31T23:59:59.000Z

133

Evaluation audit report. Romanian petroleum refinery, Petrotel, Ploiesti. A selective refinery analysis for operation, energy use, environmental impacts, and improvement opportunities, May 1992. Export trade information  

SciTech Connect (OSTI)

The objective of the report is to present opportunities for energy improvement and reduction of emissions for the Petrotel Refinery in Brazi near Ploiesti, Romania. Other defined and specified goals of the study include a consideration of refinery operating flexibility, an evaluation of fuel switching opportunities, including the use of coal as a substitute for energy supply, and an observation of the plants general condition and of its maintenance practice for its effect on operations. A further objective is to characterize the modifications for achieving expected benefits in accordance with the magnitude of effort and capital requirements anticipated.

Not Available

1992-05-01T23:59:59.000Z

134

International Journal of Chemistry; 2013[02] ISSN 2306-6415 Preservation Ways and Energy Consumption in Oil Refinery  

E-Print Network [OSTI]

Abstract: Preservation increase and energy return is one of the effective tools in saving. Studies show that energy consumption for each productive crude oil barred is dependence on the refinery complicated in reconfiguration of forge. Energy recovery increase in refinery over time that is due to economic factors like consumption fuel increase, it means that return increase is consistent with fuel price. It developed use of crude oil capability, distillation products in modern refinery. Modern refinery recovery dead to 10 to 15 % saving in energy consumption, Modern refinery.can developed energy return in several ways such as: Thermal exchange increase between processes streams, effective hydro exchange in process units, use of heaters with high thermal return and use of gas turbines with preheated air and produce steam of waste thermal. This paper investigates management ways and energy consumption recovery in different parts of oil refinery.

Amir Samimi

135

Allocating Reserve Requirements (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of present and possible future ways to allocate and assign benefits for reserve requirements.

Milligan, M.; Kirby, B.; King, J.

2011-07-01T23:59:59.000Z

136

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect (OSTI)

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

137

Refinery Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on Cokers Catalytic CrackersProduct: Total

138

REFEREED PAPER PRE-TREATMENT OF REFINERY FINAL RUN-OFF FOR CHROMATOGRAPHIC SEPARATION  

E-Print Network [OSTI]

In the case of a back-end refinery, the final run-off or return syrup of 92-95 % purity and 75 brix is generally returned to the raw mill to be combined with raw syrup and boiled in the A-pans. Approximately 8 % of the input raw sugar brix into a refinery is returned, consequently locking up A-pan capacity and, in the case of a factory with marginal pan capacity, cane throughput is restricted. In addition, energy consumption is increased and sugar losses in final molasses are elevated. A number of processes have been considered to eliminate recycling refinery run-off, most of which require pre-treatment and/or high capital investment with a high degree of commercial risk. Test work was undertaken at the Tsb Malalane cane sugar refinery to determine the optimal pre-treatment option for decolorising and softening refinery return syrup. The pre-treatment results indicate that chemical softening, followed by the addition of a cationic colour precipitant and pH adjustment with sulphur dioxide, yields appreciable calcium reduction and modest decolourisation. The overall benefit indicates that the treated final run-off is of suitable quality to apply another crystallisation step and/or alternatively consider for further purification by chromatographic separation and/or resin decolourisation.

Singh I; Stolz Hnp; Ndhlala T

139

TSNo s02-roberts104537-O Microscopic and Spectroscopic Speciation of Ni in Soils in the Vicinity of a Ni Refinery.  

E-Print Network [OSTI]

in the Vicinity of a Ni Refinery. abstract Accurately predicting the fate and bioavailability of metals in smelter REFINERY ASA-CSSA-SSSA Annual Meetings - October 21 - 25, 2001 - Charlotte, NC #12;

Sparks, Donald L.

140

A blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production: a distillation tower, which  

E-Print Network [OSTI]

A blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production **" means "**% octane".) Once crude oil enters the system, it goes fully through the process. The refinery

Galvin, David

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Methods applied to investigate the major VCE that occured in the TOTAL refinery's Fluid Catalytic Cracking Unit at La Mede,  

E-Print Network [OSTI]

95-35 Methods applied to investigate the major ?VCE that occured in the TOTAL refinery's Fluid.V.C.E, occured in the Gas Plant of the TOTAL refinery's Fluid Catalytic Cracking ünit at La Mede, France

Paris-Sud XI, Université de

142

Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5 Figure 2.Stocks 2009 2010

143

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End1 Relative3E8.112009

144

EVALUATION OF THE SACCHAROFLEX 2000 REFLECTANCE MEASURING INSTRUMENT FOR REFINED SUGAR COLOUR ESTIMATION AT HULETTS REFINERY  

E-Print Network [OSTI]

Due to the successful use of the Saccharoflex 2000 reflectance measurement instrument on the estimation of refined sugar colour elsewhere in the world, it was decided by Tongaat-Hulett Sugar to evaluate the instrument at the refinery in Durban. Tests were carried out on first, second, third and fourth refined sugars, the results of which showed a good correlation between the ICUMSA colour measurement and the reflectance reading obtained from the Saccharoflex 2000. The instrument offers a number of advantages, the main one being that a refined sugar colour value can be obtained in less than a minute. The refinery has therefore purchased one for process control.

M Moodley; N K Padayachee; V Govender

145

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2000  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon the 2000 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and Issues: World refinery production of germanium remained steady in 2000. The recycling of scrap continued

146

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon an estimated 2003 producer. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production of fiber optics, infrared

147

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2002  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon the 2002 producer price-bearing materials generated from the processing of zinc ores. The germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. The refinery in Oklahoma doubled its production

148

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2001  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon the 2001 producer price-bearing materials generated from the processing of zinc ores. The germanium refineries in New York and Oklahoma and set up in New York. The refinery in Oklahoma expanded, and a new secondary facility was built in North

149

(Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon an estimated 2008 producer of 2008. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production of fiber optics

150

Problem 65 in Section 4.1 (Page 274) Constructing a pipeline Supertankers off-load oil at a docking facility 4 mi offshore. The nearest refinery  

E-Print Network [OSTI]

facility 4 mi offshore. The nearest refinery is 9 mi east of the shore point nearest the docking facility. A pipeline must be constructed connecting the docking facility with the refinery. The pipeline costs $300.42 miles away from the refinery, or equivalently 3.58 miles away from Point A (as the back of the book has

Schilling, Anne

151

2:00-2:30 Beverages, 2:30-4 PM Seminar Chevron operates two refineries on the west coast of California. Large parcels of  

E-Print Network [OSTI]

4/18/2014 2:00-2:30 Beverages, 2:30-4 PM Seminar Abstract Chevron operates two refineries fuel must be moved between the refineries by ship to balance production. The El Segundo Marine Terminal these vapors are returned to the refinery for processing via a vapor return pipeline. El Segundo's terminal

152

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1999  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based on the 1999 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania@usgs.gov, fax: (703) 648-7757] #12;73 GERMANIUM Events, Trends, and Issues: World refinery production

153

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1996 producer  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based on the 1996 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and chemotherapy), 5%. Salient Statistics--United States: 1992 1993 1994 1995 1996e Production, refinery 13,000 10

154

(Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based upon an estimated 2007 producer in the fourth quarter of 2007. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production

155

,"North Louisiana Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

156

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"630...

157

,"Kansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

158

,"NM, West Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

159

,"West Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

160

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

162

,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

163

,"NM, East Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

164

,"Texas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

165

,"New York Lease Condensate Proved Reserves, Reserve Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Lease Condensate Proved Reserves, Reserve Changes, and Production",2,"Annual",1985,"6...

166

Reservations to human rights treaties  

E-Print Network [OSTI]

This thesis examines the default application of the 1969 Vienna Convention on the Law of Treaties reservation rules to reservations to human rights treaties. The contemporary practice of formulating reservations allows ...

McCall-Smith, Kasey Lowe

2012-06-26T23:59:59.000Z

167

Getting it right at Catlettsburg: How Ashland Petroleum`s flagship refinery transformed itself  

SciTech Connect (OSTI)

Life has its surprises. In the midst of the pain and excitement of a massive organizational overhaul, Ashland Petroleum`s Catlettsburg refinery--a 220,000-b/d facility in Ashland, Ky.,--experienced an unplanned cracker shutdown, a few production mishaps, a two-week employee walk-out, and belt-tightening necessitated by competitive pressures. Yet, despite these adverse circumstances, the Catlettsburg Refinery Initiative (CRI), a 20-month effort that shifted from planning to implementation in October 1995, yielded remarkable results. By 1996, the refinery began achieving record levels of through-put with lower maintenance costs, increasing company profitability by about 15% in the first half of 1996, over the same period in 1995. In a post-initiative survey, refinery employees expressed enthusiam for the changes and their new work-roles. A number of factors converged to give the initiative drive and direction: a pervasive discomfort with the status quo, a determination by top management to make fundamental changes, a commitment to rapid implementation and effective use of an outside consultant. But above all, success at Catlettsburg was a result of a grassroots approach to the process of change.

Whitt, R.E.; Kennison, R.H.M.

1997-03-01T23:59:59.000Z

168

Application and Operation of a 2-MW Organic Rankine Cycle System on a Refinery FCC Unit  

E-Print Network [OSTI]

The nation's largest organic Rankine cycle (ORC) waste heat recovery system was started up in July 1984 at a West Coast oil refinery. The system includes two hermetically sealed turbine-generator units, each rated at 1070 kW. Each turbine...

Drake, R. L.

169

Restoration of Refinery Heaters Using the Technique of Prefabricated Ceramic Fiber Lined Panels  

E-Print Network [OSTI]

Refinery heater fuel requirements often represent 50% of a units operating cost. A one percent change in the efficiency of a heater firing 100 MBtu/hr amounts to more than $25,000 per year. Heater efficiency is influenced by casing hot spots, air...

Sento, H. D.

1981-01-01T23:59:59.000Z

170

Energy Guideline Factors Provide a Better Measure of Refinery Energy Performance  

E-Print Network [OSTI]

Exxon Company, U.S.A. refineries reduced energy consumption by 25% between 1972 and 1978 compared with an 18% reduction for the U.S. Petroleum Refining Industry over the same period. The Exxon approach to conserving energy in petroleum refining...

Libbers, D. D.

1980-01-01T23:59:59.000Z

171

Improved Swing-Cut Modeling for Planning and Scheduling of Oil-Refinery Distillation Units  

E-Print Network [OSTI]

, Pennsylvania 15213, United States. Crude-oil assays, Distillation, Fractionation, Swing-cuts, Temperature cut with in the nonlinear optimization. 1. INTRODUCTION Distillation or fractionation models for planning and scheduling1 Improved Swing-Cut Modeling for Planning and Scheduling of Oil-Refinery Distillation Units Brenno

Grossmann, Ignacio E.

172

THE NEW GASIFICATION PROJECT AT ENI SANNAZZARO REFINERY AND ITS INTEGRATION WITH A  

E-Print Network [OSTI]

Following the new regulation introduced in Europe in the last years, defining more stringent limits for the emissions to the atmosphere, the necessity to find an alternative use for the fuel oil has created a new challenge for the refineries. At the same time the need to improve the Italian power production has pushed Eni, the Italian energy company, to enter the electricity market.

Mwe Power Plant; Guido Collodi; Dario Camozzi; Snamprogetti Italy

2004-01-01T23:59:59.000Z

173

Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1  

SciTech Connect (OSTI)

The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

1997-05-10T23:59:59.000Z

174

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network [OSTI]

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver...

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

175

FE Petroleum Reserves News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Petroleum Reserves News FE Petroleum Reserves News RSS June 30, 2011 Department of Energy Update on Strategic Petroleum Reserve Sale On June 23, 2011, the International Energy...

176

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect (OSTI)

This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-09-17T23:59:59.000Z

177

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-05-18T23:59:59.000Z

178

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

179

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-11-17T23:59:59.000Z

180

Health hazard evaluation report HETA 83-248-1515, Arco Philadelphia refinery, Philadelphia, Pennsylvania  

SciTech Connect (OSTI)

A bulk sample of fractionator residue was analyzed for polynuclear aromatic (PNA) compounds at the catalytic cracking unit of ARCO Philadelphia Refinery (SIC-2911), Philadelphia, Pennsylvania in May, 1983. The study was requested by the Atlantic Independent Union to determine if skin rashes and skin irritation occurring among refinery workers were caused by PNA in the fractionators. The authors conclude that a health hazard from exposure to chemicals at the cracking unit may exist. No specific chemical agent can be identified. Dust from the catalyst and oily residues that could contaminate workers shoes and clothing may have contributed to some of the dermatitis cases. Recommendations include laundering workers coveralls by dry cleaning to insure the removal of oily residues, providing workers with oil resistant or oil proof work boots, and repairing the ventilator in the sample preparation room adjacent to the block house.

Lewis, F.A.; Parrish, G.

1984-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Refinery fuel oxygenates in view of the complex model for reformulated gasline  

SciTech Connect (OSTI)

The final version of the Complex Model for reformulated gasoline (RFG) has now been issued with some surprising features that will significantly affect refinery fuel oxygenates planning. These include the following: (1) The only oxygenates included in the model are MTBE, ETBE, TAME, and Ethanol. (2) The Complex Model calculates that MTBE and TAME are significantly more effective for reduction of air toxics emissions than Ethanol and ETBE. (3) The Complex Model calculates that MTBE and TAME typically produce about equal reduction in air toxics emissions at the same RFG oxygen content. Although gasoline certification by the Complex Model is optional prior to 1998, after 1998 it will be mandatory for both reformulated and conventional gasolines. This paper considers refinery oxygenates production in view of these features of the Complex Model for RFG, basing the discussion on 2.0 weight percent oxygen content for RFG.

Crawford, C.D.; Haelsig, C.P. [Fluor Daniel, Irvine, CA (United States)

1994-12-31T23:59:59.000Z

182

Refinery and petrochemical complex: The master plan study report. Volumes 1-4. Export trade information  

SciTech Connect (OSTI)

The study, conducted by ABB Lummus Crest, was funded by the U.S. Trade and Development Agency. The report focuses on the modernization and upgrading of the Angarsk Petrochemical Company. The Master Plan addresses the need of modernization to make the refinery and petrochemical complex more in line with western standards and products produced. The plan also defines a proposed configuration implementation and schedule consistent with APCC strategic objectives. This is the first of two volumes and it contains volumes 1-4 of the Master Plan. It is divided into the following sections: (1) Volume 1: Executive Summary; (2) Volume 2: Introduction and Background; (3) Volume 3: Analysis of Product Markets; (4) Volume 4: Refinery Study.

NONE

1995-06-01T23:59:59.000Z

183

LPG recovery from refinery flare by waste heat powered absorption refrigeration  

SciTech Connect (OSTI)

A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

Erickson, D.C.; Kelly, F.

1998-07-01T23:59:59.000Z

184

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-05-17T23:59:59.000Z

185

A Case Study of Steam System Evaluation in a Petroleum Refinery  

E-Print Network [OSTI]

on Refinery's management's interest, more technical details and accurate savings & investment estimates will be provided during the Development phase that includes Basic Engineering Design & Detailed Engineering Design. ? Armstrong Service Inc. 176 ESL...-IE-03-05-21 Proceedings from theTwenty-Fifth Industrial Energy Technology Conference, Houston, TX, May 13-16, 2003 Sio-Data of Presenters: Name: Ven V. Venkatesan, Title: Director of Engineering Services Company: Armstrong Service, Inc., 8545...

Venkatesan, V. V.; Iordanova, N.

186

Production of ethanol from refinery waste gases. Phase 2, technology development, annual report  

SciTech Connect (OSTI)

Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

1995-07-01T23:59:59.000Z

187

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1998 producer  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based on the 1998 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania Production, refinery 10,000 10,000 18,000 20,000 22,000e Total imports 14,700 16,200 27,500 23,700 20

188

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1997 producer  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based on the 1997 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, refinery 10,000 10,000 10,000 18,000 20,000e Total imports 15,000 15,000 16,000 27,000 17,0001 Exports NA

189

2013 CA. All rights reserved. 2013 CA. All rights reserved.  

E-Print Network [OSTI]

© 2013 CA. All rights reserved. © 2013 CA. All rights reserved. Applying Data Analytics to Address Fraud Risk Vikas Dutta Abbasali Tavawala November 9, 2013 #12;2 2 © 2013 CA. All rights reserved. CA auditing tools developed by Internal Audit Joint Effort with Rutgers CA Account Payable Exception

Lin, Xiaodong

190

Natural Reserve System UNIVERSITY OF CALIFORNIA  

E-Print Network [OSTI]

Scripps Coastal Reserve Santa Barbara 29 Carpinteria Salt Marsh Reserve 30 Coal Oil Point Natural ReserveNatural Reserve System UNIVERSITY OF CALIFORNIA The UC Natural Reserve System provides a library of ecosystems throughout California. Reserves offer outdoor laboratories to field scientists, classrooms without

California at Santa Cruz, University of

191

Strategic Petroleum Reserve quarterly report  

SciTech Connect (OSTI)

The Strategic Petroleum Reserve Quarterly Report is submitted in accordance with section 165(b) of the Energy Policy and Conservation Act, as amended, which requires that the Secretary of Energy submit quarterly reports to Congress on Activities undertaken with respect to the Strategic Petroleum Reserve. This August 15, 1990, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1990, through June 30, 1990. 3 tabs.

Not Available

1990-08-15T23:59:59.000Z

192

Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

Oak Ridge Reservation Annual Site Environmental Report DOE/ORO/2445 2012 #12;Cover Image Jeff Riggs Logistical Services Design Creative Media Communications Oak Ridge National Laboratory Oak Ridge Reservation Annual Site Environmental Report 2012 #12;DOE/ORO/2445 Oak Ridge Reservation Annual Site Environmental

Pennycook, Steve

193

Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

Oak Ridge Reservation Annual Site Environmental Report DOE/ORO-2473 2013 #12;Cover Image & Design Creative Media Communications Oak Ridge National Laboratory Oak Ridge Reservation Annual Site Environmental Report 2013 #12;DOE/ORO/2473 Oak Ridge Reservation Annual Site Environmental Report for 2013 on the World

Pennycook, Steve

194

Operating Reserves Billing Rules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E V I L L E P O W E R A D M I N I S T R A T I O N * The FERC approved standard BAL-002-WECC-2 for Contingency Reserves was effective on 10114. * Rules for assigning...

195

Exploiting heavy oil reserves  

E-Print Network [OSTI]

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen.hamptonassociates.com pRINTED BY nB GroUP Paper sourced from sustainable forests CONTENTS 3/5 does the north Sea still industry partnership drives research into sensor systems 11 Beneath the waves in 3d 12/13 does

Levi, Ran

196

Strategic Petroleum Reserve quarterly report  

SciTech Connect (OSTI)

The Strategic Petroleum Reserve Quarterly Report is submitted in accordance with section 165(b) of the Energy Policy and Conservation Act, as amended, which requires that the Secretary of Energy submit quarterly reports to Congress on activities undertaken with respect to the Strategic Petroleum Reserve. Since the Strategic Petroleum Reserve crude oil storage facilities program for the 750 million barrels was completed in 1991, this November 15, 1992, Strategic Petroleum Reserve Quarterly Report focuses on activities related primarily to the status of storage facilities, oil acquisition, budget and costs of the Reserve during the period July 1, 1992, through September 30, 1992.

Not Available

1992-11-15T23:59:59.000Z

197

Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using rotating cage  

E-Print Network [OSTI]

1.1 This practice covers a generally accepted procedure to use the rotating cage (RC) for evaluating corrosion inhibitors for oil field and refinery applications. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

198

BLENDING PROBLEM A refinery blends four petroleum components into three grades of  

E-Print Network [OSTI]

BLENDING PROBLEM A refinery blends four petroleum components into three grades of gasoline/day $/barrel #1 5,000 $9.00 #2 2,400 7.00 #3 4,000 12.00 #4 1,500 6.00 Blending formulas and selling price 4,000 x4R + x4P + x4L 1,500 #12;blending: (1) x1R / (x1R + x2R + x3R + x4R) .40 or x1R .40(x1R

Shier, Douglas R.

199

Morbidity And Sulfur Dioxide: Evidence From French Strikes At Oil Refineries  

E-Print Network [OSTI]

This paper examines the impact of sulfur dioxide (SO2) in France on health outcomes at a census track level. To do so, we use recent strikes affecting oil refineries in France, in October 2010, as a natural experiment. Our work offers several contributions. We first show that a temporal shut down in the refining process leads to a reduction in sulfur dioxide concentration. We then use this narrow time frame exogenous shock to assess the impact of a change in air pollution concentration on respiratory outcomes. Our estimates suggest that daily variation in SO2 air pollution has economically significant health effects at levels below the current standard. 0

Matthew Neidell; Emmanuelle Lavaine

2012-01-01T23:59:59.000Z

200

PAFC fed by biogas produced by the anaerobic fermentation of the waste waters of a beet-sugar refinery  

SciTech Connect (OSTI)

Beet-washing waters of a beet-sugar refinery carry a high COD (Chemical Oxygen Demand), and their conditioning to meet legal constraints before disposal considerably contributes to the operation costs of the refinery. Their fermentation in an anaerobic digestor could instead produce readily disposable non-polluting waters, fertilizers and biogas, useful to feed a phosphoric acid fuel cell (PAFC) heat and power generator system. A real refinery case is considered in this work, where the electrical characteristics V = V(I) of a laboratory PAFC stack, fueled with a dry simulated reforming gas (having the same H{sub 2} and CO{sub 2} content as the biogas obtainable by the above said anaerobic digestion), are determined. The encouraging results show that a possible market niche for fuel cells, in the food-industry waste partial recovery and residual disposal, deserves attention.

Ascoli, A.; Elias, G. [Univ. Diegli Studi di Milano (Italy); Bigoni, L. [CISE Tecnologie Innovative S.p.A., Segrate (Italy); Giachero, R. [Du Pont Pharma Italia, Firenze (Italy)

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Strategic Petroleum Reserve quarterly report  

SciTech Connect (OSTI)

This August 15, 1991, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1991, through June 30, 1991. The Strategic Petroleum Reserve storage facilities development program is proceeding on schedule. The Reserve's capacity is currently 726 million barrels. A total of 5.5 million barrels of new gross cavern volume was developed at Big Hill and Bayou Choctaw during the quarter. There were no crude oil deliveries to the Strategic Petroleum Reserve during the calendar quarter ending June 30, 1991. Acquisition of crude oil for the Reserve has been suspended since August 2, 1990, following the invasion of Kuwait by Iraq. As of June 30, 1991, the Strategic Petroleum Reserve inventory was 568.5 million barrels. The reorganization of the Office of the Strategic Petroleum Reserve became effective June 28, 1991. Under the new organization, the Strategic Petroleum Reserve Project Management Office in Louisiana will report to the Strategic Petroleum Reserve Program Office in Washington rather than the Oak Ridge Field Office in Tennessee. 2 tabs.

Not Available

1991-08-15T23:59:59.000Z

202

Achieving very low mercury levels in refinery wastewater by membrane filtration.  

SciTech Connect (OSTI)

Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (<1.3 ng/L) in an oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W. (Center for Nanoscale Materials); ( ES)

2012-05-15T23:59:59.000Z

203

Strategic Petroleum Reserve  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization of Advanced Petroleum Reserve Test

204

Refinery Integration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

literature data to estimate yields and product distribution Meaningful cost impacts: estimate value of bio-oil relative to crude oil from a refiner's perspective when considering...

205

Refinery Integration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexas |4 U.S. ManufacturingMary Biddy

206

,"New York Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Proved Nonproducing Reserves",5,"Annual",2013,"6301996" ,"Release Date:","1242014"...

207

Wilolud Online Journals, 2008. THE NIGERIAN FUEL ENERGY SUPPLY CRISIS AND THE PROPOSED PRIVATE REFINERIES PROSPECTS AND PROBLEMS  

E-Print Network [OSTI]

Dynamism of the world economy has compelled Nigerians to accept the liberalization of its economy to encourage private sector participation and induce managerial efficiency. This has become very imperative most especially, in the downstream sub-sector of the Nigerian oil and gas industry by the establishment and management of private refineries in view of the persistent fuel energy crisis. An attempt is made here at analyzing the prospects and problems of such refineries that are expected to end the fuel energy crisis which started in the 1970s due to increased demand for petroleum products for rehabilitation and reconstruction after the civil war but later metamorphosed into a hydraheaded monster in the 1980s to date. Efforts towards arresting this crisis by the government through the establishment of more refineries, storage depots and network of distribution pipelines etc achieved a short-term solution due to the abysmal low performance of the refineries and facilities in contrast to increasing demand for petroleum products. It is deduced that the low performance resulted from bad and corrupt management by indigenous technocrats and political leaders as well as vandalization of facilities. Prospects for such investments were identified, as well as some of the problems to content with. This is in order to understand the pros and cons of such investments in view of their capital intensiveness and the need to achieve economic goals that must incorporate environmental and social objectives.

Agwom Sani Z

208

Characteristics of North Sea oil reserve appreciation  

E-Print Network [OSTI]

In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve ...

Watkins, G. C.

2000-01-01T23:59:59.000Z

209

Alabama Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14per Thousand CubicThousand0

210

Alaska Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar119,039 120,124Thousand529

211

Texas Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base Gas)(MillionThousand,186

212

Utah Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321Working40 235 257 258 368 312

213

Virginia Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (BillionSeparation 2,3780 0 0

214

Self Supplied Balancing Reserves  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlights NuclearSelf-Supplied-Balancing-Reserves Sign In About |

215

Nebraska Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb Mar AprThousand Cubic1999

216

NORTHEAST REGIONAL REFINED PETROLEUM PRODUCT RESERVE | Department...  

Broader source: Energy.gov (indexed) [DOE]

NORTHEAST REGIONAL REFINED PETROLEUM PRODUCT RESERVE NORTHEAST REGIONAL REFINED PETROLEUM PRODUCT RESERVE The Northeast region of the U.S. is particularly vulnerable to gasoline...

217

Operating Reserves and Variable Generation  

SciTech Connect (OSTI)

This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

Ela, E.; Milligan, M.; Kirby, B.

2011-08-01T23:59:59.000Z

218

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect (OSTI)

This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-09-17T23:59:59.000Z

219

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect (OSTI)

This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2007-03-17T23:59:59.000Z

220

Standard guide for evaluating and qualifying oilfield and refinery corrosion inhibitors in the laboratory  

E-Print Network [OSTI]

1.1 This guide covers some generally accepted laboratory methodologies that are used for evaluating corrosion inhibitors for oilfield and refinery applications in well defined flow conditions. 1.2 This guide does not cover detailed calculations and methods, but rather covers a range of approaches which have found application in inhibitor evaluation. 1.3 Only those methodologies that have found wide acceptance in inhibitor evaluation are considered in this guide. 1.4 This guide is intended to assist in the selection of methodologies that can be used for evaluating corrosion inhibitors. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reformulated Gasoline Foreign Refinery Rules (Released in the STEO January 1998)  

Reports and Publications (EIA)

On August 27, 1997, the Environmental Protection Agency (EPA) promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an individual refinery baseline is not available to domestic refiners.) If a foreign refiner did not establish and use an individual baseline, the gasoline they export to the United States would be regulated through the importer, and subject to the importer's baseline (most likely the statutory baseline). Specific regulatory provisions are implemented to ensure that the option to use an individual baseline would not lead to adverse environmental impacts. This involves monitoring the average quality of imported gasoline, and if a specified benchmark is exceeded, remedial action would be taken by adjusting the requirements applicable to imported gasoline.

1998-01-01T23:59:59.000Z

222

Refinery and petrochemical complex: The master plan study report. Volumes 5-9. Export trade information  

SciTech Connect (OSTI)

The study, conducted by ABB Lummus Crest, was funded by the U.S. Trade and Development Agency. The report focuses on the modernization and upgrading of the Angarsk Petrochemical Company. The Master Plan addresses the need of modernization to make the refinery and petrochemical complex more in line with western standards and products produced. The plan also defines a proposed configuration implementation and schedule consistent with APCC strategic objectives. This is the second of two volumes and it contains volumes 5-9 of the Master Plan. It is divided into the following sections: (5) Volume 5: Petrochemical Complex Study; (6) Volume 6: Cost Estimates and Implementation Schedules; (7) Volume 7: Economic Analysis & Overall Project Implementation (8) Volume 8: Linear Program Study; (9) Volume 9: Local Conditions Examination Summary.

NONE

1995-06-01T23:59:59.000Z

223

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect (OSTI)

The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two

Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2008-03-31T23:59:59.000Z

224

Soot and SO[subscript 2] contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery  

E-Print Network [OSTI]

This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order ...

Molina, Luisa Tan

225

Library Reserved Room Policy All Meeting Spaces  

E-Print Network [OSTI]

Library Reserved Room Policy All Meeting Spaces Room reservation To make a reservation for any Library meeting space, complete the room reservation form at http://library.syr.edu/services/space/form-findroom.php. In order to provide equitable access to library spaces, the Library may impose limitations on frequency

Mather, Patrick T.

226

Parking Options 2011/12 Reserved Permits  

E-Print Network [OSTI]

Parking Options 2011/12 Reserved Permits A Reserved permit is $275 this fiscal year and is only available to faculty and staff through payroll deduction. Individuals issued a Reserved permit may park is completely full someone is parked illegally and Parking Services should be notified. Reserved permit holders

227

Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery  

SciTech Connect (OSTI)

The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

2010-06-21T23:59:59.000Z

228

Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996  

SciTech Connect (OSTI)

Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

1996-11-01T23:59:59.000Z

229

Strategic Petroleum Reserve quarterly report  

SciTech Connect (OSTI)

The Strategic Petroleum Reserve was created pursuant to the Energy Policy and Conservation Act of December 22, 1975 (Public Law 94-163). Its purposes are to reduce the impact of disruptions in supplies of petroleum products and to carry out obligations of the United States under the Agreement on an International Energy Program. Section 165(a) of the Act requires the submission of Annual Reports and Section 165(b)(1) requires the submission of Quarterly Reports. This Quarterly Report highlights activities undertaken during the third quarter of calendar year 1995, including: inventory of petroleum products stored in the Reserve; current storage capacity and ullage available; current status of the Strategic Petroleum Reserve storage facilities, major projects and the acquisition of petroleum products; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

NONE

1995-11-15T23:59:59.000Z

230

Estimation of resources and reserves  

E-Print Network [OSTI]

This report analyzes the economics of resource and reserve estimation. Current concern about energy problems has focused attention on how we measure available energy resources. One reads that we have an eight-year oil ...

Massachusetts Institute of Technology. Energy Laboratory.

1982-01-01T23:59:59.000Z

231

Reserves, Refuges, and Sanctuaries (Nebraska)  

Broader source: Energy.gov [DOE]

This chapter provides rules for the establishment of wildlife reserves, refuges, sanctuaries, and other natural areas on land and water bodies. The Game and Parks Commission has the authority to...

232

Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters  

SciTech Connect (OSTI)

This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of opportunity gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burners aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeecos offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the projects burner while achieving robust flame stability and very low levels of air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the projects technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

Benson, Charles; Wilson, Robert

2014-04-30T23:59:59.000Z

233

Allocation of Energy Use LCA Case Studies LCA Case Studies Allocation of Energy Use in Petroleum Refineries to Petroleum Products Implications for Life-Cycle Energy Use and Emission Inventory of Petroleum Transportation Fuels  

E-Print Network [OSTI]

Aim, Scope, and Background. Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products

Michael Wang; Hanjie Lee; John Molburg

234

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation...

235

Filling the Strategic Petroleum Reserve | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Strategic Petroleum Reserve Filling the Strategic Petroleum Reserve Filling the Strategic Petroleum Reserve Established in 1975 in the aftermath of the OPEC oil embargo, the...

236

Strategic Petroleum Reserve B-Roll Video | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Strategic Petroleum Reserve B-Roll Video Strategic Petroleum Reserve B-Roll Video The footage of the Strategic Petroleum Reserve is provided for use by broadcast news...

237

Summary of the proceedings of the workshop on the refinery of the future  

SciTech Connect (OSTI)

This report on the Workshop on the Refinery of the Future has been prepared for participants to provide them with a succinct summary of the presentations, deliberations, and discussions. In preparing the summary, we have striven to capture the key findings (conclusions) and highlight the issues and concerns raised during the plenary and breakout sessions. The presentation of the summary of the proceedings follows the final workshop agenda, which is given in Section I; each section is tabbed to facilitate access to specific workshop topics. The material presented relies heavily on the outline summaries prepared and presented by the Plenary Session Chairman and the Facilitators for each breakout group. These summaries are included essentially as presented. In addition, individuals were assigned to take notes during each session; these notes were used to reconstruct critical issues that were discussed in more detail. The key comments made by the participants, which tended to represent the range of views expressed relative to the issues, are presented immediately following the facilitator`s summary outline in order to convey the flavor of the discussions. The comments are not attributed to individuals, since in many instances they represent a composite of several similar views expressed during the discussion. The facilitators were asked to review the writeups describing the outcomes of their sessions for accuracy and content; their suggested changes were incorporated. Every effort has thus been made to reconstruct the views expressed as accurately as possible; however, errors and/or misinterpretations undoubtedly have occurred.

Not Available

1994-06-01T23:59:59.000Z

238

Production of ethanol from refinery waste gases. Final report, April 1994--July 1997  

SciTech Connect (OSTI)

The objective of this program was to develop a commercial process for producing ethanol from refinery waste gases. this report presents results from the development phases. The major focus of this work was the preparation of the prototype design which will demonstrate this technology in a 2.5 lb/hr ethanol production facility. Additional areas of focus included efforts in obtaining an industrial partner to help finance the prototype, and advanced engineering experiments concentrating on process optimization in various areas needing future development and optimization. The advanced engineering experiments were performed in the laboratory in these areas: treatment and use of recycle water from distillation back to fermentation; alternative methods of removing cells from the fermentation broth; the fermentation of streams containing CO{sub 2}/H{sub 2} alone, with little to no CO present; dealing with methanogen contaminants that are capable of fermenting CO{sub 2} and H{sub 2} to methane; and acetate tolerance by the culture. Results from the design, industrial partner search and the laboratory R&D efforts are discussed in this report.

Arora, D.; Basu, R.; Breshears, F.S.; Gaines, L.D.; Hays, K.S.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

1997-08-01T23:59:59.000Z

239

Combustion air preheating for refinery heaters using plate-type heat exchangers  

SciTech Connect (OSTI)

Combustion air preheating by recovering heat from combustion gases is a cost effective method of increasing the overall thermal efficiency of the refining and petrochemical processes. This paper presents the advantages of the plate-type air preheaters made of smooth plates without extended surfaces. These exchangers provide a relatively high heat transfer coefficient at a relatively low pressure drop, resulting in a flexible and compact design. The air preheater design can easily be integrated into the heater design. Top mounting with natural draft becomes possible for many applications, eliminating the need for I.D. fan and expensive ductwork. The economical extent of heat recovery function of the fuel fired is presented based on practical experience. The use of porcelain enameled (glass coated) plates and of stainless steel materials allows the operation of the air preheater below the acidic and water dew point. Finally the paper presents the experience of the Canadian refineries and petrochemical plants with plate-type heat exchangers used for combustion air preheating.

Dinulescu, M.

1987-01-01T23:59:59.000Z

240

Technical and operational overview of the C[sub 4] Oleflex process at Valero refinery  

SciTech Connect (OSTI)

Changes in gasoline composition stemming from the 1990 Clean Air Act (CAA) Amendments prompted Valero Energy Corporation to evaluate options for producing reformulated gasoline. The evaluation culminated in a project to upgrade butanes into methyl tertiary butyl ether (MTBE). Technology selection focused on the dehydrogenation of isobutane, and the UOP Oleflex process was selected. The MTBE project was implemented in 34 months and was $3 million under budget. The guaranteed MTBE production of 12,500 BPSD was achieved within one month of mechanical completion and has since reached 15,000 BPSD. Even at the low MTBE prices prevailing in late 1993, the butane upgrading project contributed significantly to Valero Refinery's overall profitability. Worldwide demand is expected to increase MTBE prices in 1996, thereby further increasing profits. The paper describes the project evaluation activities which led to the selection of the Oleflex process, engineering and construction, the MTBE complex start-up and operation, the Valero MTBE complex performance, and future plans. The paper also discusses feedstock utilization efficiency and MTBE market analysis.

Hohnholt, J.F.; Payne, D. (Valero Refining Co., Corpus Christi, TX (United States)); Gregor, J.; Smith, E. (UOP, Des Plaines, IL (United States))

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gasification of refinery sludge in an updraft reactor for syngas production  

SciTech Connect (OSTI)

The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4} compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C?=?450?2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup ?3} of, and 2.5 Nm{sup 3} kg{sup ?1} respectively.

Ahmed, Reem; Eldmerdash, Usama [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Sinnathambi, Chandra M., E-mail: chandro@petronas.com.my [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

2014-10-24T23:59:59.000Z

242

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

SciTech Connect (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

243

Spinning Reserve From Responsive Loads  

SciTech Connect (OSTI)

Responsive load is the most underutilized reliability resource available to the power system today. It is currently not used at all to provide spinning reserve. Historically there were good reasons for this, but recent technological advances in communications and controls have provided new capabilities and eliminated many of the old obstacles. North American Electric Reliability Council (NERC), Federal Energy Regulatory Commission (FERC), Northeast Power Coordinating Council (NPCC), New York State Reliability Council (NYSRC), and New York Independent System Operator (NYISO) rules are beginning to recognize these changes and are starting to encourage responsive load provision of reliability services. The Carrier ComfortChoice responsive thermostats provide an example of these technological advances. This is a technology aimed at reducing summer peak demand through central control of residential and small commercial air-conditioning loads. It is being utilized by Long Island Power Authority (LIPA), Consolidated Edison (ConEd), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). The technology is capable of delivering even greater response in the faster spinning reserve time frame (while still providing peak reduction). Analysis of demand reduction testing results from LIPA during the summer of 2002 provides evidence to back up this claim. It also demonstrates that loads are different from generators and that the conventional wisdom, which advocates for starting with large loads as better ancillary service providers, is flawed. The tempting approach of incrementally adapting ancillary service requirements, which were established when generators were the only available resources, will not work. While it is easier for most generators to provide replacement power and non-spinning reserve (the slower response services) than it is to supply spinning reserve (the fastest service), the opposite is true for many loads. Also, there is more financial reward for supplying spinning reserve than for supplying the other reserve services as a result of the higher spinning reserve prices. The LIPAedge program (LIPA's demand reduction program using Carrier ComfortChoice thermostats) provides an opportunity to test the use of responsive load for spinning reserve. With potentially 75 MW of spinning reserve capability already installed, this test program can also make an important contribution to the capacity needs of Long Island during the summer of 2003. Testing could also be done at ConEd ({approx}30 MW), SCE ({approx}15 MW), and/or SDG&E ({approx}15 MW). This paper is divided into six chapters. Chapter 2 discusses the contingency reserve ancillary services, their functions in supporting power system reliability, and their technical requirements. It also discusses the policy and tariff requirements and attempts to distinguish between ones that are genuinely necessary and ones that are artifacts of the technologies that were historically used to provide the services. Chapter 3 discusses how responsive load could provide contingency reserves (especially spinning reserve) for the power system. Chapter 4 specifically discusses the Carrier ComfortChoice responsive thermostat technology, the LIPAedge experience with that technology, and how the technology could be used to supply spinning reserve. Chapter 5 discusses a number of unresolved issues and suggests areas for further research. Chapter 6 offers conclusions and recommendations.

Kirby, B.J.

2003-04-08T23:59:59.000Z

244

Market Assessment of Refinery Outages Planned for October 2010 through January 2011  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial WorkingYear JanAssessment

245

,"U.S. Total Shell Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in Nonproducing Reservoirs (MillionNatural

246

Sustainable growth and valuation of mineral reserves  

E-Print Network [OSTI]

The annual change in the value of an in-ground mineral is equal to the increase or decrease of inventories ("reserves"), multiplied by the market value of a reserve unit. The limited shrinking resource base does not exist. ...

Adelman, Morris Albert

1994-01-01T23:59:59.000Z

247

A 39 year follow-up of the UK oil refinery and distribution centre studies: results for kidney cancer and leukaemia. Environ Health Perspect Suppl 101(Suppl  

E-Print Network [OSTI]

This paper presents briefly some of the principal results of a mortality analysis of a cohort of workers employed for at least 1 year between 1950 and 1975 at eight oil refineries and approximately 750 distribution centers in the U.K, together with detailed results for kidney cancer and leukemia. Over 99 % of the workers were successfully traced. Their mortality was compared with that of all males in the national population. The mortality from all causes of death is lower than that of the comparison population in both studies, and reduced mortality is also found for many of the major nonmalignant causes of death. In the refinery study, some increased mortality patterns are found for diseases of the arteries, and no healthy worker effect is found in the distribution center study for ischemic heart disease. Mortality from all neoplasms is lower than expected overall in both studies, largely due to a deficit of deaths from malignant neoplasm of the lung. Mortality from malignant neoplasm of the kidney is increased overall in the distribution center study, and in drivers in particular. The mortality from this disease increases with increased time since first exposure. The observed deaths from leukemia are slightly less than expected in the refinery study and slightly more than expected in the distribution center study. One refinery shows increased mortality due to in myeloid leukemia, and mortality is increased among refinery operators. Mortality is also raised in distribution center drivers, particularly for myeloid leukemias, including acute myeloid leukemia.

Lesley Rushton

1993-01-01T23:59:59.000Z

248

WASTE INCINERATION wr090203 Activity 090203 SNAP CODE: 090203 SOURCE ACTIVITY TITLE: WASTE INCINERATION Flaring in Oil Refinery NOSE CODE: 109.03.11 NFR CODE:  

E-Print Network [OSTI]

Flares are commonly used during petroleum refining for the safe disposal of waste gases during process upsets (e.g., start-up, shut-down, system blow-down) and emergencies to combust the organic content of waste emission streams without recovering/using the associated energy. 2 CONTRIBUTION TO TOTAL EMISSIONS Although flaring emission estimates are approximate, total hydrocarbon emissions from flaring at Canadian petroleum refineries during 1988 represented about 0.1 % of the refinery sector process and fugitive emissions that also included petroleum marketing emissions (CPPE, 1990). Thus the flaring operation at refineries is estimated to contribute a very small fraction of the total HC emissions in Canada. Emissions from flaring activities may also include: particulate, SOx, NOx, CO and other NMVOC. The CO2 contribution of both miscellaneous vent and flare emission sources represented approximately 9 % of the total petroleum refinery SO2 emission in Canada during 1988. Emissions estimates from flaring in petroleum refineries as reported in the CORINAIR90 inventory are summarised in Table 1. Table 1: Contribution to total emissions of the CORINAIR90 inventory (28 countries) Source-activity SNAP-code Contribution to total emissions [%

So Nox; Nmvoc Ch; Co Co; No Nh

249

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation  

E-Print Network [OSTI]

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation, soil, groundwater, surface water, or other environmental media. Update This section will discuss the EM Reservation 3-2 Environmental Management and Reservation Activities The following sections highlight some

Pennycook, Steve

250

Conversion of high carbon refinery by-products. Quarterly report, January 1--March 31, 1996  

SciTech Connect (OSTI)

The overall objective of the project is to demonstrate that a partial oxidation system, which utilizes a transport reactor, is a viable means of converting refinery wastes, byproducts, and other low value materials into valuable products. The primary product would be a high quality fuel gas, which could also be used as a source of hydrogen. The concept involves subjecting the hydrocarbon feed to pyrolysis and steam gasification in a circulating bed of solids. Carbon residue formed during pyrolysis, as well as metals in the feed, are captured by the circulating solids which are returned to the bottom of the transport reactor. Air or oxygen is introduced in this lower zone and sufficient carbon is burned, sub-stoichiometrically, to provide the necessary heat for the endothermic pyrolysis and gasification reactions. The hot solids and gases leaving this zone pass upward to contact the feed material and continue the gasification process. The Transport Reactor Test Unit (TRTU) was commissioned to conduct studies on pyrolysis of Rose Bottoms using spent FCC (Fluid Catalytic Cracker) catalyst as the circulating medium and gasification of this carbon over a temperature range of 1,600 to 1,700 F. The Rose Bottoms (Residuum Oil Supercritical Extraction) was produced in the Rose unit. Studies were done in the Bench Scale Reactor Unit (BRU) to develop suitable catalyst formulations and to study the steam reforming of methane and propane in support of the experiments to be conducted in the TRTU. Studies were also conducted on gasification of coke breeze, petroleum cokes and carbon deposited on FCC catalyst. The catalytic effect of potassium on gasification of these solids was studied. Studies were conducted in the CFS (cold flow simulator) to investigate flow problems experienced in the TRTU. Results from these studies are presented in this report.

Katta, S.; Henningsen, G.; Lin, Y.Y.; O`Donnell, J.

1996-04-26T23:59:59.000Z

251

Group Study Room Policy and Reservation Form  

E-Print Network [OSTI]

to the Group Study Reservation Form. Fill out the web form and click "Send" to submit the request. A confirming

Reynolds, Albert C.

252

EIS-0034: Strategic Petroleum Reserve, Expansion of Reserve, Supplemental  

Broader source: Energy.gov [DOE]

The Strategic Petroleum Reserve (SPR) developed this SEIS to address the environmental impacts of expanding the SPR to store 1,000 million barrels of oil. The final programmatic EIS (FEA-FES-76-2), addressed the environmental impacts of storing 500 million barrels of oil.

253

Estimates of Oil Reserves Jean Laherrere  

E-Print Network [OSTI]

Estimates of Oil Reserves Jean Laherrere e-mail: jean.laherrere@wanadoo.fr sites: http will solve the present problems on welfare, retirement and they would dearly love to see the reserves of oil or oil reserves is a political act. The SEC, to satisfy bankers and shareholders, obliges the oil

O'Donnell, Tom

254

BODEGA MARINE LABORATORY AND RESERVE Procedures & Policies  

E-Print Network [OSTI]

from the Reserve Staff to walk on the Reserve (this includes the sand dunes near the housing facilities. Abandoned seal and sea lion pups should be left alone. Mothers of these pups are probably out hunting and will return in several hours. Report abandoned pups and injured mammals to the Reserve Staff or Main Office

Schladow, S. Geoffrey

255

Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report  

SciTech Connect (OSTI)

The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

Not Available

1993-10-15T23:59:59.000Z

256

Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using the rotating cylinder electrode  

E-Print Network [OSTI]

1.1 This practice covers a generally accepted procedure to use the rotating cylinder electrode (RCE) for evaluating corrosion inhibitors for oil field and refinery applications in defined flow conditions. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

257

Determination of naphthenic acids in California crudes and refinery waste waters by fluoride ion chemical ionization mass spectrometry  

SciTech Connect (OSTI)

A method based on negative ion chemical ionization mass spectrometry using fluoride (F/sup -/) ions produced from NF/sub 3/ reagent gas has been applied to the analysis of naphthenic acids in California crude oils and refinery waste waters. Since complex mixtures of naphthenic acids cannot be separated into individual components, only the determination of relative distribution of acids classified by the hydrogen deficiency was possible. The identities and relative distribution of paraffinic and mono-, di-, tri, and higher polycyclic acids were obtained from the intensities of the carboxylate (RCOO/sup -/) ions.

Dzidic, I.; Somerville, A.C.; Raia, J.C.; Hart, H.V.

1988-07-01T23:59:59.000Z

258

,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (DollarsLiquidsAnnual",2014,"6/30/1993"Refinery,

259

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2001. Domestically  

E-Print Network [OSTI]

--United States: 1997 1998 1999 2000 2001e Production, refinery -- -- -- -- -- Imports for consumption 85.5 75 77 fluctuations caused by economic uncertainties. World Refinery Production, Reserves, and Reserve Base: Refinery

260

(Data in metric tons, unless otherwise noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1997. Domestically  

E-Print Network [OSTI]

--United States: 1993 1994 1995 1996 1997e Production, refinery -- -- -- -- -- Imports for consumption 73.4 70 for the indium market remains promising. World Refinery Production, Reserves, and Reserve Base: Refinery

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Strategic petroleum reserve annual report  

SciTech Connect (OSTI)

Section 165 of the Energy Policy and Conservation Act (Public Law 94- 163), as amended, requires the Secretary of Energy to submit annual reports to the President and the Congress on activities of the Strategic Petroleum Reserve (SPR). This report describes activities for the year ending December 31, 1995.

NONE

1996-02-15T23:59:59.000Z

262

Systematic Comparison of Operating Reserve Methodologies: Preprint  

SciTech Connect (OSTI)

Operating reserve requirements are a key component of modern power systems, and they contribute to maintaining reliable operations with minimum economic impact. No universal method exists for determining reserve requirements, thus there is a need for a thorough study and performance comparison of the different existing methodologies. Increasing penetrations of variable generation (VG) on electric power systems are posed to increase system uncertainty and variability, thus the need for additional reserve also increases. This paper presents background information on operating reserve and its relationship to VG. A consistent comparison of three methodologies to calculate regulating and flexibility reserve in systems with VG is performed.

Ibanez, E.; Krad, I.; Ela, E.

2014-04-01T23:59:59.000Z

263

Market Assessment of Refinery Outages Planned for March 2011 through June 2011  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial WorkingYear JanAssessment of

264

,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars perReserves (Billion Cubic Feet)"+

265

,"U.S. Working Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in NonproducingU.S. Underground Natural Gas StorageWorking

266

U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (Million Cubic Feet)

267

K. S. Telang, R. W. Pike, F. C. Knopf, J. R. Hopper, J. Saleh, S. Waghchoure, S. C. Hedge and T. A. Hertwig,"An Advanced Process Analysis System for Improving Chemical and Refinery Processes," Computers and Chemical Engineering, Vol. 23, p. S727-730 (1999  

E-Print Network [OSTI]

. Hertwig,"An Advanced Process Analysis System for Improving Chemical and Refinery Processes," Computers Chemical and Refinery Processes K. S. Telang, X. Chen, R. W. Pike and F. C. Knopf Louisiana State and refineries for process improvements. The system integrates programs for on-line optimization, chemical

Pike, Ralph W.

268

Strategic Petroleum Reserve annual/quarterly report  

SciTech Connect (OSTI)

During 1992 the Department continued planning activities for the expansion of the Strategic Petroleum Reserve to one billion barrels. A draft Environmental Impact Statement for the five candidate sites was completed in October 1992, and a series of public hearings was held during December 1992. Conceptual design engineering activities, life cycle cost estimates and geotechnical studies to support the technical requirements for an Strategic Petroleum Reserve Plan Amendment were essentially completed in December 1992. At the end of 1992, the Strategic Petroleum Reserve crude oil inventory was 574.7 million barrels and an additional 1.7 million barrels was in transit to the Reserve. During 1992 approximately 6.2 million barrels of crude oil were acquired for the Reserve. A Department of Energy Tiger Team Environmental, Safety and Health (ES&H) Assessment was conducted at the Strategic Petroleum Reserve from March 9 through April 10, 1992. In general, the Tiger Team found that Strategic Petroleum Reserve activities do not pose undue environmental, safety or health risks. The Strategic Petroleum Reserve`s Final Corrective Action Plan, prepared in response to the Tiger Team assessment, was submitted for Department approval in December 1992. On November 18, 1992, the Assistant Secretary for Fossil Energy selected DynMcDennott Petroleum Operations Company to provide management and operating services for the Strategic Petroleum Reserve for a period of 5 years commencing April 1, 1993. DynMcDermott will succeed Boeing Petroleum Services, Inc.

Not Available

1993-02-16T23:59:59.000Z

269

Strategic Petroleum Reserve quarterly report  

SciTech Connect (OSTI)

This Quarterly Report highlights activities undertaken during the second quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the current quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

Not Available

1993-08-15T23:59:59.000Z

270

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

271

Final Report - Development of New Pressure Swing Adsorption (PSA) Technology to Recover High Valued Products from Chemical Plant and Refinery Waste Systems  

SciTech Connect (OSTI)

Project Objective was to extend pressure swing adsorption (PSA) technology into previously under-exploited applications such as polyolefin production vent gas recovery and H2 recovery from refinery waste gases containing significant amounts of heavy hydrocarbons, aromatics, or H2S.

Keith Ludwig

2004-06-14T23:59:59.000Z

272

Public health assessment for US Smelter and Lead Refinery, Inc. (A/K/A USS Lead Refinery Inc. ) East Chicago, Lake County, Indiana, Region 5. Cerclis no. IND047030226. Final report  

SciTech Connect (OSTI)

The U.S. Smelter and Lead Refinery, Inc. (USS Lead), in East Chicago, Indiana, has been operating as a primary and secondary smelting facility since 1906. Wastes which were produced during smelting operations are calcium sulfate sludge, blast furnace flue-dust, baghouse bags, rubber and plastic battery casings, and waste slag. Limited sampling information is available, and indicates that on-site soils and wastes are contaminated with lead and other metals. Additional sampling off-site surface soils indicate that the contamination has spread off-site as far as one-half mile from the site. Surface water and sediment on-site has also become contaminated with lead and other metals, as well as waste oil. Based on the completed exposure pathways to lead through soil ingestion and dust inhalation, the Agency for Toxic Substances and Disease Registry concludes that contamination from the USS Lead site is a public health hazard.

Not Available

1994-08-24T23:59:59.000Z

273

Effective Immediately - OASIS Reservation Points Suspended -...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CommitteesTeams Customer Training Interconnection Notices Rates Standards of Conduct Tariff TF Web Based Training Notice: Effective Immediately - OASIS Reservation Points...

274

National Reservation Economic Summit (RES) 2014  

Broader source: Energy.gov [DOE]

The 28th Annual National Reservation Economic Summit in Las Vegas will feature respected tribal leaders, state and local elected officials, and top CEOs; networking and teaming opportunities;...

275

Miscellaneous States Coalbed Methane Proved Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

276

,"New York Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Proved Reserves",10,"Annual",2013,"6301977" ,"Release Date:","124...

277

Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation  

E-Print Network [OSTI]

1 Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation The Oak Ridge Reservation (ORR) is a 13,560 ha (33,508-acre) federally owned site located in the counties components, the Oak Ridge National Laboratory (ORNL) and the Y-12 National Security Complex (Y-12 Complex

Pennycook, Steve

278

Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342 1,298 1,210 1,006 413

279

Alabama Lease Condensate Proved Reserves, Reserve Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases4 16 18 19 18

280

Alabama Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14per Thousand 2007 2008 2009

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alaska Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14perCubic

282

Alaska Lease Condensate Proved Reserves, Reserve Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14Extensions (Billion2009 20100 0 0

283

Alaska Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar119,0392008 2009 2010 2011

284

Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan(Million Cubic Feet) Quantity31

285

Arkansas Lease Condensate Proved Reserves, Reserve Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan(MillionSales (Billion CubicSep-141 1

286

TX, RRC District 2 Onshore Coalbed Methane Proved Reserves, Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports96 2639816 29Changes,

287

TX, RRC District 2 Onshore Lease Condensate Proved Reserves, Reserve  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports96 2639816238

288

TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.

289

TX, RRC District 3 Onshore Lease Condensate Proved Reserves, Reserve  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272 261 428 500

290

TX, RRC District 4 Onshore Coalbed Methane Proved Reserves, Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272 261 428 500932

291

TX, RRC District 4 Onshore Lease Condensate Proved Reserves, Reserve  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272 261 428 50093292 207

292

TX, State Offshore Shale Gas Proved Reserves, Reserves Changes, and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272Production

293

Texas Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2per ThousandBarrels)0 0 0 0 81 57

294

Texas Lease Condensate Proved Reserves, Reserve Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 Oct-14 Nov-14 Dec-14 Jan-15412

295

Texas Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667 28,167 38,048 49,588

296

Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667 28,167

297

Texas State Offshore Lease Condensate Proved Reserves, Reserve Changes, and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667 28,167 4 3 3

298

Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 601 631 909 1,001 895893 725

299

Utah Lease Condensate Proved Reserves, Reserve Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 601 631New2009 2010 201162 90

300

Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198SeparationTotal Consumptionper0.11,851 2,261

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Virginia Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (BillionSeparation 2,3780 0 0(Million

302

West Virginia Coalbed Methane Proved Reserves, Reserves Changes, and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89Production 246 220

303

California Coalbed Methane Proved Reserves, Reserves Changes, and  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1Reserves

304

NM, East Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 474 523 507 362 5

305

NM, East Lease Condensate Proved Reserves, Reserve Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 474 523 50757 60

306

NM, East Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 474 523136 149

307

NM, West Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 474 5231363,461

308

NM, West Lease Condensate Proved Reserves, Reserve Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 47421 20 21 26 29

309

NM, West Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 47421 20 210 0 0

310

Nebraska Lease Condensate Proved Reserves, Reserve Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2. Average8 2009 2010 201180Sep-14

311

New York Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan FebFeet) DecadeFeet) WorkingSeparation 290 0

312

North Dakota Coalbed Methane Proved Reserves, Reserves Changes, and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan FebFeet)SalesYearDecade Year-0Feet)per0 0 0

313

Start up results from a specialized flue gas cleaning facility in a power station using refinery residues  

SciTech Connect (OSTI)

In eastern Germany STEAG--the biggest German IPP--has erected a power plant consisting of three combustion lines burning oil distillation residues from the new Mider refinery to provide the refinery with power, steam, water and compressed air. Each of the three flue gas cleaning lines consists of a high dust SCR-system, quench, wet electrostatic precipitator, scrubber, steam reheater and ID-fan. Common systems are the storage and handling of the absorbent, the gypsum dewatering and the waste water treatment. The installed high dust SCR system attains the expected NO{sub x}-reduction efficiency and an excellent NO{sub x} outlet distribution and low ammonia slip. After commissioning problems occurred with the wet ESP in all three lines due to improper function of the upstream quenches. Modifications of the quench system have been made which assure a temperature of the flue gas after quench near saturation temperature and correct functioning of the quench and wet ESP. To reduce pressure loss of the absorber concurrent spray nozzles were installed. Strong vibrations of the absorber tower, the connected pipes and the steel structure along with an insufficient SO{sub x} removal efficiency at high inlet concentration were observed. After changing the concurrent operation of the spray nozzles to counter current operation the vibrations of the absorber tower became smaller and the removal efficiency achieved the guaranteed value. Problems arose in the waste water treatment plant caused by the high solid concentration of up to 1,000 g/l in the thickener. By diluting the settled sludge with overflow water from the thickener the problems in the waste water treatment plant could be minimized to an acceptable degree. Despite these problems the flue gas cleaning system is in continuous operation and the emission values of flue gas and waste water meet the required standards.

Beiers, H.G.; Gilgen, R.; Weiler, H.

1998-07-01T23:59:59.000Z

314

Strategic Petroleum Reserve. Quarterly report  

SciTech Connect (OSTI)

The Strategic Petroleum Reserve serves as one of the most important investments in reducing the Nation`s vulnerability to oil supply disruptions. This Quarterly Report highlights activities undertaken during the third quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated. Samples of the oil revealed two problems that, although readily correctable, have reduced the availability of some of the oil inventory for drawdown in the near-term. These problems are: (1) a higher-than-normal gas content in some of the crude oil, apparently from years of intrusion of methane form the surrounding salt formation; and (2) elevated temperatures of some of the crude oil, due to geothermal heating, that has increased the vapor pressure of the oil. Investigations are proceeding to determine the extent to which gas intrusion and geothermal heating are impacting the availability of oil for drawdown. Preliminary designs have been developed for systems to mitigate both problems.

Not Available

1993-11-15T23:59:59.000Z

315

Petroleum Reserves | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRockyServices » WastePetroleum Reserves Petroleum

316

U.S.Uranium Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18BiomassThree-Dimensional SeismicUranium

317

NM, East Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 474 523136 149 180

318

NM, West Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 47421 20 210 0 0 0

319

Natural Gas Liquids Reserves Acquisitions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly Download Series History80233 554

320

Natural Gas Liquids Reserves Adjustments  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly Download Series History80233

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Natural Gas Liquids Reserves Extensions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly Download Series History80233629

322

Natural Gas Liquids Reserves Sales  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly Download Series882 1,232 968

323

Billing Factors for Operating Reserves September 30, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are effective on October 1, 2014. This implements the FERC approved standard BAL-002-WECC-2. Operating Reserve - Spinning Reserve: The Billing Factor for the rates specified in...

324

Oak Ridge Reservation Needs Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Reservation Needs Assessment Oak Ridge Reservation Needs Assessment December 1997 This Needs Assessment for former Oak Ridge National Laboratory and Y-12 Nuclear Security...

325

,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

326

,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

327

,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

328

2013 CLEAResult All rights reserved. 1 Smart Schools Symposium  

E-Print Network [OSTI]

2013 CLEAResult All rights reserved. 1 Smart Schools Symposium September 2013 #12; 2013 reserved. 10 Case Study: Inventory Bakersfield City School District Understanding age and operation

California at Davis, University of

329

New Approach to Determine the Need for Operating Reserves in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Approach to Determine the Need for Operating Reserves in Electricity Markets with Wind Power New Approach to Determine the Need for Operating Reserves in Electricity Markets...

330

Naval Petroleum Reserve No. 3 Disposition Decision Analysis and...  

Energy Savers [EERE]

Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline This Report to Congress provides a...

331

DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition...  

Energy Savers [EERE]

to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 January 2, 2009 -...

332

Exemplary Hurricane Damage Cleanup Earns Petroleum Reserve Coveted...  

Broader source: Energy.gov (indexed) [DOE]

Exemplary Hurricane Damage Cleanup Earns Petroleum Reserve Coveted Environmental Award Exemplary Hurricane Damage Cleanup Earns Petroleum Reserve Coveted Environmental Award April...

333

Draft "Michigan Saves" Loan Loss Reserve Fund Agreement  

Broader source: Energy.gov [DOE]

A sample loan loss reserve agreement between a state or local government and a financial institution setting the terms and conditions of the loan loss reserve fund.

334

Case Western Reserve University Chart of Accounts  

E-Print Network [OSTI]

Case Western Reserve University Chart of Accounts July 7, 2004 1 SPEEDTYPE / PROJECT PREFIXES Funds PLT Plant CIP Construction in Progress #12;Case Western Reserve University Chart of Accounts July Annual Fund Gift RES Research TRN Training SPC Special Programs/Projects OSA Other Sponsored Activities

Rollins, Andrew M.

335

Reservation Price Estimation by Adaptive Conjoint Analysis  

E-Print Network [OSTI]

Reservation Price Estimation by Adaptive Conjoint Analysis Christoph Breidert1 , Michael Hahsler1 applied the eco- nomic definition of reservation price in combination with a conjoint study on product pricing. In this paper we present a novel approach to estimate the economic reser- vation price using

Schmidt-Thieme, Lars

336

GPRS-Based Cinema Ticket Reservation System  

E-Print Network [OSTI]

Science and Engineering. This MSC project implements a mobile Location Aware Cinema Ticket Reser- vationGPRS-Based Cinema Ticket Reservation System Mihai Balan Kongens Lyngby 2007 IMM-2007-7b #12 is called Cinema Ticket Reservation System and it can determine user's current position, allow users

337

Drilling fluids and reserve pit toxicity  

SciTech Connect (OSTI)

Drilling fluids are now classified as exempt under the Resource Conservation and Recovery Act (RCRA) hazardous waste laws. Since 1986, however, the U.S. Environmental Protection Agency (EPA) has been studying reserve pit contents to determine whether oilfield wastes should continue under this exemption. Concerns regarding reserve pit contents and disposal practices have resulted in state and local governmental regulations that limit traditional methods of construction, closure, and disposal of reserve pit sludge and water. A great deal of attention and study has been focused on drilling fluids that eventually reside in reserve pits. In-house studies show that waste from water-based drilling fluids plays a limited role (if any) in possible hazards associated with reserve pits. Reserve pit water samples and pit sludge was analyzed and collated. Analyses show that water-soluble heavy metals (Cr, Pb, Zn and Mn) in reserve pits are generally undetectable or, if found in the total analysis, are usually bound to clays or organics too tightly to exceed the limitations as determined by the EPA toxicity leachate test. The authors' experience is that most contamination associated with reserve pits involves high salt content from produced waters and/or salt formations, lead contamination from pipe dope, or poorly designed pits, which could allow washouts into surface waters or seepage into groundwater sources. The authors' analyses show that reserve its associated with water-based drilling fluid operations should not be classified as hazardous; however, careful attention attention should be paid to reserve pit construction and closure to help avoid any adverse environmental impact.

Leuterman, A.J.J.; Jones, F.V.; Chandler, J.E. (M-I Drilling Fluids Co. (US))

1988-11-01T23:59:59.000Z

338

Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery  

SciTech Connect (OSTI)

The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOEs target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

Stewart Mehlman

2010-06-16T23:59:59.000Z

339

Strategic Petroleum Reserve: Annual/quarterly report  

SciTech Connect (OSTI)

Section 165 of the Energy Policy and Conservation Act (Public Law 94-163), as amended, requires the Secretary of Energy to submit annual and quarterly reports to the President and the Congress on activities of the Strategic Petroleum Reserve. This report combines the fourth quarter 1993 Quarterly Report with the 1993 Annual Report. Key activities described include appropriations; life extension planning; expansion planning; Strategic Petroleum Reserve oil acquisition; the oil stabilization program; and the refined petroleum product reserve test programs. Sections of this report also describe the program mission; the storage facility development program; environmental compliance; budget and finance; and drawdown and distribution.

Not Available

1994-02-16T23:59:59.000Z

340

Siemens AG 2009. All rights reserved. Investitionsmanagement  

E-Print Network [OSTI]

Siemens AG 2009. All rights reserved. Investitionsmanagement Wie steuert man erfolgreich Investitionen? - Tools eines erfolgreichen, globalen Industrieunternehmens - Michael Sigmund CFO Siemens Investitionsplanung Berlin, 26. November, 2009 #12;Page 2 November 26, 2009 Copyright Siemens AG 2009. All rights

Manstein, Dietmar J.

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A new reef marine reserve in the  

E-Print Network [OSTI]

A new reef marine reserve in the southern Arabian Gulf ­ Jebel Ali (Dubai, United Arab Emirates) Just in time to make a major contribution to IYOR, Dubai municipality (United Arab Emirates) declared

342

Virginia Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

343

Oklahoma Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

344

Pennsylvania Coalbed Methane Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

345

Virginia Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

346

Arkansas Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

347

Colorado Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

348

Pennsylvania Coalbed Methane Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

349

Virginia Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

350

Colorado Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

351

Oklahoma Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

352

Montana Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

353

Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

354

Wyoming Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

355

Arkansas Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

356

Oklahoma Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

357

Miscellaneous States Coalbed Methane Proved Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

358

Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

359

Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

360

Colorado Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

362

Colorado Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

363

Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

364

Colorado Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

365

Arkansas Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

366

Virginia Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

367

Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

368

Aurora Cassandra Elmore ALL RIGHTS RESERVED  

E-Print Network [OSTI]

[2009] Aurora Cassandra Elmore ALL RIGHTS RESERVED #12;LATE PLEISTOCENE CHANGES IN NORTHERN COMPONENT WATER: INFERENCES FROM GEOCHEMICAL AND SEDIMENTOLOGICAL RECORDS FROM GARDAR DRIFT by AURORA FROM GEOCHEMICAL AND SEDIMENTOLOGICAL RECORDS FROM GARDAR DRIFT by AURORA CASSANDRA ELMORE Dissertation

369

Ohio Shale Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan Feb0 'Thousand

370

Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment  

SciTech Connect (OSTI)

A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

Fishkind, H.H.

1982-04-01T23:59:59.000Z

371

refinery BP Oil's Alliance refinery in Louisiana  

E-Print Network [OSTI]

is the focus of an environmental control program, which is also being implemented in other BP plants

unknown authors

372

,"U.S. Shale Gas Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (DollarsLiquidsAnnual",2014,"6/30/1993"Refinery,Gas

373

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation  

E-Print Network [OSTI]

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work accomplished by the DOE Oak Ridge Office of Environmental Management (EM and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The 1992 Federal Facility

Pennycook, Steve

374

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation  

E-Print Network [OSTI]

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Setting Much of Environmental Management (EM) work done on the ORR is performed as a result, soil, groundwater, surface water, or other environmental media. Most of the remaining part of EM work

Pennycook, Steve

375

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation  

E-Print Network [OSTI]

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work done under the DOE Oak Ridge Operations Office of Environmental Management (EM water, or other environmental media. 3.1 INTRODUCTION For over half a century, one of the primary

Pennycook, Steve

376

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation  

E-Print Network [OSTI]

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work accomplished by the DOE Oak Ridge Office of Environmental Management (DOE- EM that remain in structures, buildings, facilities, soil, groundwater, surface water, or other environmental

Pennycook, Steve

377

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation  

E-Print Network [OSTI]

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work done under the DOE Oak Ridge Operations Office of Environmental Management (EM, soil, groundwater, surface water, or other environmental media. 3.1 INTRODUCTION For over half

Pennycook, Steve

378

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation  

E-Print Network [OSTI]

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work accomplished by the DOE Oak Ridge Operations Office of Environmental Management, buildings, facilities, soil, groundwater, surface water, or other environmental media. 3.1 INTRODUCTION

Pennycook, Steve

379

Oak Ridge Reservation Environmental Monitoring Program 6-1 6. Oak Ridge Reservation Environmental  

E-Print Network [OSTI]

monitoring program are analyzed to assess the environmental impact of DOE operations on the entire1 Oak Ridge Reservation Environmental Monitoring Program 6-1 6. Oak Ridge Reservation Environmental Monitoring Program In addition to environmental monitoring conducted at the three major Oak Ridge DOE

Pennycook, Steve

380

Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation  

E-Print Network [OSTI]

Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation The Oak components, the Oak Ridge National Laboratory (ORNL) and the Y-12 National Security Complex (Y-12 Complex sector business/industrial park; the Oak Ridge Institute for Science and Education (ORISE) South Campus

Pennycook, Steve

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation  

E-Print Network [OSTI]

Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation The Oak) operating components, the Oak Ridge National Laboratory (ORNL) and the Y-12 National Security Complex (Y-12 diffusion plant that is undergoing environmental restoration; the Oak Ridge Institute for Science

Pennycook, Steve

382

Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation  

E-Print Network [OSTI]

Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation The Oak-12 National Security Complex, Oak Ridge National Laboratory, and East Tennessee Technology Park have involved, and continue to involve, the use of radiological and hazardous materials. The Oak Ridge

Pennycook, Steve

383

NREL Variability and Reserves Analysis for the Western Interconnect (Presentation)  

SciTech Connect (OSTI)

Additional variability and uncertainty increase reserve requirements. In this light, this presentation discusses how use of generation reserves can be optimized for managing variability and uncertainty. Conclusions of this presentation are: (1) Provided a method for calculating additional reserve requirements due to wind and solar production; (2) Method is based on statistical analysis of historical time series data; (3) Reserves are dynamic, produced for each hour; (4) Reserve time series are calculated from and synchronized to simulation data; (5) PROMOD can not model directly, but workarounds exist for regulation and spin; and (6) Other production modeling packages have varying capability for reserves modeling.

Milligan, M.; King, J.

2011-10-01T23:59:59.000Z

384

Gulf of Mexico Proved Reserves By Water Depth, 2009  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM...

385

abnormal coronary reserve: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Dja reserve has not yet been subject to forest logging. But the high processing of timber extraction and the commercial hunting of large mammals around the reserve, result...

386

alveolar microvascular reserves: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Dja reserve has not yet been subject to forest logging. But the high processing of timber extraction and the commercial hunting of large mammals around the reserve, result...

387

The value of United States oil and gas reserves  

E-Print Network [OSTI]

The object of this research is to estimate a time series, starting in 1979, for the value of in-ground oil reserves and natural gas reserves in the United States. Relatively good statistics exist for the physical quantities. ...

Adelman, Morris Albert

1996-01-01T23:59:59.000Z

388

DOE Takes Next Steps to Expand Strategic Petroleum Reserve to...  

Broader source: Energy.gov (indexed) [DOE]

to Expand Strategic Petroleum Reserve to One Billion Barrels DOE Takes Next Steps to Expand Strategic Petroleum Reserve to One Billion Barrels December 8, 2006 - 9:34am Addthis...

389

Methamphetamine and Tribal Criminal Jurisdiction on the Wind River Reservation  

E-Print Network [OSTI]

The drug methamphetamine is creating an epidemic on Tribal reservations. Non-Indian drug dealers are targeting vulnerable addicted populations, including the Wind River Reservation in Wyoming in hopes to replace the alcohol ...

Cisneros, Mandy

2008-06-18T23:59:59.000Z

390

Draft 'Michigan Saves' Loan Loss Reserve Fund Agreement  

Broader source: Energy.gov [DOE]

A sample loan loss reserve agreement between a state or local government and a financial institution setting the terms and conditions of the loan loss reserve fund. Author: State of Michigan

391

Arkansas Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion CubicperProved Reserves

392

Oklahoma Shale Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan FebperShale Proved

393

THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION  

E-Print Network [OSTI]

1974. 7. Atlantic Richfield Hanford Company, Research andGABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION L.

Martinez-Baez, L.F.

2011-01-01T23:59:59.000Z

394

Cognitive Reserve and Alzheimer Disease Yaakov Stern, PhD  

E-Print Network [OSTI]

that individual differences in how tasks are processed provide differential reserve against brain pathology or age-related changes. This may take 2 forms. In neural reserve, preexisting brain networks that are more efficient of reserve against brain damage stems from the repeated observation that there does not seem to be a direct

395

Oak Ridge ReseRvatiOn DOE/ORO/2379  

E-Print Network [OSTI]

Oak Ridge ReseRvatiOn DOE/ORO/2379 Annual Site Environmental Report 2010 #12;Cover Image and Design Creative Media Human Resources and Communications Oak Ridge National Laboratory The Oak Ridge Reservation Annual Site Environmental Report 2010 #12;DOE/ORO/2379 Oak Ridge Reservation Annual Site Environmental

Pennycook, Steve

396

Alberta's Energy Reserves 2007 and Supply/Demand Outlook  

E-Print Network [OSTI]

Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008-2017 0 ST98-2008 Energy Resources RESOURCES CONSERVATION BOARD ST98-2008: Alberta's Energy Reserves 2007 and Supply/Demand Outlook 2008: Reserves Andy Burrowes, Rick Marsh, Nehru Ramdin, and Curtis Evans; Supply/Demand and Economics

Laughlin, Robert B.

397

Case Western Reserve University Chart of Accounts  

E-Print Network [OSTI]

of the following: ANN LON CIP OPR CSR OSA END PLT FHB RES INC SPC INS TRN All other SpeedTypes will populate 102330 Non-Govt Construction 102340 Non-Govt CIP Movable Equipment 102350 Govt Construction 102360 Govt CIP Movable Equip 102370 CIP - Site Preparation 102371 CIP Surveying #12;Case Western Reserve

Rollins, Andrew M.

398

Oak Ridge Reservation Waste Management Plan  

SciTech Connect (OSTI)

This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

Turner, J.W. [ed.

1995-02-01T23:59:59.000Z

399

VEHICLE RESERVATION DO NOT WRITE IN  

E-Print Network [OSTI]

VEHICLE RESERVATION DO NOT WRITE IN SHADED AREAS For Information Call 764-2485 FAX # (76)3-1470 Vehicle No. License OK VEHICLE DAMAGE INSPECTION Circle area of damage and/or describe below: OUTGOING for Rules & Regulations for Vehicle Rentals Reference Number 5 digit # Date Department Short code Requestor

Kirschner, Denise

400

,"U.S. Total Crude Oil Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQProved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advance Network Reservation and Provisioning for Science  

SciTech Connect (OSTI)

We are witnessing a new era that offers new opportunities to conduct scientific research with the help of recent advancements in computational and storage technologies. Computational intensive science spans multiple scientific domains, such as particle physics, climate modeling, and bio-informatics simulations. These large-scale applications necessitate collaborators to access very large data sets resulting from simulations performed in geographically distributed institutions. Furthermore, often scientific experimental facilities generate massive data sets that need to be transferred to validate the simulation data in remote collaborating sites. A major component needed to support these needs is the communication infrastructure which enables high performance visualization, large volume data analysis, and also provides access to computational resources. In order to provide high-speed on-demand data access between collaborating institutions, national governments support next generation research networks such as Internet 2 and ESnet (Energy Sciences Network). Delivering network-as-a-service that provides predictable performance, efficient resource utilization and better coordination between compute and storage resources is highly desirable. In this paper, we study network provisioning and advanced bandwidth reservation in ESnet for on-demand high performance data transfers. We present a novel approach for path finding in time-dependent transport networks with bandwidth guarantees. We plan to improve the current ESnet advance network reservation system, OSCARS [3], by presenting to the clients, the possible reservation options and alternatives for earliest completion time and shortest transfer duration. The Energy Sciences Network (ESnet) provides high bandwidth connections between research laboratories and academic institutions for data sharing and video/voice communication. The ESnet On-Demand Secure Circuits and Advance Reservation System (OSCARS) establishes guaranteed bandwidth of secure virtual circuits at a certain time, for a certain bandwidth and length of time. Though OSCARS operates within the ESnet, it also supplies end-to-end provisioning between multiple autonomous network domains. OSCARS gets reservation requests through a standard web service interface, and conducts a Quality-of-service (QoS) path for bandwidth guarantees. Multi-protocol Label Switching (MPLS) and the Resource Reservation Protocol (RSVP) enable to create a virtual circuit using Label Switched Paths (LSP's). It contains three main components: a reservation manager, a bandwidth scheduler, and a path setup subsystem. The bandwidth scheduler needs to have information about the current and future states of the network topology in order to accomplish end-to-end bandwidth guaranteed paths.

Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

2009-07-10T23:59:59.000Z

402

Standard practice for evaluation of disbonding of bimetallic stainless alloy/steel plate for use in high-pressure, high-temperature refinery hydrogen service  

E-Print Network [OSTI]

1.1 This practice covers a procedure for the evaluation of disbonding of bimetallic stainless alloy/steel plate for use in refinery high-pressure/high-temperature (HP/HT) gaseous hydrogen service. It includes procedures to (1) produce suitable laboratory test specimens, (2) obtain hydrogen charging conditions in the laboratory that are similar to those found in refinery HP/HT hydrogen gas service for evaluation of bimetallic specimens exposed to these environments, and (3) perform analysis of the test data. The purpose of this practice is to allow for comparison of data among test laboratories on the resistance of bimetallic stainless alloy/steels to hydrogen-induced disbonding (HID). 1.2 This practice applies primarily to bimetallic products fabricated by weld overlay of stainless alloy onto a steel substrate. Most of the information developed using this practice has been obtained for such materials. The procedures described herein, may also be appropriate for evaluation of hot roll bonded, explosive bonded...

American Society for Testing and Materials. Philadelphia

2001-01-01T23:59:59.000Z

403

Fundamental Drivers of the Cost and Price of Operating Reserves  

SciTech Connect (OSTI)

Operating reserves impose a cost on the electric power system by forcing system operators to keep partially loaded spinning generators available for responding to system contingencies variable demand. In many regions of the United States, thermal power plants provide a large fraction of the operating reserve requirement. Alternative sources of operating reserves, such as demand response and energy storage, may provide more efficient sources of these reserves. However, to estimate the potential value of these services, the cost of reserve services under various grid conditions must first be established. This analysis used a commercial grid simulation tool to evaluate the cost and price of several operating reserve services, including spinning contingency reserves and upward regulation reserves. These reserve products were evaluated in a utility system in the western United States, considering different system flexibilities, renewable energy penetration, and other sensitivities. The analysis demonstrates that the price of operating reserves depend highly on many assumptions regarding the operational flexibility of the generation fleet, including ramp rates and the fraction of fleet available to provide reserves.

Hummon, M. R.; Denholm, P.; Jorgenson, J.; Palchak, D.; Kirby, B.; Ma, O.

2013-07-01T23:59:59.000Z

404

Reserve growth important to U.S. gas supply  

SciTech Connect (OSTI)

The term reserve growth refers to the typical increases in estimated ultimate recovery that occur as oil or gas fields are developed and produced. An example for a particular field helps explain the nature of reserve growth. This gas field was discovered in the mid-1940s. In 1977, its ultimate recovery was estimated to be 2.1 tcf of gas. One might think that after some 30 years of development and production, the resource potential of a field would be well understood. However, by 1991 the estimated ultimate recovery of this field had increased to 3.1 tcf. Reserve growth over the 15 year period totaled 1 tcf, and it shows no sign of stopping. The paper discusses reserve growth trends, reserve growth roots, and future reserve growth. It is concluded that much work remains to be done on the phenomenon of reserve growth, which is arguably the most significant research problem in the field of hydrocarbon resource assessment.

Schmoker, J.W. [Geological Survey, Denver, CO (United States); Attanasi, E.D. [Geological Survey, Reston, VA (United States)

1997-01-27T23:59:59.000Z

405

Hydrogen Generation for Refineries  

Broader source: Energy.gov (indexed) [DOE]

bottoms (VTB), vacuum resid) * Dilbit (tar sand bitumen diluted with 30% condensate) * Biomass fast pyrolysis oil (whole raw oil) * Norpar 12 (C 11 C 12 paraffinic solvent -...

406

Hydrogen Generation for Refineries  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImage takenEnergy

407

U.S. Refinery  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb MarRevision2009(Million2009

408

Refinery Capacity Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SRELRecyclingProjects &Lack ofNumber and

409

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet) Year JanInformation&

410

U.S. Refinery  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,CoalThousand Cubic Feet) YearCrude

411

Refinery Energy Profiling Procedure  

E-Print Network [OSTI]

Coolers Steam System Petroleum Coke Electrical System '" Cf) .Po Feed Streams Radiation and Convection Exothermic Reaction Products and Wastes Endothermic Reactions Oil Charge Losa 2 Oil and Gas Losses Subtotal Imbalance TOTAL TOTAL 560...

Maier, R. W.

1981-01-01T23:59:59.000Z

412

Refinery Capacity Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170Thousand2.442 3.028 3.8032009 2010 2011 2012

413

Refinery Capacity Report Historical  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170Thousand2.442 3.028 3.8032009 2010 2011 2012

414

Refinery Capacity Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousand Cubic Feet) OmanThousand36,610.05References and2009

415

Kansas Shale Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review WYear Jan FebWellheadShale Proved

416

Kentucky Shale Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review WYear JanFeet)CubicShale Proved

417

Montana Shale Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per ThousandWellhead+Wellhead PriceperShale Proved

418

Pennsylvania Shale Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-MonthCoalbed Methane(Dollars per ThousandShale

419

ESTIMATING POTENTIAL RESERVE GROWTH OF KNOWN (DISCOVERED) FIELDS: A COMPONENT OF  

E-Print Network [OSTI]

reserve- growth function) derived from the average of the oil reserve-growth function and the gas reserve for world potential reserve growth of oil (exclusive of the U.S.), with uncertainty expressed in the formChapter RG ESTIMATING POTENTIAL RESERVE GROWTH OF KNOWN (DISCOVERED) FIELDS: A COMPONENT

Laughlin, Robert B.

420

An evaluation of risk simulation models for reserve estimates  

E-Print Network [OSTI]

in estimating reserves for petroleum economic evaluations is an 1mportant everyday problem encountered by practicing petroleum engineers. This study addresses the problem of est1mating reserves for petroleum evaluations with little available data. The risk... to reserve est1mates. Latin Hypercube sampling is a relatively recent statistical development and has never before been applied to petroleum economic evaluations or petroleum risk simulators. The results show that simple random sampling is adequate...

Judah, Janeen Sue

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Update Invalid Reservation Points for Transmission Service Requests...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CommitteesTeams Customer Training Interconnection Notices Rates Standards of Conduct Tariff TF Web Based Training Update: Invalid Reservation Points for Transmission Service...

422

,"California Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

423

,"Indiana Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

424

,"Alaska Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

425

,"Illinois Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

426

,"Kentucky Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

427

,"Arkansas Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

428

,"Miscellaneous Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

429

,"Louisiana Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

430

,"Michigan Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

431

,"Florida Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

432

,"Mississippi Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

433

,"Alabama Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

434

,"Kansas Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

435

,"Colorado Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

436

Northeast Home Heating Oil Reserve - Online Bidding System |...  

Broader source: Energy.gov (indexed) [DOE]

program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve. We invite prospective bidders and other interested parties to try out this...

437

apache indian reservation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

survival or death 1. However, these statistical methods are constrained Sudarshan, S. 2 Logging the Great Lakes Indian Reservations: The Case of the Bad River Environmental...

438

Optimization Online - Robustified Reserve Modelling for Wind Power ...  

E-Print Network [OSTI]

Jul 8, 2014 ... Robustified Reserve Modelling for Wind Power Integration in Ramp-Based Unit Commitment. German Morales-Espaa(gmorales ***at***...

German Morales-Espaa

2014-07-08T23:59:59.000Z

439

Top 100 Operators: Proved Reserves and Production, Operated vs...  

Gasoline and Diesel Fuel Update (EIA)

reserves are defined as those volumes of oil and natural gas that geological and engineering data demonstrate with reasonable certainty to be recoverable in future years from...

440

Structuring Loan Loss Reserve Funds for Clean Energy Finance...  

Broader source: Energy.gov (indexed) [DOE]

Loan loss reserve funds ("LRF"): * provide partial risk coverage to motivate commercial FIs to offer EERE finance products, pioneer new products, broaden access to finance,...

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Socioeconomic profiles of native American communities: Duckwater Shoshone Reservation  

SciTech Connect (OSTI)

This report presents socioeconomic aspects of Native Americans of the Duckwater Shoshone Reservation. A survey is included concerning their views on the proposed Yucca Mountain waste repository. (CBS)

Hamby, M. [Cultural Resources Consultants Ltd., Reno, NV (United States)

1991-10-01T23:59:59.000Z

442

,"New York Dry Natural Gas Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

443

,"New York Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

444

,"New York Dry Natural Gas Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

445

,"New York Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

446

,"New York Dry Natural Gas Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

447

,"New York Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

448

,"New York Dry Natural Gas Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

449

,"New York Dry Natural Gas Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

450

,"U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

451

Ohio Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

W Withheld to avoid disclosure of individual company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Reserves Revision Increases...

452

Ohio Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Available; W Withheld to avoid disclosure of individual company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Reserves Adjustments...

453

,"U.S. Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",201...

454

Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

455

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

456

,"U.S. Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013...

457

Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

458

,"U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

459

,"U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013...

460

,"U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

462

Electricity demand as frequency controlled reserves, ENS (Smart...  

Open Energy Info (EERE)

ENS (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ENS Country Denmark Coordinates 56.26392, 9.501785...

463

Electricity demand as frequency controlled reserves, ForskEL...  

Open Energy Info (EERE)

ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ForskEL Country Denmark Coordinates 56.26392,...

464

Effectiveness of a small marine reserve in southern California  

E-Print Network [OSTI]

in some marine reserves (Tuya et al. 2000). Ironically, itMar Ecol Prog Ser 49:5764 Tuya FC, Soboil ML, Kido J (2000)

Parnell, P. Edward; Lennert-Cody, C E; Geelen, L; Stanley, L D; Dayton, P K

2005-01-01T23:59:59.000Z

465

Energy Department Announces First Regional Gasoline Reserve to...  

Office of Environmental Management (EM)

Ernest Moniz today announced the creation of the first federal regional refined petroleum product reserve containing gasoline. Based on the Energy Department's lessons...

466

Draft Michigan SAVES Loan Loss Reserve Fund Agreement  

Broader source: Energy.gov [DOE]

A sample LRF agreement between a grantee and an financial institution setting the terms and conditions of the loan loss reserve fund.

467

Department of Energy, Office of Naval Petroleum & Oil Shale Reserves  

Broader source: Energy.gov (indexed) [DOE]

Items that may be marked "disposrtron not Office of Naval Petroleum & Oil Shale Reserves approved" or "withdrawn" In column 10 4 Nameof Personwith whom to confer 5...

468

,"New York Nonassociated Natural Gas Proved Reserves, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2013...

469

,"New York Associated-Dissolved Natural Gas Proved Reserves,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annua...

470

NERSC Supercomputers Help Reveal Secrets of Natural Gas Reserves  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Reserves New structural information could yield more efficient extraction of gas and oil from shale December 3, 2013 | Tags: Basic Energy Sciences (BES), Materials Science,...

471

2011 School of Forest Resources Alumni and Friends Banquet The deadline for reservations is April 8, 2011. (Please note that lodging reservations at the  

E-Print Network [OSTI]

.m.) Lodging Small blocks of guestrooms has been reserved at Toftrees Resort and Conference Center, State

Boyer, Elizabeth W.

472

1 www.aviandemographyunit.orgBirds in Reserves Project Guide BIRDS IN RESERVES  

E-Print Network [OSTI]

their Protected Area database available to us. Birds in Reserves Project Contents: Page: Introduction Registering a PA with BIRP 15 Working out grid cells 16 Appendix 1: List of species (alphabetical) 17 Appendix is to make your list an accurate reflection of the species which occur within the PA and utilize it in some

de Villiers, Marienne

473

Allocating Variability and Reserve Requirements (Presentation)  

SciTech Connect (OSTI)

This presentation describes how you could conceivably allocate variability and reserve requirements, including how to allocate aggregation benefits. Conclusions of this presentation are: (1) Aggregation provides benefits because individual requirements are not 100% correlated; (2) Method needed to allocate reduced requirement among participants; (3) Differences between allocation results are subtle - (a) Not immediately obvious which method is 'better'; (b) Many are numerically 'correct', they sum to the physical requirement; (c) Many are not 'fair', Results depend on sub-aggregation and/or the order individuals are included; and (4) Vector allocation method is simple and fair.

Kirby, B.; King, J.; Milligan, M.

2011-10-01T23:59:59.000Z

474

Heating Oil Reserve | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHCHearingsHeating Oil Reserve

475

Wyoming Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million Cubic Feet)CubicProductionProved

476

Alabama Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342 1,298 1,210 1,0063,290

477

Alaska Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14perCubic3,566 3,7227,699

478

Arkansas Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan(Million Cubic Feet)5,626 10,869

479

TX, RRC District 1 Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports96 263 893,04734 26

480

TX, RRC District 10 Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports96 2639816 29 35 51

Note: This page contains sample records for the topic "reserve non-spr refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

TX, RRC District 5 Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272 261 428 5009329220 1 0 1 29

482

TX, RRC District 6 Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272 261 42810 12 11 16 32 18

483

TX, RRC District 8 Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272 261 42810After9857,586537

484

TX, RRC District 9 Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272

485

TX, State Offshore Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272Production 8,700219Lease0

486

Texas Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2per ThousandBarrels)0 0 0 077,546

487

Michigan Shale Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet) Year Jan FebShale

488

Proved Reserves as of 12/31  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on theThousand7.End Users55,453.906 1.880

489

U.S. Uranium Reserves Estimates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1SalesConsumption

490

U.S. Uranium Reserves Estimates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane,

491

U.S. Uranium Reserves Estimates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane,Major U.S. Uranium

492

U.S. Uranium Reserves Estimates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane,Major U.S. Uranium1. U.S.

493

U.S. Uranium Reserves Estimates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane,Major U.S. Uranium1.

494

Utah Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 601 631 909 1,001Year Jan

495

Virginia Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198SeparationTotal

496

West Virginia Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions89Production

497

SolarReserve | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystemsSolarLabSolarPowerSolarReserve

498

NM, East Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 474 523 507

499

NM, West Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYear Monthly Annual530 474

500

Natural Gas Liquids Reserves Revision Decreases  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly Download Series