Powered by Deep Web Technologies
Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Center for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems  

E-Print Network [OSTI]

#12;Center for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems Personnel. Blaine Metting #12;vii Abstract The Center for Research on Enhancing Carbon Sequestration in Terrestrial needed to evaluate the feasibility of environmentally sound strategies for enhancing carbon sequestration

2

Terrestrial Carbon Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestrial Carbon Management Data Sets and Analyses Terrestrial Carbon Management Data Sets and Analyses Carbon Accumulation with Cropland Management Influence of Agricultural Management on Soil Organic Carbon: A Compendium and Assessment of Canadian Studies (VandenBygaart et al., Agriculture and Agri-Food Canada) Soil Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (West and Post, Oak Ridge National Laboratory) Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming (Smith et al., University of Aberdeen, United Kingdom) Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments (Smith et al., University of Aberdeen, United Kingdom) Carbon Accumulation with Grassland Management

3

CALMIT Remote-Sensing Research Relating to Carbon Sequestration There is considerable interest in assessing the magnitude of carbon sources and sinks in terrestrial  

E-Print Network [OSTI]

CALMIT Remote-Sensing Research Relating to Carbon Sequestration There is considerable interest in assessing the magnitude of carbon sources and sinks in terrestrial ecosystems using remote sensing techniques. We developed a novel technique to remotely assess carbon dioxide exchange in maize using

Nebraska-Lincoln, University of

4

1, 167193, 2004 Terrestrial carbon  

E-Print Network [OSTI]

BGD 1, 167­193, 2004 Terrestrial carbon budget at country-scale I. A. Janssens et al. Title Page Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences The carbon budget.janssens@ua.ac.be) 167 #12;BGD 1, 167­193, 2004 Terrestrial carbon budget at country-scale I. A. Janssens et al. Title

Paris-Sud XI, Université de

5

Climate control of terrestrial carbon exchange across biomes and continents  

E-Print Network [OSTI]

control, terrestrial carbon sequestration, temperature,on terrestrial carbon sequestration (Nemani et al 2003, Xiaodeposition and forest carbon sequestration Glob. Change

Yi, C.; Ricciuota, D.; Goulden, M. L.

2010-01-01T23:59:59.000Z

6

Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau  

E-Print Network [OSTI]

RESEARCH PAPER Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th tundra to evergreen tropics. Its soils are dominated by permafrost and are rich in organic carbon. Its, the carbon dynamics of the Tibetan Plateau have not been well quantified under changes of climate and per

Xiao, Jingfeng

7

Carbon Sequestration in Terrestrial Ecosystems (CSiTE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger  

E-Print Network [OSTI]

Carbon Sequestration in Terrestrial Ecosystems (CSiTE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger://csite.eds.ornl.gov PROJECT DESCRIPTION The Carbon Sequestration in Terrestrial Ecosystems (CSiTE) project conducts research of switchgrass growing in the field. #12;Carbon Sequestration in Terrestrial Ecosystems (CSiTE) tion of inputs

8

DOE Manual Studies Terrestrial Carbon Sequestration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manual Studies Terrestrial Carbon Sequestration Manual Studies Terrestrial Carbon Sequestration DOE Manual Studies Terrestrial Carbon Sequestration January 18, 2011 - 12:00pm Addthis Washington, DC - There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage (CCS) "best practices" manual issued by the U.S. Department of Energy. Best Practices for Terrestrial Sequestration of Carbon Dioxide details the most suitable operational approaches and techniques for terrestrial sequestration, a carbon dioxide (CO2) mitigation strategy capable of removing CO2 already in the air. Consequently, terrestrial sequestration, which uses photosynthesis - part of the natural carbon cycle - to create

9

Terrestrial Carbon Cycle Dynamics under Recent and Future Climate Change  

Science Journals Connector (OSTI)

The behavior of the terrestrial carbon cycle under historical and future climate change is examined using the University of Victoria Earth System Climate Model, now coupled to a dynamic terrestrial vegetation and global carbon cycle model. When ...

H. Damon Matthews; Andrew J. Weaver; Katrin J. Meissner

2005-05-01T23:59:59.000Z

10

Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System  

SciTech Connect (OSTI)

Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify intended capabilities of a carbon monitoring system and what system components are needed to develop the capabilities. This paper is intended to promote discussion on what capabilities are needed in a carbon monitoring system based on requirements for different areas of carbon-related research and, ultimately, for carbon management. While many methods exist to quantify different components of the carbon cycle, research is needed on how these methods can be coupled or integrated to obtain carbon stock and flux estimates regularly and at a resolution that enables attribution of carbon dynamics to respective sources. As society faces sustainability and climate change conerns, carbon management activities implemented to reduce carbon emissions or increase carbon stocks will become increasingly important. Carbon management requires moderate to high resolution monitoring. Therefore, if monitoring is intended to help inform management decisions, management priorities should be considered prior to development of a monitoring system.

West, Tristram O.; Brown, Molly E.; Duran, Riley M.; Ogle, Stephen; Moss, Richard H.

2013-08-08T23:59:59.000Z

11

Regional Partnerships in Terrestrial Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Partnerships in Terrestrial Carbon Sequestration Regional Partnerships in Terrestrial Carbon Sequestration November 6-7, 2001 Lexington, Kentucky Robert Addington AEI Incorporated 2000 Ashland Drive Ashland, KY 41101 Phone: 606-928-3433 Email: crystalj@aeiresources.com Jim Amonette MSIN K8-96 Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: 509-3765565 Email: jim.amonette@pnl.gov Patrick Angel Area Office Manager U.S. Department of Interior Office of Surface Mining P.O. Box 1048 London, KY 40741 Phone: 606-878-6440 Email: pangel@osmre.gov Hugh Archer Commissioner Kentucky Dept of Natural Resources 663 Teton Trail Frankfort, KY 40601 Phone: 502-564-2184 Email: hugh.archer@mail.state.ky.us Victor Badaker Mining Engineering Dept. University of Kentucky MML Bldg. Lexington, KY 40546 Phone: 859-257-3818

12

Peatland geoengineering: an alternative approach to terrestrial carbon sequestration  

Science Journals Connector (OSTI)

...alternative approach to terrestrial carbon sequestration Christopher Freeman Nathalie...studies suggest that peatland carbon sequestration is due to the inhibitory...peatland geoengineering|carbon sequestration|phenolic compounds|inhibition...

2012-01-01T23:59:59.000Z

13

CARBONATE STABLE ISOTOPES | Terrestrial Teeth and Bones  

Science Journals Connector (OSTI)

Teeth and bones of fossil vertebrates can preserve a record of Quaternary terrestrial environments in the form of isotopic compositions of carbon (13C/12C), nitrogen (15N/14N), and oxygen (18O/16O). These isotopic signatures in teeth and bones have yielded valuable information on the extent of savanna environments under tropical climates, on the ancient levels of aridity, on the spread of dense forests at the beginning of the Holocene, and on the paleodiet of hominids and their associated fauna.

H. Bocherens; D.G. Drucker

2007-01-01T23:59:59.000Z

14

CARBONATE STABLE ISOTOPES | Terrestrial Teeth and Bones  

Science Journals Connector (OSTI)

Abstract Teeth and bones of fossil vertebrates can preserve a record of Quaternary terrestrial environments in the form of the isotopic compositions of carbon (13C/12C), nitrogen (15N/14N), and oxygen (18O/16O). These isotopic signatures in teeth and bones have yielded valuable information on the extent of savanna environments under tropical climates, on the ancient levels of aridity, on the spread of dense forests at the beginning of the Holocene, and on the paleodiet of Hominids and their associated fauna.

H. Bocherens; D.G. Drucker

2013-01-01T23:59:59.000Z

15

NETL: Regional Partnerships in Terrestrial Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Partnerships in Terrestrial Carbon Sequestration Regional Partnerships in Terrestrial Carbon Sequestration A "Hands-On" Workshop for the Appalachian Coal & Electric Utilities Industries Table of Contents Disclaimer General Conference Information Papers and Presentations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

16

Carbon Sequestration in Terrestrial Ecosystems: A Status Report on R&D Progress  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestrial Ecosystems: Terrestrial Ecosystems: A Status Report on R&D Progress Gary K. Jacobs (jacobsgk@ornl.gov, 865-576-0567) Oak Ridge National Laboratory PO Box 2008, MS-6035 Oak Ridge, TN 37831 Roger C. Dahlman (roger.dahlman@science.doe.gov, 301-903-4951) Office of Science/Biological and Environmental Research U. S. Department of Energy 19901 Germantown Road Germantown, MD 20874-1290 F. Blaine Metting, Jr. (blaine.metting@pnl.gov, 509-375-2607) Pacific Northwest National Laboratory 902 Battelle Blvd. PO Box 999, P7-54 Richland, WA 99352 Introduction Sequestration of carbon in terrestrial ecosystems is a low-cost option that may be available in the near-term to mitigate increasing atmospheric CO 2 concentrations, while providing additional benefits. Storing carbon in terrestrial ecosystems can be achieved through maintenance of

17

House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide  

E-Print Network [OSTI]

and Terrestrial Sequestration of Carbon Dioxide Howard Herzog Principal Research Engineer Massachusetts Institute to the Technical Group of the Carbon Sequestration Leadership Forum (see www.cslforum.org). Just two weeks ago, thank you for the opportunity to appear before you today to discuss Carbon Dioxide (CO2) geological

18

Twentieth-Century Droughts and Their Impacts on Terrestrial Carbon Cycling in China  

Science Journals Connector (OSTI)

Midlatitude regions experienced frequent droughts during the twentieth century, but their impacts on terrestrial carbon balance are unclear. This paper presents a century-scale study of drought effects on the carbon balance of terrestrial ...

Jingfeng Xiao; Qianlai Zhuang; Eryuan Liang; Xuemei Shao; A. David McGuire; Aaron Moody; David W. Kicklighter; Jerry M. Melillo

2009-09-01T23:59:59.000Z

19

Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach  

E-Print Network [OSTI]

Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion of terrestrial carbon (C) sequestration is critical for the success of any policies geared toward stabilizing. Ellsworth, A. Finzi, J. Lichter, and W. H. Schlesinger, Sustainability of terrestrial carbon sequestration

DeLucia, Evan H.

20

Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model  

E-Print Network [OSTI]

Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model Kevin and physical processes to test our understanding of the terrestrial carbon cycle and to predict ecosystem biomass and carbon fluxes. We combine the photosynthesis and biophysical calculations in the Simple

Collett Jr., Jeffrey L.

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Consequences of Considering CarbonNitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle  

Science Journals Connector (OSTI)

The impact of carbonnitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical ...

Andrei P. Sokolov; David W. Kicklighter; Jerry M. Melillo; Benjamin S. Felzer; C. Adam Schlosser; Timothy W. Cronin

2008-08-01T23:59:59.000Z

22

Terrestrial Carbon Management Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Terrestrial Carbon Management are organized as Carbon Accumulation with Cropland Management, Carbon Accumulation with Grassland Management, Carbon Loss Following Cultivation, Carbon Accumulation Following Afforestation, and Carbon Sources and Sinks Associated with U.S. Cropland Production.

23

Carbon Capture Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

24

Terrestrial Carbon Sinks for the United States Predicted from MODIS Satellite Data and Ecosystem Modeling  

Science Journals Connector (OSTI)

A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of the conterminous United States ...

Christopher Potter; Steven Klooster; Alfredo Huete; Vanessa Genovese

2007-08-01T23:59:59.000Z

25

Meeting Report for Symposium on "China-US Collaborative Research on Life in Terrestrial Geothermal Springs"  

E-Print Network [OSTI]

Meeting Report for Symposium on "China-US Collaborative Research on Life in Terrestrial Geothermal on Life in Terrestrial Geothermal Springs" was organized collaboratively by the NSF-funded Tengchong PIRE

Ahmad, Sajjad

26

Protecting terrestrial ecosystems and the climate through a global carbon market  

Science Journals Connector (OSTI)

...a global carbon market Robert Bonnie Melissa...Washington, DC 20009, USA Protecting terrestrial...through a carbon market 1861 0 400 800 1200 1600 USA China Russia Japan...US Department of Energy (1999). ural...typically have market values for the...

2002-01-01T23:59:59.000Z

27

Climate control of terrestrial carbon exchange across biomes and continents  

E-Print Network [OSTI]

Carbon Cycle Climate Model Intercomparison Project modelprojects are supported by the European Commission Directorate General XII Environment, Climate

Yi, C.; Ricciuota, D.; Goulden, M. L.

2010-01-01T23:59:59.000Z

28

Terrestrial Carbon Inventory at the Savannah River Site, 1951 2001.  

SciTech Connect (OSTI)

A Power Point slide presentation/report on the terestrial carbon inventory at the Savannah River Site.

US Forest Service - Annonymous,

2012-02-01T23:59:59.000Z

29

Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations  

SciTech Connect (OSTI)

More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

2011-01-01T23:59:59.000Z

30

Genetic and Molecular Controls on Carbon Sequestration - Implications for Terrestrial Ecosystems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Molecular Controls on Carbon Sequestration - Implications and Molecular Controls on Carbon Sequestration - Implications for Terrestrial Ecosystems G.A. Tuskan (tuskanga@ornl.gov; 865-576-8141) S.D. Wullschleger (wullschlegsd@ornl.gov; 865-574-7839) A.W. King (kingaw@ornl.gov; 865-576-3436) T.J. Tschaplinski (tschaplinstj@ornl.gov; 865-574-4597) L.E. Gunter (gunterle@ornl.gov; 865-574-4020) A.M. Silletti (sillettia@ornl.gov; 865-574-5397) Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, TN 37831-6422 M. Davis (Mark_Davis@nrel.gov; 303-384-6140) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3322 Introduction Carbon sequestration in terrestrial vegetation and soils is a poorly understood process, but ultimately represents a summation of biological activities including the initial incorporation of

31

Research Summary Carbon Additionality  

E-Print Network [OSTI]

of the quality assurance of emissions reduction and carbon sequestration activities, but remains a source of much/reporting additionality rules. Technological Application of specific technology. Term Abatement arises within a specified

32

Evaluation of Biases in JRA-25/JCDAS Precipitation and Their Impact on the Global Terrestrial Carbon Balance  

Science Journals Connector (OSTI)

This study evaluates a modeled precipitation field and examines how its bias affects the modeling of the regional and global terrestrial carbon cycle. Spatial and temporal variations in precipitation produced by the Japanese 25-yr reanalysis (JRA-...

Makoto Saito; Akihiko Ito; Shamil Maksyutov

2011-08-01T23:59:59.000Z

33

Carbon sequestration research and development  

SciTech Connect (OSTI)

Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

1999-12-31T23:59:59.000Z

34

Genetic Analysis in Populus Reveals Potential to Enhance Soil Carbon Sequestration In a paper published in the August, 2005 issue of Canadian Journal of Forest Research, scientists  

E-Print Network [OSTI]

Genetic Analysis in Populus Reveals Potential to Enhance Soil Carbon Sequestration In a paper carbon sequestration by an estimated 0.35Gt carbon/year. This represents ca. 4% of global carbon in terrestrial ecosystems. This work is supported by research funded through the Carbon Sequestration Program

35

Ozone Abundance in a Nitrogen-Carbon Dioxide Dominated Terrestrial Paleoatmosphere  

E-Print Network [OSTI]

We compute the ozone distribution for a model terrestrial paleoatmosphere in which the present oxygen abundance is largely replaced by carbon dioxide, which we argue is a reasonable working assumption. In principle, the presence of carbon dioxide might supplement the ozone shield as compared with models based on nitrogen without high carbon dioxide abundance so that early life need not have been as UV-resistant as often assumed. An extrasolar planet with a high-CO2 atmosphere might contain enough O3 to be a source of false positive biomarkers. We find that the globally averaged O3 column density can be the same, or nearly four times higher (depending upon the O2 partial pressure) when CO2 is used in place of N2 as the replacement component for lowered O2 in a 1-atm terrestrial planet with solar radiation. The effect is important for making quantitative deductions from future data, but does not invalidate the use of O3 as a biomarker for free oxygen. These results make prospects for detection of extrasolar planetary O3 absorption somewhat better than before.

B. C. Thomas; A. L. Melott; L. D. Martin; C. H. Jackman

2004-10-22T23:59:59.000Z

36

Ozone Abundance in a Nitrogen-Carbon Dioxide Dominated Terrestrial Paleoatmosphere  

E-Print Network [OSTI]

We compute the ozone distribution for a model terrestrial paleoatmosphere in which the present oxygen abundance is largely replaced by carbon dioxide, which we argue is a reasonable working assumption. In principle, the presence of carbon dioxide might supplement the ozone shield as compared with models based on nitrogen without high carbon dioxide abundance so that early life need not have been as UV-resistant as often assumed. An extrasolar planet with a high-CO2 atmosphere might contain enough O3 to be a source of false positive biomarkers. We find that the globally averaged O3 column density can be the same, or nearly four times higher (depending upon the O2 partial pressure) when CO2 is used in place of N2 as the replacement component for lowered O2 in a 1-atm terrestrial planet with solar radiation. The effect is important for making quantitative deductions from future data, but does not invalidate the use of O3 as a biomarker for free oxygen. These results make prospects for detection of extrasolar pla...

Thomas, B C; Martin, L D; Jackman, C H

2004-01-01T23:59:59.000Z

37

Carbon Storage Monitoring, Verification and Accounting Research...  

Energy Savers [EERE]

Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting...

38

Water-Use Efficiency of the Terrestrial Biosphere: A Model Analysis Focusing on Interactions between the Global Carbon and Water Cycles  

Science Journals Connector (OSTI)

Carbon and water cycles are intimately coupled in terrestrial ecosystems, and water-use efficiency (WUE; carbon gain at the expense of unit water loss) is one of the key parameters of ecohydrology and ecosystem management. In this study, the ...

Akihiko Ito; Motoko Inatomi

2012-04-01T23:59:59.000Z

39

Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities  

E-Print Network [OSTI]

Energy, DOE. U.S. DOE NETL (2006). Carbon Sequestrationincreased soil 1-10 Pg C/yr (NETL Rev. 8.1 CS Terrestrial CSData sources: US DOE NETL 2006; Righelato and Spracklen

Oldenburg, Curtis M.

2008-01-01T23:59:59.000Z

40

150 G. Marland et al. / Climate Policy 3 (2003) 149157 Strategies to mitigate anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere  

E-Print Network [OSTI]

anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere can reduce to create a system of credits and debits wherein emission or sequestration of carbon in the biosphere; Carbon sequestration; Land use change; Land surface change; Surface energy balance 1. Introduction Human

Niyogi, Dev

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Recent Climate-Driven Increases in Vegetation Productivity for the Western Arctic: Evidence of an Acceleration of the Northern Terrestrial Carbon Cycle  

Science Journals Connector (OSTI)

Northern ecosystems contain much of the global reservoir of terrestrial carbon that is potentially reactive in the context of near-term climate change. Annual variability and recent trends in vegetation productivity across Alaska and northwest ...

J. S. Kimball; M. Zhao; A. D. McGuire; F. A. Heinsch; J. Clein; M. Calef; W. M. Jolly; S. Kang; S. E. Euskirchen; K. C. McDonald; S. W. Running

2007-02-01T23:59:59.000Z

42

The North American Carbon Program Multi-scale synthesis and Terrestrial Model Intercomparison Project Part 1: Overview and experimental design  

SciTech Connect (OSTI)

Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding of land-atmosphere carbon exchange to larger regions. The North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal model intercomparison and evaluation effort focused on improving the diagnosis and attribution of carbon exchange at regional and global scales. MsTMIP builds upon current and past synthesis activities, and has a unique framework designed to isolate, interpret, and inform understanding of how model structural differences impact estimates of carbon uptake and release. Here we provide an overview of the MsTMIP effort and describe how the MsTMIP experimental design enables the assessment and quantification of TBM structural uncertainty. Model structure refers to the types of processes considered (e.g. nutrient cycling, disturbance, lateral transport of carbon), and how these processes are represented (e.g. photosynthetic formulation, temperature sensitivity, respiration) in the models. By prescribing a common experimental protocol with standard spin-up procedures and driver data sets, we isolate any biases and variability in TBM estimates of regional and global carbon budgets resulting from differences in the models themselves (i.e. model structure) and model-specific parameter values. An initial intercomparison of model structural differences is represented using hierarchical cluster diagrams (a.k.a. dendrograms), which highlight similarities and differences in how models account for carbon cycle, vegetation, energy, and nitrogen cycle dynamics. We show that, despite the standardized protocol used to derive initial conditions, models show a high degree of variation for GPP, total living biomass, and total soil carbon, underscoring the influence of differences in model structure and parameterization on model estimates.

Huntzinger, D.N. [Northern Arizona University] [Northern Arizona University; Schwalm, C. [Northern Arizona University] [Northern Arizona University; Michalak, A.M [Carnegie Institution for Science, Stanford] [Carnegie Institution for Science, Stanford; Schaefer, K. [National Snow and Ice Data Center] [National Snow and Ice Data Center; King, A.W. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Wei, Y. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Jacobson, A. [National Snow and Ice Data Center] [National Snow and Ice Data Center; Liu, S. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Cook, R. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Post, W.M. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Berthier, G. [Laboratoire des Sciences du Climat et de l'Environnement (LSCE)] [Laboratoire des Sciences du Climat et de l'Environnement (LSCE); Hayes, D. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Huang, M. [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Ito, A. [National Institute for Environmental Studies, Tsukuba, Japan] [National Institute for Environmental Studies, Tsukuba, Japan; Lei, H. [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Lu, C. [International Center for Climate and Global Change Research and School of Forestry and Wildlife Sci.] [International Center for Climate and Global Change Research and School of Forestry and Wildlife Sci.; Mao, J. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Peng, C.H. [University of Quebec at Montreal, Institute of Environment Sciences] [University of Quebec at Montreal, Institute of Environment Sciences; Peng, S. [Laboratoire des Sciences du Climat et de l'Environnement (LSCE)] [Laboratoire des Sciences du Climat et de l'Environnement (LSCE); Poulter, B. [Laboratoire des Sciences du Climat et de l'Environnement (LSCE)] [Laboratoire des Sciences du Climat et de l'Environnement (LSCE); Riccuito, D. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shi, X. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Tian, H. [International Center for Climate and Global Change Research and School of Forestry and Wildlife Sci.] [International Center for Climate and Global Change Research and School of Forestry and Wildlife Sci.; Wang, W. [National Aeronautics and Space Administration (NASA), Ames Research Center, Moffett Field] [National Aeronautics and Space Administration (NASA), Ames Research Center, Moffett Field; Zeng, N. [University of Maryland] [University of Maryland; Zhao, F. [University of Maryland] [University of Maryland; Zhu, Q. [Laboratory for Ecological Forecasting and Northwest Agriculture and Forestry University] [Laboratory for Ecological Forecasting and Northwest Agriculture and Forestry University

2013-01-01T23:59:59.000Z

43

EA-1616: National Carbon Research Center Project at Southern...  

Office of Environmental Management (EM)

616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama EA-1616: National Carbon Research Center...

44

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy...

45

Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon  

E-Print Network [OSTI]

the Coupled Carbon Cycle Climate Model Intercomparison Project model projections H A I F E N G Q I A N *, R E Carbon Cycle Climate Model Intercomparison Project. Our analysis suggests that the NHL will be a carbon the intense warming there enhances SOM decomposition, soil organic carbon (SOC) storage continues to increase

Zeng, Ning

46

Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century  

SciTech Connect (OSTI)

Fire is the primary terrestrial ecosystem disturbance agent on a global scale. It affects carbon balance of global terrestrial ecosystems by emitting carbon to atmosphere directly and immediately from biomass burning (i.e., fire direct effect), and by changing net ecosystem productivity and land-use carbon loss in post-fire regions due to biomass burning and fire-induced vegetation mortality (i.e., fire indirect effect). Here, we provide the first quantitative assessment about the impact of fire on the net carbon balance of global terrestrial ecosystems for the 20th century, and investigate the roles of fire direct and indirect effects. This study is done by quantifying the difference between the 20th century fire-on and fire-off simulations with NCAR community land model CLM4.5 as the model platform. Results show that fire decreases net carbon gain of the global terrestrial ecosystems by 1.0 Pg C yr-1 average across the 20th century, as a results of fire direct effect (1.9 Pg C yr-1) partly offset by indirect effect (-0.9 Pg C yr-1). Fire generally decreases the average carbon gains of terrestrial ecosystems in post-fire regions, which are significant over tropical savannas and part of forests in North America and the east of Asia. The general decrease of carbon gains in post-fire regions is because fire direct and indirect effects have similar spatial patterns and the former (to decrease carbon gain) is generally stronger. Moreover, the effect of fire on net carbon balance significantly declines prior to ~1970 with trend of 8 Tg C yr-1 due to increasing fire indirect effect and increases afterward with trend of 18 Tg C yr-1 due to increasing fire direct effect.

Li, Fang; Bond-Lamberty, Benjamin; Levis, Samuel

2014-03-07T23:59:59.000Z

47

Low Carbon Research Institute | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Research Institute Low Carbon Research Institute Name Low Carbon Research Institute Address King Edward VII Avenue CF10 3NB Place Cardiff, United Kingdom Phone number 029 20870003 Website http://www.lcri.org.uk/ Coordinates 51.4865872°, -3.1817252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.4865872,"lon":-3.1817252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Uncertainty of ConcentrationTerrestrial Carbon Feedback in Earth System Models  

Science Journals Connector (OSTI)

Carbon uptake by land and ocean as a biogeochemical response to increasing atmospheric CO2 concentration is called concentrationcarbon feedback and is one of the carbon cycle feedbacks of the global climate. This feedback can have a major impact ...

Tomohiro Hajima; Kaoru Tachiiri; Akihiko Ito; Michio Kawamiya

2014-05-01T23:59:59.000Z

49

Carbon dioxide effects research and assessment program  

SciTech Connect (OSTI)

Information about the past and present concentrations of CO/sub 2/ in the atmosphere and variations in climate can be obtained from measurements of stable isotopes in tree rings; specifically carbon-13, oxygen-18 and deuterium. The analysis of these stable isotopes in tree rings is a relatively new and rapidly developing field. This proceedings volume contains most of the papers presented at the meeting. The first paper gives an overview of the status of carbon-13 research. Papers relating to carbon-13 are in section I and grouped separately from the contributions on carbon-14. Although the meeting was primarily concerned with stable isotopes, all carbon isotopic analysis may be helpful in understanding the carbon-13 record in tree rings. The papers on hydrogen and oxygen isotope studies are in sections II and III respectively. The remaining sections contain papers that consider more than one isotope at a time, general topics related to isotopes, atmospheric changes and tree growth, and methods of isotopic analysis.

Jacoby, G. (ed.)

1980-12-01T23:59:59.000Z

50

Carbon Storage Monitoring, Verification and Accounting Research |  

Broader source: Energy.gov (indexed) [DOE]

Monitoring, Verification and Accounting Research Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting (MVA) techniques are an important part of making geologic sequestration a safe, effective, and acceptable method for greenhouse gas control. MVA of geologic storage sites is expected to serve several purposes, including addressing safety and environmental concerns; inventory verification; project and national accounting of greenhouse gas emissions reductions at geologic storage sites; and evaluating potential regional, national, and international greenhouse gas reduction goals. The goal of our program area is to develop and demonstrate a broad portfolio of technologies, applications, and accounting requirements that

51

Variability in Terrestrial Carbon Sinks over Two Decades. Part I: North America  

Science Journals Connector (OSTI)

Seventeen years (198298) of net carbon flux predictions from a simulation model based on satellite observations of monthly vegetation cover have been analyzed. The NASACASA model was driven by vegetation cover properties derived from the ...

C. Potter; S. Klooster; P. Tan; M. Steinbach; V. Kumar; V. Genovese

2003-12-01T23:59:59.000Z

52

Terrestrial Carbon Cycle: Climate Relations in Eight CMIP5 Earth System Models  

Science Journals Connector (OSTI)

Eight Earth System Models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are evaluated, focusing on both the net carbon dioxide flux and its components and their relation with climatic variables (temperature, precipitation, and ...

Pu Shao; Xubin Zeng; Koichi Sakaguchi; Russell K. Monson; Xiaodong Zeng

2013-11-01T23:59:59.000Z

53

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...  

Open Energy Info (EERE)

Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching...

54

Carbon Fiber Pilot Plant and Research Facilities | Department...  

Broader source: Energy.gov (indexed) [DOE]

Pilot Plant and Research Facilities Carbon Fiber Pilot Plant and Research Facilities 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation...

55

The terrestrial carbon inventory on the Savannah River Site: Assessing the change in Carbon pools 1951-2001.  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has changed from an agricultural-woodland landscape in 1951 to a forested landscape during that latter half of the twentieth century. The corresponding change in carbon (C) pools associated land use on the SRS was estimated using comprehensive inventories from 1951 and 2001 in conjunction with operational forest management and monitoring data from the site.

Dai, Zhaohua; Trettin, Carl, C.; Parresol, Bernard, R.

2011-11-30T23:59:59.000Z

56

Natural migration rates of trees: Global terrestrial carbon cycle implications. Book chapter  

SciTech Connect (OSTI)

The paper discusses the forest-ecological processes which constrain the rate of response by forests to rapid future environmental change. It establishes a minimum response time by natural tree populations which invade alien landscapes and reach the status of a mature, closed canopy forest when maximum carbon storage is realized. It considers rare long-distance and frequent short-distance seed transport, seedling and tree establishment, sequential tree and stand maturation, and spread between newly established colonies.

Solomon, A.M.

1996-06-01T23:59:59.000Z

57

Bridging Political Expectations and Scientific Limitations in Climate Risk Management On the Uncertain Effects of International Carbon Sink Policies*  

Science Journals Connector (OSTI)

Despite great advances in carbon cycle research during the past decade the climatic impact of terrestrial ecosystems is still highly uncertain. Although contemporary studies suggest that the terrestrial biosphere...

Eva Lvbrand

2004-12-01T23:59:59.000Z

58

ORNL researchers improve soil carbon cycling models | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

researchers improve soil carbon cycling models researchers improve soil carbon cycling models January 01, 2013 ORNL's new carbon cycling model could help scientists understand the role of soil microbes (MBC) in climate change by tracking extracellular enzymes (ENZ) that break down carbon-rich soil materials (SOC) into forms that microbes can respire (DOC). A more robust model of the soil carbon cycle developed at Oak Ridge National Laboratory (ORNL) improves understanding of carbon residence time in soils and enables scientists to make more accurate climate predictions. The model does a better job than previous models of accounting for how microbes in the soil break down carbon-rich materials and release carbon dioxide. "Soil is a big reservoir of carbon," said co-author Melanie Mayes of the Environmental Sciences Division and the Climate Change Science

59

Potential for terrestrial disposal of carbon dioxide in the U.S.  

SciTech Connect (OSTI)

Many scientists are concerned about the possibility of global climate change of the continuing buildup of greenhouse gases in the atmosphere. Capture and permanent disposal of carbon dioxide (CO{sub 2}) would help alleviate this potential problem. Abandoned oil and natural gas reservoirs and deep aquifers were investigated as potential disposal sites for CO{sub 2}. Currently abandoned oil and gas reservoirs could hold approximately 2.9 Gt of CO{sub 2}. Since the annual CO{sub 2} emissions from utility power plants is 2 Gt, these reservoirs would be filled in less than 1.5 years. The volume corresponding to ultimate reserves of oil and gas would hold roughly 100 Gt of CO{sub 2}. Therefore, the ultimate capacity for CO{sub 2} storage is approximately 50 years. Over half of the CO{sub 2} is emitted east of the Mississippi River, and most of the potential disposal sites are west of the Mississippi. Because of the high cost of transporting CO{sub 2} by pipeline over long distances, only a small fraction of the reservoir capacity would be useful. The capacity of deep aquifers for CO{sub 2} disposal is highly uncertain. A rough estimate for the US, derived from global estimates, is 5--500 Gt of CO{sub 2}. Problems associated with each method of disposal are discussed.

Winter, E.M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Bergman, P.D. [USDOE Pittsburgh Energy Technology Center, PA (United States)

1994-12-31T23:59:59.000Z

60

Terrestrial Sequestration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TerresTrial sequesTraTion Program TerresTrial sequesTraTion Program Capture and Storage of Carbon in Terrestrial Ecosystems Background Clean, affordable energy is essential for U.S. prosperity and security in the 21st century. More than half of the electricity currently generated in the United States comes from coal-fired boilers, and there is little indication that this percentage will diminish through 2020 and beyond. In addition, the use of coal for electricity generation is projected to more than double in developing nations by 2020. This ever growing demand for fossil-fuel-based power and the consequential rise in atmospheric carbon dioxide (CO 2 ) concentrations requires innovative methods to capture and store CO 2 . Terrestrial ecosystems, which include both soil and vegetation, are widely recognized

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reduction of Carbon Monoxide. Past Research Summary  

DOE R&D Accomplishments [OSTI]

Research programs for the year on the preparation, characterization, and reactions of binuclear tantalum complexes are described. All evidence to date suggest the following of these dimeric molecules: (1) the dimer does not break into monomers under mild conditions; (2) intermolecular hydride exchange is not negligible, but it is slow; (3) intermolecular non-ionic halide exchange is fast; (4) the ends of the dimers can rotate partially with respect to one another. The binuclear tantalum hydride complexes were found to react with carbon monoxide to give a molecule which is the only example of reduction of CO by a transition metal hydride to give a complex containing a CHO ligand. Isonitrides also reacted in a similar manner with dimeric tantalum hydride. (ATT)

Schrock, R. R.

1982-00-00T23:59:59.000Z

62

Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs  

E-Print Network [OSTI]

Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs Draft paper Bruce A Mc............................................................................................................. 5 2 Why Consider Promoting Agricultural Soil Carbon Sequestration?...................... 6 2 Agricultural Soil Carbon Sequestration....... 11 3.1 What is the cost of GHGE offsets arising from large

McCarl, Bruce A.

63

RESEARCH Open Access Quantifying and understanding carbon storage  

E-Print Network [OSTI]

RESEARCH Open Access Quantifying and understanding carbon storage and sequestration within: The carbon stored in vegetation varies across tropical landscapes due to a complex mix of climatic: We produce a map of carbon storage across the watershed of the Tanzanian Eastern Arc Mountains (33

64

A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems  

SciTech Connect (OSTI)

Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

Xu, Xiaofeng [ORNL; Thornton, Peter E [ORNL; Post, Wilfred M [ORNL

2013-01-01T23:59:59.000Z

65

Final Report on "Rising CO2 and Long-term Carbon Storage in Terrestrial Ecosystems: An Empirical Carbon Budget Validation"  

SciTech Connect (OSTI)

The primary goal of this report is to report the results of Grant DE-FG02-97ER62458, which began in 1997 as Grant DOE-98-59-MP-4 funded through the TECO program. However, this project has a longer history because DOE also funded this study from its inception in 1985 through 1997. The original grant was focused on plant responses to elevated CO2 in an intact ecosystem, while the latter grant was focused on belowground responses. Here we summarize the major findings across the 25 years this study has operated, and note that the experiment will continue to run through 2020 with NSF support. The major conclusions of the study to date are: (1 Elevated CO2 stimulated plant productivity in the C3 plant community by ~30% during the 25 year study. The magnitude of the increase in productivity varied interannually and was sometime absent altogether. There is some evidence of down-regulation at the ecosystem level across the 25 year record that may be due to interactions with other factors such as sea-level rise or long-term changes in N supply; (2) Elevated CO2 stimulated C4 productivity by <10%, perhaps due to more efficient water use, but C3 plants at elevated CO2 did not displace C4 plants as predicted; (3) Increased primary production caused a general stimulation of microbial processes, but there were both increases and decreases in activity depending on the specific organisms considered. An increase in methanogenesis and methane emissions implies elevated CO2 may amplify radiative forcing in the case of wetland ecosystems; (4) Elevated CO2 stimulated soil carbon sequestration in the form of an increase in elevation. The increase in elevation is 50-100% of the increase in net ecosystem production caused by elevated CO2 (still under analysis). The increase in soil elevation suggests the elevated CO2 may have a positive outcome for the ability of coastal wetlands to persist despite accelerated sea level rise; (5) Crossing elevated CO2 with elevated N causes the elevated CO2 effect to diminish, with consequences for change in soil elevation.

J. Patrick Megonigal; Bert G. Drake

2010-08-27T23:59:59.000Z

66

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for  

Open Energy Info (EERE)

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Agency/Company /Organization Overseas Development Institute Sector Energy, Land Focus Area Renewable Energy, Biomass, Forestry Topics Policies/deployment programs, Background analysis Resource Type Publications Website http://www.odi.org.uk/resource Country Uganda, India Eastern Africa, Southern Asia References Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities[1] Summary "This report presents findings from a research study in Uganda and India looking at the opportunities that carbon offset projects offer for poor

67

Carbon Capture and Storage Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Research Research Carbon Capture and Storage Research Atlas IV Now Available Carbon storage atlas estimates at least 2,400 billion metric tons of U.S. CO2 storage resource. Read more Industrial CCS Learn how DOE is capturing and storing CO2 from industrial plants. Read more Regional Carbon Sequestration Partnerships A nationwide network of federal, state and private sector partnerships are determining the most suitable carbon storage solutions for their region. Read more Key Programs and Initiatives Regional Carbon Sequestration Partnerships DOE has created a nationwide network of federal, state and private sector partnerships to determine the most suitable technologies, regulations, and infrastructure for future carbon capture, storage and sequestration in different areas of the country.

68

DOE Science Showcase - Carbon Capture research in DOE Databases | OSTI,  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Carbon Capture research in DOE Databases DOE Science Showcase - Carbon Capture research in DOE Databases Information Bridge : Natural materials for carbon capture. ... Realistic costs of carbon capture ... Technology and international climate policy Energy Citations Database : What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions ... Effects of warming on the structure and function of a boreal black spruce forest ... ScienceCinema : Carbon Smackdown ... Extrapolate the Past or Invent the Future ... Two Billion Cars: What it means for Climate and Energy Policy ... DOE Data Explorer : Big Sky Carbon Atlas... NATCARB Interactive Maps ... Videos of experiments from ORNL's Gas Hydrate Research DOE Green Energy : Thinking Like a Whole Building: A Whole Foods Market New Construction Case

69

Carbon Fiber Pilot Plant and Research Facilities  

Broader source: Energy.gov (indexed) [DOE]

from PAN, lignin, polyolefin, pitch, and rayon precursors * Low-temperature carbonization furnace designed to accommodate an oxidizing atmosphere * Expansion slot to enable the...

70

Carbon Dioxide Heat Pump Water Heater Research Project | Department of  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Research Project Carbon Dioxide Heat Pump Water Heater Research Project The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Carbon dioxide is a refrigerant with a global warming potential (GWP) of 1. The CO2 heat pump water heater research seeks to develop an improved life cycle climate performance compared to conventional refrigerants. For example, R134a, another type of refrigerant, has a GWP of 1,300. Project Description This project seeks to develop a CO2-based heat pump water heater (HPWH)

71

Overview of Carbon Storage Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Overview of Overview of Carbon Storage Research Overview of Carbon Storage Research The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. Roughly one third of the United States' carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. This effort is organized into two broad areas: Cooperative Advancement, which involves working with other organizations and governments to advance CCS worldwide, and

72

Research Experience in Carbon Sequestration 2013 Now Accepting Applications  

Broader source: Energy.gov (indexed) [DOE]

Experience in Carbon Sequestration 2013 Now Accepting Experience in Carbon Sequestration 2013 Now Accepting Applications Research Experience in Carbon Sequestration 2013 Now Accepting Applications March 12, 2013 - 1:43pm Addthis Washington, DC - Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by DOE's Office of Fossil Energy (FE) and the National Energy Technology Laboratory (NETL), is currently accepting applications for RECS 2013, scheduled for June 2-12, in Birmingham, AL. The deadline to apply is April 20. An intensive science and field-based program, RECS 2013 will combine background briefings with group exercises and field activities at an

73

Influence of Dynamic Land Use and Land Cover Change on Simulated Global Terrestrial Carbon and Nitrogen Cycles, Climate-carbon Cycle Feedbacks, and Interactions with Rising CO2 and Anthropogenic Nitrogen Deposition  

SciTech Connect (OSTI)

Previous work has demonstrated the sensitivity of terrestrial net carbon exchange to disturbance history and land use patterns at the scale of individual sites or regions. Here we show the influence of land use and land cover dynamics over the historical period 1850-present on global-scale carbon, nutrient, water, and energy fluxes. We also explore the spatial and temporal details of interactions among land use and disturbance history, rising atmospheric carbon dioxide consentation, and increasing anthropogenic nitrogen deposition. Our simulations show that these interactions are significant, and that their importance grows over time, expressed as a fraction of the independent forcing terms. We conclude with an analysis of the influence of these interactions on the sign and magnitude of global climate-carbon cycle feedbacks.

Thornton, Peter E [ORNL; Hoffman, Forrest M [ORNL; Hurtt, George C [University of Hew Hampshire

2009-12-01T23:59:59.000Z

74

Energy Department Advances Carbon Capture and Storage Research on Two  

Broader source: Energy.gov (indexed) [DOE]

Carbon Capture and Storage Research on Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - Forty-three research projects that will advance carbon capture and storage (CCS) technologies while providing graduate and undergraduate student training opportunities at universities across the country will be supported by $12.7 million in U.S. Department of Energy funding announced today. View Project Details Spread over three years, the regional sequestration training projects and funding will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. The projects are funded through the 2009 American Reinvestment and Recovery Act and are aimed at the broad objectives of

75

Fossil Energy Research Efforts in Carbon Capture and Storage | Department  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage May 14, 2009 - 1:54pm Addthis Statement of Dr. Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Energy and Natural Resources Committee, United States Senate. Thank you, Mr. Chairman and members of the Committee. I appreciate this opportunity to provide testimony on the United States Department of Energy's (DOE's) research efforts in carbon capture and storage. The Department of Energy has not had an opportunity to fully analyze S. 1013, and therefore, cannot take a position on the bill at this time. Introduction Fossil fuel resources represent a tremendous national asset. An abundance of fossil fuels in North America has contributed to our Nation's economic

76

Energy Department Advances Carbon Capture and Storage Research on Two  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Advances Carbon Capture and Storage Research on Energy Department Advances Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - Forty-three research projects that will advance carbon capture and storage (CCS) technologies while providing graduate and undergraduate student training opportunities at universities across the country will be supported by $12.7 million in U.S. Department of Energy funding announced today. View Project Details Spread over three years, the regional sequestration training projects and funding will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. The projects are funded through the 2009 American Reinvestment and Recovery Act and are aimed at the broad objectives of

77

Low Cost Carbon Fiber Research in the LM Materials Program Overview...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Research in the LM Materials Program Overview Low Cost Carbon Fiber Research in the LM Materials Program Overview 2009 DOE Hydrogen Program and Vehicle Technologies...

78

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Haverford College Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy Sciences (BES), Chemistry, Hopper Rebecca Raber, rraber@haverford.edu, +1 610 896 1038 gtoc.jpg Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. Image by Joshua Schrier, Haverford College. Carbon dioxide is the primary greenhouse gas emitted through human activities, such as the combustion of fossil fuels for energy and

79

Terrestrial Magnetism  

Science Journals Connector (OSTI)

... THE present activity of the department of terrestrial magnetism of the Carnegie Institution of Washington and the largeness of its future aims are alike ... a progress report which he contributes to the latest (March) number of Terrestrial Magnetism. The department, which has lately entered on its eleventh year, has under construetion ...

C. CHREE

1914-07-23T23:59:59.000Z

80

Pre-Combustion Carbon Capture Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a feedstock (such as coal) is partially oxidized in steam and oxygen/air under high temperature and pressure to form synthesis gas. This synthesis gas, or syngas, is a mixture of hydrogen, carbon monoxide, CO2, and smaller amounts of other gaseous components, such as methane. The syngas can then undergo the water-gas shift reaction to convert CO and water (H2O) to H2 and CO2, producing a H2 and CO2-rich gas mixture. The concentration of CO2 in this mixture can range from 15-50%. The CO2 can then be captured and separated, transported, and ultimately sequestered, and the H2-rich fuel combusted.

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Post-Combustion Carbon Capture Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Post-Combustion Carbon Capture Research Post-Combustion Carbon Capture Research Post-Combustion Carbon Capture Research Fossil fuel fired electric generating plants are the cornerstone of America's central power system. Currently, the existing fossil fuel fleet accounts for about two-thirds of all electricity generated domestically, over 40% from coal alone. Electricity demand is expected to increase dramatically over the next 30 years, and adding new generating capacity typically requires long lead time. In the meantime, the United States will continue to rely on existing plants to provide a substantial amount of affordable electric power for years to come. Retrofitting the Existing Fleet of Power Plants There is vast potential for retrofitting carbon capture technologies to the existing fossil fuel fleet. In 2011, coal-fired power plants produced

82

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 14, doi:10.1002/grl.50466, 2013 Simultaneous observations of optical lightning and terrestrial  

E-Print Network [OSTI]

of optical lightning and terrestrial gamma ray flash from space N. ?stgaard,1,2 T. Gjesteland,1,2 B. E from space of a terrestrial gamma ray flash (TGF) and the optical signal from lightning. By fortuitous, TGF, and optical emissions in an IC lightning flash has been identified. Citation: ?stgaard, N., T

Cummer, Steven A.

83

Fossil Energy Research Benefits Carbon Capture and Storage  

Broader source: Energy.gov (indexed) [DOE]

Through Office of Fossil Energy (FE) Through Office of Fossil Energy (FE) research and development (R&D), the United States has become a world leader in carbon capture and storage (CCS) science and technology. CCS is a group of technologies for effectively capturing, compressing and transporting, and permanently injecting and storing in geologic formations carbon dioxide (CO 2 ) from industrial or power plants. It is one part of a wider portfolio strategy (including greater use of renewable and nuclear energy, and higher efficiencies) that many scientists and nations favor for achieving significant cuts in atmospheric CO 2 emissions. Fossil Energy Research Benefits Carbon Capture and Storage FE and its research facility, the National Energy Technology

84

Research Experience in Carbon Sequestration Training Program Now Accepting  

Broader source: Energy.gov (indexed) [DOE]

Training Program Now Training Program Now Accepting Applications Research Experience in Carbon Sequestration Training Program Now Accepting Applications March 26, 2012 - 1:00pm Addthis Washington, D.C. - A Department of Energy (DOE) program that helps graduate students and early career professionals gain hands-on field research experience in areas related to carbon capture, utilization and storage (CCUS) is accepting applications until April 15. The Research Experience in Carbon Sequestration (RECS) initiative is supported by DOE's Office of Fossil Energy and its National Energy Technology Laboratory. A collaboration between EnTech Strategies, Southern Company and SECARB-Ed, RECS 2012 isscheduled for June 3-13, in Birmingham, AL. An intensive science and field-based program, RECS 2012 will combine

85

Cyberinfrastructure for collaborative geologic carbon sequestration research:  

Science Journals Connector (OSTI)

...the area, as evidenced by the location of numerous nearby refineries and power plants. Ongoing University of Wyoming CCS research...WyoSakai fit the initial project need to create both an operable and proof-of-concept site for collaboration among the...

Jeffrey D. Hamerlinck; Teal B. Wyckoff; James R. Oakleaf; Philip L. Polzer

86

NETL: News Release - Research Experience in Carbon Sequestration 2010 Now  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20, 2010 20, 2010 Research Experience in Carbon Sequestration 2010 Now Accepting Applications Program Provides Hands-On CCS Experience for Students, Early Career Professionals Washington, D.C. - Students and early career professionals can gain hands-on experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. MORE INFO Link to the RECS Web site for more information and to apply The initiative, supported by DOE's Office of Fossil Energy (FE), is currently accepting applications for RECS 2010, scheduled for July 18-28 in Albuquerque, N.M., and the deadline to apply is May 15. An intensive science-based program, RECS 2010 will combine classroom instruction with field activities at a geologic storage test site and

87

Research Experience in Carbon Sequestration 2010 Now Accepting Applications  

Broader source: Energy.gov (indexed) [DOE]

2010 Now Accepting 2010 Now Accepting Applications Research Experience in Carbon Sequestration 2010 Now Accepting Applications April 20, 2010 - 1:00pm Addthis Washington, DC - Students and early career professionals can gain hands-on experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by DOE's Office of Fossil Energy (FE), is currently accepting applications for RECS 2010, scheduled for July 18-28 in Albuquerque, N.M., and the deadline to apply is May 15. An intensive science-based program, RECS 2010 will combine classroom instruction with field activities at a geologic storage test site and visits to a power plant and coal mine. Topics cover the range of CCS

88

SWP.terrestrial.factsheet0919  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FACTSHEET FOR PARTNERSHIP FIELD VALIDATION TEST FACTSHEET FOR PARTNERSHIP FIELD VALIDATION TEST Partnership Name Southwest Regional Partnership on Carbon Sequestration Contacts: DOE/NETL Project Mgr. Name Organization E-Mail William O'Dowd NETL William.odowd@netl.doe.gov Principal Investigator Reid Grigg / Brian McPherson NMT reid@prrc.nmt.edu / brian@nmt.edu Field Test Information: Field Test Name Terrestrial Sequestration Programs - Regional Terrestrial and Local Terrestrial Sequestration (Combined With Enhanced Coalbed Methane Sequestration) Test Location Entire Region (Regional Program); San Juan Basin (Local Pilot Test) Amount and Source of CO 2

89

Research Object and Plan Center for Renewable Carbon  

E-Print Network [OSTI]

9/29/2010 1 Research Object and Plan Center for Renewable Carbon Forestry, Wildlife and Fisheries industrial l tirevolution. *Natural factors *Human activities *Industrial pollutions Background Atmospheric Oceanic and Atmospheric administration #12;9/29/2010 2 Background CO2 is essential to photosynthesis

Gray, Matthew

90

On Terrestrial Magnetism.  

Science Journals Connector (OSTI)

1843-1850 research-article On Terrestrial Magnetism. William A. Norton The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Abstracts of the Papers Communicated to the Royal Society of London. www.jstor.org

1843-01-01T23:59:59.000Z

91

Berkeley Lab Earth Sciences Division - Research - Programs - Climate &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research > programs > climate_carbon_sciences research > programs > climate_carbon_sciences Climate & Carbon Sciences Program Research Areas The Carbon Cycle Better Models for Robust Climate Projection Climate Science for a Sustainable Energy Future Projects Contacts Facilities & Centers Publications Climate & Carbon Sciences Program Climate & Carbon Sciences Program The global carbon cycle strongly regulates earth's climate, while anthropogenic disturbance of the carbon cycle is the main cause of current and predicted climate change. At the same time, humans depend on the terrestrial carbon cycle for food, fiber, energy, and pharmaceuticals. The Climate and Carbon Sciences Program of the Earth Sciences Division at Lawrence Berkeley National Laboratory encompasses both atmospheric and

92

Terrestrial Magnetism*  

Science Journals Connector (OSTI)

... A similar investigation of the effect of the moon's action on terrestrial magnetism requires a series of observations made at much less distant intervals than the monthly ones ... heat, from the central body of our system, or merely having its own inherent magnetism modified by solar action, then we must choose as our unit the lunation, or ...

1873-01-09T23:59:59.000Z

93

Terrestrial Magnetism*  

Science Journals Connector (OSTI)

... IN bringing before you this evening, gentlemen, the subject of terrestrial magnetism, it is not my intention to attempt to present you with an exhaustive paper ... clearly as I am able, what is the actual condition of our knowledge respecting the magnetism of the globe, and what the nature of its complex variations, without, however, ...

1873-01-02T23:59:59.000Z

94

Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL May 16, 2013 - 12:00am Addthis EERE provided funding...

95

Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy Sector  

E-Print Network [OSTI]

Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy of an Organized Research Unit (ORU) on Carbon Capture and Sequestration (CCS). The purpose of this effort Frontier Research Center proposal: "Integrated Science of Geological Carbon Sequestration" to BES office

Zhou, Chongwu

96

RESEARCH Open Access Short and long-term carbon balance of bioenergy  

E-Print Network [OSTI]

, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricityRESEARCH Open Access Short and long-term carbon balance of bioenergy electricity production fueled

97

Fuel cells for extraterrestrial and terrestrial applications  

SciTech Connect (OSTI)

The fuel cell is a nineteenth century invention and a twentieth century technology development. Due to the high power and energy density, high efficiency, reliability, and production of pure water, hydrogen-oxygen fuel cell systems have no competition as auxiliary power sources for space vehicles. The alkaline fuel cell system is a well developed and proven technology for this application. The solid polymer electrolyte system may be its future competitor. The energy crisis of 1973 stimulated research, development and demonstration of the phosphoric acid, molten carbonate, solid oxide and solid polymer electrolyte fuel cell systems using natural gas, petroleum or coal derived hydrogen (and carbon monoxide for the high temperature systems) for terrestrial applications. The direct methanol-air fuel cell is still an electrochemist's dream. Though considerable technological advances have been made, the present price of crude oil, and the high capital costs and limited lifetime of fuel cell systems impede their terrestrial applications in the developed countries. Conversely, the potential for lower capital costs of labor intensive manufacturing processes and the relatively higher fossil fuel prices make these systems more attractive for such applications in the developing countries. 11 refs.

Srinivasan, S.

1987-01-01T23:59:59.000Z

98

Relative role of changes in CO? and climate to equilibrium responses of net primary production and carbon storage of the terrestrial biosphere  

E-Print Network [OSTI]

In a partial factorial model experiment, we used the Terrestrial Ecosystem Model (TEM, version 4.0) to assess the relative roles of changes in CO2, temperature, precipitation and cloudiness in equilibrium responses of ...

Xiao, Xiangming.; Melillo, Jerry M.; Kicklighter, David W.; McGuire, A. David.; Stone, Peter H.; Sokolov, Andrei P.

99

Carbon Capture and Storage: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 1 UK Energy Research Centre  

E-Print Network [OSTI]

Carbon Capture and Storage: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 1 UK Energy Research Centre CARBON CAPTURE AND STORAGE: SUSTAI NABI LI TY I N THE UK ENERGY MI X WorkshopSciences, University of Edinburgh Event organised and sponsored by: #12;Carbon Capture and Storage: Sustainability

100

Researchers develop bistable nano switch Carbon nanotubes (CNT) have been under intense study by scientists all  

E-Print Network [OSTI]

Researchers develop bistable nano switch Carbon nanotubes (CNT) have been under intense study for nanoelectromechanical systems (NEMS). A type of one-dimensional structure with high-aspect ratio, carbon nanotubes have properties. Now scientists from Northwestern University have demonstrated a novel carbon nanotube

Espinosa, Horacio D.

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Carbon Sequestration - A Natural Resource Management and Research & Development Agency Point of View  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-- -- A Natural Resource Management and Research & Development Agency Point of View Jim Reaves Staff Director USDA Forest Service R&D Vegetation Management and Protection Research Forests and carbon management § The USDA Forest Service is a research and resource management agency § Carbon is the foundation of forest productivity and sustainability § Carbon sequestration is an additional outcome of good forest management and utilization Forests and carbon sequestration n Forests and forest products are important CO 2 sinks n Carbon sinks offer a potentially significant low-cost opportunity to address carbon sequestration n Feedstocks for bioenergy production provide both clean energy and fossil fuel offsets Trends in forest and agriculture carbon sequestration -342 -12 -7

102

Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere  

SciTech Connect (OSTI)

Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on Trends and Future Challenges in Sampling The Deep Subsurface was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundations Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.

Wilkins, Michael J.; Daly, Rebecca; Mouser, Paula J.; Trexler, Ryan; Sharma, Shihka; Cole, David R.; Wrighton, Kelly C.; Biddle , Jennifer F.; Denis, Elizabeth; Fredrickson, Jim K.; Kieft, Thomas L.; Onstott, T. C.; Peterson, Lee; Pfiffner, Susan M.; Phelps, Tommy J.; Schrenk, Matthew O.

2014-09-12T23:59:59.000Z

103

CALIFORNIA CARBON SEQUESTRATION THROUGH  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

104

E-Print Network 3.0 - accumulating terrestrial plant Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: accumulating terrestrial plant Page: << < 1 2 3 4 5 > >> 1 A Primer on the Terrestrial Carbon Cycle: What We Don't Know, But Should Summary: primary...

105

Overview of Carbon Storage Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

groups which promote CCS on a regional, national, and international level: Regional Carbon Sequestration Partnerships (RCSPs) - DOE has created a nationwide network of...

106

Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

107

Post-Combustion Carbon Capture Research | Department of Energy  

Office of Environmental Management (EM)

is located directly above potential geologic sequestration sites according to the Carbon Sequestration Atlas of the United States and Canada. This includes almost 150...

108

Sorbents and Carbon-Based Materials for Hydrogen Storage Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for storing hydrogen in high-surface-area sorbents such as hybrid carbon nanotubes, aerogels, and nanofibers, as well as metal-organic frameworks and conducting polymers. A...

109

RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS  

SciTech Connect (OSTI)

This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the extraction products indicated that they had the requisite properties of viable carbon-product precursors.

Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

2002-03-31T23:59:59.000Z

110

New Funding from DOE Boosts Carbon Capture and Storage Research and  

Broader source: Energy.gov (indexed) [DOE]

from DOE Boosts Carbon Capture and Storage Research and from DOE Boosts Carbon Capture and Storage Research and Development New Funding from DOE Boosts Carbon Capture and Storage Research and Development September 16, 2009 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced more than $62 million in funding that will boost carbon capture and storage research and development in the years to come. Today's investment from the American Recovery and Reinvestment Act reflects the Obama Administration's commitment to creating new jobs, having the U.S. be a leader on climate change, and reducing our greenhouse gas emissions. "Given the importance of coal to our energy future in the United States, China and other countries, it's crucial that we develop ways to capture and store carbon pollution," said Secretary Chu. "These technologies will not

111

Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation of biogeochemical processes.

Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

2005-05-27T23:59:59.000Z

112

A Sweet Approach to Carbon Nanospheres - Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

remarkable chemical reaction remarkable chemical reaction based upon dehydration of aqueous sugar solutions (fructose corn syrup) generates uniform nanospheres of porous carbon in a few hours upon heating in a closed system (125°C, 3 atmospheres pressure). These porous carbon nanospheres can serve as robust substrates for catalysis applications, as electrically conducting phases in fuel cells, for sequestration of contaminants and hostile agents and as an efficiently burning fuel source. OH O H OH O H OH O H O H O H OH Small carbon sphere forms when sugar molecule [C(H 2 O)] 6 loses water Evolving carbon segment of the molecule segregates from solution due to residual -OH on the surface Further dehydration drives consolidation into larger, porous carbon structures SEM micrograph showing 100 nm

113

Project of Rotating Carbon High-Power Neutron Target. Research of Graphite Properties for Production of High Intensity Neutron Source  

E-Print Network [OSTI]

Project of Rotating Carbon High-Power Neutron Target. Research of Graphite Properties for Production of High Intensity Neutron Source

Gubin, K V; Bak, P A; Kot, N K; Logatchev, P V

2001-01-01T23:59:59.000Z

114

Philippines-Low Carbon Asia Research Network (LoCARNet) | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Philippines-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Philippines-Low Carbon Asia Research Network (LoCARNet) Name Philippines-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs

115

New Funding from DOE Boosts Carbon Capture and Storage Research...  

Office of Environmental Management (EM)

586-54940 Addthis Related Articles Energy Department Awards 66.7 Million for Large-Scale Carbon Sequestration Project Department of Energy Announces More than 8.4 Million for...

116

International Research Network for Low Carbon Societies (LCS...  

Open Energy Info (EERE)

for Low Carbon Societies (LCS-RNet) Address: 2108-11 Kamiyamaguchi, Kanagawa Place: Japan Phone Number: +81 (0)46 855 3809 Website: http:lcs-rnet.orgindex.html Coordinates:...

117

Deep-Sea Research II 53 (2006) 555575 Spatial and seasonal patterns of carbon cycling  

E-Print Network [OSTI]

of the world's ocean and has been an area of intense scientific interest for several decades (Wu¨ st, 1959Deep-Sea Research II 53 (2006) 555­575 Spatial and seasonal patterns of carbon cycling through stations in the Arabian Sea. The goal of this work was to characterize carbon flows and trophic transfers

Jackson, George

118

Northwestern Researchers Develop Bistable Nanoswitch Science Daily --Carbon nanotubes (CNT) have been under intense study by  

E-Print Network [OSTI]

Northwestern Researchers Develop Bistable Nanoswitch Science Daily -- Carbon nanotubes (CNT) have been under intense study by scientists all over the world for more than a decade and are being thought with high-aspect ratio, carbon nanotubes have emerged as a promising material because of their many

Espinosa, Horacio D.

119

New Funding from DOE Boosts Carbon Capture and Storage Research and  

Broader source: Energy.gov (indexed) [DOE]

New Funding from DOE Boosts Carbon Capture and Storage Research and New Funding from DOE Boosts Carbon Capture and Storage Research and Development New Funding from DOE Boosts Carbon Capture and Storage Research and Development September 16, 2009 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced more than $62 million in funding that will boost carbon capture and storage research and development in the years to come. Today's investment from the American Recovery and Reinvestment Act reflects the Obama Administration's commitment to creating new jobs, having the U.S. be a leader on climate change, and reducing our greenhouse gas emissions. "Given the importance of coal to our energy future in the United States, China and other countries, it's crucial that we develop ways to capture and

120

Brunei-Low Carbon Asia Research Network (LoCARNet) | Open Energy  

Open Energy Info (EERE)

Brunei-Low Carbon Asia Research Network (LoCARNet) Brunei-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Brunei-Low Carbon Asia Research Network (LoCARNet) Name Brunei-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012 Program End 2014

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

India-Low Carbon Asia Research Network (LoCARNet) | Open Energy Information  

Open Energy Info (EERE)

India-Low Carbon Asia Research Network (LoCARNet) India-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: India-Low Carbon Asia Research Network (LoCARNet) Name India-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012 Program End 2014

122

Myanmar-Low Carbon Asia Research Network (LoCARNet) | Open Energy  

Open Energy Info (EERE)

Myanmar-Low Carbon Asia Research Network (LoCARNet) Myanmar-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Myanmar-Low Carbon Asia Research Network (LoCARNet) Name Myanmar-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012 Program End 2014

123

Cambodia-Low Carbon Asia Research Network (LoCARNet) | Open Energy  

Open Energy Info (EERE)

Cambodia-Low Carbon Asia Research Network (LoCARNet) Cambodia-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Cambodia-Low Carbon Asia Research Network (LoCARNet) Name Cambodia-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012

124

Vietnam-Low Carbon Asia Research Network (LoCARNet) | Open Energy  

Open Energy Info (EERE)

Vietnam-Low Carbon Asia Research Network (LoCARNet) Vietnam-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Vietnam-Low Carbon Asia Research Network (LoCARNet) Name Vietnam-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012 Program End 2014

125

Japan-Low Carbon Asia Research Network (LoCARNet) | Open Energy Information  

Open Energy Info (EERE)

Japan-Low Carbon Asia Research Network (LoCARNet) Japan-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Japan-Low Carbon Asia Research Network (LoCARNet) Name Japan-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012 Program End 2014

126

Thailand-Low Carbon Asia Research Network (LoCARNet) | Open Energy  

Open Energy Info (EERE)

Thailand-Low Carbon Asia Research Network (LoCARNet) Thailand-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Thailand-Low Carbon Asia Research Network (LoCARNet) Name Thailand-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012

127

Laos-Low Carbon Asia Research Network (LoCARNet) | Open Energy Information  

Open Energy Info (EERE)

Laos-Low Carbon Asia Research Network (LoCARNet) Laos-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Laos-Low Carbon Asia Research Network (LoCARNet) Name Laos-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012 Program End 2014

128

Malaysia-Low Carbon Asia Research Network (LoCARNet) | Open Energy  

Open Energy Info (EERE)

Malaysia-Low Carbon Asia Research Network (LoCARNet) Malaysia-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Malaysia-Low Carbon Asia Research Network (LoCARNet) Name Malaysia-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012

129

Sorbents and Carbon-Based Materials for Hydrogen Storage Research and Development  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's research and development on sorbents and carbon-based materials for hydrogen storage targets breakthrough concepts for storing hydrogen in high-surface-area sorbents...

130

Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber)  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research into magnesium and carbon fiber reinforced composites, which could reduce the weight of some components by 50-75 percent in the long-term.

131

Singapore-Low Carbon Asia Research Network (LoCARNet) | Open Energy  

Open Energy Info (EERE)

Singapore-Low Carbon Asia Research Network (LoCARNet) Singapore-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Singapore-Low Carbon Asia Research Network (LoCARNet) Name Singapore-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012

132

Indonesia-Low Carbon Asia Research Network (LoCARNet) | Open Energy  

Open Energy Info (EERE)

Low Carbon Asia Research Network (LoCARNet) Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: Indonesia-Low Carbon Asia Research Network (LoCARNet) Name Indonesia-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012 Program End 2014

133

China-Low Carbon Asia Research Network (LoCARNet) | Open Energy Information  

Open Energy Info (EERE)

China-Low Carbon Asia Research Network (LoCARNet) China-Low Carbon Asia Research Network (LoCARNet) Jump to: navigation, search Logo: China-Low Carbon Asia Research Network (LoCARNet) Name China-Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012 Program End 2014

134

Announcements Science Policy Geology Technology Terrestrial/Ocean  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

what'S inSide? what'S inSide? Sequestration in the News Announcements Science Policy Geology Technology Terrestrial/Ocean Trading Recent Publications Events Subscription Information hiGhliGhtS Fossil Energy Techline, "Climate Technology: DOE Readies First Big U.S. Projects in CO 2 Capture and Storage. The US Department of Energy (DOE) is currently reviewing Phase III proposals for large-scale geologic sequestration projects in support of the Regional Carbon Sequestration Partnership Program. The program, which was formed in 2003 to research the best approaches to capture and permanently store the greenhouse gas, carbon dioxide (CO 2 ), will enter its next phase in October with announcements of Phase III deployment projects. The new stage of the Regional Partnerships' work will follow as a logical extension of work

135

The carbon balance of Africa: synthesis of recent research studies  

Science Journals Connector (OSTI)

...largest source after energy, and most of this...From 2000 to 2005, Africa showed the highest...stations, powered by solar panels and equipped...columnar content over Africa from the existing...carbon dioxide and energy exchange in shrub...Burkina Faso (West Africa)J. Geophys. Res...

2011-01-01T23:59:59.000Z

136

Microsoft Word - BB-Terrestrial.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PCOR Terrestrial Field Validation Test PCOR Terrestrial Field Validation Test 1 FACT SHEET FOR PARTNERSHIP FIELD VALIDATION TEST Partnership Name Plains CO 2 Reduction (PCOR) Partnership - Phase II Contacts: DOE/NETL Project Mgr. Name Organization E-Mail Darin Damiani, U.S. Department of Energy, Darin.Damiani@netl.doe.gov Principal Investigator Edward Steadman Field Test Information: Field Test Name PCOR Terrestrial Field Validation Test Test Location North Dakota, South Dakota, Minnesota, Montana, Iowa Amount and Source of CO 2 Tons N/A Source Atmospheric CO 2 Ducks Unlimited, Inc. U.S. Geological Survey Northern Prairie Wildlife Research Center Field Test Partners (Primary Sponsors) North Dakota State University

137

Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» Atmospheric System Research (ASR) » Atmospheric System Research (ASR) Program Biological and Environmental Research (BER) BER Home About Research Research Abstracts Searchable Archive of BER Highlights External link Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface Biogeochemical Research Terrestrial Carbon Sequestration External link Terrestrial Ecosystem Science Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC)

138

ARM Climate Research Facility | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research » Climate and Research » Climate and Environmental Sciences Division (CESD) » ARM Climate Research Facility Biological and Environmental Research (BER) BER Home About Research Research Abstracts Searchable Archive of BER Highlights External link Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface Biogeochemical Research Terrestrial Carbon Sequestration External link Terrestrial Ecosystem Science Facilities Science Highlights Benefits of BER

139

FE Carbon Capture and Storage News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 18, 2011 January 18, 2011 DOE Manual Studies Terrestrial Carbon Sequestration There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage "best practices" manual issued by the U.S. Department of Energy. January 11, 2011 New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts An overview of research, development, and demonstration efforts to supply cost-effective, advanced carbon capture and storage technologies for coal-based power systems is the focus of a new roadmap published by the U.S. Department of Energy. January 5, 2011 DOE Best Practices Manual Focuses on Site Selection for CO2 Storage Washington, DC - The most promising methods for assessing potential carbon

140

The Effect of Terrestrial Photosynthesis Down Regulation on the Twentieth-Century Carbon Budget Simulated with the CCCma Earth System Model  

Science Journals Connector (OSTI)

The simulation of atmosphericlandocean CO2 exchange for the 18502000 period offers the possibility of testing and calibrating the carbon budget in earth system models by comparing the simulated changes in atmospheric CO2 concentration and in ...

V. K. Arora; G. J. Boer; J. R. Christian; C. L. Curry; K. L. Denman; K. Zahariev; G. M. Flato; J. F. Scinocca; W. J. Merryfield; W. G. Lee

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 93, NO. All, PAGES 12,817-12,825, NOVEMBER 1, 1988 The Polarization of EscapingTerrestrial Continuum Radiation  

E-Print Network [OSTI]

The Polarization of EscapingTerrestrial Continuum Radiation D. A. GURNETT, W. CALVERT,AND R. L. HUFF Departmentof, Japan PlasmawavemeasurementsfromtheDE 1(DynamicsExplorer1)spacecraftareusedto determinethe polarization of an escapingterrestrialcontinuum radiation event that occurredon March 2, 1982.The sourceof the radiationwasdeterminedby

Gurnett, Donald A.

142

In May/June 2012 we participated in a measurement campaign aboard the German research vessel METEOR. The aim was to quantify the contribution of terrestrial organic matter  

E-Print Network [OSTI]

in the Baltic Sea along a transect of the entire salinity gradient (1-33 psu). During this study, the in situ 13 the complete salinity gradient The Outlook: WEGAS will be part of the upcoming SWERUS-C3 arctic campaign 2014 the terrestrial fraction (fterrestriall) against salinity. Applying a fit of the data points leads

143

Subsurface Biogeochemical Research | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subsurface Biogeochemical Subsurface Biogeochemical Research Biological and Environmental Research (BER) BER Home About Research Research Abstracts Searchable Archive of BER Highlights External link Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface Biogeochemical Research Terrestrial Carbon Sequestration External link Terrestrial Ecosystem Science Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC)

144

Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

145

Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S.  

SciTech Connect (OSTI)

As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

Cohen, Warren [USDA Forest Service] [USDA Forest Service

2014-07-03T23:59:59.000Z

146

The carbon balance of Africa: synthesis of recent research studies  

Science Journals Connector (OSTI)

...with, for example, rates of 1.1 per cent per year in Tanzania and 1 per cent per year in Zambia [12]. Monitoring changes...a wide range of research/monitoring stations, powered by solar panels and equipped by robust data transmission systems. In...

2011-01-01T23:59:59.000Z

147

Low Carbon Asia Research Network (LoCARNet) | Open Energy Information  

Open Energy Info (EERE)

Research Network (LoCARNet) Research Network (LoCARNet) Jump to: navigation, search Logo: Low Carbon Asia Research Network (LoCARNet) Name Low Carbon Asia Research Network (LoCARNet) Agency/Company /Organization Institute for Global Environmental Strategies (IGES) Partner Japan Ministry of Environment Sector Climate, Energy, Land Focus Area Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Hydrogen, Industry, Land Use, People and Policy, Solar, Transportation, Wind Topics Background analysis, GHG inventory, Low emission development planning, -LEDS, -NAMA, -Roadmap, Pathways analysis, Policies/deployment programs Website http://lcs-rnet.org/about_loca Program Start 2012 Program End 2014 Country Brunei, Cambodia, China, India, Indonesia, Japan, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam

148

CCSF Lunch Summary Distributed Energy Systems Research for a Low Carbon Economy  

E-Print Network [OSTI]

CCSF Lunch Summary Distributed Energy Systems Research for a Low Carbon Economy December 15, 2008 of intelligent distributed energy systems (iDES) by Tim Mount. Then Max Zhang elaborated the components within studies on infrastructure planning for the smart grids, linkage between the agricultural, the electric

Angenent, Lars T.

149

Deep-Sea Research II 50 (2003) 655674 Determining true particulate organic carbon: bottles, pumps  

E-Print Network [OSTI]

Deep-Sea Research II 50 (2003) 655­674 Determining true particulate organic carbon: bottles, pumps or by in situ filtration with pumps and analyzing the filters. The concentrations measured by these two methods-latitude waters. Here we report that the ratio of bottle POC to pump POC ranged between 20 and 200 in the Ross Sea

Hansell, Dennis

150

DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage  

Broader source: Energy.gov (indexed) [DOE]

Successfully Demonstrates Terrestrial CO2 Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada August 19, 2010 - 1:00pm Addthis Washington, DC - A field test demonstrating the best approaches for terrestrial carbon dioxide (CO2) storage in the heartland of North America has been successfully completed by one of the U.S. Department of Energy's (DOE) seven Regional Carbon Sequestration Partnerships (RCSPs). The Plains CO2 Reduction (PCOR) Partnership , a collaboration of over 80 U.S. and Canadian stakeholders, conducted the field test at sites in the Prairie Pothole Region, extending from central Iowa into Northern Alberta,

151

Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183  

E-Print Network [OSTI]

73 Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183. Blaine Metting2 The purpose of this chapter is to review terrestrial biological carbon sequestration Northwest National Laboratory, Richland, Washington, USA. #12;74 TERRESTRIAL BIOLOGICAL CARBON SEqUESTRATION

Pennycook, Steve

152

Master index for the carbon dioxide research state-of-the-art report series  

SciTech Connect (OSTI)

Four State of the Art (SOA) reports, ''Atmospheric Carbon Dioxide and the Global Carbon Cycle,'' ''Direct Effects of Increasing Carbon Dioxide on Vegetation,'' ''Detecting the Climatic Effects of Increasing Carbon Dioxide,'' and ''Projecting the Climatic Effects of Increasing Carbon Dioxide,'' and two companion reports, ''Characterization of Information Requirements for Studies of CO/sub 2/ Effects: Water Resources, Agriculture, Fisheries, Forests and Human Health'' and ''Glaciers, Ice Sheets, and Sea Level: Effect of a CO/sub 2/-Induced Climatic Change,'' were published by the US Department of Energy's Carbon Dioxide Research Division. Considerable information on atmospheric carbon dioxide and its possible effects on world climate is summarized in these six volumes. Each volume has its own index, but to make the information that is distributed throughout the six volumes more accessible and usable, comprehensive citation and subject indexes have been compiled. The subject indexes of the individual volumes have been edited to provide a uniformity from volume to volume and also to draw distinctions not needed in the separate volumes' indexes. Also, the comprehensive subject index has been formatted in a matrix arrangement to graphically show the distribution of subject treatment from volume to volume. Other aids include cross references between the scientific and common names of the animals and plants referred to, a glossary of special terms used, tables of data and conversion factors related to the data, and explanations of the acronyms and initialisms used in the texts of the six volumes. The executive summaries of the six volumes are collected and reproduced to allow the readers interested in the contents of one volume to rapidly gain information on the contents of the other volumes.

Farrell, M P [ed.

1987-03-01T23:59:59.000Z

153

Treatise on Terrestrial Magnetism  

Science Journals Connector (OSTI)

... and from which the writer also attempts to deduce some of the other phenomena of magnetism. There seems to us to be some ambiguity in the writer's method of ... , to arrive at laws, that we may hope to form a theory of terrestrial magnetism, than from making an hypothesis,and then attempting to apply it to facts. ...

J. S.

1872-01-04T23:59:59.000Z

154

SOLAR ACTIVITY AND TERRESTRIAL DISTURBANCES  

Science Journals Connector (OSTI)

SOLAR ACTIVITY AND TERRESTRIAL DISTURBANCES Donald H. Menzel HARVARD COLLEGE OBSERVATORY SOLAR ACTIVITY AND TERRESTRIAL DISTURBANCES* BY...OBSERVATORY Scientists have long recognized that solar activity is somehow responsible for, or...

Donald H. Menzel

1954-01-01T23:59:59.000Z

155

Small-scale Facilities for Gas Clean Up and Carbon Capture Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Henry W. Pennline Henry W. Pennline Chemical Engineer National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6013 henry.pennline@netl.doe.gov Diane (DeeDee) Newlon Technology Transfer Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4086 r.diane.newlon@netl.doe.gov Small-Scale FacilitieS For GaS clean Up and carbon captUre reSearch Capabilities The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is conducting research on the cleanup of gas produced either by the combustion or gasification of fossil fuels. This effort directly supports the goal of various DOE technology programs (i.e., Carbon Sequestration, Gasification, etc.) to ensure the continued utilization of coal in an environmentally and economically

156

Microsoft Word - BB-Terrestrial-Oct09  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestrial Field Validation Test Terrestrial Field Validation Test 1 FACT SHEET FOR PARTNERSHIP FIELD VALIDATION TEST Partnership Name Plains CO 2 Reduction (PCOR) Partnership - Phase II Contacts: DOE/NETL Project Mgr. Name Organization E-Mail Andrea McNemar, U.S. Department of Energy, andrea.mcnemar@netl.doe.gov Principal Investigator Edward Steadman Field Test Information: Field Test Name Terrestrial Field Validation Test Test Location North Dakota, South Dakota, Minnesota, Montana, Iowa Amount and Source of CO 2 Tons N/A Source Atmospheric CO 2 Field Test Partners (Primary Sponsors) Ducks Unlimited, Inc. U.S. Geological Survey Northern Prairie Wildlife Research Center North Dakota State University Summary of Field Test Site and Operations:

157

Total Ecosystem Approach to Terrestrial Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7RWDO(FRV\VWHP$SSURDFKWR 7RWDO(FRV\VWHP$SSURDFKWR 7HUUHVWULDO&DUERQ 6HTXHVWUDWLRQ Coal Industry Perspective November 6, 2001 685)$&(0,1,1* * Surface mining is the preferred mining method - Cheaper - Employees are above ground - More coal is recovered - Less preparation (washing) required * Prior to 1977 overburden (soil) was left loose (uncompacted) - Many disturbed areas have supported growth of new forest with growth rates greater than adjacent undisturbed lands 685)$&(0,1($&72) * Act Required Mine Operators to take steps to reclaim mined lands. - Post Reclamation Bond - Return Land to Approximate Original Contour * Mining Companies routinely made the surface smooth by making multiple passes over the surface compacting soils 5(&/$,0('0,1(/$1'327(17,$/

158

Geoscience Perspectives in Carbon Sequestration - Educational Training and Research Through Classroom, Field, and Laboratory Investigations  

SciTech Connect (OSTI)

The most effective mechanism to limit CO{sub 2} release from underground Geologic Carbon Sequestration (GCS) sites over multi-century time scales will be to convert the CO{sub 2} into solid carbonate minerals. This report describes the results from four independent research investigations on carbonate mineralization: 1) Colloidal calcite particles forming in Maramec Spring, Missouri, provide a natural analog to evaluate reactions that may occur in a leaking GCS site. The calcite crystals form as a result of physiochemical changes that occur as the spring water rises from a depth of more than 190'?. The resultant pressure decrease induces a loss of CO{sub 2} from the water, rise in pH, lowering of the solubility of Ca{sup 2+} and CO{sub 3}{sup 2-}, and calcite precipitation. Equilibrium modelling of the spring water resulted in a calculated undersaturated state with respect to calcite. The discontinuity between the observed occurrence of calcite and the model result predicting undersaturated conditions can be explained if bicarbonate ions (HCO{sub 3}{sup -}) are directly involved in precipitation process rather than just carbonate ions (CO{sub 3}{sup 2-}). 2) Sedimentary rocks in the Oronto Group of the Midcontinent Rift (MCR) system contain an abundance of labile Ca-, Mg-, and Fe-silicate minerals that will neutralize carbonic acid and provide alkaline earth ions for carbonate mineralization. One of the challenges in using MCR rocks for GCS results from their low porosity and permeability. Oronto Group samples were reacted with both CO{sub 2}-saturated deionized water at 90C, and a mildly acidic leachant solution in flow-through core-flooding reactor vessels at room temperature. Resulting leachate solutions often exceeded the saturation limit for calcite. Carbonate crystals were also detected in as little as six days of reaction with Oronto Group rocks at 90oC, as well as experiments with forsterite-olivine and augite, both being common minerals this sequence. The Oronto Group samples have poor reservoir rock characteristics, none ever exceeded a permeability value of 2.0 mD even after extensive dissolution of calcite cement during the experiments. The overlying Bayfield Group Jacobsville Formation sandstones averaged 13.4 4.3% porosity and a single sample tested by core-flooding revealed a permeability of ~340 mD. The high porosity-permeability characteristics of these sandstones will allow them to be used for GCS as a continuous aquifer unit with the overlying Mt. Simon Formation. 3) Anaerobic sulfate reducing bacteria (SRB) can enhance the conversion rate of CO{sub 2} into solid minerals and thereby improve long-term storage. SRB accelerated carbonate mineralization reactions between pCO{sub 2} values of 0.0059 and 14.7 psi. Hydrogen, lactate and formate served as suitable electron donors for SRB metabolism. The use of a {sup 13}CO{sub 2} spiked gas source also produced carbonate minerals with ~53% of the carbon being derived from the gas phase. The sulfate reducing activity of the microbial community was limited, however, at 20 psi pCO{sub 2} and carbonate mineralization did not occur. Inhibition of bacterial metabolism may have resulted from the acidic conditions or CO{sub 2} toxicity. 4) Microbialite communities forming in the high turbidity and hypersaline water of Storrs Lake, San Salvador Island, The Bahamas, were investigated for their distribution, mineralogy and microbial diversity. Molecular analysis of the organic mats on the microbialites indicate only a trace amount of cyanobacteria, while anaerobic and photosynthetic non-sulfur bacteria of the phyla Chloroflexi and purple sulfur bacteria of class Gammaproteobacteria were abundant.

Wronkiewicz, David; Paul, Varum; Abousif, Alsedik; Ryback, Kyle

2013-09-30T23:59:59.000Z

159

The Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

160

RESEARCH SUMMARY BY QUANLIN ZHOU During my stay at LBNL from March 2001, I have been working on (1) geologic carbon sequestration  

E-Print Network [OSTI]

on (1) geologic carbon sequestration (GCS) projects for mitigating global climate change, (2) the DOE projects. 1 Research Highlights 1.1. Geological Carbon Sequestration I have been working on eight research projects in the area of geologic carbon sequestration since 2006. I have been PI or Co-PI for six projects

Zhou, Quanlin

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science |  

E-Print Network [OSTI]

and satellites. To create the new fiber, researchers began with carbon nanotubes--cylindrical-shaped carbonTougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science | Nanotechnology | Engineering | Material

Espinosa, Horacio D.

162

Antarctic terrestrial ecosystems  

SciTech Connect (OSTI)

The Maritime and Continental Antarctic terrestrial ecosystems are considered in the context of environmental impacts - habitat destruction, alien introductions, and pollution. Four types of pollution are considered: nutrients, radionuclides, inert materials, and noxious chemicals. Their ability to recover from perturbation is discussed in the light of present scientific knowledge, and the methods used to control impacts are reviewed. It is concluded that techniques of waste disposal are still inadequate, adequate training in environmental and conservation principles for Antarctic personnel in many countries is lacking, and scientific investigations may be a much more serious threat than tourism to the integrity of these ecosystems. Some priorities crucial to future management are suggested.

Walton, D.W.H.

1987-01-01T23:59:59.000Z

163

Multi-temporal Terrestrial Lidar for Estimating Individual Tree Dimensions and Biomass Change  

E-Print Network [OSTI]

Accurate measures of forest structural parameters are essential to forest inventory and growth models, managing wildfires, and modeling of carbon cycle. Terrestrial laser scanning (TLS) provides accurate understory information rapidly through non...

Srinivasan, Shruthi

2013-10-30T23:59:59.000Z

164

Digital Outcrop Models: Applications of Terrestrial Scanning Lidar Technology in Stratigraphic Modeling  

Science Journals Connector (OSTI)

...passive sensors. All but the most extreme atmospheric and lighting conditions will have little effect on terrestrial lidar...Changes, Cycles, and Reservoirs on Carbonate Platforms in Greenhouse and Ice-house Worlds: SEPM, Short Course no. 35, 147...

J.A. Bellian; C. Kerans; D.C. Jennette

165

SOLAR PHYSICS AND TERRESTRIAL EFFECTS Solar-Terrestrial Interactions  

E-Print Network [OSTI]

SOLAR PHYSICS AND TERRESTRIAL EFFECTS Chapter 4 Chapter 4 Solar-Terrestrial Interactions from the charged particles that reach the planet steadily as part of the solar wind and the much it will be deflected into a circular or spiral path by the Lorentz Force. Most charged particles in the solar wind

Mojzsis, Stephen J.

166

Phosphate influences cycling of iron and carbon in the environment |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Phosphate influences cycling of iron and carbon in the environment August 30, 2013 Tweet EmailPrint Aquatic and terrestrial environments are dynamic systems where coupled microbiological, geochemical, and hydrological processes define the complex interactions that drive the biogeochemical cycling of water and the major and minor elements. Therefore, a thorough understanding of these complex interactions is critical for predicting the biogeochemical cycling of carbon, nutrients, heavy metals, radionuclides, and other contaminants; managing water quality; and understanding the interactions between

167

Litter-Carbon Dynamics: The Importance of Decomposition, Accretion, and Sequestration in Understanding Ecosystem Carbon Cycling.  

E-Print Network [OSTI]

??The atmospheric CO2 concentration has been increasing since the industrial revolution. A proposed mitigation strategy is sequestering carbon (C) in terrestrial ecosystems, either in plant (more)

Kochsiek, Amy

2010-01-01T23:59:59.000Z

168

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104,NO. E4, PAGES 8489-8507, APRIL 25, 1999 A Mossbauer investigationof iron-rich terrestrial  

E-Print Network [OSTI]

of Physics, University of Alabama at Birmingham Jack D. Farmer 2 NASA Ames Research Center, Moffett Field as efficient in identification as X-ray diffraction. This observation is important from an exploration at the Department of Geology, Arizona State University, School of Fine Arts, Birmingham. Tempe. Copyright 1999by

Farmer, Jack D.

169

Carbon dioxide effects research and assessment program: flux of organic carbon by rivers to the oceans. [Lead abstract  

SciTech Connect (OSTI)

Separate abstracts were prepared for the 15 papers presented in this workshop report. The state of knowledge about the role of rivers in the transport, storage and oxidation of carbon is the subject of this report. (KRM)

None

1981-04-01T23:59:59.000Z

170

CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN OREGON  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN OREGON: COSTS, and J. Kadyszewski (Winrock International). 2007. Carbon Sequestration Through Changes in Land Use Curves, and Pilot Actions for Terrestrial Carbon Sequestration in Oregon. Report to Winrock

171

Carbon for Farmers: Assessing the Potential for Soil Carbon Sequestration in the Old Peanut Basin of Senegal  

Science Journals Connector (OSTI)

Carbon sequestration in soil organic matter of degraded Sahelian ... could play a significant role in the global carbon (C) uptake through terrestrial sinks while,...in situ soil and biomass carbon

Petra Tschakert

2004-12-01T23:59:59.000Z

172

THE CARBON-LAND MODEL INTERCOMPARISON PROJECT (C-LAMP): A PROTOTYPE FOR COUPLED BIOSPHERE-ATMOSPHERE MODEL  

E-Print Network [OSTI]

often referred to as Earth System Models (ESMs). While a number of terrestrial and ocean carbon models

Hoffman, Forrest M.

173

Molecular Basis of Microbial One-Carbon Metabolism 2008 Gordon Research Conference (July 20-25, 2008)  

SciTech Connect (OSTI)

One-carbon (C-1) compounds play a central role in microbial metabolism. C-1 compounds include methane, carbon monoxide, CO2, and methanol as well as coenzyme-bound one-carbon compounds (methyl-B12, CH3-H4folate, etc). Such compounds are of broad global importance because several C-1 compounds (e.g., CH4) are important energy sources, some (e.g., CO2 and CH4) are potent greenhouse gases, and others (e.g., CH2Cl2) are xenobiotics. They are central in pathways of energy metabolism and carbon fixation by microbes and many are of industrial interest. Research on the pathways of one-carbon metabolism has added greatly to our understanding of evolution, structural biology, enzyme mechanisms, gene regulation, ecology, and applied biology. The 2008 meeting will include recent important findings in the following areas: (a) genomics, metagenomics, and proteomic studies that have expanded our understanding of autotrophy and C-1 metabolism and the evolution of these pathways; (b) redox regulation of carbon cycles and the interrelationship between the carbon cycle and other biogeochemical cycles (sulfur, nitrogen, oxygen); (c) novel pathways for carbon assimilation; (d) biotechnology related to C-1 metabolism; (e) novel enzyme mechanisms including channeling of C-1 intermediates during metabolism; and (f) the relationship between metal homeostasis and the global carbon cycle. The conference has a diverse and gender-balanced slate of speakers and session leaders. The wide variety of disciplines brought to the study of C-1 metabolism make the field an excellent one in which to train young researchers.

Stephen W. Ragsdale

2009-08-12T23:59:59.000Z

174

Reply to 'Influence of cosmic ray variability on the monsoon rainfall and temperature': a false-positive in the field of solar-terrestrial research  

E-Print Network [OSTI]

A litany of research has been published claiming strong solar influences on the Earth's weather and climate. Much of this work includes documented errors and false-positives, yet is still frequently used to substantiate arguments of global warming denial. This manuscript reports on a recent study by Badruddin & Aslam (2014), hereafter BA14, which claimed a highly significant ($p=1.4\\times10^{-5}$) relationship between extremes in the intensity of the Indian monsoon and the cosmic ray flux. They further speculated that the relationship they observed may apply across the entire tropical and sub-tropical belt, and be of global importance. However, their statistical analysis---and consequently their conclusions---were wrong. Specifically, their error resulted from an assumption that their data's underlying distribution was Gaussian. But, as demonstrated in this work, their data closely follow an ergodic chaotic distribution biased towards extreme values. From a probability density function, calculated using a...

Laken, Benjamin A

2015-01-01T23:59:59.000Z

175

Relative importance of multiple factors on terrestrial loading of DOC to Arctic river networks  

SciTech Connect (OSTI)

Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to controlling carbon fluxes between the land surface and the atmosphere. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that the pan-arctic watershed has contributed, on average, 32 Tg C/yr of DOC to the Arctic Ocean over the 20th century with most coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of increases in air temperatures and precipitation. These increases have been partially compensated by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both compensated and enhanced concurrent effects on hydrology to influence terrestrial DOC loading. Future increases in riverine DOC concentrations and export may occur from warming-induced increases in terrestrial DOC production associated with enhanced microbial metabolism and the exposure of additional organic matter from permafrost degradation along with decreases in water yield associated with warming-induced increases in evapotranspiration. Improvements in simulating terrestrial DOC loading to pan-arctic rivers in the future will require better information on the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

Kicklighter, David W. [Ecosystem Center, The] [Ecosystem Center, The; Hayes, Daniel J [ORNL] [ORNL; Mcclelland, James W [University of Texas] [University of Texas; Peterson, Bruce [Marine Biological Laboratory] [Marine Biological Laboratory; Mcguire, David [University of Alaska] [University of Alaska; Melillo, Jerry [Marine Biological Laboratory] [Marine Biological Laboratory

2014-01-01T23:59:59.000Z

176

Carbon Based Nano-Materials Research, Development and Applications in Optoelectronics  

E-Print Network [OSTI]

Semiconducting Carbon Nanotubes. Nano Lett. 4, 35-39 (2004).on Clean Substrates. Nano Lett. 9, 3137-3141 Dalton, A. B.Single-Wall Carbon Nanotube. Nano Lett. 5, Wu, Z. et al.

Wang, Feihu

2012-01-01T23:59:59.000Z

177

Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations  

SciTech Connect (OSTI)

This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and ocean circulations) and then complete research on how this field could be linked to the other factors we need to consider in its dynamics (e.g., land use, ocean and terrestrial carbon sequestration and climate change).

Dr. Atul Jain

2005-04-17T23:59:59.000Z

178

Journal ofMurirzr Research, 53, 799-8 19, 1995 Carbon cycling in mesohaline ChesapeakeBay sediments 1  

E-Print Network [OSTI]

Journal ofMurirzr Research, 53, 799-8 19, 1995 Carbon cycling in mesohaline ChesapeakeBay sedimentsChesapeake Baywas analyzed using available data on sediment sulfate reduction, sediment oxygen consumption of integrated sediment metabolism and POC burial compared well with direct estimates derived from chlorophyll

Boynton, Walter R.

179

Soil warming, carbonnitrogen interactions, and forest carbon budgets  

Science Journals Connector (OSTI)

...atmosphereoceanland earth system models to accurately simulate land...atmosphereoceanland earth system models by comparing terrestrial carbon...atmosphereoceanland earth system models (44...

Jerry M. Melillo; Sarah Butler; Jennifer Johnson; Jacqueline Mohan; Paul Steudler; Heidi Lux; Elizabeth Burrows; Francis Bowles; Rose Smith; Lindsay Scott; Chelsea Vario; Troy Hill; Andrew Burton; Yu-Mei Zhou; Jim Tang

2011-01-01T23:59:59.000Z

180

NETL: News Release - Terrestial Carbon Sequestration Test Underway at  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestial Carbon Sequestration Test Underway at Reclaimed Mine Site Terrestial Carbon Sequestration Test Underway at Reclaimed Mine Site DOE, TVA, EPRI Team to Use Coal Products to Enhance Nature's "Biological CO2 Scrubber" at Test Site in Kentucky DRAKESBORO, KY - The U.S. Department of Energy has joined forces with the Tennessee Valley Authority and the Electric Power Research Institute to demonstrate what might be termed a "grassroots" approach to sequestering carbon dioxide. The new project will use coal combustion byproducts to enhance the storage of carbon in vegetation and soils. - Photo - TVA's Paradise Power Plant - The new terrestrial carbon sequestration project will be sited on reclaimed mine land next to the Paradise Fossil Plant, TVA's second largest power plant. A surface mine reclamation project at the 2,558-megawatt TVA-owned Paradise

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes  

E-Print Network [OSTI]

Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes of the air-sea system. The perturbation, dIc, includes carbon emissions and changes in the terrestrial), Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes, Global

Follows, Mick

182

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect (OSTI)

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Patrick Gonzalez; Sandra Brown; Sarah Woodhouse Murdock; Jenny Henman; Zoe Kant; Gilberto Tiepolo; Tim Pearson; Neil Sampson; Miguel Calmon

2005-10-01T23:59:59.000Z

183

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect (OSTI)

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Zoe Kant; Sarah Woodhouse Murdock; Neil Sampson; Gilberto Tiepolo; Tim Pearson; Sarah Walker; Miguel Calmon

2006-01-01T23:59:59.000Z

184

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect (OSTI)

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Ellen Hawes; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

2006-09-30T23:59:59.000Z

185

Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect (OSTI)

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon

2006-04-01T23:59:59.000Z

186

Global Change and the Terrestrial Biosphere (449th Brookhaven Lecture)  

SciTech Connect (OSTI)

Since the Industrial Revolution, the increased use of fossil fuels has resulted in a dramatic and unprecedented rise in the concentration of atmospheric carbon dioxide. Most scientists agree that increasing levels of carbon dioxide and other greenhouse gases have raised Earth's temperature and, without a reduction in emissions, will continue to do so. Terrestrial ecosystems sustain life on Earth through the production of food, fuel, fiber, clean air, and naturally purified water. But how will agriculture and ecosystems be affected by global change? Rogers will describe the impact of projected climate change on the terrestrial biosphere and explain why plants are not just passive respondents to global change, but play an important role in determining the rate of change.

Rogers, Alistair (Ph.D., Environmental Sciences Department) [Ph.D., Environmental Sciences Department

2009-04-22T23:59:59.000Z

187

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

Susan M. Capalbo

2004-10-31T23:59:59.000Z

188

Pricing Decision Theory and the Empirical Research on International Carbon Emissions Trading  

Science Journals Connector (OSTI)

This paper, through the literature on carbon emissions trading and the related pricing decision theory, first analyzes the pricing decision principles in the two carbon emissions trading systems, namely, cap and trade and baseline and credit approach; ... Keywords: CO2, baseline and credit, cap and trade, pricing decision

Yun Zhang

2012-03-01T23:59:59.000Z

189

Energy in low carbon cities and social learning: A process for defining priority research questions with UK stakeholders  

Science Journals Connector (OSTI)

Abstract City-level decision-making requires timely access to a wide range of relevant and comprehensible data and information. Although a wide range of research on energy and cities is on-going across the social, engineering and natural sciences, it cannot be taken for granted that the questions being asked and the way questions are structured reflect practitioner perspectives and requirements. This paper discusses the ways in which research questions are formed and interpreted by actors in academic research and research user communities. We also report a set of research questions produced via an initial trial of a two stage, participative process consisting of (a) a survey targeted at city-focussed practitioners in the United Kingdom (UK) with an interest in lower carbon energy futures; and (b) a workshop integrating practitioner and academic perspectives. Comparing the set of research questions identified with themes in the academic literature, we find that research and practitioner communities concur on the importance of reducing energy demand and also on a number of cross-cutting issues. However, we also find that academic research places a greater emphasis on the interfaces between the energy system and other urban systems. We conclude that the two stage, participative process followed can serve to generate and legitimate city-related research questions through collaboration between stakeholders and academic researchers.

Chris J. Martin; Peter G. Taylor; Paul Upham; Golnoush Ghiasi; Catherine S.E. Bale; Hannah James; Alice Owen; William F. Gale; Rebecca J. Slack; Simon Helmer

2014-01-01T23:59:59.000Z

190

Essential Terrestrial Variable data workflows for distributed water resources modeling  

Science Journals Connector (OSTI)

This paper discusses a prototype infrastructure, HydroTerre, that provides researchers, educators and resource managers with seamless access to geospatial/geotemporal data for supporting physics-based numerical models. The prototype defines the supporting ... Keywords: Data workflow, Distributed hydrologic model, Essential Terrestrial Variables, Geographic information systems, HydroTerre, PIHM, Web services

Lorne Leonard; Christopher J. Duffy

2013-12-01T23:59:59.000Z

191

2, 183201, 2005 Global terrestrial  

E-Print Network [OSTI]

, 1997). According to Watts (2000) and Kettle et al. (2002) total global sources and sinks are balancedBGD 2, 183­201, 2005 Global terrestrial COS sink strength L. Sandoval-Soto et al. Title Page Discussions is the access reviewed discussion forum of Biogeosciences Global uptake of carbonyl sulfide (COS

Paris-Sud XI, Université de

192

PROPULSION AND ENERGY Terrestrial energy  

E-Print Network [OSTI]

PROPULSION AND ENERGY Terrestrial energy On the morning of Monday, August 29, Hurri- cane Katrina dependence we all have on power and energy systems. Nine major oil re- fineries in Louisiana and Mississippi- trial energy community is the question of why alternative energy sources, such as coal, solar, wind

Aggarwal, Suresh K.

193

Delayed carbon sequestration and rising carbon prices  

Science Journals Connector (OSTI)

We set out a dynamic model to investigate optimal time paths of emissions, carbon stocks and carbon sequestration by land conversion, allowing for non-instantaneous carbon sequestration. Previous research in a dy...

Alejandro Caparrs

2009-10-01T23:59:59.000Z

194

Carbon Based Nano-Materials Research, Development and Applications in Optoelectronics  

E-Print Network [OSTI]

Pt/SWNTs as Catalysts Layer in Hydrogen Fuel Cells. Aus. J.Pt/SWNTs as Catalysts Layer in Hydrogen Fuel Cells. Aus. J.Hydrogen Fuel Cells with Ultralow Pt Loading Carbon Nanotube Thin Film Catalysts.

Wang, Feihu

2012-01-01T23:59:59.000Z

195

Technical Progress Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

SciTech Connect (OSTI)

The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.

Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Ben Poulter; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

2006-06-30T23:59:59.000Z

196

Carbon Resistive Random Access Memory Materials -CareRAMM An FP7 NMP Project led by the University of Exeter and in collaboration with IBM Research  

E-Print Network [OSTI]

Carbon Resistive Random Access Memory Materials - CareRAMM An FP7 NMP Project led by the University physical mechanism responsible for this resistive switching in carbon materials is not clear, with sp2 research and development of alternative data storage materials and concepts. The increasingly important

Mumby, Peter J.

197

Carbon sequestration in reclaimed manganese mine land at Gumgaon, India  

Science Journals Connector (OSTI)

Carbon emission is supposed to be the strongest factor for global warming. Removing atmospheric carbon and storing it in the terrestrial biosphere is one of the cost-effective options, to compensate greenhouse...

Asha A. Juwarkar; K. L. Mehrotraa; Rajani Nair

2010-01-01T23:59:59.000Z

198

Carbon in Underland (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum  

ScienceCinema (OSTI)

'Carbon in Underland' was submitted by the Center for Nanoscale Control of Geologic CO2 (NCGC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'entertaining animation and engaging explanations of carbon sequestration'. NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from seven institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO{sub 2} is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO{sub 2}. Research topics are: bio-inspired, CO{sub 2} (store), greenhouse gas, and interfacial characterization.

DePaolo, Donald J. (Director, Center for Nanoscale Control of Geologic CO2); NCGC Staff

2011-11-02T23:59:59.000Z

199

Carbon Additionality: Discussion Paper  

E-Print Network [OSTI]

ahead, and identifying the carbon pools and other green house gas emissions sources and savings coveredCarbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 Carbon

200

Title: Managing collaborative research partnerships to ensure research quality, relevance and uptake  

E-Print Network [OSTI]

of the Board of the Terrestrial Ecosystem Research Network (TERN), a Visiting Fellow at the Fenner School

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S.  

SciTech Connect (OSTI)

GOAL: To develop and apply an approach to quantify and understand the regional carbon balance of the west coast states for the North American Carbon Program. OBJECTIVE: As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance. APPROACH: In performing the regional analysis, the research plan for the bottom-up approach uses a nested hierarchy of observations that include AmeriFlux data (i.e., net ecosystem exchange (NEE) from eddy covariance and associated biometric data), intermediate intensity inventories from an extended plot array partially developed from the PI's previous research, Forest Service FIA and CVS inventory data, time since disturbance, disturbance type, and cover type from Landsat developed in this study, and productivity estimates from MODIS algorithms. The BIOME-BGC model is used to integrate information from these sources and quantify C balance across the region. The inverse modeling approach assimilates flux data from AmeriFlux sites, high precision CO2 concentration data from AmeriFlux towers and four new calibrated CO2 sites, reanalysis meteorology and various remote sensing products to generate statewide estimates of biosphere carbon exchange from the atmospheric point of view.

B.E. Law; D. Turner; M. Goeckede

2010-06-01T23:59:59.000Z

202

Carbon dioxide and climate. [Appendix includes names and addresses of the Principal Investigators for the research projects funded in FY1991  

SciTech Connect (OSTI)

Global climate change is a serious environmental concern, and the US has developed An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO{sub 2} Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO{sub 2} concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration.

Not Available

1991-10-01T23:59:59.000Z

203

Hedberg Research Conference on Fundamental Controls on Flow in Carbonates: Request for Travel Support for Post-Doctoral Fellows  

SciTech Connect (OSTI)

Carbonate reservoirs pose a scientific and engineering challenge to geophysical prediction and monitoring of fluid flow in the subsurface. Difficulties in interpreting hydrological, reservoir and other exploration data arise because carbonates are composed of a hierarchy of geological structures, constituents and processes that span a wide spectrum of length and time scales. What makes this problem particularly challenging is that length scales associated with physical structure and processes are often not discrete, but overlap, preventing the definition of discrete elements at one scale to become the building blocks of the next scale. This is particularly true for carbonates where complicated depositional environments, subsequent post-deposition diagenesis and geochemical interactions result in pores that vary in scale from submicron to centimeters to fractures, variation in fabric composition with fossils, minerals and cement, as well as variations in structural features (e.g., oriented inter- and intra layered - interlaced bedding and/or discontinuous rock units). In addition, this complexity is altered by natural and anthropogenic processes such as changes in stress, fluid content, reactive fluid flow, etc. Thus an accurate geophysical assessment of the flow behavior of carbonate reservoirs requires a fundamental understanding of the interplay of textural and structural features subjected to physical processes that affect and occur on various length and time scales. To address this complexity related to carbonates, a Hedberg conference on Fundamental Controls on Flow in Carbonates was held July 8 to 13, 2012, to bring together industry and academic scientists to stimulate innovative ideas that can accelerate research advances related to flow prediction and recovery in carbonate reservoirs. Participants included scientist and engineers from multiple disciplines (such as hydrology, structural geology, geochemistry, reservoir engineering, geophysics, geomechanics, numerical modeling, physical experiments, sedimentology, well-testing, statistics, mathematics, visualization, etc.) who encompass experience as well as the latest advances in these multi-faceted fields. One of the goals was to include early career scientists and engineers (post-doctoral fellows, assistant professors, etc.). With this grant 10 early career scientists and engineers were supported to attend the conference. This reports contains a brief overview of the conference and the list of support participants supported by this grant. Full details of the outcomes of the conference are given in the publication found in the Attachment section of this report.

Pyrak-Nolte, Laura J.

2013-04-28T23:59:59.000Z

204

Grant Reference Grant Holder Research Organisation Project Title NE/I015299/1 Robert Upstill-Goddard Newcastle University Surfactant control of air-sea gas exchange in coastal waters  

E-Print Network [OSTI]

Grant Reference Grant Holder Research Organisation Project Title NE/I015299/1 Robert Upstill of Holocene Monsoon intensity from Central Asia NE/I016414/1 Michael James Lancaster University Quantifying's University of Belfast 14C as a tool to trace terrestrial carbon in a complex lake: implications for food

205

Solar magnetic fields and terrestrial climate  

E-Print Network [OSTI]

Solar irradiance is considered one of the main natural factors affecting terrestrial climate, and its variations are included in most numerical models estimating the effects of natural versus anthropogenic factors for climate change. Solar wind causing geomagnetic disturbances is another solar activity agent whose role in climate change is not yet fully estimated but is a subject of intense research. For the purposes of climate modeling, it is essential to evaluate both the past and the future variations of solar irradiance and geomagnetic activity which are ultimately due to the variations of solar magnetic fields. Direct measurements of solar magnetic fields are available for a limited period, but can be reconstructed from geomagnetic activity records. Here we present a reconstruction of total solar irradiance based on geomagnetic data, and a forecast of the future irradiance and geomagnetic activity relevant for the expected climate change.

Georgieva, Katya; Kirov, Boian

2014-01-01T23:59:59.000Z

206

The "New" Carbon Economy: What's School of Earth and Environment and Sustainability Research Institute,  

E-Print Network [OSTI]

­2012) (United Nations Framework Convention on Climate Change--UNFCCC 2010). The revenues of the CDM constitute the largest source of mitigation finance to developing countries to date (World Bank 2010). Over the 2001­2012 period, CDM projects could raise US$15--24 billion in direct carbon revenues for developing countries

Colorado at Boulder, University of

207

Research paper Early diagenetic carbonate bed formation at the sedimentwater interface triggered  

E-Print Network [OSTI]

, chemical, and C and O stable isotope data allow us to infer that the beds formed during synsedimentary exhibit two or three carbonate beds in the vicinity of Wimereux city (3 beds at Wimereux-North and 2 beds Formation, Wheatleyensis+Pectinatus ammonite zones, see below) represents a low-energy shelf facies

208

NON-DESTRUCTIVE SOIL CARBON ANALYZER.  

SciTech Connect (OSTI)

This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil-carbon analysis; however, these also are invasive and destructive techniques. The INS approach permits quantification in a relatively large volume of soil without disrupting the measurement site. The technique is very fast and provides nearly instantaneous results thereby reducing the cost, and speeding up the rate of analysis. It also has the potential to cover large areas in a mobile scanning mode. These capabilities will significantly advance the tracking carbon sequestration and offer a tool for research in agronomy, forestry, soil ecology and biogeochemistry.

WIELOPOLSKI,L.MITRA,S.HENDREY,G.ORION,I.ROGERS,H.TORBERT,A.PRIOR,S.RUNION,B.

2004-02-01T23:59:59.000Z

209

E-Print Network 3.0 - atmospheric carbon isotope Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of terrestrial ecosystems to rising Summary: to rising concentrations of atmospheric carbon dioxide (CO2 ), and the resulting global changes,are still... from the...

210

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

Susan M. Capalbo

2005-01-31T23:59:59.000Z

211

EMSL: Science: Terrestrial & Subsurface Ecosystems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestrial & Subsurface Ecosystems Terrestrial & Subsurface Ecosystems Terrestrial and Subsurface Ecosystems logo Visualization of CFD-simulated fluid velocities within a single pore space between randomly packed spherical grains Visualization of CFD-simulated fluid velocities within a single pore space between randomly packed spherical grains. The Terrestrial and Subsurface Ecosystems Science Theme focuses on the dynamics of nutrients, metabolites, and contaminants at biogeochemical interfaces in heterogeneous environments across multiple scales. By providing a mechanistic understanding of biogeochemical and microbial processes in soils and the subsurface, and linking those processes via pore-scale hydrological models, EMSL can improve strategies for sustainable solutions to contaminant attenuation, remediation and biogeochemical

212

Pemberton et al: ALIEN TERRESTRIAL ORCHID, EULOPHIA GRAMINEA, INVADES MIAMI ALIEN TERRESTRIAL ORCHID, EULOPHIA GRAMINEA,  

E-Print Network [OSTI]

, Southeast Asia, southern China to the Ryuku Islands south of Japan. It also extends into cooler areas in this process. If you encounter plants, please send us photos or #12;Pemberton et al: ALIEN TERRESTRIAL ORCHIDPemberton et al: ALIEN TERRESTRIAL ORCHID, EULOPHIA GRAMINEA, INVADES MIAMI 183 ALIEN TERRESTRIAL

Koptur, Suzanne

213

Assessment of terrigenous organic carbon input to the total organic carbon in sediments from Scottish transitional waters Hydrology and Earth System Sciences, 6(6), 959970 (2002) EGS  

E-Print Network [OSTI]

Assessment of terrigenous organic carbon input to the total organic carbon in sediments from of terrigenous organic carbon input to the total organic carbon in sediments from Scottish transitional waters This paper addresses the assessment of terrestrially derived organic carbon in sediments from two Scottish

Paris-Sud XI, Université de

214

WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect (OSTI)

The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

Larry Myer; Terry Surles; Kelly Birkinshaw

2004-01-01T23:59:59.000Z

215

Big Sky Carbon Sequestration Partnership  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan Capalbo

2005-12-31T23:59:59.000Z

216

Terrestrial Climate Change and Ecosystem Response Recorded in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestrial Climate Change and Ecosystem Response Recorded in Lake Sediments and Related Deposits Reconstruction of past terrestrial climate and ecosystem response relies on...

217

Thermoelectrics: From Space Power Systems to Terrestrial Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

218

Research for Deployment:? Incorporating Risk, Regulation, and Liability for Carbon Capture and Sequestration  

Science Journals Connector (OSTI)

Legal and liability considerations and resulting financial risk will affect private firm willingness to invest in CCS deployment. ... For deployment beyond isolated pilot project scale, these frameworks will provide predictability, both for adequately managing risks and ensuring stability for investment necessary for technology diffusion. ... We hope that by embedding scientific risk analysis within the larger policy framework, the research undertaken will be targeted toward supporting difficult and ultimately political decisions. ...

Elizabeth J. Wilson; S. Julio Friedmann; Melisa F. Pollak

2007-07-25T23:59:59.000Z

219

Possible climates on terrestrial exoplanets  

Science Journals Connector (OSTI)

...nascent planet (and possibly into the comets or asteroids colliding with the planet...lost to space because of the impacts of comets or asteroids. If the gravity is low enough...Evidence for calcium carbonate at the phoenix landing site. Science 325, 61-64. 33 Morris...

2014-01-01T23:59:59.000Z

220

Terrestrial nitrogencarbon cycle interactions at the global scale  

Science Journals Connector (OSTI)

...N. Depending on whether the radiative forcing in Earth system models is prescribed (RCP-type forcing) or calculated...accounted for interactively in the next generation of Earth system models designed for long-term studies of biogeochemical-climate...

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

West, T.O., and W.M. Post. 2002. Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (http://cdiac.ornl.gov/programs/CSEQ/terrestrial/westpost2002/westpost2002.html). Carbon Dioxide Information Analysis Center, U.S. Depa  

E-Print Network [OSTI]

). Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak 41 27 32 24 1968 Arg01 Cordoba Argentina -32.42 -62.05 900 17 Marcos Juarez silty loam 10 65 25 17 1975 Arg02 Balcarce Argentina -37.45 -58.18 870 13.7 #10 #65 #25 1984 Arg03 Buenos Aires Argentina -37

222

Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC)  

Science Journals Connector (OSTI)

Version 1 of the Community Earth System Model, in the configuration where its full carbon cycle is enabled, is introduced and documented. In this configuration, the terrestrial biogeochemical model, which includes carbonnitrogen dynamics and is ...

Keith Lindsay; Gordon B. Bonan; Scott C. Doney; Forrest M. Hoffman; David M. Lawrence; Matthew C. Long; Natalie M. Mahowald; J. Keith Moore; James T. Randerson; Peter E. Thornton

2014-12-01T23:59:59.000Z

223

The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production  

E-Print Network [OSTI]

The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel for terrestrial carbon sequestration and potential biofuel production. For P. strobus, above- ground plant carbon harvest for biofuel would result in no net carbon sequestration as declines in soil carbon offset plant

Weiblen, George D

224

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs  

E-Print Network [OSTI]

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry must be developed for capturing CO2 from power plants. Current CO2 capture technology is expensive

225

Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tillage and Crop Rotation Tillage and Crop Rotation Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis DOI: 10.3334/CDIAC/tcm.002 PDF file Full text Soil Science Society of America Journal 66:1930-1946 (2002) CSITE image Tristram O. West and Wilfred M. Post DOE Center for Carbon Sequestration in Terrestrial Ecosystems (CSiTE) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6290 U.S.A. Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program Abstract Global map Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil

226

Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop  

SciTech Connect (OSTI)

As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

2014-02-21T23:59:59.000Z

227

Carbon Capture (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Smit, Berend

2011-06-08T23:59:59.000Z

228

West, T.O., and W.M. Post. 2002. Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (http://cdiac.ornl.gov/programs/CSEQ/terrestrial/westpost2002/westpost2002.html). Carbon Dioxide Information Analysis Center, U.S. Depa  

E-Print Network [OSTI]

). Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak/a 1989 15-30 15 1.11 KY01 CT corn 0 1975 0-5 5 1.33 KY01 CT corn 0 1975 5-15 10 1.24 KY01 CT corn 0 1975 15-30 15 0.68 KY01 CT corn 0 1980 0-5 5 1.25 KY01 CT corn 0 1980 5-15 10 1.38 KY01 CT corn 0 1980 15

229

Conservation Research and Development/ New Ultra-Low Carbon High Strength Steels with Improved Bake Hardenability for Enhanced Stretch Formability and Dent Resistance  

SciTech Connect (OSTI)

Conservation Research and Development/New Ultra-Low Carbon High Strength Steels with Improved Bake Hardenability for Enhanced Stretch Formability and Dent Resistance. The experimental work can be divided into four phases. In each phase, the materials were received or designed, processed and tested, to evaluate the BH increment or response, as a function of compositions and processing conditions. Microstructural characterization by various techniques was performed in order to gain insights into the mechanisms of flow stress increment by bake hardening.

Anthony J. DeArdo; C. Isaac Garcia

2003-12-15T23:59:59.000Z

230

Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems  

Science Journals Connector (OSTI)

...Southwest Biological Science Center, Canyonlands Research...terrestrial BNF for a pre-industrial world by combining information...estimate is that pre-industrial N fixation was 58...Boyer, EW. 2004 Pre-industrial and contemporary fluxes...through rivers: a global assessment based on typology...

2013-01-01T23:59:59.000Z

231

Composites of Carbon Nanotubes.  

E-Print Network [OSTI]

??The purpose of this research was to study various methods of incorporation of single-walled carbon nanotubes (SWNT) with polymers for producing electrically conductive polystyrene composites. (more)

Tchoul, Maxim N.

2008-01-01T23:59:59.000Z

232

Current issues in terrestrial solar radiation instrumentation for energy, climate, and space applications  

Science Journals Connector (OSTI)

Uncertainty in terrestrial solar radiation measurements of a few watts per square metre (1 W/m2 to 2 W/m2) is needed to validate estimates of the Earth's radiation balance derived from satellite data. The characterization of solar energy resources for renewable energy technologies requires similar accuracy for economical technology deployment. Solar radiation measurement research at the National Renewable Energy Laboratory addresses calibrations, operational characteristics, and corrections for terrestrial solar radiation measurements. The characterization of field instrument geometric and thermal responses contributing to radiometric errors is described, together with correction schemes reducing the uncertainty of broadband irradiance measurements from tens of watts per square metre to a few (2 W/m2 to 5 W/m2). Such improvements in accuracy reduce the time and labour required for detecting and quantifying trends in terrestrial solar radiation and possible changes in the Earth's radiation budget.

T L Stoffel; I Reda; D R Myers; D Renne; S Wilcox; J Treadwell

2000-01-01T23:59:59.000Z

233

Laboratory Directed Research and Development Program FY2011  

E-Print Network [OSTI]

Means for Biological Carbon Capture and Storage, invitedAnnual Conference on Carbon Capture and Sequestration (MayResearch on Biological Carbon Capture and Soil Carbon

ed, Todd Hansen

2013-01-01T23:59:59.000Z

234

Origin of first cells at terrestrial, anoxic geothermal fields  

Science Journals Connector (OSTI)

...terrestrial geothermal fields are conducive...solar light as an energy source and a...terrestrial geothermal fields are conducive...solar light as an energy source and selective...M.), EU COST CM0902 Action (A.Y...diverse kinds of energy, including...terrestrial, anoxic geothermal fields. | All...

Armen Y. Mulkidjanian; Andrew Yu. Bychkov; Daria V. Dibrova; Michael Y. Galperin; Eugene V. Koonin

2012-01-01T23:59:59.000Z

235

Terrestrial biogeochemical feedbacks in the climate system: from past to future  

SciTech Connect (OSTI)

The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O'Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

2010-01-05T23:59:59.000Z

236

Carbon Capture Pilots (Kentucky)  

Broader source: Energy.gov [DOE]

Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealths utilities, the Electric Power Research Institute, the Center for...

237

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10)  

E-Print Network [OSTI]

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10) 15 - 17th Since the discovery of the carbon nanotube (CNT) about two decades ago, research related to its of Materials and Process Engineering Kanpur Chapter hosted the `International Conference on Carbon

Srivastava, Kumar Vaibhav

238

NPP and the Global Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Global Carbon Cycle the Global Carbon Cycle Introduction Photosynthetic carbon fixation comprises a major component of the global carbon cycle. Data on net primary productivity (NPP) may be sparse, but a consistent NPP data set may be used to calibrate, parameterize and evaluate models of terrestrial carbon cycling, as well as for validation of remote sensing data and other applications (identifying trends, investigating biogeochemical processes, etc.). It is also useful to place such data within the context of carbon cycling and carbon storage worldwide. For example: How much carbon exists in the biosphere, and where exactly is it stored? How much is in fossil fuels (coal, oil, gas), and how large are current fossil-fuel emissions? How much is in living biomass (plants/ animals/ humans)?

239

Putting the pressure on carbon dioxide | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Putting the pressure on carbon dioxide Improving the chances for fuel recovery and carbon sequestration Artwork from this research graces the cover of Environmental Science...

240

Numerical simulation and modeling of carbon nanotubes.  

E-Print Network [OSTI]

??The discovery of carbon nanotubes has triggered a significant amount of interest. Since then, much research has been done on these new forms of carbon (more)

Wong, Chee How.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The terrestrial ecosystem program for the Yucca Mountain Project  

SciTech Connect (OSTI)

DOE has implemented a program to monitor and mitigate impacts associated with site Characterization Activities at Yucca Mountain on the environment. This program has a sound experimental and statistical base. Monitoring data has been collected for parts of the program since 1989. There have been numerous changes in the Terrestrial Ecosystems Program since 1989 that reflect changes in the design and locations of Site Characterization Activities. There have also been changes made in the mitigation techniques implemented to protect important environmental resources based on results from the research efforts at Yucca Mountain. These changes have strengthened DOE efforts to ensure protection of the environmental during Site Characterization. DOE,has developed and implemented an integrated environmental program that protects the biotic environment and will restore environmental quality at Yucca Mountain.

Ostler, W.K.; O`Farrell, T.P.

1994-06-01T23:59:59.000Z

242

carbon capture rd index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awards Partnering With Us About Us Contacts Fact Sheet Research Team Members Key Contacts Carbon Capture Research & Development Carbon capture and storage from fossil-based power...

243

carbon capture rd index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Capture Publications Patents Awards Partnering With Us About Us Contacts Staff Search Fact Sheet Research Team Members Key Contacts Carbon Capture Research & Development...

244

Diameter-Refined Metallic Carbon Nanotubes as Optically Tunable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diameter-Refined Metallic Carbon Nanotubes as Optically Tunable Transparent Conductors Home > Research > ANSER Research Highlights > Diameter-Refined Metallic Carbon Nanotubes as...

245

Continuous, Non-Invasive, In-Field Soil Carbon Scanning System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous, non-invasive, in-Field soil Continuous, non-invasive, in-Field soil Carbon sCanning system Background Vegetation and soils serve as carbon storage sinks for the approximately 2 billion tons of carbon absorbed annually by the global biosphere. While global warming is promoted by anthropogenic carbon dioxide (CO 2 ) emissions into the atmosphere, it is partially mitigated by carbon sequestration in the terrestrial ecosystem. However, a better understanding and monitoring of the underground carbon processes is necessary for evaluating various strategies for terrestrial carbon sequestration and quantification of the carbon stores for carbon credits. Description Brookhaven National Laboratory (BNL) has developed a multi-elemental scanning instrument for determining carbon analysis in soil. The method is based on inelastic

246

China-US Collaborative Research on Life in Terrestrial  

E-Print Network [OSTI]

School District on the integration of PIRE activities into the new US national science education presentation schedule, we also feature a poster session with more than 25 posters and unique meals organized, and Poster Session I (Posters 1-12) #12;10:00 - 11:15Oral Session I (25 minutes each) - José de la Torre

Ahmad, Sajjad

247

Carbon Nanotubes for Data Processing  

E-Print Network [OSTI]

Carbon Nanotubes for Data Processing Joerg Appenzeller, T. J. Watson Research Center, IBM Research.2 Electronic Structure of Graphene 4 2.3 Electronic Structure of Carbon Nanotubes 4 2.4 Transport Properties 6 2.5 Contacts 9 3 Synthesis of Carbon Nanotubes 10 3.1 Synthetic Methods 10 3.2 Growth Mechanisms 12

Joselevich, Ernesto

248

Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year  

E-Print Network [OSTI]

, such as temperature anomalies, on NEE and carbon sequestration of ecosystems at interannual timescales have beenLETTERS Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year , Yiqi Luo5 & David S. Schimel6 Terrestrial ecosystems control carbon dioxide fluxes to and from

Cai, Long

249

Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections  

Science Journals Connector (OSTI)

...positive carbon feedback to future warming using earth system models (28). Empirical observations have found that needle...patterns have not been accounted for by any of the earth system models that were used for estimating the sensitivity of terrestrial...

Peter B. Reich; Roy L. Rich; Xingjie Lu; Ying-Ping Wang; Jacek Oleksyn

2014-01-01T23:59:59.000Z

250

Responses of primary production and total carbon storage to changes in climate and atmospheric CO? concentration  

E-Print Network [OSTI]

The authors used the terrestrial ecosystem model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total carbon storage to changes in climate and atmospheric CO2, driven by the ...

Xiao, Xiangming.; Kicklighter, David W.; Melillo, Jerry M.; McGuire, A. David.; Stone, Peter H.; Sokolov, Andrei P.

251

Continuous, Non-Invasive, In-Field Soil Carbon Scanning System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous, Non-Invasive, In-Field Soil Continuous, Non-Invasive, In-Field Soil Carbon Scanning System Background Earth generates and emits an enormous amount of carbon dioxide into the atmos- phere from its deep energy resources, its near-surface processes, and biotic activi- ties. Although anthropogenic carbon dioxide emissions increase global warming, global warming is also alleviated by human activities in sequestering carbon into the terrestrial ecosystem and injecting carbon dioxide deep into geological formations,

252

ASSESSMENT OF BUILDING LIFECYLE CARBON EMISSIONS  

E-Print Network [OSTI]

Even though the Carbon Capture & Sequestration Technologies (CC & ST) program at the Massachusetts Institute of Technology initiated carbon emission research in late 1990s (CSI, 2013), carbon emissions has only become a hot topic in the last decade...

Kwok, George

2014-05-31T23:59:59.000Z

253

Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems  

SciTech Connect (OSTI)

This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

Qafoku, Nikolla

2012-01-01T23:59:59.000Z

254

Carbon Dioxide Information Analysis Center (CDIAC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Latest Estimates Latest Estimates Atmos CO2 Level 397.31 ppm Fossil CO2 Emissions 9,167 MMT Carbon Global Temp Anomaly +0.56°C / +1.01°F Global Sea Level Rise +2.9 ± 0.4 mm/y Carbon Dioxide Information Analysis Center The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and

255

Organic modification of carbon nanotubes  

Science Journals Connector (OSTI)

The organic modification of carbon nanotubes is a novel research field being developed ... and newest progress of organic modification of carbon nanotubes are reviewed from two aspects: organic covalent modificat...

Luqi Liu; Zhixin Guo; Liming Dai; Daoben Zhu

2002-03-01T23:59:59.000Z

256

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network [OSTI]

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

Rollins, Andrew M.

257

Research Portfolio Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cross-Cutting Research, Futuregen 2.0, Industrial Carbon Capture and Storage (ICCS), Clean Coal Power Initiative (CCPI), Geologic Sequestration Training and Research (GSTR),...

258

EA-1616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama  

Broader source: Energy.gov [DOE]

This EA evaluates and updates the potential environmental impacts of DOEs proposed continued operations of the NCCC Project at the PSDF plant. The NCCC is designed to test and evaluate carbon dioxide (CO2) control technologies for power generation facilities, including CO2 capture solvents and sorbents, mass-transfer devices, lower cost water-gas shift reactors, and scaled-up membrane technologies. Additionally, the NCCC evaluates methods to integrate CO2 capture technologies with other coal-based power plant systems by testing both pre-combustion and post-combustion technologies. The NCCC provides the capability to test these systems under a wide range of fuels, including bituminous and sub-bituminous coals, lignites and biomass/coal mixtures. The goal of the NCCC project is to accelerate the development, optimization, and commercialization of viable CO2 control technologies.

259

Basic Engineering Research for D&D of R. Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation  

SciTech Connect (OSTI)

Collaborating researchers at the University of South Carolina (USC), Clemson University (CU), and the Savannah River Site (SRS) are investigating the fundamentals of a combined extraction and destruction process for the decontamination and decommissioning (D&D) of PCB-contaminated materials as found at DOE sites. Currently, the volume of PCBs and PCB contaminated wastes at DOE sites nationwide is approximately 19,000 m3. While there are a number of existing and proposed processes for the recovery and/or destruction of these persistent 4 pollutants, none has emerged as the preferred choice. Therefore, this research focuses on combining novel processes to solve the problem. The research objectives are to investigate benign dense-fluid extraction with either carbon dioxide (USC) or hot water (CU), followed by destruction of the extracted PCBs via either electrochemical (USC) or hydrothermal (CU) oxidation. Based on the results of these investigations, a combined extraction and destruction process that incorporates the most successful elements of the various processes will be recommended for application to contaminated DOE sites.

Hamilton, Edward A.; Bruce, David A.; Oji, Lawrence; White, Ralph E.; Matthews, Michael A.; Thies, Mark C.

1999-06-01T23:59:59.000Z

260

DOE/EA-1616: Environmental Assessment for Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama (DOE/EA-1616) (9/2008)  

Broader source: Energy.gov (indexed) [DOE]

16 16 CARBON RESEARCH CENTER PROJECT AT SOUTHERN COMPANY SERVICES' POWER SYSTEMS DEVELOPMENT FACILITY NEAR WILSONVILLE, ALABAMA FINAL ENVIRONMENTAL ASSESSMENT U.S. DEPARTMENT OF ENERGY Office of Fossil Energy National Energy Technology Laboratory SEPTEMBER 2008 COVER SHEET Responsible Agency: U.S. Department of Energy Title: Carbon Research Center Project, Draft Environmental Assessment (DOE/EA- 1616) Location: Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama Contact: For further information about this Environmental Assessment, contact: Roy Spears, Document Manager National Energy Technology Laboratory

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

262

LOCOMOTION (TERRESTRIAL AND AERIAL) AND COMMUNICATION OF AUTONOMOUS ROBOT NETWORKS  

E-Print Network [OSTI]

, flying robots, micro-air vehicles, robot communication, autonomous robot networks. #12;2 1. TERRESTRIAL1 LOCOMOTION (TERRESTRIAL AND AERIAL) AND COMMUNICATION OF AUTONOMOUS ROBOT NETWORKS Arvin Agah This report focuses on locomotion and communication aspects of mobile robot networks for harsh polar

Kansas, University of

263

Concordance of freshwater and terrestrial biodiversity Robin Abell1  

E-Print Network [OSTI]

Global priorities for biodiversity conservation are only as robust as the data used to identify them of freshwater biodiversity patterns. Given that many conservation priorities are currently driven by terrestrialLETTER Concordance of freshwater and terrestrial biodiversity Robin Abell1 , Michele Thieme1

Vermont, University of

264

Terrestrial gamma ray flash production by active lightning leader channels  

E-Print Network [OSTI]

Terrestrial gamma ray flash production by active lightning leader channels B. E. Carlson,1 N. G 28 October 2010. [1] The production of terrestrial gamma ray flashes (TGFs) requires a seed energetic electron source and a strong electric field. Lightning leaders naturally provide seed electrons by cold

Bergen, Universitetet i

265

BASIC ENGINEERING RESEARCH FOR D&D OF R REACTOR STORAGE POND SLUDGE: ELECTROKINETICS, CARBON DIOXIDE EXTRACTION, AND SUPERCRITICAL WATER OXIDATION  

SciTech Connect (OSTI)

Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D&D operations at DOE sites across the country. Currently, the volume of these wastes is approximately 23,500 m3, and the majority of these wastes (i.e., almost 19,000 m3) consist of PCBs and PCB-contaminated materials. Further, additional PCB-contaminated waste will be generated during D&D operations in the future. The standard process for destruction of this waste is incineration, which generates secondary waste that must be disposed, and the TSCA incinerator at Oak Ridge has an uncertain future. Beyond incineration, no proposed process for the recovery and/or destruction of these persistent pollutants has emerged as the preferred choice for DOE cleanup. The main objective of the project was to investigate and develop a deeper understanding of the thermodynamic and kinetic reactions involved in the extraction and destruction of polychlorinated biphenyls (PCBs) from low-level mixed waste solid matrices in order to provide data that would permit the design of a combined-cycle extraction/destruction process. The specific research objectives were to investigate benign dense-fluid extraction with either carbon dioxide (USC) or hot water (CU), followed by destruction of the extracted PCBs via either electrochemical (USC) or hydrothermal (CU) oxidation. Two key advantages of the process are that it isolates and concentrates the PCBs from the solid matrices (thereby reducing waste volume greatly and removing the remaining low-level mixed waste from TSCA control), and little, if any, secondary solvent or solid wastes are generated. This project was a collaborative effort involving the University of South Carolina (USC), Clemson University (CU), and Westinghouse Savannah River Company (WSRC) (including the Savannah River Technology Center, Facilities Decommissioning Division and Regulatory Compliance). T he project was directed and coordinated by the South Carolina Universities Research and Education Foundation (SCUREF), a consortium of the four public research universities in South Carolina. The original plan was to investigate two PCB extraction processes (supercritical carbon dioxide and hot, pressurized water) and two PCB destruction processes (electrochemical oxidation and hydrothermal oxidation). However, at approximately the mid-point of the three year project, it was decided to focus on the more promising extraction process (supercritical carbon dioxide) and the more promising destruction process (supercritical water oxidation). This decision was taken because the investigation of two processes simultaneously by each university was stretching resources too thin, and because the electrochemical oxidation process needed more concentrated research before it would be ready for application to PCB destruction. The solid matrix chosen for experimental work was Toxi-dry, a commonly used adsorbent made from plant material that is used in cleanup of spills and/or liquid solvents. The Toxi-dry was supplied by the research team member from the Facilities Decommissioning Division, WSRC. This adsorbent is a major component of job control waste.

Matthews, Michael A.; Bruce,David; Davis,Thomas; Thies, Mark; Weidner, John; White, Ralph

2001-12-31T23:59:59.000Z

266

US EPA (Environmental Protection Agency) perspective on AOC (assimilable organic carbon) research as related to coliform colonization and compliance problems  

SciTech Connect (OSTI)

The biological stability of treated drinking water has become a major concern for water utilities. The U.S. E.P.A. is concerned from the perspective of coliform MCL compliance and remediation of coliform biofilm problems. The levels of readily assimilable nutrients present in treated water are affected by water treatment processes, but of greatest concern are those processes, such as ozonation, that cause increases in the levels of assimilable organic carbon (AOC) and therefore contribute to biological instability of the water. Thus, the combined use of ozonation (pre-oxidant) and a lower disinfectant residual as an approach to reducing disinfectant byproducts may result in increased bacterial growth, including coliforms, in the distribution system. Information is needed on: the AOC flux level that stimulate coliform growth in biofilm: the specific nutrients and concentrations that can stimulate growth of both coliforms and HPC; treatment strategies to reduce AOC levels and strategies to effectively control biofilm formation where AOC levels cannot be reduced.

Reasoner, D.J.; Rice, E.W.

1989-01-01T23:59:59.000Z

267

Generation of a Consistent Terrestrial Net Primary Production Data Set  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation of a Consistent Terrestrial Net Generation of a Consistent Terrestrial Net Primary Production Data Set Final Report NASA Reference Number TE/99-0005 May 3, 2001 Richard J. Olson and Jonathan M. O. Scurlock Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6407 This project, "Generation of a Consistent Terrestrial Net Primary Production Data Set", is a coordinated, international effort to compile global estimates of terrestrial net primary productivity (NPP) for parameterization, calibration, and validation of NPP models. The project (NASA Reference Number TE/99-0005) was funded by the National Aeronautics and Space Administration (NASA), Office of Earth Science, Terrestrial Ecology Program under Interagency Agreement number 2013-M164-A1, under

268

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS  

Open Energy Info (EERE)

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Jump to: navigation, search Tool Summary Name: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Agency/Company /Organization: National Renewable Energy Laboratory, Centro de Energías Renovables (CER), United States Department of Energy Sector: Energy Focus Area: Solar Resource Type: Software/modeling tools, Webinar, Training materials References: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model[1] Logo: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Webinar Video SMARTSwebinar.JPG Announcement " Monday, December 6, 2010 11-12 a.m. Golden, CO 1-2 p.m., Washington, D.C. 3-4 p.m., Santiago, Chile

269

The Viscosity of Carbon Dioxide  

Science Journals Connector (OSTI)

26 July 1912 research-article The Viscosity of Carbon Dioxide P. Phillips The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings...

1912-01-01T23:59:59.000Z

270

Big Sky Carbon Sequestration Partnership--Phase I  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework (referred to below as the Advanced Concepts component of the Phase I efforts); and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan M. Capalbo

2005-10-01T23:59:59.000Z

271

Big Sky Carbon Sequestration Partnership--Phase I  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework (referred to below as the Advanced Concepts component of the Phase I efforts); and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan M. Capalbo

2006-01-01T23:59:59.000Z

272

NETL: Carbon Storage - Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

273

Carbon-free generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon-free generation Carbon-free generation Carbon-free central generation of electricity, either through fossil fuel combustion with carbon dioxide capture and storage or development of renewable sources such as solar, wind, and/or nuclear power, is key to our future energy portfolio. Brookhaven also provides tools and techniques for studying geological carbon dioxide sequestration and analyzing safety issues for nuclear systems. Our nation faces grand challenges: finding alternative and cleaner energy sources and improving efficiency to meet our exponentially growing energy needs. Researchers at Brookhaven National Laboratory are poised to meet these challenges with basic and applied research programs aimed at advancing the effective use of renewable energy through improved conversion,

274

E-Print Network 3.0 - alberta flare research Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and solar interior could Source: New Jersey Institute of Technology, Center for Solar-Terrestrial Research Collection: Physics Page: << < 1 2 3 4 5 > >> Page: << < 1 2 3...

275

decommissioning of carbon dioxide (CO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

276

Isotope powered Stirling generator for terrestrial applications  

SciTech Connect (OSTI)

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

Tingey, G.L.; Sorensen, G.C. [Pacific Northwest Lab., Richland, WA (United States); Ross, B.A. [Stirling Technology Co., Richland, WA (United States)

1995-01-01T23:59:59.000Z

277

Isotope powered stirling generator for terrestrial applications  

SciTech Connect (OSTI)

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Tingey, G.L.; Sorensen, G.C. [Battelle, Paific Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Ross, B.A. [Stirling Technology Company, 2952 George Washington Way, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

278

Carbon sequestration  

Science Journals Connector (OSTI)

...Leaver and Howard Dalton Carbon sequestration Rattan Lal * * ( lal.1...and biotic technologies. Carbon sequestration implies transfer of atmospheric...and biomass burning. 3. Carbon sequestration Emission rates from fossil...

2008-01-01T23:59:59.000Z

279

Carbon Sequestration  

Science Journals Connector (OSTI)

Carbon sequestration refers to a portfolio of activities for ... capture, separation and storage or reuse of carbon or CO2. Carbon sequestration technologies encompass both the prevention of CO2 emissions into ...

Robert L. Kane MS; Daniel E. Klein MBA

2005-01-01T23:59:59.000Z

280

A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report  

SciTech Connect (OSTI)

This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

Not Available

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Background gamma terrestrial dose rate in Nigerian functional coal mines  

Science Journals Connector (OSTI)

......444-448 (2003). 12. Nakaoka, A., Fukushima, M. and Shinji, T. Environmental...TERRESTRIAL DOSE RATE IN NIGERIAN MINES N d Aerial ropeway Figure 2. Surface background...444 448 (2003). 12. Nakaoka, A., Fukushima, M. and Shinji, T. Environmental......

C. E. Mokobia; F. A. Balogun

2004-01-01T23:59:59.000Z

282

X-ray emission from the terrestrial magnetosheath  

E-Print Network [OSTI]

[1] X-rays are generated throughout the terrestrial magnetosheath as a consequence of charge transfer collisions between heavy solar wind ions and geocoronal neutrals. The solar wind ions resulting from these collisions ...

Robertson, Ina Picket; Cravens, Thomas Edward

2003-04-29T23:59:59.000Z

283

Global organization of terrestrial plantnutrient interactions  

Science Journals Connector (OSTI)

...needed guidance for efforts underway to incorporate N and P dynamics within the terrestrial component of coupled earth system models (13). Inclusion of explicit mechanisms of plantnutrient interactions will better enable these models to simulate...

Lars O. Hedin

2004-01-01T23:59:59.000Z

284

Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation  

SciTech Connect (OSTI)

Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

2002-04-01T23:59:59.000Z

285

Challenges for improving estimates of soil organic carbon stored in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenges for improving estimates of soil organic carbon stored in Challenges for improving estimates of soil organic carbon stored in permafrost regions September 30, 2013 Tweet EmailPrint One of the greatest environmental challenges of the 21st century lies in predicting the impacts of anthropogenic activities on Earth's carbon cycle. Soil is a significant component of the carbon cycle, because it contains at least two-thirds of the world's terrestrial carbon and more than twice as much carbon as the atmosphere. Although soil organic carbon (SOC) stocks were built over millennial time scales, they are susceptible to a far more rapid release back to the atmosphere due to climatic and land use change. If environmental perturbations negatively impact the processes regulating the storage of SOC, significant amounts of this carbon could be decomposed

286

Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase Berkeley Lab research could help...

287

The lifetime of excess atmospheric carbon dioxide  

SciTech Connect (OSTI)

Since the beginning of the industrial revolution human activity has significantly altered biogeochemical cycling on a global scale. The uncertainties of future climate change rests partly on issues of physical-climate system dynamics and their representation in general circulation models. However understanding the carbon cycle is a key to comprehending the changing terrestrial biosphere and to developing a reasonable range of future concentrations of greenhouse gases. The authors look at correction of model uncertainties in the examination of the lifetime of carbon dioxide. The two difficulties analysed are as follows: (1) most model-derived estimates of the relaxation of the concentration of CO2 reveal a function which is not always well approximated by weighted sums of exponentials; (2) the function c(t) is quite sensitive to assumptions about the terrestrial biosphere and the relaxation experiment. 51 refs., 15 figs., 7 tabs.

Moore, B. III; Braswell, B.H. (Univ. of New Hampshire, Durham, NH (United States))

1994-03-01T23:59:59.000Z

288

Regulatory Issues Controlling Carbon Capture and Storage B.S. Environmental Science  

E-Print Network [OSTI]

Regulatory Issues Controlling Carbon Capture and Storage by Adam Smith B.S. Environmental Science and Astronautics #12;2 Regulatory Issues Controlling Carbon Capture and Storage by Adam Smith Submitted, terrestrial CO2 sequestration, and geologic CO2 capture and storage (CCS) are the major efforts underway

289

Carbon Capture and Storage  

SciTech Connect (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

290

Interhemispheric transport of carbon dioxide by ocean circulation  

Science Journals Connector (OSTI)

... negate the need to invoke a terrestrial sink of this sort. The Atlantic Ocean's conveyor circulation4 is the most likely candidate for interhemispheric CO2 transport because it carries to the ... the upper Atlantic carried less dissolved carbon than this southward-flowing deep

Wallace S. Broecker; Tsung-Hung Peng

1992-04-16T23:59:59.000Z

291

Regional Carbon Sequestration Partnerships Initiatives review meeting. Proceedings  

SciTech Connect (OSTI)

A total of 32 papers were presented at the review meeting in sessions entitled: updates on regional characterization activities; CO{sub 2} sequestration with EOR; CO{sub 2} sequestration in saline formations I and II; and terrestrial carbon sequestration field projects. In addition are five introductory papers. These are all available on the website in slide/overview/viewgraph form.

NONE

2006-07-01T23:59:59.000Z

292

Carbon Smackdown: Carbon Capture  

SciTech Connect (OSTI)

In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

Jeffrey Long

2010-07-12T23:59:59.000Z

293

Pan-Arctic landatmospheric fluxes of methane and carbon dioxide in response to climate change over the 21st century  

E-Print Network [OSTI]

Future changes of pan-Arctic landatmospheric methane (CH[subscript 4]) and carbon dioxide (CO[subscript 2]) depend on how terrestrial ecosystems respond to warming climate. Here, we used a coupled hydrologybiogeochemistry ...

Zhu, Xudong

294

carbon storage rd index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

With Us About Us Contacts Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage (CCS) is a key component of the U.S. carbon management...

295

LOW Mg/Si PLANETARY HOST STARS AND THEIR Mg-DEPLETED TERRESTRIAL PLANETS  

SciTech Connect (OSTI)

Simulations have shown that a diverse range of extrasolar terrestrial planet bulk compositions are likely to exist based on the observed variations in host star elemental abundances. Based on recent studies, it is expected that a significant proportion of host stars may have Mg/Si ratios below 1. Here we examine this previously neglected group of systems. Planets simulated as forming within these systems are found to be Mg-depleted (compared to Earth), consisting of silicate species such as pyroxene and various feldspars. Planetary carbon abundances also vary in accordance with the host star C/O ratio. The predicted abundances are in keeping with observations of polluted white dwarfs, lending validity to this approach. Further studies are required to determine the full planetary impacts of the bulk compositions predicted here.

Carter-Bond, Jade C.; O'Brien, David P. [Planetary Science Institute, 1700 E. Fort Lowell, Tucson, AZ 85719 (United States); Delgado Mena, Elisa; Israelian, Garik; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Santos, Nuno C., E-mail: j.bond@unsw.edu.au [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

2012-03-15T23:59:59.000Z

296

Carbon Cycle 2.0  

Broader source: Energy.gov (indexed) [DOE]

Carbon Cycle 2.0 Carbon Cycle 2.0 Pioneering science for sustainable energy solutions Artificial Photosynthesis Energy Storage Combustion Carbon Capture & Storage Developing World Efficiency Photovoltaics Biofuels Energy Analysis Climate Modeling Carbon Cycle 2.0 is... 1. A vision for * a global energy system integrated with the Earth's natural carbon cycles * an interactive Berkeley Lab environment with a shared sense of purpose 2. A program development plan that will allow us to deepen our capabilities and provide more opportunities to have impact 3. An attempt to integrate our basic research with applications using models of technology deployment constraints 4. Set of internal activities aimed at priming the effort

297

The Social Dynamics of Carbon Capture and Storage  

E-Print Network [OSTI]

The Social Dynamics of Carbon Capture and Storage Understanding CCS Representations, Governance studies. He works as a Research Associate at the Scottish Carbon Capture and Storage research centre at the Scottish Carbon Capture and Storage research centre at the University of Edinburgh. His research focuses

298

Prospects for Improved Carbon Capture Technology  

E-Print Network [OSTI]

Prospects for Improved Carbon Capture Technology Report to the Congressional Research Service Kitchin July 2010 #12;(this page intentionally left blank) #12;Prospects for Improved Carbon Capture Technology i Table of Contents CHAPTER 1. EXECUTIVE SUMMARY

299

The carbon question Debate The carbon question Comment/Q&A he key to climate change  

E-Print Network [OSTI]

research, development, demonstration, and diffusion of low-emission technolo- gies. Carbon capture to What does carbon capture and storage (CCS) involve? Separating out the carbon dioxide (CO2) emitted has not yet been applied in power stations on a commercial scale. So what's "carbon capture ready

300

PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2009; 17:1133  

E-Print Network [OSTI]

PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2009; 17 Research History of Accelerated and Qualification Testing of Terrestrial Photovoltaic Modules: A Literature-plate terrestrial photovoltaic (PV) modules. An important facet of this subject is the standard module test

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Summaries of physical research in the geosciences  

SciTech Connect (OSTI)

The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas.

Not Available

1981-10-01T23:59:59.000Z

302

Carbon Conference  

Science Journals Connector (OSTI)

Carbon Conference ... The Fourth Hienninl Conference on Carbon will be held at the University of Buffalo, June 15 to 19. ... The Pittsburgh Section's coal technology group will meet in the conference room at Mellon Institute, Pittsburgh, June ... ...

1959-06-01T23:59:59.000Z

303

CHARTER FOR THE CARBON SEQUESTRATION  

Broader source: Energy.gov (indexed) [DOE]

CHARTER FOR THE CARBON SEQUESTRATION CHARTER FOR THE CARBON SEQUESTRATION LEADERSHIP FORUM (CSLF): A CARBON CAPTURE AND STORAGE TECHNOLOGY INITIATIVE The undersigned national governmental entities (collectively the "Members") set forth the following Terms of Reference for the Carbon Sequestration Leadership Forum (CSLF), a framework for international cooperation in research and development for the separation, capture, transportation and storage of carbon dioxide. The CSLF will seek to realize the promise of carbon capture and storage over the coming decades, making it commercially competitive and environmentally safe. 1. Purpose of the CSLF To facilitate the development of improved cost-effective technologies for the separation and capture of carbon dioxide for its transport and long-term safe storage; to make these

304

Research in progress: FY 1992. Summaries of projects  

SciTech Connect (OSTI)

The Biological and Environmental Research (BER) Program of OHER has two main missions: (1) to develop the knowledge base necessary to identify, understand, and anticipate the long-term health and environmental consequences of energy use and development and (2) to utilize the Department`s unique scientific and technological capabilities to solve major scientific problems in medicine, biology, and the environment. These missions reflect a commitment to develop the beneficial uses of advanced energy technologies while at the same time assuring that any potentially adverse health and environmental impacts of the Nation`s energy policies are fully identified and understood. The BER Program includes research in atmospheric, marine, and terrestrial processes, including the linkage between the use in greenhouse gases, carbon dioxide, and regional and global climate change; in molecular and subcellular mechanisms underlying human somatic and genetic processes and their responses to energy-related environmental toxicants; in nuclear medicine, structural biology, the human genome, measurement sciences and instrumentation, and other areas that require the unique capabilities of the Department`s laboratory system. The principal areas of research are Health Research and Environmental Research.

Not Available

1993-08-01T23:59:59.000Z

305

TERRESTRIAL GAMMA-RAY FLASH PRODUCTION BY LIGHTNING  

E-Print Network [OSTI]

TERRESTRIAL GAMMA-RAY FLASH PRODUCTION BY LIGHTNING A DISSERTATION SUBMITTED TO THE DEPARTMENT gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated

306

Lunar and terrestrial planet formation in the Grand Tack scenario  

Science Journals Connector (OSTI)

...c for each simulated Solar System in that suite...terrestrial planets in the Solar System. The sub-panels are arranged the same...simulations. The sub-panels are arranged the same...populations for each simulated Solar System. We only have...

2014-01-01T23:59:59.000Z

307

Use of terrestrial toxicity tests for Superfund site assessments  

SciTech Connect (OSTI)

Most risk assessment efforts that evaluate risk from hazardous waste sites have focused on potential human health effects. Concern for potential ecological risk has become a prominent factor in these assessments. The potential impact on all components of ecological systems at risk (including the human component) has prompted the regulatory community to take a more comprehensive approach to risk assessments, incorporating terrestrial toxicity testing. Terrestrial toxicity testing ultimately strengthens the overall risk assessment since responses of feral animals in their natural habitats have important implications in human health. Many biological indicators of stress in animals can be extrapolated to human health as well. Reliance on terrestrial toxicity testing for hazardous waste sites provides both a priori toxicity tests of single chemicals (generally conducted in a laboratory setting), or site-specific testing of extant contamination. Using bioassays of toxicity of environmental samples or in situ testing. Appropriate toxicity tests with representative chemicals and chemical bioavailability, on appropriate species will greatly enhance the information gained and widen mitigation options. Risk managers will be better able to integrate and evaluate toxicity information for the entire system at risk, including the human component. The authors present several matrices that relate chemical action, anticipated toxic effects, and possible terrestrial effects that can be used to provide more comprehensive and ecologically realistic risk assessments at hazardous waste sites.

Williams, B.A.; Kapustka, L.A.; Fairbrother, A. [Ecological Planning and Toxicology, Inc., Corvallis, OR (United States)

1994-12-31T23:59:59.000Z

308

Estimating terrestrial uranium and thorium by antineutrino flux measurements  

E-Print Network [OSTI]

of uranium and thorium concentrations in geological reservoirs relies largely on geochemi- cal modelEstimating terrestrial uranium and thorium by antineutrino flux measurements Stephen T. Dye, and approved November 16, 2007 (received for review July 11, 2007) Uranium and thorium within the Earth produce

Mcdonough, William F.

309

Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes  

E-Print Network [OSTI]

Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes] To characterize lightning processes that produce terrestrial gamma ray flashes (TGFs), we have analyzed broadband (lightning magnetic fields for TGFs detected by the Reuven Ramaty High Energy Solar

Cummer, Steven A.

310

Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint  

SciTech Connect (OSTI)

This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

2008-05-01T23:59:59.000Z

311

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Black Carbon Reduction of Snow Albedo Black Carbon Reduction of Snow Albedo Submitter: Kirchstetter, T. W., Lawrence Berkeley National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Hadley OL and TW Kirchstetter. 2012. "Black carbon reduction of snow albedo." Nature Climate Change, , doi:10.1038/nclimate1433. Spectrally weighted snow albedo over the 300-2,500 nm solar spectrum: derived from our experiments (dots, 1 standard deviation) and modelled using SNICAR (shaded bands). Upper and lower boundaries of the shaded bands correspond to modelled albedo assuming BC mass absorption cross-sections, at 550 nm, of 7.5 and 15 m2/g, respectively. Climate models indicate that the reduction of surface albedo caused by black carbon contamination of snow contributes to global warming and

312

Carbon Isotopes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

313

Excretion of dissolved organic carbon by eelgrass  

Science Journals Connector (OSTI)

Abstract. The release of dissolved organic carbon (DOC) by eelgrass (Zosteru marina) and its epiphytic ... tive agreement between the U.S. Energy Research.

2000-01-05T23:59:59.000Z

314

Carbon and oxygen isotope stratigraphy of the oxfordian carbonate rocks in Amu Darya basin  

Science Journals Connector (OSTI)

Based on the detailed research on petrologic and geochemical characteristics of deposition and diagenesis of Oxfordian carbonate rocks in Amu Darya Basin, Turkmenistan, carbon and oxygen isotopes were analyzed...

Rongcai Zheng ???; Yanghui Pan ???; Can Zhao ??; Lei Wu ??

2013-02-01T23:59:59.000Z

315

NETL: Carbon Storage - Midwest Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MRCSP MRCSP Carbon Storage Midwest Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing MRCSP efforts can be found on their website. The Midwest Regional Carbon Sequestration Partnership (MRCSP) was established to assess the technical potential, economic viability, and public acceptability of carbon storage within a region consisting of nine contiguous states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. A group of leading universities, state geological surveys, non-governmental organizations and private companies, led by Battelle Memorial Institute, has been assembled to carry out this research. The MRCSP currently consists of nearly 40 members; each contributing technical knowledge, expertise and cost sharing.

316

Southwest Regional Partnership on Carbon Sequestration  

SciTech Connect (OSTI)

The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

Brian McPherson

2006-04-01T23:59:59.000Z

317

Burial of terrestrial organic matter in marine sediments: A re-assessment  

E-Print Network [OSTI]

Burial of terrestrial organic matter in marine sediments: A re-assessment David J. Burdige being buried in marine sediments may be of terrestrial origin, with the majority of this terrestrial organic matter (TOM) burial occurring in muddy, deltaic sediments. These calculations further suggest

Burdige, David

318

Impact of satellite based PAR on estimates of terrestrial net primary productivity  

E-Print Network [OSTI]

of the satellite- based estimates of PAR for modelling terrestrial primary productivity. 1. Introduction The global energy is referred to as net primary production (NPP). For terrestrial ecosystems GPP and NPP are givenImpact of satellite based PAR on estimates of terrestrial net primary productivity RACHEL T. PINKER

Montana, University of

319

Insignificant solar-terrestrial triggering of earthquakes Jeffrey J. Love1  

E-Print Network [OSTI]

Insignificant solar-terrestrial triggering of earthquakes Jeffrey J. Love1 and Jeremy N. Thomas2 that solar-terrestrial interaction, as measured by sunspots, solar wind velocity, and geomagnetic activity by the corresponding rank of annual, monthly, and daily averages of the solar-terrestrial variables. We measure

Thomas, Jeremy N.

320

Terrestrial Ecosystems extend from uplands to wetlands, which form the interface between terrestrial and aquatic ecosystems. This field  

E-Print Network [OSTI]

terrestrial and aquatic ecosystems. This field of study provides students with an understanding of ecological restoration, particularly as it relates to restoring and managing the kinds of ecosystems found, restoration, consulting and education pertaining to a wide range of forest ecosystems in the governmental

Edwards, Paul N.

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

GIS Data Services Specialist Forest disturbance and carbon cycling Location: Newton Square, Pennsylvania (U.S. Forest Service Northern Research Station)  

E-Print Network [OSTI]

GIS Data Services Specialist ­ Forest disturbance and carbon cycling Location: Newton Square Geographic Information System (GIS) and data management support for developing spatial databases sets and in applying analysis techniques and models within a GIS framework. A Master's or PhD degree

Lichstein, Jeremy W.

322

Southeast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Sequestration Partnership Presented to: Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests Pittsburgh, PA October 5, 2010 Presented by: Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board Acknowledgements  This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.  Cost share and research support provided by SECARB/SSEB Carbon Management Partners Through innovations in energy and environmental policies, programs and technologies, the Southern States Energy Board enhances economic development and the quality of life in the South. - SSEB Mission Statement SSEB Carbon Management Program  Established 2003  Characterizing Southeast Region

323

Geological carbon sequestration: critical legal issues  

E-Print Network [OSTI]

Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

Watson, Andrew

324

Fish are crucial in oceanic carbon cycle  

Science Journals Connector (OSTI)

... Fish may play a more important role in the marine carbon cycle than previously thought, ... marine carbon cycle than previously thought, a new study shows. Researchers have found that fish excrete prodigious amounts of a mineral, calcium carbonate, that had been thought to come ...

Roberta Kwok

2009-01-15T23:59:59.000Z

325

Carbon Nanotubes.  

E-Print Network [OSTI]

?? Carbon nanotubes have extraordinary mechanical, electrical, thermal andoptical properties. They are harder than diamond yet exible, have betterelectrical conductor than copper, but can also (more)

Fredriksson, Tore

2014-01-01T23:59:59.000Z

326

ARM - Field Campaign - Aircraft Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsAircraft Carbon govCampaignsAircraft Carbon Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aircraft Carbon 2006.07.01 - 2008.09.30 Lead Scientist : Margaret Torn For data sets, see below. Description Airborne trace-gas measurements at ARM-SGP provided valuable data for addressing carbon-cycle questions highlighted by the US Climate Change Research Program and the North American Carbon Program. A set of carbon-cycle instruments and sample collection systems were added to an ARM-managed aircraft at ARM-SGP user facility. A separate (in-place) grant covered the cost of developing the instrument systems, analyzing the data, and ingesting all data to the ARM data archives. In the short-term (~1 y) we had two priorities. The first was to acquire

327

Capturing carbon | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capturing carbon Capturing carbon New technology enables molecular-level insight into carbon sequestration Carbon sequestration is a potential solution for reducing greenhouse...

328

NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Triple-Junction Terrestrial Concentrator Solar Cell Triple-Junction Terrestrial Concentrator Solar Cell Developers: Dr. Jerry Olson, Dr. Sarah Kurtz, Dr. Daniel Friedman, Alan Kibbler, and Charlene Karmer, National Renewable Energy Laboratory; Dr. Richard King, Jim Ermer, Dmitri D. Krut, Hector Cotal, Peter Colter, Hojun Yoon, Nassar Karam, and Gregory S. Glenn, Spectrolab, Inc. The triple-junction solar cell - or TJ solar cell - generates a lot of energy from just a very little amount of material. How much energy? A 1-cm2 cell can generate as much as 35 W of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity to power the typical American household. This cell can do this, first, because it

329

Carbon Capture and Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

330

EIA - AEO2010 - Accounting for carbon dioxide emissions from biomass energy  

Gasoline and Diesel Fuel Update (EIA)

Accounting for carbon diioxide emissions from biomass energy combustion Accounting for carbon diioxide emissions from biomass energy combustion Annual Energy Outlook 2010 with Projections to 2035 Accounting for carbon dioxide emissions from biomass energy combustion CO2 emissions from the combustion of biomass [75] to produce energy are excluded from the energy-related CO2 emissions reported in AEO2010. According to current international convention [76], carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time [77]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

331

Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications CX-009154: Categorical Exclusion Determination Low Cost Carbon Fiber Research in the LM Materials Program Overview Carbon Fiber Technology...

332

NETL: Carbon Storage - Regional Partnership Validation Phase (Phase II)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation Phase (Phase II) Projects Validation Phase (Phase II) Projects The Regional Carbon Sequestration Partnerships' (RCSP) Validation Phase focuses on validating the most promising regional opportunities to deploy CCS technologies by building upon the accomplishments of the Characterization Phase. Two different CO2 storage approaches are being pursued in this phase: geologic and terrestrial carbon storage. The Validation Phase includes 20 geologic and 11 terrestrial CO2 storage projects. Efforts are being conducted to: Validate and refine current reservoir simulations for CO2 storage projects. Collect physical data to confirm CO2 storage potential and injectivity estimates. Demonstrate the effectiveness of monitoring, verification, and accounting (MVA) technologies. Develop guidelines for well completion, operations, and abandonment.

333

Satellite-Based Modeling of the Carbon Fluxes in Mature Black Spruce Forests in Alaska: A Synthesis of the Eddy Covariance Data and Satellite Remote Sensing Data  

Science Journals Connector (OSTI)

Scaling up of observed point data to estimate regional carbon fluxes is an important issue in the context of the global terrestrial carbon cycle. In this study, the authors proposed a new model to scale up the eddy covariance data to estimate ...

Masahito Ueyama; Yoshinobu Harazono; Kazuhito Ichii

2010-10-01T23:59:59.000Z

334

Model-data Fusion Approaches for Retrospective and Predictive Assessment of the Pan-Arctic Scale Permafrost Carbon Feedback to Global Climate  

E-Print Network [OSTI]

representation of the Arctic system carbon cycle in Earth System Modeling frameworks. This proposed study of permafrost carbon processes in terrestrial biogeochemistry models, to operate within coupled Earth system modeling frameworks. PROJECT SIGNIFICANCE This work will provide a critical bridge between the abundant

335

BNL | Carbon Cycle Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Carbon Cycle Science & Technology Group aims to increase understanding The Carbon Cycle Science & Technology Group aims to increase understanding of the impacts of global change on managed and unmanaged ecosystems and improve knowledge of possible global change mitigation approaches. The group has three main focus areas. FACE Climate Change Experimental Facility Design and Management The CCS&T group is an internationally recognized leader in the development of Free Air CO2 Enrichment (FACE) research facilities. We are interested in the design and management of manipulative experiments that examine the effects of carbon dioxide, ozone, other atmospheric pollutants, temperature and precipitation on natural and managed ecosystems. FACE Plant Physiology and High Throughput Biochemical Phenotyping At FACE facilities we have studied the mechanisms that underlie the

336

RMOTC - Testing - Carbon Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Management Carbon Management Ten Sleep Time Structure, 2nd Wall Creek Formation at RMOTC Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC has the field setting, infrastructure, and expertise to play an important role in carbon management testing, demonstration, and research. The unique combination of a publicly-owned and DOE-operated oil field,

337

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

338

NREL: Transportation Research - Transportation News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

low-carbon fuels and compatible engines. Researchers, as well as members of the engine, vehicle, and fuel industries, rely on these numbers to target compounds for...

339

Protecting terrestrial ecosystems and the climate through a global carbon market  

Science Journals Connector (OSTI)

...Parties meet periodically to establish a Convention work plan and to review wetland conservation efforts. Most importantly...geographic region. While a traditional command and control regulatory approach mandates particular emission reductions by...

2002-01-01T23:59:59.000Z

340

Evaluation of Continental and Site Terrestrial Carbon Cycle Simulations with North American Flux Tower Observations  

E-Print Network [OSTI]

extracts of photosynthesis (GPP), total respiration (Re) and NEE (net ecosystem exchange) at annual. The models range from -50% to +50% of the observations, and are centered near a bias of zero. The Can. 1st order, w/N 1st order 1st order, w/N zero order 1st order, w/N 1st order, w/N zero order VEGAS2

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Carbon in the atmosphere and terrestrial biosphere in the 21st century  

Science Journals Connector (OSTI)

...rather than brake global warming. Keywords: climate change...and is a fingerprint of global human activity, a consequence of the combustion of coal, oil and gas that drives...dioxide increase is driving global warming, but there are other...

2002-01-01T23:59:59.000Z

342

Early Public Impressions of Terrestrial Carbon Capture and Storage in a Coal-Intensive State  

Science Journals Connector (OSTI)

Multivariate analyses indicate that support for CCS is predicted by a belief that humankind contributes to climate change, a preference for increased use of renewable energy, and egalitarian and individualistic worldviews, while opposition to CCS is predicted by self-identified political conservatism and by selective attitudes regarding energy and climate change. ... (14, 15) Thus, knowledge of early impressions of CCS can help inform technology decisions by state regulatory bodies, community leaders, utilities, pipeline companies, investors in energy projects, and environmental organizations. ... On the other hand, trust in environmental groups leads to an ambiguous prediction since the major groups are split on CCS. ...

Sanya R. Carley; Rachel M. Krause; David C. Warren; John A. Rupp; John D. Graham

2012-06-07T23:59:59.000Z

343

Carbon in the atmosphere and terrestrial biosphere in the 21st century  

Science Journals Connector (OSTI)

...CO2 and forest biomass, coupled with...from fossil-fuel combustion and land-use...consequence of the combustion of coal, oil and...and build their biomass, and ultimately...fossil-fuel or biomass combustion (nitrogen oxides...

2002-01-01T23:59:59.000Z

344

Carbon dioxide emissions and net primary production of Russian terrestrial ecosystems  

Science Journals Connector (OSTI)

?Determination of the C balance is of considerable importance when forecasting climate and environmental changes. Soil respiration and biological productivity of ecosystems (net primary production; NPP) are th...

V. N. Kudeyarov; I. N. Kurganova

1998-07-01T23:59:59.000Z

345

Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event  

E-Print Network [OSTI]

November 2012; revised 14 October 2012; accepted 21 November 2012. [1] Rising CO2 concentration the adjacent shelf contributed to northern Gulf shelf waters changing from a net sink to a net source of CO2 in the water can be exchanged with the atmosphere with approximately ~100 Tg of CO2 degassed from U.S. streams

Grossman, Ethan L.

346

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

More Like Shades of Gray: the Effects of Black Carbon in Aerosols More Like Shades of Gray: the Effects of Black Carbon in Aerosols Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Cappa CD, TB Onasch, P Massoli, DR Worsnop, TS Bates, ES Cross, P Davidovits, J Hakala, KL Hayden, BT Jobson, KR Kolesar, DA Lack, BM Lerner, SM Li, D Mellon, I Nuaaman, JS Olfert, T Petaja, PK Quinn, C Song, R Subramanian, EJ Williams, and RA Zaveri. 2012. "Radiative absorption enhancements due to the mixing state of atmospheric black carbon." Science, 337(6098), doi:10.1126/science.1223447. Black to the core: Scientists are combining field and laboratory measurements to understand more about the physical properties of aerosols

347

Relationship between industrial firms, high-carbon and low-carbon energy: An agent-based simulation approach  

Science Journals Connector (OSTI)

The aim of the present research is to describe an agent-based computational model that simulates the relationship between industrial firms and high-carbon and low-carbon energy. A set of behavioral rules for each agent involved was formalized in the ... Keywords: Agent-based simulation, High-carbon energy, Industrial firms, Low-carbon energy

Yong Liu

2013-03-01T23:59:59.000Z

348

Removal of amorphous carbon for the efficient sidewall functionalisation of single-walled carbon nanotubes{  

E-Print Network [OSTI]

DOI: 10.1039/b712614j The sidewall functionalisation of carbon nanotubes using the standard nitric. The functionalisation of carbon nanotubes (CNTs) is an increasing area of research since it leads to a higher solubility of a sample of as-made single-walled carbon nanotubes (SWNTs) with nitric acid produces a uniform

Davis, Ben G.

349

NETL-Developed Carbon Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2, Issue 26 2, Issue 26 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award page 2 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society page 4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs page 5 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award _____________________________2 Field-proven Meter Rapidly Determines Carbon Dioxide Levels in Groundwater ____________________________3 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society _______4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs ______________________________5 NETL Issued Patent for Novel Catalyst Technology ______6

350

NETL: News Release - Ohio State Develops Game-Changing CO Carbon Storage Partner Completes First Year of CO Research Projects Addressing Technical Challenges to Environmentally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Injection Operations in Illinois 2 Capture Membranes in DOE-Funded Injection Operations in Illinois 2 Capture Membranes in DOE-Funded Project Publications News Release Release Date: November 28, 2012 Research Projects Addressing Technical Challenges to Environmentally Acceptable Shale Gas Development Selected by DOE Washington, D.C. - Fifteen research projects aimed at addressing the technical challenges of producing natural gas from shales and tight sands, while simultaneously reducing environmental footprints and risks, have been selected to receive a total of $28 million in funding from the U.S. Department of Energy's Office of Fossil Energy (FE). The projects, valued at just over $36.6 million over two years, add to the research portfolio for FE's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, which develops technologies and strategies to improve the safety and minimize the environmental impacts of oil and natural gas exploration and production.

351

Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 2. Ecological sciences  

SciTech Connect (OSTI)

Research progress is reported in the following areas: (1) the terrestrial ecology of semi-arid sites; (2) marine sciences; (3) radionuclide fate and effects; (4) waste mobilization, fate and effects; and (5) theoretical research on environmental sampling. (ACR)

Novich, C.M. (ed.)

1985-02-01T23:59:59.000Z

352

A 3,800-million-year isotopic record of life from carbon in sedimentary rocks  

Science Journals Connector (OSTI)

... acid. Equilibrium fractionations that also discriminate in favour of a specific isotope are important in alternative pathways that use bicarbonate and are supposedly essential in inter- and intramolecular isotope exchange ... Once photoautotrophic organisms had learned to operate the CO2-fixing machine by means of light energy, we can assume that life processes attained partial control of the terrestrial carbon cycle. ...

Manfred Schidlowski

1988-05-26T23:59:59.000Z

353

Workshop on Carbon Sequestration Science - Ocean Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ocean Carbon Ocean Carbon Sequestration Howard Herzog MIT Energy Laboratory May 24, 2001 Ocean Carbon Sequestration Options * The direct injection of a relatively pure CO 2 stream that has been generated, for example, at a power plant or from an industrial process * The enhancement of the net oceanic uptake from the atmosphere, for example, through iron fertilization The DOE Center for Research on Ocean Carbon Sequestration (DOCS) * Established July 1999 * Centered at LBNL and LLNL * Participants S Eric Adams MIT S Jim Barry MBARI S Jim Bishop DOCS Scientific Co-director LBNL S Ken Caldeira DOCS Scientific Co-director LLNL S Sallie Chisholm MIT S Kenneth Coale Moss Landing Marine Laboratory S Russ Davis Scripps Institution of Oceanography S Paul Falkowski Rutgers S Howard Herzog MIT S Gerard Nihous Pacific International Center for High Technology Research

354

Why sequence carbon monoxide oxidizing thermophiles?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

carbon monoxide oxidizing thermophiles? carbon monoxide oxidizing thermophiles? Many microbes that use carbon monoxide as an energy source are found in high temperature environments such as geothermal areas. Researchers think that these carboxydotrophs may be involved in reducing potentially toxic carbon monoxide hotspots by combine with water to form hydrogen, carbon dioxide and acetate, which are in turn used for thermophilic energy conservation and carbon sequestration mechanisms. The project focuses on sequencing two closely related microbes, one of which is Carboxydothermus hydrogenformans. A strain of C. hydrogenformans has been grown in hydrogen-enriched synthesis gas (syngas), which contains a mix of hydrogen and carbon monoxide. Researchers are interested in sequencing both microbial strains to track the genome's evolution and

355

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

356

Carbon Nanotubes  

Science Journals Connector (OSTI)

A broad review of the structure and properties of carbon nanotubes is presented. Particular emphasis is given to ... dimensional density of states predicted for single-wall nanotubes of small diameter. The eviden...

M. S. Dresselhaus; G. Dresselhaus

2000-01-01T23:59:59.000Z

357

Carbon Fiber  

ScienceCinema (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-07-23T23:59:59.000Z

358

Carbon Fiber  

SciTech Connect (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-04-17T23:59:59.000Z

359

Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel: Cooperative Research and Development Final Report, CRADA Number: CRD-10-408  

SciTech Connect (OSTI)

OPX Biotechnologies, Inc. (OPX), the National Renewable Energy Laboratory (NREL), and Johnson Matthey will develop and optimize a novel, engineered microorganism that directly produces biodiesel from renewable hydrogen (H2) and carbon dioxide (CO2). The proposed process will fix CO2 utilizing H2 to generate an infrastructure-compatible, energy-dense fuel at costs of less than $2.50 per gallon, with water being produced as the primary byproduct. NREL will perform metabolic engineering on the bacterium Cupriavidus necator (formerly Ralstonia eutropha) and a techno-economic analysis to guide future scale-up work. H2 and CO2 uptakes rates will be genetically increased, production of free fatty acids will be enhanced and their degradation pathway blocked in order to meet the ultimate program goals.

Maness, P. C.

2014-06-01T23:59:59.000Z

360

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Burning on the Prairies Burning on the Prairies Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Fischer ML, MS Torn, DP Billesbach, G Doyle, B Northup, and SC Biraud. 2012. "Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prairie." Agricultural and Forest Meteorology, 166, doi:10.1016/j.agrformet.2012.07.011. Pasture burning during the beginning of the experiment at the USDA Grazing Lands Research Laboratory in March 2005. What does it mean for the carbon cycle? The deep drought in the United States that fueled wildfires and damaged crops in 2012 has now continued well into 2013. However, long before the droughts and fires wreaked havoc, a team of

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Supporting Information Systematic assessment of terrestrial biogeochemistry in  

E-Print Network [OSTI]

Biomass Inventories Fluxnet Figure S1. Conceptual diagram of observations available for testing carbon and land carbon fluxes when this information is combined with fossil fuel inventory time series. Isotope and continental-scale fluxes on timescales of years to decades. Biomass inventories are sparse but crucial

Hoffman, Forrest M.

362

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Open Energy Info (EERE)

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more common fluid for extracting volatile oil and fragrance compounds from various raw materials that are used in perfumery. Furthermore, its use as a heat transmission fluid is very attractive because of the greater uptake capability of heat from hot reservoir rock, compared with that of water. However, one concern was the reactivity of CO2 with clay and rock minerals in aqueous and non-aqueous environments. So if this reaction leads to the formation of water-soluble carbonates, such formation could be detrimental to the integrity of wellbore infrastructure.

363

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

364

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

365

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

366

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

367

Carbon Isotopic Studies of Assimilated and Ecosystem Respired CO2 in a Southeastern Pine Forest  

SciTech Connect (OSTI)

Carbon dioxide is the major greenhouse gas responsible for global warming. Southeastern pine forests appear to be among the largest terrestrial sinks of carbon dioxide in the US. This collaborative study specifically addressed the isotopic signatures of the large fluxes of carbon taken up by photosynthesis and given off by respiration in this ecosystem. By measuring these isotopic signatures at the ecosystem level, we have provided data that will help to more accurately quantify the magnitude of carbon fluxes on the regional scale and how these fluxes vary in response to climatic parameters such as rainfall and air temperature. The focus of the MBL subcontract was to evaluate how processes operating at the physiological and ecosystem scales affects the resultant isotopic signature of plant waxes that are emitted as aerosols into the convective boundary layer. These wax aerosols provide a large-spatial scale integrative signal of isotopic discrimination of atmospheric carbon dioxide by terrestrial photosynthesis (Conte and Weber 2002). The ecosystem studies have greatly expanded of knowledge of wax biosynthetic controls on their isootpic signature The wax aerosol data products produced under this grant are directly applicable as input for global carbon modeling studies that use variations in the concentration and carbon isotopic composition of atmospheric carbon dioxide to quantify the magnitude and spatial and temporal patterns of carbon uptake on the global scale.

Maureen H. Conte

2008-04-10T23:59:59.000Z

368

E-Print Network 3.0 - automated robotic terrestrial Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ornithopter Summary: are often unable to navigate, giving an advantage to a terrestrial robot. Flying also requires a large... amount of energy, and no robot can stay aloft...

369

Coupling Terrestrial and Atmospheric Water Dynamics to Improve Prediction in a Changing Environment  

E-Print Network [OSTI]

Fluxes across the land surface directly influence predictions of ecological processes, atmospheric dynamics, and terrestrial hydrology. However, many simplifications are made in numerical models when considering ...

Lyon, Steve W.; Dominguez, Francina; Gochis, David J.; Brunsell, Nathaniel A.; Castro, Christopher; Chow, Fotini K.; Fan, Ying; Fuka, Daniel; Hong, Yang; Kucera, Paul A.; Nesbitt, Stephen W.; Salzmann, Nadine; Schmidli, Juerg; Snyder, Peter K.; Teuling, Adriaam J.; Twine, Tracy E.; Levis, Samuel; Lundquist, Jessica D.; Salvucci, Guido D.; Sealy, Andrea M.; Walter, M. Todd

2008-09-01T23:59:59.000Z

370

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

371

Analyzing manufacturing methods of carbon nanotubes for commercialization  

E-Print Network [OSTI]

This research explores the history and structure of carbon nanotubes and the current technologies and methods available for synthesizing, purifying, and assembling carbon nanotubes. Furthermore, the current state of ...

Dee, H. Devin (Herbert Devin)

2013-01-01T23:59:59.000Z

372

Study of Porous Adsorbents for Carbon Capture via Molecular Simulation  

E-Print Network [OSTI]

Research Institute; Palo Alto, CA; 2009. [11] DOE/NETL;DOE/NETL Carbon Dioxide Capture and Storage RDD Roadmap;131, 1819818199. [77] NETL; Carbon Dioxide Capture from

Swisher, Joseph Andrew

2012-01-01T23:59:59.000Z

373

Carbon dioxide and climate  

SciTech Connect (OSTI)

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

Not Available

1990-10-01T23:59:59.000Z

374

CCPI "Annual" Report Executive Summary--January 2010-June 2011 Center for Carbon-free Power (CCPI) undertakes scientific research, educates the next  

E-Print Network [OSTI]

-benefits of offshore wind power, including reduction in health impacts of energy generation and the life. The primary areas of inquiry are offshore wind power and vehicle-to-grid/grid-integrated vehicle (V2G research in renewable energy including Mechanical Engineering of wind turbines; Meteorology; Public Policy

Firestone, Jeremy

375

NETL: First National Conference on Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First National Conference on Carbon Sequestration First National Conference on Carbon Sequestration Table of Contents Disclaimer Papers and Presentations Plenary Session Industry Focus Panel Discussion Session 1A. Geologic Sequestration I - Overview Session 1B. Capture & Separation I - Industrial Efforts Session 1C. Modeling I - Case Studies & Deployment Session 2A. Geologic Sequestration II - EOR/EGR Session 2B. Capture & Separation II - Improved Processes Session 2C. Modeling II - Economics Poster Presentations International Panel Discussion Session 3A. Geologic Sequestration III - Enhanced Coalbed Methane Session 3B. Capture & Separation III - Adsorption Studies Session 3C. Terrestrial Sequestration I - Ecosystem Behavior Session 4A. Geologic Sequestration IV - Saline Aquifers Session 4B. Capture & Separation IV - Power Systems Concepts

376

Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos  

E-Print Network [OSTI]

Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate geoneutrino flux. In this model the neutrino generation is dominated by decays in the Earth's mantle and crust; this leads to a very ``peripheral'' angular distribution, in which 2/3 of the neutrinos come from angles > 60 degrees away from the downward vertical. We note the possibility of that the Earth's core contains potassium; different geophysical predictions lead to strongly varying, and hence distinguishable, central intensities (< 30 degrees from the downward vertical). Other uncertainties in the models, and prospects for observation of the geoneutrino angular distribution, are briefly discussed. We conclude by urging the development and construction of antineutrino experiments with angular sensitivity. (Abstract abridged.)

Brian D. Fields; Kathrin A. Hochmuth

2004-05-31T23:59:59.000Z

377

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

378

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

05/2007 05/2007 NitrogeN evolutioN aNd CorrosioN MeChaNisMs With oxyCoMbustioN of Coal Description Under a grant from the University Coal Research (UCR) program, Brigham Young University (BYU) is leading a three-year research effort to investigate the physical processes that several common types of coal undergo during oxy-fuel combustion. Specifically, research addresses the mixture of gases emitted from burning, particularly such pollutants as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ), and the potential for corrosion at the various stages of combustion. The UCR program is administered by the Advanced Research Program at the National Energy Technology Laboratory (NETL), under the U.S. Department of Energy's Office of

379

Low Carbon Fuel Standards  

E-Print Network [OSTI]

gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

380

Oxidation resistant carbon-carbon composites: the effect of temperature dependent matrix material properties on laminate response  

E-Print Network [OSTI]

on the thermomechanical response of oxidation resistan two dimensional, externally coated, 8 harness satin weave carbon-carbon laminatcs. This research focuses on developing a through-the-thickness or out-of-plane finite element representation of an oxidation resistant... on the thermomechanical response of oxidation resistan two dimensional, externally coated, 8 harness satin weave carbon-carbon laminatcs. This research focuses on developing a through-the-thickness or out-of-plane finite element representation of an oxidation resistant...

Romine, Paul Richard

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Montana Integrated Carbon to Liquids (ICTL) Demonstration Program  

SciTech Connect (OSTI)

Integrated carbon?to?liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO{sub 2} Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO{sub 2}, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526 targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub?bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal?Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat?camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger?scale process demonstration studies of the CHI process in combination with CCU to generate synthetic jet and diesel fuels from algae and algae fertilized crops. Site assessment and project prefeasibility studies are planned with a major EPC firm to determine the overall viability of ICTL technology commercialization with Crow coal resources in south central Montana.

Fiato, Rocco; Sharma, Ramesh; Allen, Mark; Peyton, Brent; Macur, Richard; Cameron, Jemima

2013-09-30T23:59:59.000Z

382

Compton scattering effects on the duration of terrestrial gamma-ray flashes  

E-Print Network [OSTI]

; published 18 January 2012. [1] Terrestrial gamma-ray flashes (TGFs) are gamma-ray bursts detected from space) recently discovered by the gamma-ray burst monitor (GBM) aboard the Fermi Gamma-Ray Space Telescope. Introduction [2] Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from

Pasko, Victor

383

Data Assimilation for Estimating the Terrestrial Water Budget Using a Constrained Ensemble Kalman Filter  

E-Print Network [OSTI]

in the Southern Great Plains region of the United States, using the terrestrial water balance as the constraintData Assimilation for Estimating the Terrestrial Water Budget Using a Constrained Ensemble Kalman. The water balance was applied at the domain scale, and estimates of the water balance components

Pan, Ming

384

Alien Terrestrial Invertebrates of Europe Alain Roques, Wolfgang Rabitsch, Jean-Yves Rasplus,  

E-Print Network [OSTI]

Chapter 5 Alien Terrestrial Invertebrates of Europe Alain Roques, Wolfgang Rabitsch, Jean of animals and plants, no checklist of alien terrestrial inverte- brates was available in any of the European the existing lists were inherently difficult because they used different definitions of alien. Thus, estimat

Richner, Heinz

385

Lightning mapping observation of a terrestrial gammaray flash Gaopeng Lu,1  

E-Print Network [OSTI]

Click Here for Full Article Lightning mapping observation of a terrestrial gammaray flash Gaopeng Alabama Lightning Mapping Array (LMA) related to a terrestrial gammaray flash (TGF) detected by RHESSI of a compact intracloud (IC) lightning flash between a negative charge region centered at about 8.5 km above

Cummer, Steven A.

386

Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders  

E-Print Network [OSTI]

Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders Wei Xu,1 Sebastien. Pasko (2012), Source altitudes of terres- trial gamma-ray flashes produced by lightning leaders, Geophys; published 18 April 2012. [1] Terrestrial gamma-ray flashes (TGFs) are energetic photon bursts observed from

Pasko, Victor

387

Geolocation of terrestrial gamma-ray flash source lightning M. B. Cohen,1  

E-Print Network [OSTI]

Geolocation of terrestrial gamma-ray flash source lightning M. B. Cohen,1 U. S. Inan,1,2 R. K. Said-ray flash source lightning, Geophys. Res. Lett., 37, L02801, doi:10.1029/ 2009GL041753. 1. Introduction [2; published 22 January 2010. [1] Terrestrial gamma-ray flashes (TGFs) are impulsive ($1 ms) but intense

Bergen, Universitetet i

388

Simultaneous observations of optical lightning and terrestrial gamma ray flash from space  

E-Print Network [OSTI]

1 Simultaneous observations of optical lightning and terrestrial gamma ray flash from space N detection from space of a terrestrial3 gamma-ray flash (TGF) and the optical signal from lightning, TGF and optical emissions in an IC lightning flash has been identified.11 #12;3 1. Introduction12

?stgaard, Nikolai

389

Initial breakdown pulses in intracloud lightning flashes and their relation to terrestrial gamma ray flashes  

E-Print Network [OSTI]

Initial breakdown pulses in intracloud lightning flashes and their relation to terrestrial gamma breakdown stage of 10 intracloud lightning flashes that may have produced terrestrial gamma ray flashes, and S. Xiong (2013), Initial breakdown pulses in intracloud lightning flashes and their relation

Cummer, Steven A.

390

A COMPARISON BETWEEN APRIL 1999 AND FEBRUARY 2000 SOLAR-TERRESTRIAL CONNECTION EVENTS: INTERPLANETARY ASPECTS  

E-Print Network [OSTI]

A COMPARISON BETWEEN APRIL 1999 AND FEBRUARY 2000 SOLAR-TERRESTRIAL CONNECTION EVENTS, with peak value of -16 nT. In this paper the interplanetary aspects of these two solar-terrestrial connection events are analyzed and compared. Plasma and magnetic field data obtained from sensors on board

391

An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling  

E-Print Network [OSTI]

An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling Mark Williamson Working Paper 83 #12;An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling Mark for long time period simulations and large ensemble studies in Earth system models of intermediate

Williamson, Mark

392

SECTION 48 Table of Contents 48 Lake Rufus Woods Subbasin Assessment Terrestrial ............................2  

E-Print Network [OSTI]

48-1 SECTION 48 ­ Table of Contents 48 Lake Rufus Woods Subbasin Assessment ­ Terrestrial 48.2 Wildlife of the Lake Rufus Woods Subbasin.......................................................................................17 #12;48-2 48 Lake Rufus Woods Subbasin Assessment ­ Terrestrial 48.1 Focal Habitats: Current

393

Net carbon uptake has increased through warming-induced changes in temperate forest phenology  

SciTech Connect (OSTI)

The timing of phenological events exerts a strong control over ecosystem function and leads to multiple feedbacks to the climate system1. Phenology is inherently sensitive to temperature (though the exact sensitivity is disputed2) and recent warming is reported to have led to earlier spring, later autumn3,4 and increased vegetation activity5,6. Such greening could be expected to enhance ecosystem carbon uptake7,8, though reports also suggest decreased uptake for boreal forests4,9. Here we assess changes in phenology of temperate forests over the eastern US during the past two decades, and quantify the resulting changes in forest carbon storage. We combine long-term ground observations of phenology, satellite indices, and ecosystem-scale carbon dioxide flux measurements, along with 18 terrestrial biosphere models. We observe a strong trend of earlier spring and later autumn. In contrast to previous suggestions4,9 we show that carbon uptake through photosynthesis increased considerably more than carbon release through respiration for both an earlier spring and later autumn. The terrestrial biosphere models tested misrepresent the temperature sensitivity of phenology, and thus the effect on carbon uptake. Our analysis of the temperature-phenology-carbon coupling suggests a current and possible future enhancement of forest carbon uptake due to changes in phenology. This constitutes a negative feedback to climate change, and is serving to slow the rate of warming.

Keenan, Trevor [Harvard University] [Harvard University; Gray, Josh [Boston University] [Boston University; Friedl, Mark [Boston University] [Boston University; Toomey, Michael [Harvard University] [Harvard University; Bohrer, Gil [Ohio State University] [Ohio State University; Hollinger, David [USDA Forest Service, Northern Research Station] [USDA Forest Service, Northern Research Station; Munger, J. William [Harvard University] [Harvard University; OKeefe, John [Harvard Forest (Harvard University), Massachusetts] [Harvard Forest (Harvard University), Massachusetts; Hans, Schmid [Karlsruhe Institute of Technology, Karlsruhe, Germany] [Karlsruhe Institute of Technology, Karlsruhe, Germany; Wing, Ian [Boston University] [Boston University; Yang, Bai [ORNL] [ORNL; Richardson, Andrew D. [Harvard University] [Harvard University

2014-01-01T23:59:59.000Z

394

NETL: Carbon Storage - West Coast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WESTCARB WESTCARB Carbon Storage West Coast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing WESTCARB efforts can be found on their website. The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is led by the California Energy Commission and represents a coalition of more than 90 organizations from state and provincial resource management and environmental protection agencies; national laboratories and research institutions; colleges and universities; conservation non-profits; oil and gas companies; power companies; pipeline companies; trade associations; vendors and service firms; and consultants. The partners are engaged in several aspects of WESTCARB projects and contribute to the efforts to deploy carbon storage projects on the west coast of North America. WESTCARB

395

Assessing the influence of the solar orbit on terrestrial biodiversity  

E-Print Network [OSTI]

The terrestrial fossil record shows a significant variation in the extinction and origination rates of species during the past half billion years. Numerous studies have claimed an association between this variation and the motion of the Sun around the Galaxy, invoking the modulation of cosmic rays, gamma rays and comet impact frequency as a cause of this biodiversity variation. However, some of these studies exhibit methodological problems, or were based on coarse assumptions (such as a strict periodicity of the solar orbit). Here we investigate this link in more detail, using a model of the Galaxy to reconstruct the solar orbit and thus a predictive model of the temporal variation of the extinction rate due to astronomical mechanisms. We compare these predictions as well as those of various reference models with paleontological data. Our approach involves Bayesian model comparison, which takes into account the uncertainties in the paleontological data as well as the distribution of solar orbits consistent wi...

Feng, F

2013-01-01T23:59:59.000Z

396

Fermi GBM Observations of Terrestrial Gamma-ray Flashes  

SciTech Connect (OSTI)

Terrestrial Gamma-ray Flashes are short pulses of energetic radiation associated with thunderstorms and lightning. While the Gamma-ray Burst Monitor (GBM) on Fermi was designed to observe gamma-ray bursts, its large BGO detectors are excellent for observing TGFs. Using GBM, TGF pulses are seen to either be symmetrical or have faster rise time than fall times. Some TGFs are resolved into double, partially overlapping pulses. Using ground-based radio observations of lightning from the World Wide Lightning Location Network (WWLLN), TGFs and their associated lightning are found to be simultaneous to {approx_equal}40 {mu} s. The lightning locations are typically within 300 km of the sub-spacecraft point.

Briggs, Michael S. [CSPAR, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States)

2011-09-21T23:59:59.000Z

397

System, method, and apparatus for remote measurement of terrestrial biomass  

DOE Patents [OSTI]

A system, method, and/or apparatus for remote measurement of terrestrial biomass contained in vegetative elements, such as large tree boles or trunks present in an area of interest, are provided. The method includes providing an airborne VHF radar system in combination with a LiDAR system, overflying the area of interest while directing energy toward the area of interest, using the VHF radar system to collect backscatter data from the trees as a function of incidence angle and frequency, and determining a magnitude of the biomass from the backscatter data and data from the laser radar system for each radar resolution cell. A biomass map is generated showing the magnitude of the biomass of the vegetative elements as a function of location on the map by using each resolution cell as a unique location thereon. In certain preferred embodiments, a single frequency is used with a linear array antenna.

Johnson, Patrick W (Jefferson, MD)

2011-04-12T23:59:59.000Z

398

FE Carbon Capture and Storage News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carbon Capture and Storage News Carbon Capture and Storage News FE Carbon Capture and Storage News RSS June 9, 2010 Award-Winning DOE Technology Scores Success in Carbon Storage Project The ability to detect and track the movement of carbon dioxide in underground geologic storage reservoirs -- an important component of carbon capture and storage technology -- has been successfully demonstrated at a U.S. Department of Energy New Mexico test site. April 20, 2010 Research Experience in Carbon Sequestration 2010 Now Accepting Applications Students and early career professionals can gain hands-on experience in areas related to carbon capture and storage by participating in the Research Experience in Carbon Sequestration program. March 15, 2010 Illinois CO2 Injection Project Moves Another Step Forward

399

Comparative Analysis of Acidobacterial Genomic Fragments from Terrestrial and Aquatic Metagenomic Libraries, with Emphasis on Acidobacteria Subdivision 6  

Science Journals Connector (OSTI)

...Terrestrial and Aquatic Metagenomic Libraries...drivers of key ecosystem processes in terrestrial...5o45E), where an ecosystem restoration experiment was...Biodiversity and Ecosystem Development (6...recovered from aquatic environments...

Anna M. Kielak; Johannes A. van Veen; George A. Kowalchuk

2010-08-20T23:59:59.000Z

400

Water Balance in Terrestrial PlantsWater Balance in Terrestrial Plants Water Regulation on LandWater Regulation on Land --PlantsPlants WWipip= W= Wrr + W+ Waa --WWtt --WWss  

E-Print Network [OSTI]

1 Water Balance in Terrestrial PlantsWater Balance in Terrestrial Plants Water Regulation on LandWater waters internal water WWrr =Roots=Roots WWaa = Air= Air WWtt = Transpiration= Transpiration WWss = Secretions= Secretions Water Regulation on Land - Plants Water Balance in Terrestrial PlantsWater Balance

Cochran-Stafira, D. Liane

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

402

Gas dynamic effects on formation of carbon dimers in laser-produced plasmas  

E-Print Network [OSTI]

production, carbon laser-produced plasma (LPP) research was a main focus over the last several years.1

Harilal, S. S.

403

Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)  

Reports and Publications (EIA)

Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

2010-01-01T23:59:59.000Z

404

Low Cost Carbon Fibre for Automotive Applications Part 1: Low Cost Carbon Fibre Development  

SciTech Connect (OSTI)

In pursuit of the goal to produce ultra-lightweight fuel efficient vehicles, there has been great excitement during the last few years about the potential for using carbon fibre reinforced composites in high volume applications. Currently, the greatest hurdle that inhibits wider implementation of carbon fibre composites in transportation is the high cost of carbon fibre when compared to other candidate materials. However, significant research is being conducted to develop lower cost, high volume technologies for producing carbon fibre. This chapter will highlight ongoing research in this area.

Warren, Charles David [ORNL; Das, Sujit [ORNL; Wheatley, Dr. Alan [University of Sunderland

2014-01-01T23:59:59.000Z

405

Improving Carbon Sequestration | U.S. DOE Office of Science ...  

Office of Science (SC) Website

Improving Carbon Sequestration Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD)...

406

Department of Energy Announces $67 Million Investment for Carbon...  

Energy Savers [EERE]

without CCS technology. The goal of this research is to reduce the energy "penalty" with carbon capture and sequestration technologies, thereby reducing costs and helping to move...

407

Portfolio analysis of carbon sequestration technologies and barriers to adoption.  

E-Print Network [OSTI]

??The effective targeting of investment funds and research efforts to reduce industrial carbon dioxide (CO2) emissions, while preserving access to fossil fuel energy resources, requires (more)

Young-Lorenz, Jillian D

2013-01-01T23:59:59.000Z

408

Carbon Sequestration on Utah Rangelands: A Landowner Perspective.  

E-Print Network [OSTI]

?? Rangelands have significant potential to sequester carbon and contribute to the mitigation of climate change. This research aimed at better understanding the beliefs, attitudes, (more)

Cook, Seth

2012-01-01T23:59:59.000Z

409

Thermal Management Using Graphene and Carbon-Nanotubes.  

E-Print Network [OSTI]

??This dissertation investigates the application of graphene and carbon nanotubes (CNTs) for thermal management of high-power batteries and interconnects. The research is focused on three (more)

Goli, Pradyumna

2014-01-01T23:59:59.000Z

410

SURVEY OF THE LITERATURE ON THE CARBON-HYDROGEN SYSTEM  

E-Print Network [OSTI]

of Carbon and Hydrogen," AERE-C/M-248 (1955). C.W. Zielke,Hydrogen and Graphite," AERE-C/R- R. Lowrie, "Research on

Krakowski, R.A.

2010-01-01T23:59:59.000Z

411

Multi-Walled Carbon Nanotubes-Modified Polymer Organic Photovoltaics.  

E-Print Network [OSTI]

??Since the carbon nanotubes were first discovered by Iijima in 1991, CNTs have been the focus of intense research by many groups. Nearly 7000 papers (more)

Chen, Tzu-Fan

2009-01-01T23:59:59.000Z

412

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

413

Implementing Ad Hoc to Terrestrial Network Gateways Jonathan McGee, Manish Karir, and John S. Baras  

E-Print Network [OSTI]

Implementing Ad Hoc to Terrestrial Network Gateways Jonathan McGee, Manish Karir, and John S. Baras we describe our experience of implementing a gateway between ad hoc and terrestrial routing protocols terrestrial network interface and MAODV on a wireless ad hoc network interface.Although we focus primarily

Baras, John S.

414

An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete  

SciTech Connect (OSTI)

The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

Haselbach, Liv M.; Thomle, Jonathan N.

2014-07-01T23:59:59.000Z

415

Global Emissions of Terpenoid VOCs from Terrestrial Vegetation in the Last Millennium  

SciTech Connect (OSTI)

We investigated the millennial variability of global BVOC emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene and sesquiterpene and Lund-Potsdam-Jena General Ecosystem Simulator (LPJ8 GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have signicant short term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during during 1750-1850 and 1000- 15 1200, respectively) and LPJ-GUESS emissions were 323 TgC yr-1 (15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1 (10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% 19 20 less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1 (10% and 4% higher than during1750-1850 and 1000-1200, respectively). Although both models capture similar We investigated the millennial variability of global BVOC emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene and sesquiterpene and Lund-Potsdam-Jena General Ecosystem Simulator (LPJ8GUESS), for isoprene and monoterpenes. We found the millennial trends ofglobal isoprene emissions to be mostly a*ected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have signifcant short term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during during 1750-1850 and 1000- 1200, respectively) and LPJ-GUESS emissions were 323 TgC yr-1 (15% and 16 17 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1 (10% and 6% higher than during 1750-1850 and 18 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1 (10% and 4% higher than during1750-1850 and 1000-1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.

Acosta Navarro, J. C.; Smolander, S.; Struthers, H.; Zorita, E.; Ekman, A. M.; Kaplan, J. O.; Guenther, Alex B.; Arneth, A.; Riipinen, I.

2014-06-16T23:59:59.000Z

416

Electrical Transport in Carbon Nanotubes and Graphene  

E-Print Network [OSTI]

nanotubes and graphene are the most popular Carbon material in the condensed matter research. Based on energy2D energy dispersion as Fig. II-2. For a nanotubes in

Liu, Gang

2010-01-01T23:59:59.000Z

417

Assessment Of Carbon Leakage In Multiple Carbon-Sink Projects: ACase Study In Jambi Province, Indonesia  

SciTech Connect (OSTI)

Rehabilitation of degraded forest land throughimplementation of carbon sink projects can increase terrestrial carbonstock. However, carbon emissions outside the project boundary, which iscommonly referred to as leakage, may reduce or negate the sequestrationbenefits. This study assessed leakage from carbon sink projects thatcould potentially be implemented in the study area comprised of elevensub-districts in the Batanghari District, Jambi Province, Sumatra,Indonesia. The study estimates the probability of a given land use/coverbeing converted into other uses/cover, by applying a logit model. Thepredictor variables were: proximity to the center of the land use area,distance to transportation channel (road or river), area of agriculturalland, unemployment (number of job seekers), job opportunities, populationdensity and income. Leakage was estimated by analyzing with and withoutcarbon sink projects scenarios. Most of the predictors were estimated asbeing significant in their contribution to land use cover change. Theresults of the analysis show that leakage in the study area can be largeenough to more than offset the project's carbon sequestration benefitsduring the period 2002-2012. However, leakage results are very sensitiveto changes of carbon density of the land uses in the study area. Byreducing C-density of lowland and hill forest by about 10 percent for thebaseline scenario, the leakage becomes positive. Further data collectionand refinement is therefore required. Nevertheless, this study hasdemonstrated that regional analysis is a useful approach to assessleakage.

Boer, Rizaldi; Wasrin, Upik R.; Hendri, Perdinan; Dasanto,Bambang D.; Makundi, Willy; Hero, Julius; Ridwan, M.; Masripatin, Nur

2007-06-01T23:59:59.000Z

418

Carbon Trading, Carbon Taxes and Social Discounting  

E-Print Network [OSTI]

Carbon Trading, Carbon Taxes and Social Discounting Elisa Belfiori belf0018@umn.edu University of Minnesota Abstract This paper considers the optimal design of policies to carbon emissions in an economy, such as price or quantity controls on the net emissions of carbon, are insufficient to achieve the social

Weiblen, George D

419

Terahertz detection and carbon nanotubes  

SciTech Connect (OSTI)

Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

Leonard, Francois

2014-06-11T23:59:59.000Z

420

Terahertz detection and carbon nanotubes  

ScienceCinema (OSTI)

Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

Leonard, Francois

2014-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Earth Sciences Division Research Summaries 2006-2007  

SciTech Connect (OSTI)

Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope that you will find this material useful and exciting. A list of publications for the period from J

DePaolo, Donald; DePaolo, Donald

2008-07-21T23:59:59.000Z

422

Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide-Based Carbon Dioxide-Based Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on AddThis.com...

423

Ecological Research Division Theoretical Ecology Program. [Contains abstracts  

SciTech Connect (OSTI)

This report presents the goals of the Theoretical Ecology Program and abstracts of research in progress. Abstracts cover both theoretical research that began as part of the terrestrial ecology core program and new projects funded by the theoretical program begun in 1988. Projects have been clustered into four major categories: Ecosystem dynamics; landscape/scaling dynamics; population dynamics; and experiment/sample design.

Not Available

1990-10-01T23:59:59.000Z

424

Global Impacts (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Gadgil, Ashok [EETD and UC Berkeley

2011-06-08T23:59:59.000Z

425

Differential utilization of allochthonous and autochthonous carbon by aquatic insects of two shrub-steppe desert spring-streams: A stable carbon isotope analysis and critique of the method  

SciTech Connect (OSTI)

The purpose of this study is to assess whether the carbon supporting stream food webs comes principally from terrestrial sources or is produced within the stream. Lacking data to resolve the allochthonous/autochthonous issue with any finality, stream ecologists have alternately postulated that stream carbon was principally autochthonous or principally allochthonous. Others argued that autochthonous and allochthonous carbon resources cannot be separated and that the allochthonous/autochthonous dependence issue is unresolvable. Many investigators have seized upon stable carbon isotopes technology as the tool to resolve the controversy. Unfortunately most investigators have conceded that the results are rarely quantitative and that the qualitative relationships are ambiguous. This study points out the fallacies of trying to conjure single isotopic values for either allochthonous or autochthonous carbon. It suggests that stable carbon isotope technology is not reliable in establishing specific consumer/food source relations and that it is not suitable for assessing allochthonous/autochthonous carbon dependence in freshwater streams.

Mize, A.L. [Old Dominion Univ., Norfolk, VA (United States)

1993-06-01T23:59:59.000Z

426

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

E-Print Network [OSTI]

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis ¨Ozge I¸slegen Graduate School excellent research assistance. #12;Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis Abstract: For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer

Silver, Whendee

427

22 carbon capture journal -March -April 2008 Transport and Storage  

E-Print Network [OSTI]

22 carbon capture journal - March - April 2008 Transport and Storage Transport and storage research. In the proposed plant, 85 per cent of the carbon dioxide from the coal gasification process will be captured Ohio - $1m carbon sequestration study www.reviewonline.com $1m of US Federal government funds are be

428

Single-Walle 4. Single-Walled Carbon Nanotubes  

E-Print Network [OSTI]

applications, carbon nanotube research is ac- tively being pursued in diverse areas including energy storage105 Single-Walle 4. Single-Walled Carbon Nanotubes Sebastien Nanot, Nicholas A. Thompson, Ji Single-walled carbon nanotubes (SWCNTs) are hol- low, long cylinders with extremely large aspect ratios

Kono, Junichiro

429

Carbon Cycle 2.0: Robert Cheng and Juan Meza  

ScienceCinema (OSTI)

Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

Robert Cheng and Juan Meza

2010-09-01T23:59:59.000Z

430

Model-Inspired Research. TES research uses modeling, prediction, and synthesis to identify  

E-Print Network [OSTI]

in Earth system models (ESMs). TES supports research to advance fundamental understanding of terrestrial-process models, ecosystem models, and the Community Earth System Model). This emphasis on the capture of advanced in Earth system models to increase the quality of climate model projections and to provide the scientific

431

Low Cost Carbon Fiber.pub  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Fiber Production Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief Background The automotive industry has long been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able to achieve requisite levels of strength and stiffness with significantly less overall vehicle weight. These potential large reductions in vehicle weight, in turn, afford the

432

Southwest Regional Partnership on Carbon Sequestration  

SciTech Connect (OSTI)

The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.

Brian McPherson

2006-03-31T23:59:59.000Z

433

SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10-Megawatt Supercritical Carbon 10-Megawatt Supercritical Carbon Dioxide Turbine to someone by E-mail Share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Facebook Tweet about SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Twitter Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Google Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Delicious Rank SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Digg Find More places to share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

434

Carbon Joins the Magnetic Club  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Release 29 May 2007 Carbon Joins the Magnetic Club summary written by Brad Plummer, SLAC Communication Office The exclusive club of magnetic elements officially has a new member-carbon. Using a proton beam and advanced x-ray techniques, SLAC researchers in collaboration with colleagues from LBNL and the University of Leipzig in Germany have finally put to rest doubts about carbon's ability to be made magnetic. "In the past, some groups thought they had discovered magnetic carbon," said Hendrik Ohldag, the paper's lead author and SSRL staff scientist. "Unfortunately, they realized later that they were misled by small amounts of iron, cobalt or nickel in their samples." In Leipzig, Ohldag's team applied a beam of protons to disrupt and align a portion of the electrons in samples of pure carbon, magnetizing tiny, measurable spots within the carbon. The team then used the x-ray microscope at ALS to obtain images of the magnetized portions-a measurement only possible with a state-of-the-art microscope that uses the brilliant x-ray beams generated when electrons accelerate around the ring of a synchrotron. The x-ray beam also enabled the team to verify beyond doubt that the sample remained free of impurities during the experiments, unlike the case in previous studies.

435

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proof of Ferromagnetic Carbon Print Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

436

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proof of Ferromagnetic Carbon Print Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

437

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proof of Ferromagnetic Carbon Print Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

438

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Proof of Ferromagnetic Carbon Print First Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

439

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proof of Ferromagnetic Proof of Ferromagnetic Carbon First Proof of Ferromagnetic Carbon Print Wednesday, 25 July 2007 00:00 Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

440

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proof of Ferromagnetic Carbon Print Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Structure of Ions near Carbon Nanotubes: New Insights into Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Structure of Ions near Carbon Nanotubes: New Insights into The Structure of Ions near Carbon Nanotubes: New Insights into Carbon Surface Chemistry and Implications for Water Purification Carbon-based materials have long been used for a variety of water purification operations. Researchers have investigated carbon materials as adsorbents for decades, but only limited information on the precise details of aqueous ion interactions with carbon surfaces has been uncovered. It is empirically known that the affinity of activated carbon for various hydrated ions depends critically on how the material is processed. Processing influences the types of chemical groups and the structure of the carbon surface, which in turn influences the strength of interaction between hydrated ions and the carbon surface. It is also believed that many of the puzzling properties of impurity-free carbon, such as ferromagnetism, are governed by specific modifications of the carbon surface. However, very little is known about the local structure of the carbon surface that is responsible for its aqueous ion affinity.

442

Carbon Fiber Consortium | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Fiber Consortium SHARE Carbon Fiber Consortium Oak Ridge Carbon Fiber Composites Consortium The Oak Ridge Carbon Fiber Composites Consortium was established in 2011 to...

443

FIRST_Research Perspective_Overbury_PCET  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the system PQ adsorbed on OLC FIRST Center Research Perspective: PCET Reactions and SorptionDynamics of Quinones on Carbon Surfaces with Pseudocapacitive Energy Storage...

444

The Larger Opportunities for Research on the Relations of Solar and Terrestrial Radiation  

Science Journals Connector (OSTI)

...the so-called "solar constant of radiation...an insuperable obstacle to the highest...distribution of energy along the diameter of the solar image. These measurements...quantitative in terms of energy. Something can...reflecting the solar beam by means of...

C. G. Abbot

1920-01-01T23:59:59.000Z

445

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wildfires Lead to More Warming Than Climate Models Predict, a New Mexico Wildfires Lead to More Warming Than Climate Models Predict, a New Mexico Fire Study Reports Download a printable PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, C Mazzoleni, K Gorkowski, AC Aiken, and MK Dubey. 2013. "Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles." Nature Communications, 4, 2122, doi:10.1038/ncomms3122. La Conchas fire, New Mexico Analyzing fresh, carbon-rich aerosols in smoke from the largest wildfire in New Mexico (2011), scientists report large impacts of wildfires on climate. A research study, published last week in Nature Communications, has revealed that smoke from wildfires, or biomass-burning events, contains

446

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remote Sensing of Mineral Dust Using AERI Remote Sensing of Mineral Dust Using AERI Download a printable PDF Submitter: Hansell, R. A., University of California, Los Angeles Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Hansell R, KN Liou, SC Ou, SC Tsay, Q Ji, and JS Reid. 2008. "Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study." Journal of Geophysical Research - Atmospheres, 113, D18202, doi:10.1029/2008JD010246. BT sensitivity to dust optical depth at 962 cm-1 with markers denoting locations of AERI subbands 1-17 from left to right. (a) Volz compact hexagon model spectra for four optical depths with best fit AERI spectrum. (b) Same as (a) but for a kaolinite/50% calcium carbonate mixturedust model.

447

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Warming Due to Soot and Smoke? Maybe Not. Climate Warming Due to Soot and Smoke? Maybe Not. Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J.E., S.Y. Zhang, and C.C. Chuang, Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108(D21), 4657, doi:10.1029/2003JD003409, 2003. New research results from the Department of Energy's Atmospheric Radiation Measurement (ARM) Program suggest that fossil fuel soot emissions and biomass smoke may actually have a negligible warming effect and, in some cases, may even result in a net cooling effect. Black carbon is the absorbing component of smoke aerosols that result from the incomplete combustion of various fuels, the most significant sources being fossil fuel

448

Carbon Cycle 2.0: Ashok Gadgil: global impact  

ScienceCinema (OSTI)

Ashok Gadgil speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Ashok Gadgi

2010-09-01T23:59:59.000Z

449

Energy Demand in China (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Price, Lynn

2011-06-08T23:59:59.000Z

450

Terrestrial Water Relations & Climate ChangeTerrestrial Water Relations & Climate Change Jeffrey M Warren, Ph.D.  

E-Print Network [OSTI]

warmermore frequent and longer lasting in a future warmer climate" "...precipitation intensity is projected Report "...very likely that heat waves will be more intense, more frequent and longer lasting in a future carbon gain. Leaf water loss Hubbard et al. 2001 #12;9 belowground processesbelowground processes

Gray, Matthew

451

Studies of plume condensation contamination upon surfaces of the Terrestrial Planet Finder spacecraft  

E-Print Network [OSTI]

There are two competing concepts for the Terrestrial Planet Finder (TPF) mission, one which involves a single spacecraft, and another comprised of a five craft formation. In addition, there are several propulsion options ...

Pigeon, Timothy David

2005-01-01T23:59:59.000Z

452

Using terrestrial laser scanner for estimating leaf areas of individual trees in a conifer forest  

Science Journals Connector (OSTI)

A method that applies the terrestrial laser scanning to estimate leaf areas of individual trees in a mature conifer forest is presented. It is based on the...Picea abies [L.] Karst.) stand located in southern Bav...

Peng Huang; Hans Pretzsch

2010-08-01T23:59:59.000Z

453

A Process-based Analysis of Methane Exchanges Between Alaskan Terrestrial Ecosystems and the Atmosphere  

E-Print Network [OSTI]

We developed and used a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in Alaskan soils have changed over the past century in response to observed changes ...

Zhuang, Qianlai.

454

Atmospheric photochemistry, surface features, and potential biosignature gases of terrestrial exoplanets  

E-Print Network [OSTI]

The endeavor to characterize terrestrial exoplanets warrants the study of chemistry in their atmospheres. Here I present a comprehensive one-dimensional photochemistry-thermochemistry model developed from the ground up for ...

Hu, Renyu, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

455

THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS  

SciTech Connect (OSTI)

Extrasolar planet host stars have been found to be enriched in key planet-building elements. These enrichments have the potential to drastically alter the composition of material available for terrestrial planet formation. Here, we report on the combination of dynamical models of late-stage terrestrial planet formation within known extrasolar planetary systems with chemical equilibrium models of the composition of solid material within the disk. This allows us to determine the bulk elemental composition of simulated extrasolar terrestrial planets. A wide variety of resulting planetary compositions are found, ranging from those that are essentially 'Earth like', containing metallic Fe and Mg silicates, to those that are dominated by graphite and SiC. This shows that a diverse range of terrestrial planets may exist within extrasolar planetary systems.

Bond, Jade C.; Lauretta, Dante S. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); O'Brien, David P., E-mail: jbond@psi.ed [Planetary Science Institute, 1700 E. Fort Lowell, Tucson, AZ 85719 (United States)

2010-06-01T23:59:59.000Z

456

Carbon nanostructures-elixir or poison?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? A LANL toxicologist and a team of researchers have documented potential cellular damage from "fullerenes"-soccer-ball-shaped, cage-like molecules composed of 60 carbon atoms. March 31, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

457

Recovery Act: Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide-Water Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide Background The U.S. Department of Energy (DOE) distributed a portion of American Recovery and Reinvestment Act (ARRA) funds to advance technologies for chemical conversion of carbon dioxide (CO 2 ) captured from industrial sources. The focus of the research projects is permanent sequestration of CO 2 through mineralization or development

458

Carbon Sequestration Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

459

Cost Assessment of CO2 Sequestration by Mineral Carbonation  

E-Print Network [OSTI]

Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

2006-01-01T23:59:59.000Z

460

Method of making carbon-carbon composites  

DOE Patents [OSTI]

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network [OSTI]

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

462

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network [OSTI]

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

463

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

464

T.G. Hinton: Radioactive Contaminants in Terrestrial Ecosystems...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

largely in the Ukraine and Switzerland, this work has concentrated on the role of resuspension in the contamination of agricultural plants. Whereas other researchers have shown...

465

NETL: Carbon Storage - Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Overview Program Overview Carbon Storage Program Overview The Carbon Storage Program involves three key elements for technology development: Core Research and Development (Core R&D), Infrastructure, and Global Collaborations. The image below displays the relationship among the three elements and provides a means for navigation throughout NETL's Storage Program Website. Click on Image to Navigate Storage Website Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player NETL's Carbon Storage Program Structure CORE R&D Core R&D is driven by industry's technology needs and segregates those needs into focus areas to more efficiently obtain solutions that can then be tested and deployed in the field. The Core R&D Element contains four

466

First National Conference on Carbon Sequestration Washington, DC, May 14-17, 2001  

E-Print Network [OSTI]

First National Conference on Carbon Sequestration Washington, DC, May 14-17, 2001 Caldeira, K for Research on Ocean Carbon Sequestration (DOCS) *Climate and Carbon Cycle Modeling Group, Lawrence Livermore carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection

467

An Overview of Geologic Carbon Sequestration Potential in California  

SciTech Connect (OSTI)

As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

Cameron Downey; John Clinkenbeard

2005-10-01T23:59:59.000Z

468

A Call to Action: Carbon Cycle 2.0 (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Alivisatos, Paul

2011-06-08T23:59:59.000Z

469

Sandia National Laboratories: Earth Sciences Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Earth Sciences Research Center Joint SandiaUniversity of Texas-Austin Research Featured on the Cover of Journal of Physical Chemistry C On September 23, 2014, in Carbon Capture &...

470

Crosscutting Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Crosscutting Research Crosscutting Research Crosscutting Research Crosscutting Research The Crosscutting Research program serves as a bridge between basic and applied research by fostering the development of innovative systems for improving availability, efficiency, and environmental performance of fossil energy systems with carbon capture and storage. This crosscutting effort is implemented through the research and development of sensors, controls, and advanced materials. This program area also develops computation, simulation, and modeling tools focused on optimizing plant design and shortening developmental timelines. In addition, the Crosscutting Research program area supports science and engineering education in minority colleges and universities. Plant Optimization Technologies

471

Acetylenic carbon allotrope  

DOE Patents [OSTI]

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

Lagow, R.J.

1998-02-10T23:59:59.000Z

472

The Woodland Carbon Code  

E-Print Network [OSTI]

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

473

Mesoporous carbon materials  

DOE Patents [OSTI]

A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

2014-09-09T23:59:59.000Z

474

Distributed Energy Resources for Carbon Emissions Mitigation  

SciTech Connect (OSTI)

The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

Firestone, Ryan; Marnay, Chris

2007-05-01T23:59:59.000Z

475

Carbon Sequestration Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science July 2001 Focus Area Overview Presentation Mission and Scope Program Relationships Scientific Challenges Research Plans Facility Plans Princeton.ppt 7/16/01 Carbon Sequestration Science Focus Area New Projects Contribute to Sequestration Science Systems Integration Virtual Simulation of CO 2 Capture Technologies Cleanup Stream Gas Gasification Gasification MEA CO 2 Capture Facility Oxygen Membrane 3 km 2 inch tube 800m - 20 °C, 20 atm Liquid CO 2 , 100 tons ~1 kg CO 2 / s = 5 MW ^ CO 2 Coal Other Fuels Coal Other Fuels CO 2 Sequestration Aquifer H 2 O Flue gas H 2 O CH 4 CH 4 CO 2 Oil field Oil well Power plant CH 4 Coal - bed Aquiclude H 2 O CO 2 /N 2 CO 2 N 2 CO 2 CO 2 CO 2 CO 2 CO 2 Water Rock , 2 Coal Other Fuels Coal Other Fuels Combustor Oxygen Membrane Princeton.ppt 7/16/01 Carbon Sequestration Science Focus Area

476

Ultrafast Nonlinear Spectroscopy of Semiconducting Carbon Nanotubes  

E-Print Network [OSTI]

metallic nanotubes . . . . . . . . . . . . . . . . . Carbon2 Carbon Nanotubes Physical and ElectronicStructure of Carbon Nanotubes . . . . . . . . . .

Graham, Matthew Werden

2010-01-01T23:59:59.000Z

477

Ultrafast Nonlinear Spectroscopy of Semiconducting Carbon Nanotubes  

E-Print Network [OSTI]

2 Carbon Nanotubes Physical andElectronic Structure of Carbon Nanotubes . . . . . . . . . .Photophysics in Semiconducting Carbon Nanotubes . . . . .

Graham, Matthew Werden

2010-01-01T23:59:59.000Z

478

storage of several million tonnes of carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of several million tonnes of carbon dioxide (CO of several million tonnes of carbon dioxide (CO 2 ). The three recipients of the award are: the In Salah CO 2 Storage Project in Algeria; the Sleipner CO 2 Project in the North Sea; and the Weyburn-Midale CO 2 Project in Canada. In addition to providing scientific research opportunities, the projects are also being recognized as exemplary global models for their willingness to share their experiences in

479

Combustion of biomass as a global carbon sink  

E-Print Network [OSTI]

This note is intended to highlight the important role of black carbon produced from biomass burning in the global carbon cycle, and encourage further research in this area. Consideration of the fundamental physical chemistry of cellulose thermal decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames must inevitably transfer more carbon to the atmosphere. A simple order-of-magnitude quantitative analysis indicates that black carbon may be a significant carbon reservoir that persists over geological time scales.

Ball, Rowena

2008-01-01T23:59:59.000Z

480

NICCR - National Institute for Climate Change Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Loik Abstract Loik Abstract Climate Change Impacts on Shrub-Forest Ecotones in the Western US Principle Investigator: Michael E. Loik, University of California, Santa Cruz Co-PI: Daniel F. Doak, University of California, Santa Cruz (after Aug. 2007: University of Wyoming) Unfunded collaborator: Ronald P. Neilson, Pacific Northwest Forest Service Research Laboratory Abstract:: This research is motivated by (i) the importance of snow as a dominant form of precipitation for a large portion of arid and semi-arid regions of the western United States, (ii) uncertainty in how changes in snow climate will affect ecotones between terrestrial ecosystems of the West, and (iii) the need to better understand how climate change impacts recruitment of dominant organisms of range and forest lands of the West, in order to better predict climate change effects on distributions of terrestrial ecosystems.

Note: This page contains sample records for the topic "research terrestrial carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Role of Technologies in Carbon Management Strategies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

α α β β Corporate Research Energy and Global Change CHCRC.G BE/jn 1 5/31/01 Fo.-No. 137 First National Conference on Carbon Sequestration, Washington DC, May 15-17, 2001 The Role of Technologies in Carbon The Role of Technologies in Carbon Management Strategies Management Strategies Baldur Eliasson ABB Corporate Research Baden-Daettwil, Switzerland First National Conference on Carbon Sequestration Washington DC, May 15-17, 2001 α β β Corporate Research Energy and Global Change CHCRC.G BE/jn 2 5/31/01 Fo.-No. 137 First National Conference on Carbon Sequestration, Washington DC, May 15-17, 2001 Contents Contents s Introduction s Global Warming and the Kyoto Protocol s New Energy Technologies for a New Century s Conclusions α β β Corporate Research Energy and Global Change CHCRC.G BE/jn

482

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determining the Future of CO2 Using an Earth System Model Determining the Future of CO2 Using an Earth System Model Download a printable PDF Submitter: Keppel-Aleks, G., University of Michigan Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol Life Cycle Journal Reference: Keppel-Aleks G, JT Randerson, K Lindsay, BB Stephens, JK Moore, SC Doney, PE Thornton, NM Mahowald, FM Hoffman, C Sweeney, PP Tans, PO Wennberg, and SC Wofsy. 2013. "Atmospheric carbon dioxide variability in the Community Earth System Model: evaluation and transient dynamics during the twentieth and twenty-first centuries." Journal of Climate, 26(13), doi:10.1175/JCLI-D-12-00589.1. How models, such as the Community Earth System Model, simulate the amount of CO2 in the atmosphere will likely hold the key to monitoring climate

483

Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs  

E-Print Network [OSTI]

) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

Mammadova, Elnara

2012-10-19T23:59:59.000Z

484

Siting Is a Constraint to Realize Environmental Benefits from Carbon Capture and Storage  

Science Journals Connector (OSTI)

Carbon capture and storage (CCS) for coal power plants reduces onsite carbon dioxide emissions, but affects other air emissions on and offsite. This research assesses the net societal benefits and costs of Monoethanolamine (MEA) CCS, valuing changes in ...

Ashok Sekar; Eric Williams; Mikhail Chester

2014-09-03T23:59:59.000Z

485

2.8 Carbon Nanotubes (Fullerenes) 2.8.1 Background  

E-Print Network [OSTI]

85 2.8 Carbon Nanotubes (Fullerenes) 2.8.1 Background After long being available only in research or apparently under consideration, though the concept has been discussed. Carbon nanotubes and fullerenes

486

Carbon Fillers for Actuation of Electroactive Thermoset Shape Memory Polyurethane Composites by Resistive Heating  

E-Print Network [OSTI]

, focusing on stimuli-responsive SMPs enables researchers to develop more versatile devices with SMP composites. The electroactive SMP composites incorporated with conductive fillers such as carbon black and carbon nanotubes allow shape recovery actuation...

Yu, Ya-Jen

2014-05-01T23:59:59.000Z

487

Webinar: I2CNER: An International Collaboration to Enable a Carbon-Neutral Energy Economy  

Broader source: Energy.gov [DOE]

Slides presented at the Fuel Cell Technologies Officer webinar "International Institute for Carbon-Neutral Energy Research (I2CNER): An International Collaboration to Enable a Carbon-Neutral Energy Economy" on March 7, 2011.