Sample records for research space heating

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  3. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  4. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  5. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  6. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  7. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01T23:59:59.000Z

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  8. Solar air heating system for combined DHW and space heating

    E-Print Network [OSTI]

    Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren Østergaard Jensen

  9. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  10. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  11. Research & Development Roadmap: Emerging Water Heating Technologies...

    Energy Savers [EERE]

    Emerging Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating...

  12. Emerging Water Heating Technologies Research & Development Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

  13. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, J.C.

    1997-05-13T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  14. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, Joseph C. (Gainesville, GA)

    1997-01-01T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  15. Water Heating Technologies Research and Development Roadmap ...

    Energy Savers [EERE]

    Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

  16. Cedarville Elementary & High School Space Heating Low Temperature...

    Open Energy Info (EERE)

    Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature...

  17. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

  18. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal...

  19. Warner Springs Ranch Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner...

  20. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

  1. Klamath Apartment Buildings (13) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature...

  2. Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Calientes Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

  3. Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature...

  4. Hot Springs National Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

  5. Wiesbaden Motel & Health Resort Space Heating Low Temperature...

    Open Energy Info (EERE)

    Motel & Health Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal...

  6. Maywood Industries of Oregon Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature...

  7. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  8. Modesto Memorial Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Memorial Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility...

  9. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

  10. Senior Citizens' Center Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Senior Citizens' Center Space Heating Low Temperature Geothermal Facility...

  11. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Ranch Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility...

  12. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

  13. Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility...

  14. Merle West Medical Center Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal...

  15. Warm Springs State Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility...

  16. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage 

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar...

  17. Thulium heat sources for space power applications

    SciTech Connect (OSTI)

    Alderman, C.J.

    1992-05-01T23:59:59.000Z

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems.

  18. Space Heating and Cooling Basics | Department of Energy

    Office of Environmental Management (EM)

    Homes & Buildings Space Heating and Cooling Basics Space Heating and Cooling Basics August 16, 2013 - 1:04pm Addthis A wide variety of technologies are available for heating and...

  19. JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 111, doi:10.1002/jgra.50558, 2013 100 days of ELF/VLF generation via HF heating with HAARP

    E-Print Network [OSTI]

    days of ELF/VLF generation via HF heating with HAARP M. B. Cohen1 and M. Golkowski2 Received 20 June Frequency Active Auroral Research Program (HAARP) facility near Gakona, Alaska, at a variety of ELF injected into the waveguide and reaching 250 km. The median power generated by HAARP and injected

  20. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Institute of Technology's Geo-Heat Center1 Fairmont Hot Springs Resort is a Space Heating low temperature direct use geothermal facility in Fairmont, Montana. This article is...

  1. East Middle School and Cayuga Community College Space Heating...

    Open Energy Info (EERE)

    Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name East Middle School and Cayuga Community College Space...

  2. SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild Energy Division Oak Ridge National Laboratory it*~~ ~Oak Ridge, Tennessee ABSTRACT Because of the heat pump energy research organiza- tions. This paper presents a survey of heat pump RD&D projects with special

  3. Roosevelt Warm Springs Institute for Rehab. Space Heating Low...

    Open Energy Info (EERE)

    Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for...

  4. Passive Solar Building Design and Solar Thermal Space Heating Webinar

    Broader source: Energy.gov [DOE]

    Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

  5. Lightning Dock Geothermal Space Heating Project: Lightning Dock...

    Open Energy Info (EERE)

    Dock KGRA, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Lightning Dock Geothermal Space Heating Project: Lightning Dock KGRA, New...

  6. research in space Facilities on the International Space Station

    E-Print Network [OSTI]

    research in space Facilities on the International Space Station #12;1 #12;2 Table of Contents and Materials Research: 41 Fluid Physics, Crystal Growth, and External Test Beds Earth and Space Science (External and Internal): 51 Radiation, Thermal, Solar, and Geophysics ISS Control Centers 59 To Learn More

  7. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  8. JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 77837797, doi:10.1002/2013JA019337, 2013 Extended lateral heating of the nighttime ionosphere by ground-based

    E-Print Network [OSTI]

    experiments are performed with the 21.4 kHz, 424 kW VLF transmitter NPM in Lualualei, Hawaii, and physical effects of the NPM transmissions are studied with a subionospherically propagating VLF probe signal but rather appear to be the result of scattering from extended lateral heating of the ionosphere by the NPM

  9. Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump technology are supported by the Office of Building Energy Research and Development%) allocated to elec- tric and heat-actuated heat pump research. The remaining 15% is allocated to appliance

  10. SpaceWeather RESEARCH ARTICLE

    E-Print Network [OSTI]

    Lockwood, Mike

    ), The Solar Stormwatch CME catalogue: Results from the first space weather citizen science project, Space is properly cited. The Solar Stormwatch CME catalogue: Results from the first space weather citizen science citizen science project, the aim of which is to identify and track coronal mass ejections (CMEs) observed

  11. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01T23:59:59.000Z

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  12. Advances in the Research of Heat Pump Water Heaters 

    E-Print Network [OSTI]

    Shan, S.; Wang, D.; Wang, R.

    2006-01-01T23:59:59.000Z

    This paper presents the progress of many recently correlative research works on the heat pump water heater (HPWH) and on solar-assisted heat pump water heaters. The advances in the research on compressor development, alternative refrigerant...

  13. Advances in the Research of Heat Pump Water Heaters

    E-Print Network [OSTI]

    Shan, S.; Wang, D.; Wang, R.

    2006-01-01T23:59:59.000Z

    This paper presents the progress of many recently correlative research works on the heat pump water heater (HPWH) and on solar-assisted heat pump water heaters. The advances in the research on compressor development, alternative refrigerant...

  14. Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies

    E-Print Network [OSTI]

    Camci, Cengiz

    AU TH O R PR O O F Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies in Rotating Research Facilities CENGIZ CAMCI Turbomachinery Aero-Heat Transfer Laboratory, Department The present paper deals with the experimental aero-heat transfer studies performed in rotating turbine

  15. Space Heating and Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossaryProgramRussiaSpace Heating and Cooling Basics Space

  16. Naval Research Laboratory Stennis Space Center

    E-Print Network [OSTI]

    Naval Research Laboratory Stennis Space Center Mississippi 39529 www7320.nrlssc.navy.mil/ Ocean Ocean prediction technology The Naval Research Laboratory (NRL) is the US Navy corporate laboratory, dedicated to addressing Navy unique problems and enabling the Navy to operate efficiently and safely. Unique

  17. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01T23:59:59.000Z

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  18. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System 

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01T23:59:59.000Z

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  19. "Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by UrbanRural Location, 2005" " Million U.S. Housing Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating...

  20. "Table HC10.5 Space Heating Usage Indicators by U.S. Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Usage...

  1. Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report

    SciTech Connect (OSTI)

    Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

    1993-06-01T23:59:59.000Z

    The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

  2. An Analysis of Predicted vs. Monitored Space Heat Energy Use in 120 Homes : Residential Construction Demonstration Project Cycle II.

    SciTech Connect (OSTI)

    Douglass, John G.; Young, Marvin; Washington State Energy Office.

    1991-10-01T23:59:59.000Z

    The SUNDAY thermal simulation program was used to predict space heat energy consumption for 120 energy efficient homes. The predicted data were found to explain 43.8 percent of the variation in monitored space heat consumption. Using a paired Student's to test, no statistically significant difference could be found between mean predicted space heat and monitored space heat for the entire sample of homes. The homes were grouped into seven classes, sub-samples by total heat loss coefficient. An intermediate class (UA = 300--350 Btu/{degrees}F) was found to significantly over-predict space heat by 25 percent. The same class was over-predicted by 16 percent in the analogous Cycle 1 research, but the sample size was smaller and this was not found to be statistically significant. Several variables that were not directly included as inputs to the simulation were examined with an analysis of covariance model for their ability to improve the simulation's prediction of space heat. The variables having the greatest effect were conditioned floor area, heating system type, and foundation type. The model was able to increase the coefficient of determination from 0.438 to 0.670; a 54 percent increase. While the SUNDAY simulation program to aggregate is able to predict space heat consumption, it should be noted that there is a considerable amount of variation in both the monitored space heat consumption and the SUNDAY predictions. The ability of the program to accurately model an individual house will be constrained by both the quality of input variables and the range of occupant behavior. These constraints apply to any building model.

  3. An Analysis of Predicted vs. Monitored Space Heat Energy Use in 120 Homes :Residential Construction Demonstration Project Cycle II.

    SciTech Connect (OSTI)

    Douglass, John G.; Young, Marvin; Washington State Energy Office.

    1991-10-01T23:59:59.000Z

    The SUNDAY thermal simulation program was used to predict space heat energy consumption for 120 energy efficient homes. The predicted data were found to explain 43.8 percent of the variation in monitored space heat consumption. Using a paired Student`s to test, no statistically significant difference could be found between mean predicted space heat and monitored space heat for the entire sample of homes. The homes were grouped into seven classes, sub-samples by total heat loss coefficient. An intermediate class (UA = 300--350 Btu/{degrees}F) was found to significantly over-predict space heat by 25 percent. The same class was over-predicted by 16 percent in the analogous Cycle 1 research, but the sample size was smaller and this was not found to be statistically significant. Several variables that were not directly included as inputs to the simulation were examined with an analysis of covariance model for their ability to improve the simulation`s prediction of space heat. The variables having the greatest effect were conditioned floor area, heating system type, and foundation type. The model was able to increase the coefficient of determination from 0.438 to 0.670; a 54 percent increase. While the SUNDAY simulation program to aggregate is able to predict space heat consumption, it should be noted that there is a considerable amount of variation in both the monitored space heat consumption and the SUNDAY predictions. The ability of the program to accurately model an individual house will be constrained by both the quality of input variables and the range of occupant behavior. These constraints apply to any building model.

  4. RESEARCH AND DEVELOPMENT ROADMAP FOR WATER HEATING TECHNOLOGIES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Navigant Consulting, Inc. RESEARCH AND DEVELOPMENT ROADMAP FOR WATER HEATING TECHNOLOGIES Prepared for: Oak Ridge National Laboratory Subcontract Number 4000093134...

  5. MIT Nuclear Space Research Andrew C. Kadak

    E-Print Network [OSTI]

    SELENE MIT Nuclear Space Research Andrew C. Kadak Professor of the Practice Nuclear Science with Nuclear Energy ­ Selene - Sodium-Cooled Epithermal Long-term Exploration Nuclear Engine (MS thesis) ­ The Martian Surface Reactor: An Advanced Nuclear Power Station for Manned Extraterrestrial Exploration

  6. Research Space Use Standards Policy 2.500

    E-Print Network [OSTI]

    Acton, Scott

    Research Space Use Standards Policy 2.500 Page 1 Research Space Use Standards Date: November: Department chairs and center directors who have research laboratory space assigned to their unit. Reason for Policy: This policy was developed to help address a research space shortage in the School of Medicine

  7. List of Solar Space Heat Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergy JumpsourceSpace Heat

  8. Combined Heat and Power Research and Development

    Broader source: Energy.gov (indexed) [DOE]

    system performance e.g., effect of low-temperature combustion strategies, improved turbo-machinery, etc on process heat production and system efficiency Fuel flexibility...

  9. JournalofGeophysicalResearch: SpacePhysics RESEARCH ARTICLE

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    of the high-energy solar particles in interplanetary space. The method includes the determination , and I. G. Usoskin1,3 1 Sodankylä Geophysical Observatory (Oulu Unit), University of Oulu, Oulu, Finland, 2 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

  10. Close-spaced thermionic converters with active spacing control and heat-pipe isothermal emitters

    SciTech Connect (OSTI)

    Fitzpatrick, G.O.; Koester, J.K.; Chang, J.; Britt, E.J.; McVey, J.B. [Space Power, Inc., San Jose, CA (United States)

    1996-12-31T23:59:59.000Z

    Thermionic converters with interelectrode gaps smaller than 10 microns are capable of substantial performance improvements over conventional ignited mode diodes. Previous devices which have demonstrated operation at such small gaps have done so at low power densities and emitter temperatures. Higher power operation requires overcoming two primary design issues: thermal distortion of the emitter due to temperature gradients and degradation of the in-gap spacers at higher emitter temperatures. This work describes two innovations for solution of these issues. The issue of thermal distortion was addressed by an isothermal emitter incorporating a heat-pipe into its structure. Such a heat-pipe emitter, with a single-crystal emitting surface, was fabricated and characterized. Finite-element computational modeling was used to analyze its distortion with an applied heat flux. The calculations suggested that thermal distortion would be significantly reduced as compared with a solid emitter. Ongoing work and preliminary experimental results are described for a system of active interelectrode gap control. In the present design an integral transducer determines the interelectrode gap of the converter. Initial designs for spacing actuators and their required cesium vapor seals are discussed. A novel hot-shell converter design incorporating active spacing control and low-temperature seals is presented. A converter incorporating the above features would be capable of near ideal-converter performance at high power densities. In addition, active spacing control can potentially completely eliminate short-circuit failures in thermionic converter systems.

  11. Heat engine regenerators: Research status and needs

    SciTech Connect (OSTI)

    Hutchinson, R.A.

    1987-08-01T23:59:59.000Z

    The rapidly oscillating, variable density flows of regenerative heat engines provide a class of poorly understood unsteady flow and heat transfer problems. These problems are not currently amenable to direct experimental resolution. Experiences in engine development and test programs and efforts to develop analysis tools point to the regenerator as a key area of insufficient understanding. Focusing on flow and heat transfer in regenerators, this report discusses similarity parameters for the flows and reviews the experimental data currently available for Stirling analysis. Then a number of experimental results are presented from recent fundamental fluid mechanical and thermal investigations that shed additional light on the functioning of heat engine regenerators. Suggestions are made for approaches for further measurement and analysis efforts.

  12. Thermal Solar Energy Systems for Space Heating of Buildings

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage...

  13. Research and Development Roadmap for Water Heating Technologies

    SciTech Connect (OSTI)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01T23:59:59.000Z

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  14. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01T23:59:59.000Z

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  15. City of Twenty-Nine Palms Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Palms Sector Geothermal energy Type Space Heating Location Twenty-Nine Palms, California Coordinates 34.1355582, -116.0541689 Loading map... "minzoom":false,"mappingservice":"...

  16. On Variations of Space-heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2014-01-01T23:59:59.000Z

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  17. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  18. A Geothermal District-Heating System and Alternative Energy Research...

    Open Energy Info (EERE)

    District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A...

  19. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  20. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M. (Colorado Springs, CO)

    1983-01-01T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  1. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  2. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect (OSTI)

    Kingston, T.; Scott, S.

    2013-03-01T23:59:59.000Z

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  3. A simplistic model of cyclic heat transfer phenomena in closed spaces

    SciTech Connect (OSTI)

    Lee, K.

    1983-08-01T23:59:59.000Z

    Cyclic heat transfer inside closed spaces is investigated analytically using a simple heat transfer model. The model consists of a gas layer exchanging heat with two bounding parallel walls that pulsate against each other in the transverse direction. Correlations for the magnitude and the phase lag of the heat transfer are obtained. Also, an expression for the power loss due to the cyclic heat transfer is presented. It is shown that the loss approaches zero as the heat transfer process approaches either isothermal or adiabatic conditions. The power loss is shown to be a strong function of the phase angle between the bulk gas temperature and the heat transfer.

  4. RESEARCH ACTIVITIES Division of Heat and Power Technology

    E-Print Network [OSTI]

    Kazachkov, Ivan

    Euro Necessary space Rig in use: 45m2 (9mx5m), storage: ca 14 m2 (7mx2m) General application Experimental to high subsonic operation Application for industry Testing of aerodynamic damping of blade rows Turbine - Division of Heat and Power Technology Object Cold Flow Test Turbine Brand name ABB STAL design

  5. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    LBNL-5732E An in-depth Analysis of Space Heating Energy Use in Office Buildings Author(s), Hung Energy, Building Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH than 7 trillion Joules of site energy annually [USDOE]. Analyzing building space heating performance

  6. CalHEAT Research and Market Transformation Roadmap for Medium

    E-Print Network [OSTI]

    California at Davis, University of

    - 8 Work Trucks Work Site Support Tractors - Short Haul/ Regional Class 2b/3 vans/pickup s Class 3 - 8CalHEAT Research and Market Transformation Roadmap for Medium and Heavy Duty Trucks Delivering President CALSTART #12;California Hybrid, Efficient and Advanced Truck Research Center What is Cal

  7. Irregular spacing of heat sources for treating hydrocarbon containing formations

    DOE Patents [OSTI]

    Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

    2012-06-12T23:59:59.000Z

    A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

  8. On Variations of Space-heating Energy Use in Office Buildings

    SciTech Connect (OSTI)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-05-01T23:59:59.000Z

    Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

  9. Edinburgh Research Explorer Confronting the Liminal Spaces of Health Research Regulation

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer Confronting the Liminal Spaces of Health Research Regulation Citation for published version: Laurie, G, Confronting the Liminal Spaces of Health Research Regulation, 2014, Web c t o b e r 2 0 1 4 Confronting the Liminal Spaces of Health Research Regulation By Professor Graeme

  10. Measured Impact on Space Conditioning Energy Use in a Residence Due to Operating a Heat Pump Water Heater inside the Conditioned Space

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The impact on space conditioning energy use due to operating a heat pump water heater (HPWH) inside the conditioned space is analyzed based on 2010-2011 data from a research house with simulated occupancy and hot water use controls. The 2700 ft2 (345 m2) house is located in Oak Ridge, TN (mixed-humid climate) and is equipped with a 50 gallon (189 l) HPWH that provided approximately 55 gallons/d (208 l/d) of hot water at 120 F (46 C) to the house during the test period. The HPWH has been operated every other week from December 2010 through November 2011 in two modes; a heat pump only mode, and a standard mode that utilizes 15355 Btu/hr (4500 W) resistance heating elements. The energy consumption of the air-source heat pump (ASHP) that provides space conditioning for the house is compared for the two HPWH operating modes with weather effects taken into account. Impacts during the heating and cooling seasons are compared.

  11. Solar Physics & Space Plasma Research Center (SP2RC)

    E-Print Network [OSTI]

    Solar Physics & Space Plasma Research Center (SP2RC) University of SheffieldSTFC SSP Intro Summer Plasma Research Center (SP2RC) http://robertus.staff.shef.ac.ukUniversity of SheffieldSTFC SSP Intro]solitons, applications) ·Conclusions #12;Solar Physics & Space Plasma Research Center (SP2RC) http

  12. Thermal Solar Energy Systems for Space Heating of Buildings 

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source...

  13. Research in Space 2013 and Beyond

    E-Print Network [OSTI]

    growth and test beds Earth and Space Science: Radiation, thermal, solar, geophysics and Earth Earth orbit to other destinations in our solar system. This orbiting laboratory is our species largest Center S.P.Korolev Rocket and Space Corporation Energia Mr. Jean Sabbagh National & International

  14. Enhancement of Pool Boiling Heat Transfer in Confined Space

    E-Print Network [OSTI]

    Hsu, Chia-Hsiang

    2014-05-05T23:59:59.000Z

    Pool boiling is an effective method used in many technical applications for a long time. Its highly efficient heat transfer performance results from not only the convection effect but also the phase change process in pool boiling. Pool boiling...

  15. "Table HC9.5 Space Heating Usage Indicators by Climate Zone...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000...

  16. "Table HC4.5 Space Heating Usage Indicators by Renter-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing...

  17. "Table HC3.5 Space Heating Usage Indicators by Owner-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing...

  18. INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND

    E-Print Network [OSTI]

    J. Stene

    designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

  19. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    SciTech Connect (OSTI)

    Martin, James J.; Reid, Robert S. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

    2004-07-01T23:59:59.000Z

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100-kWt from the core to an energy conversion system at 700 deg. C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested. (authors)

  20. Performance predictions and measurements for space-power-system heat pipes

    SciTech Connect (OSTI)

    Prenger, F.C. Jr.

    1981-01-01T23:59:59.000Z

    High temperature liquid metal heat pipes designed for space power systems have been analyzed and tested. Three wick designs are discussed and a design rationale for the heat pipe is provided. Test results on a molybdenum, annular wick heat pipe are presented. Performance limitations due to boiling and capillary limits are presented. There is evidence that the vapor flow in the adiabatic section is turbulent and that the transition Reynolds number is 4000.

  1. Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use-acceptable refrigerants. Whether involving design of specific new products or refriger- ants to which the entire industry

  2. Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building 

    E-Print Network [OSTI]

    Feng, G.; Cao, G.; Gang, L.

    2006-01-01T23:59:59.000Z

    in the fields of heating in large space and building energy conservation? In an attempt to conserve energy and reduce energy loss, it has become necessary to seek effective means of reducing heat loss in energy consumption. The development of improved means...

  3. Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building

    E-Print Network [OSTI]

    Feng, G.; Cao, G.; Gang, L.

    2006-01-01T23:59:59.000Z

    in the fields of heating in large space and building energy conservation? In an attempt to conserve energy and reduce energy loss, it has become necessary to seek effective means of reducing heat loss in energy consumption. The development of improved means...

  4. Solar space heating installed at Kansas City, Kansas. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-05-01T23:59:59.000Z

    The solar energy system was constructed with the new 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while the auxiliary energy system heats the office area of about 9800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors, manufactured by Solaron Corporation, are double glazed flat plate collectors with a gross area of 7800 ft/sup 2/. Air is heated either through the collectors or by the electric resistance duct coils. No freeze protection or storage is required for this system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  5. Enhancement of Pool Boiling Heat Transfer in Confined Space 

    E-Print Network [OSTI]

    Hsu, Chia-Hsiang

    2014-05-05T23:59:59.000Z

    on pool boiling. In the study, confinement was achieved by placing a flat plate over heated surface. The flat plate has a hole in the middle, and there is a gap between the flat plate and the heater. The diameters of hole are 2 mm, 3 mm, and 4 mm; the gap...

  6. 1 CO2 Heat Pump System for Space Heating and Hot Water Heating in Low-Energy Houses and Passive

    E-Print Network [OSTI]

    J. Stene

    2008-01-01T23:59:59.000Z

    designed as a stand-alone system, i.e. a heat pump water heater in combination with a separate unit for

  7. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

    1981-04-21T23:59:59.000Z

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  8. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01T23:59:59.000Z

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  9. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana 

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01T23:59:59.000Z

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  10. National Aeronautics and Space Administration NASA Research Announcements

    E-Print Network [OSTI]

    Christian, Eric

    Research Center #12;NASA Wildfire Response R&D, Applications and Technology Implementation Armstrong Using the Global Land Ice Measurements from Space (GLIMS) Database Atlas, Robert NASA Goddard Space, Validating and Distributing Science Community-Driven Carbon, Water and Energy Cycling Data Products

  11. VOLUME 11, NUMBER 2 HVAC&R RESEARCH APRIL 2005 Ground-Source Heat Pump System Research--

    E-Print Network [OSTI]

    VOLUME 11, NUMBER 2 HVAC&R RESEARCH APRIL 2005 165 EDITORIAL Ground-Source Heat Pump System Research-- Past, Present, and Future J.D. Spitler, PhD, PE Fellow ASHRAE Ground-source heat pump (GSHP-source heat pumps installed worldwide. These systems may be closed-loop ("ground-coupled") or open

  12. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  13. Space Heating and Cooling Products and Services | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouofSolvingexplore correlation613Space4

  14. 7-111 A Carnot heat engine is used to drive a Carnot refrigerator. The maximum rate of heat removal from the refrigerated space and the total rate of heat rejection to the ambient air are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-42 7-111 A Carnot heat engine is used to drive a Carnot refrigerator. The maximum rate of heat removal from the refrigerated space and the total rate of heat rejection to the ambient air are to be determined. Assumptions The heat engine and the refrigerator operate steadily. Analysis (a) The highest

  15. Application analysis of ground source heat pumps in building space conditioning

    SciTech Connect (OSTI)

    Qian, Hua; Wang, Yungang

    2013-07-01T23:59:59.000Z

    The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

  16. Effect of rib spacing on heat transfer and friction in a rotating two-pass rectangular (AR=1:2) channel 

    E-Print Network [OSTI]

    Liu, Yao-Hsien

    2006-10-30T23:59:59.000Z

    The research focuses on testing the heat transfer enhancement in a channel for different spacing of the rib turbulators. Those ribs are put on the surface in the two pass rectangular channel with an aspect ratio of AR=1:2. The cross section...

  17. A Study of Wind Energy Use for Space Heating in Prince Edward Island1 Larry Hughes, Mandeep Dhaliwal, Aaron Long, Nikita Sheth

    E-Print Network [OSTI]

    Hughes, Larry

    ERG/200605 A Study of Wind Energy Use for Space Heating in Prince Edward Island1 Larry Hughes, Mandeep Dhaliwal, Aaron Long, Nikita Sheth Energy Research Group Department of Electrical and Computer Engineering Dalhousie University Halifax, Nova Scotia, Canada 19 April 2006 1 This paper has been accepted

  18. Heat pipe cooled reactors for multi-kilowatt space power supplies

    SciTech Connect (OSTI)

    Ranken, W.A.; Houts, M.G.

    1995-01-01T23:59:59.000Z

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

  19. Interaction of a solar space heating system with the thermal behavior of a building

    SciTech Connect (OSTI)

    Vilmer, C.; Warren, M.L.; Auslander, D.

    1980-12-01T23:59:59.000Z

    The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements.

  20. Experimental Research of an Active Solar Heating System 

    E-Print Network [OSTI]

    Gao, X.; Li, D.

    2006-01-01T23:59:59.000Z

    : Solar is an abundant renewable energy, which is used more and more frequently with the emphasis on environment protection, especially in building heating. The different devised methods between an active solar heating system and normal heating...

  1. Optimal heat-reversible snap joints for frame-panel assembly in aluminum space frame automotive bodies

    E-Print Network [OSTI]

    Saitou, Kazuhiro "Kazu"

    Optimal heat-reversible snap joints for frame-panel assembly in aluminum space frame automotive, snap-fit joints, aluminum space frame 1 INTRODUCTION Aluminum space frame (AFS) automotive bodies to dramatically improve the recyclability of aluminum space frame (ASF) bodies by enabling clean separation

  2. Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel 

    E-Print Network [OSTI]

    Su, J.; Li, J.

    2006-01-01T23:59:59.000Z

    With the development of science and technology, various heating and cooling equipment have a development trend of micromation. Micro-fabrication processes make it possible to conduct research on condensation heat transfer ...

  3. Heat Transfer -1 A satellite in space orbits the sun. The satellite can be approximated as a flat plate with

    E-Print Network [OSTI]

    Virginia Tech

    Heat Transfer - 1 A satellite in space orbits the sun. The satellite can be approximated as a flat plate with dimensions and properties given below. (a) Calculate the solar heat flux (W/m2 is at a distance where the solar heat flux (as defined above) is 500 W/m2 , and the flat plate is oriented

  4. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect (OSTI)

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15T23:59:59.000Z

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  5. Research article Differential expression of heat shock protein genes in preconditioning

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    Research article Differential expression of heat shock protein genes in preconditioning February 2010 Keywords: GRP94 HSP70 Promoter analysis sHSP a b s t r a c t Heat shock proteins (HSPs) are induced not only under heat stress conditions but also under other environmental stresses such as water

  6. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

  7. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01T23:59:59.000Z

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  8. Space-Time Stereo James DavisJames Davis Honda Research InstituteHonda Research Institute

    E-Print Network [OSTI]

    O'Brien, James F.

    Space-Time Stereo James DavisJames Davis ­­ Honda Research InstituteHonda Research Institute Ravi ­­ Princeton UniversityPrinceton University DiegoDiego NehabNehab ­­ Honda & PrincetonHonda & Princeton

  9. Heat transfer from combustion gases to a single row of closely spaced tubes in a swirl crossflow Stirling engine heater

    SciTech Connect (OSTI)

    Bankston, C.P.; Back, L.H.

    1982-02-01T23:59:59.000Z

    This paper describes an experimental program to determine the heat-transfer characteristics of a combustor and heat-exchange system in a hybrid solar receiver which utilizes a Stirling engine. The system consists of a swirl conbustor with a crossflow heat exchanger composed of a single row of 48 closely spaced curved tubes. In the present study, heat-transfer characteristics of the combustor/heat-exchanger system without a Stirling engine have been studied over a range of operating conditions and output levels using water as the working fluid. Non-dimensional heat-transfer coefficients based on total heat transfer have been obtained and are compared with available literature data. The results show significantly enhanced heat transfer for the present geometry and test conditions. Also, heat transfer along the length of the tubes is found to vary, the effect depending upon test condition.

  10. Heat Transfer Research 44(1), 130 (2013) ENTROPY GENERATION ANALYSIS

    E-Print Network [OSTI]

    Zhang, Yuwen

    Heat Transfer Research 44(1), 1­30 (2013) ENTROPY GENERATION ANALYSIS FOR A PULSATING HEAT, m R gas constant of vapor, g gravity, m/s2 kJ/kgK h(hlsen, hlv) coefficient of convective heat Re, kg/m3 of left vapor plug, W p shear stress, N/m3 Qout,v1 condensation heat transfer rate Subscripts

  11. Heat Flow From Four New Research Drill Holes In The Western Cascades...

    Open Energy Info (EERE)

    New Research Drill Holes In The Western Cascades, Oregon, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat Flow From Four New Research...

  12. Space System Architecture: Final Report of SSPARC: the Space Systems, Policy, and Architecture Research Consortium (Thrust I and II)

    E-Print Network [OSTI]

    Hastings, Daniel

    The Space Systems, Policy and Architecture Research Consortium (SSPARC) was formed to make substantial progress on problems of national importance. The goals of SSPARC were to:

  13. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect (OSTI)

    Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  14. Study on the heat transfer and pattern formation of an evaporating binary liquid in view of space experiments

    E-Print Network [OSTI]

    Wolper, Pierre

    fluid dynamics simulations are performed using the software ComSol (finite elements methodStudy on the heat transfer and pattern formation of an evaporating binary liquid in view of space numerical simulations Investigate heat transfer and pattern formation for a set of parameters Identify

  15. Low-Cost Solar Water Heating Research and Development Roadmap

    SciTech Connect (OSTI)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01T23:59:59.000Z

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  16. Researchers test novel power system for space travel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public ReadingResearch NuclearPower system for space

  17. Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

  18. Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort

    SciTech Connect (OSTI)

    Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

    2014-07-21T23:59:59.000Z

    Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

  19. "Table HC11.4 Space Heating Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal4362 Home324

  20. "Table HC12.4 Space Heating Characteristics by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal4362780324

  1. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    SciTech Connect (OSTI)

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01T23:59:59.000Z

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  2. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  3. Experimental Research of an Active Solar Heating System

    E-Print Network [OSTI]

    Gao, X.; Li, D.

    2006-01-01T23:59:59.000Z

    Re newable Energy Resources and a Greener Future Vol.VIII-1-5 REFERENCES: [1]. Rao KUANG, Yongyun Zhou, Shaoyu Shao. The relation between PV modules? gesture in BIPV and absorbed solar irradiation [J]. Acta Energiae Solaris Sinica, 2004, 25... ventilation and air conditioning, 2000, 30(4): 30-32. [4]. Hong Ye, Jun WANG, Shuangyong ZHUANG. Experimental Study on the Radiant Floor Heating System Utilizing Form-stable PCM As the Thermal Mass [J]. Acta Energiae Solaris Sinica, 2004, 25(5): 651...

  4. Heat Transfer in GE Jet Engines | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat Transfer in GE Jet Engines Click to

  5. Solar space- and water-heating system at Stanford University. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

  6. Retrofitting the heating system for NASA's space shuttle engine test facility

    SciTech Connect (OSTI)

    Arceneaux, T.W. (NASA, St. Louis, MO (US))

    1992-07-01T23:59:59.000Z

    The John C. Stennis Space Center is one of nine NASA field installations and is the second largest NASA Center, occupying 13,480 acres (55 km{sup 2}) and surrounded by a 125,327-acre (507 km{sup 2}) unpopulated buffer zone. Since its beginnings, the center has been the prime NASA installation for static firing. This paper reports that because of the critical nature of the center's missions, precise instrumentation and comfortable personnel environments must be constantly and efficiency maintained. When the site was built nearly 30 years ago, two main boiler plants were installed. One was in the base area (which houses administrative and engineering offices) and the second was in the test area where the test stands and test support buildings are located. These two boiler plants generated high pressure, high temperature water (400{degrees} F, 400 psi; 204{degrees} C, 2,756 kPa) that was used for heating, reheating and absorption cooling. This high temperature hot water (HTHW) was circulated by pumps to various buildings on the site through an underground piping network. Once in the buildings, the HTHW passed through absorption chillers for cooling and high temperature-to-medium temperature water converters for heating and reheating.

  7. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01T23:59:59.000Z

    for ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: Afor ground-source heat pumps: A literature review,

  8. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01T23:59:59.000Z

    P(t) UAB time constant. Heat input power from a fan coil orof a building in response to heat input from an active solarS.R. of a building under heat input conditions for active

  9. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01T23:59:59.000Z

    In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air...

  10. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump 

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01T23:59:59.000Z

    In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air...

  11. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  12. Earth Planets Space, 57, 895902, 2005 Short time-scale heating of the Earth's mantle by ice-sheet dynamics

    E-Print Network [OSTI]

    Hanyk, Ladislav

    by modeling the linear response of a self-gravitating viscoelastic planet, the gravity field anoma- lies haveEarth Planets Space, 57, 895­902, 2005 Short time-scale heating of the Earth's mantle by ice-scale energy transfer from the ice sheet loading and unloading processes to the Earth's interior via viscous

  13. Dr. Shih-Lung Shaw's Research on Space-Time GIS, Human Dynamics and Big Data

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    1 Dr. Shih-Lung Shaw's Research on Space-Time GIS, Human Dynamics and Big Data for Geography Department's Faculty Research Highlight October 12, 2014 Shih-Lung Shaw, Ph.D. Alvin and Sally Beaman

  14. AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo, Manager, Heat Exchange Systems Research

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo S. E. Veyo, Manager, Heat 15235 KEYWORDS: heat pump, air conditioner, electric, residential, energy, compressor, fan, blower, heat exchanger, comfort. #12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo* ABSTRACT A two

  15. advanced heat engines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project is funded by the Singapore National Research Foundation 16 Advanced Mechanical Heat Pump Technologies for Industrial Applications Texas A&M University - TxSpace Summary:...

  16. advanced heat engine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project is funded by the Singapore National Research Foundation 16 Advanced Mechanical Heat Pump Technologies for Industrial Applications Texas A&M University - TxSpace Summary:...

  17. Solr assisted heat pump research and development program in the United States

    SciTech Connect (OSTI)

    Andrews, J W

    1980-01-01T23:59:59.000Z

    A review of the historical progress and current status of the solar assisted heat pump research and development, supported by the United States Department of Energy, is presented. Much of this work has had as its focus the need for a better source of auxiliary or backup heat than the electric resistance which has generally been assumed in computer simulations of these systems. The two leading candidates are the use of the ground as an alternate heat source/sink or storage element (ground coupling) and the use of fossil fuel burned on site (the bivalent system). The United States program has emphasized ground coupling. Much of the analytical work and heat pump development is applicable to bivalent systems, and some results of this work are discussed. Project descriptions and technical accomplishments for the currently active projects are presented.

  18. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01T23:59:59.000Z

    solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace heating

  19. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    heat consumption of a low energy multifamily complex in Switzerland based on long-term experimental data,

  20. Heat Transport in Groundwater Systems--Laboratory Model

    E-Print Network [OSTI]

    Reed, D. B.; Reddell, D. L.

    Solar energy is a possible alternate energy source for space heating. A method of economic long term solar energy storage is needed. Researchers have proposed storing solar energy by heating water using solar collectors and injecting the hot water...

  1. Research and Development of Information on Geothermal Direct Heat Application Projects

    SciTech Connect (OSTI)

    Hederman, William F., Jr.; Cohen, Laura A.

    1981-10-01T23:59:59.000Z

    This is the first annual report of ICF's geothermal R&D project for the Department of Energy's Idaho Operations Office. The overall objective of this project is to compile, analyze, and report on data from geothermal direct heat application projects. Ultimately, this research should convey the information developed through DOE's and Program Opportunity Notice (PON) activities as well as through other pioneering geothermal direct heat application projects to audiences which can use the early results in new, independent initiatives. A key audience is potential geothermal investors.

  2. Massachusetts Institute of Technology Center for Space Research

    E-Print Network [OSTI]

    From: Andy Rasmussen (arasmus@space.mit.edu) Subject: BESSY Data Pileup Monitor and Corrections 1 Date. For the April BESSY data with a range of beam flux (specifically, electron number ranging between 10 and 29), I a multiplicative or additive model). A sample bessy spectrum specific, pileup driven spectral distortion model

  3. Massachusetts Institute of Technology Center for Space Research

    E-Print Network [OSTI]

    : ACIS Team From: Takashi Isobe (ti@space.mit.edu) Subject: Results from Bessy April and May Data Date: 10/31/95 We analyzed Bessy white light results from April and May experiments on a CCD c17­34­3. Although this is not final results, we would like to report where we stand regarding the Bessy data. Two

  4. U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney Barracks.

  5. Industrial food processing and space heating with geothermal heat. Final report, February 16, 1979-August 31, 1982

    SciTech Connect (OSTI)

    Kunze, J.F.; Marlor, J.K.

    1982-08-01T23:59:59.000Z

    A competitive aware for a cost sharing program was made to Madison County, Idaho to share in a program to develop moderate-to-low temperature geothermal energy for the heating of a large junior college, business building, public shcools and other large buildings in Rexburg, Idaho. A 3943 ft deep well was drilled at the edge of Rexburg in a region that had been probed by some shallower test holes. Temperatures measured near the 4000 ft depth were far below what was expected or needed, and drilling was abandoned at that depth. In 1981 attempts were made to restrict downward circulation into the well, but the results of this effort yielded no higher temperatures. The well is a prolific producer of 70/sup 0/F water, and could be used as a domestic water well.

  6. Multigroup half space moment approximations to the radiative heat transfer equations q

    E-Print Network [OSTI]

    Coudière, Yves

    cooling) over astrophysics to combustion (e.g., in gas turbine combustion chambers). Since radiative heat into direction l 2 ½À1; 1. Furthermore, T ðx; tÞ is the material temperature. The heat conductivity is denoted with the following boundary conditions. For the material temper

  7. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    experimental data, Energy and Buildings 36, 543-555. O.G.consumption for heating, Energy and Buildings 43, 2662-2672.reduction for a net zero energy building, ACEEE Summer Study

  8. Development of a coal fired pulse combustor for residential space heating. Technical progress report, July--September 1987

    SciTech Connect (OSTI)

    NONE

    1987-12-31T23:59:59.000Z

    The systematic development of the residential combustion system is divided into three phases. Only Phase I is detailed here. Phase I constitutes the design, fabrication, testing, and evaluation of a pulse combustor sized for residential space heating. Phase II is an optional phase to develop an integrated system including a heat exchanger. Phase III is projected as a field test of the integrated coal-fired residential space heater. The Phase I effort was nearing completion during this reporting period and a final report is in preparation. The configuration testing was completed early in the period and based upon results of the configuration tests, an optimized configuration for the experimental development testing was chosen. The refractory-lined chambers were fabricated and tested from mid-September through early October. The tandem unit was operated on dry micromized coal without support gas or excitation air for periods lasting from one to three hours. Performance was stable and turndown ratios of 3:1 were achieved during the first three-hour test. A early commercial residential heating system configuration has been identified on the basis of the development testing conducted throughout the first phase of this effort. The development effort indicates that the residential unit goals are achievable with some additional product improvement effort to increase carbon burn-out efficiency, reduce CO emissions and develop a reliable and compact dry, ultrafine coal feed system (not included in the present effort).

  9. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01T23:59:59.000Z

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to properly survey the heat shield panels. System features were introduced to minimize the potential for human factors errors in identifying and locating the flaws. The in-situ NDI team completed the transfer of this technology to NASA and USA employees so that they can complete 'Return-to-Flight' certification inspections on all Shuttle Orbiters prior to each launch.

  10. "Table HC10.4 Space Heating Characteristics by U.S. Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal43 Lighting24

  11. "Table HC10.5 Space Heating Usage Indicators by U.S. Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal43

  12. "Table HC11.5 Space Heating Usage Indicators by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal4362 Home3245

  13. "Table HC12.5 Space Heating Usage Indicators by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal43627803245

  14. Solar space heating for the visitors' center, Stephens College, Columbia, Missouri. Final report

    SciTech Connect (OSTI)

    Henley, Marion

    1980-06-01T23:59:59.000Z

    This document is the final report of the solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri. The system is installed in a four-story, 15,000 square foot building designed to include the college's Admission Office, nine guest rooms for overnight lodging for official guests of the college, a two-story art gallery, and a Faculty Lounge. The solar energy system is an integral design of the building and utilizes 176 Honeywell/Lennox hydronic flat-plate collectors which use a 50% water-ethylene glycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71% of the heating load. The demonstration period for this project ends June 30, 1984.

  15. "Table HC14.5 Space Heating Usage Indicators by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used" "Heat Pump",0.6,"Q","N","Q" "Central Warm-Air Furnace",2.3,0.6,"Q",0.5 "SteamHot Water System","Q","Q","N","Q" "Built-in Electric Units",2.2,0.7,"Q",0.5 "Built-in Pipeless...

  16. "Table HC12.5 Space Heating Usage Indicators by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used" "Heat Pump",0.6,"Q","Q","Q" "Central Warm-Air Furnace",2.3,0.9,0.5,0.3 "SteamHot Water System","Q","Q","Q","N" "Built-in Electric Units",2.2,0.6,0.4,0.3 "Built-in Pipeless...

  17. "Table HC13.5 Space Heating Usage Indicators by South Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Heat Pump",0.6,0.4,0.3,"Q","N" "Central Warm-Air Furnace",2.3,0.7,0.3,0.2,"Q" "SteamHot Water System","Q","N","N","N","N" "Built-in Electric Units",2.2,0.4,0.3,"Q","N" "Built-in...

  18. "Table HC15.5 Space Heating Usage Indicators by Four Most Populated...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Heat Pump",0.6,"N","N","N","Q" "Central Warm-Air Furnace",2.3,"Q","Q","Q",0.3 "SteamHot Water System","Q","N","N","N","N" "Built-in Electric Units",2.2,"Q","Q","N",0.3 "Built-in...

  19. "Table HC11.5 Space Heating Usage Indicators by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used" "Heat Pump",0.6,"N","N","N" "Central Warm-Air Furnace",2.3,"Q","Q","Q" "SteamHot Water System","Q","Q","Q","Q" "Built-in Electric Units",2.2,0.4,"Q",0.2 "Built-in Pipeless...

  20. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    energy consumption. EPRI translates these projections into3 Technology Choices in EPRI's Model of Space Heating andPower Research Institute (EPRI) [1984]: "Household Appliance

  1. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14T23:59:59.000Z

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

  2. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    SciTech Connect (OSTI)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01T23:59:59.000Z

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  3. General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

    1996-07-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  4. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01T23:59:59.000Z

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  5. 1. Scope and Applicability This document outlines guidelines for research space allocation and management within

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    1. Scope and Applicability This document outlines guidelines for research space allocation and management within the Wayne State University School of Medicine (SOM) and applies to wet-bench laboratory and therefore must be allocated and managed to ensure its productivity as a capital asset. 3. Responsibility

  6. Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.0 Home7.4 Space

  7. Table HC9.4 Space Heating Characteristics by Climate Zone, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.05a.4 Space

  8. Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.7 Million04 Space

  9. "Table HC13.4 Space Heating Characteristics by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances Housing1324

  10. "Table HC14.4 Space Heating Characteristics by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances783

  11. "Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water0 Home25

  12. "Table HC9.5 Space Heating Usage Indicators by Climate Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water00 Home25

  13. Space Heating Trends in Prince Edward Island and Nova Scotia1 Mandeep Dhaliwal and Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    . Household income and shelter costs 4. Size and condition of the house 5. Fuel prices 6. Administration Hughes Energy Research Group Department of Electrical and Computer Engineering Dalhousie University Scotia have about the same fuel mix, although there are some differences in the use of electricity

  14. Municipal District Heating and Cooling Co-generation System Feasibility Research 

    E-Print Network [OSTI]

    Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

    2006-01-01T23:59:59.000Z

    In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

  15. Municipal District Heating and Cooling Co-generation System Feasibility Research

    E-Print Network [OSTI]

    Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

    2006-01-01T23:59:59.000Z

    In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

  16. Research for Advanced Heat Exchangers- The U.S. DOE Program 

    E-Print Network [OSTI]

    Richlen, S. L.

    1986-01-01T23:59:59.000Z

    Since its beginning, the Advanced Heat Exchangers Program of the U.S. Department of Energy - Office of Industrial Programs has made significant contributions to the development of advanced heat exchanger technology to save energy for U.S. industry...

  17. Research on a Heat-supply Network Dispatching System Based on Geographical Information System (GIS)

    E-Print Network [OSTI]

    Zhou, Z.; Zou, P.; Tang, H.; Fang, X.; Wang, W.

    2006-01-01T23:59:59.000Z

    In order to reduce heating systematic operation and maintenance expenses, aimed at the current standards of a heat-supply network based on GIS, combine with a national program of 'tenth-five-year-plan', the authors have developed a Heat...

  18. Fractal Relativity, Generalized Noether Theorem and New Research of Space-Time

    E-Print Network [OSTI]

    Yi-Fang Chang

    2007-07-02T23:59:59.000Z

    First, let the fractal dimension D=n(integer)+d(decimal), so the fractal dimensional matrix was represented by a usual matrix adds a special decimal row (column). We researched that mathematics, for example, the fractal dimensional linear algebra, and physics may be developed to fractal and the complex dimension extended from fractal. From this the fractal relativity is discussed, which connects with self-similarity Universe and the extensive quantum theory. The space dimension has been extended from real number to superreal and complex number. Combining the quaternion, etc., the high dimensional time is introduced. Such the vector and irreversibility of time are derived. Then the fractal dimensional time is obtained, and space and time possess completely symmetry. It may be constructed preliminarily that the higher dimensional, fractal, complex and supercomplex space-time theory covers all. We propose a generalized Noether theorem, and irreversibility of time should correspond to non-conservation of a certain quantity. Resumed reversibility of time and possible decrease of entropy are discussed. Finally, we obtain the quantitative relations between energy-mass and space-time, which is consistent with the space-time uncertainty relation in string theory.

  19. OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant; Gregory Nellis, Professor; Sanford Klein,

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    1 OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant to complete a parametric study of optimal HyGCHP designs over a range of scenarios varying in climate with an optimization package to allow design and control parameters to be globally optimized in order to minimize

  20. Geothermal Space Heating Applications for the Fort Peck Indian Reservation in the Vicinity of Poplar, Montana. Phase I Report, August 20, 1979--December 31, 1979

    SciTech Connect (OSTI)

    Spencer, Glenn J.; Cohen, M. Jane

    1980-01-04T23:59:59.000Z

    This engineering and economic study is concerned with the question of using the natural heat of the earth, or geothermal energy, as an alternative to other energy sources such as oil and natural gas which are increasing in cost. This document represents a quarterly progress report on the effort directed to determine the availability of geothermal energy within the Fort Peck Indian Reservation, Montana (Figure 1), and the feasibility of beneficial use of this resource including engineering, economic and environmental considerations. The project is being carried out by the Tribal Research office, Assinboine and Sioux Tribes, Fort Peck Indian Reservation, Poplar, Montana under a contract to the United States Department of Energy. PRC TOUPS, the major subcontractor, is responsible for engineering and economic studies and the Council of Energy Resource Tribes (CERT) is providing support in the areas of environment and finance, the results of which will appear in the Final Report. The existence of potentially valuable geothermal resource within the Fort Peck Indian Reservation was first detected from an analysis of temperatures encountered in oil wells drilled in the area. This data, produced by the Montana Bureau of Mines and Geology, pointed to a possible moderate to high temperature source near the town of Poplar, Montana, which is the location of the Tribal Headquarters for the Fort Peck Reservation. During the first phase of this project, additional data was collected to better characterize the nature of this geothermal resource and to analyze means of gaining access to it. As a result of this investigation, it has been learned that not only is there a potential geothermal resource in the region but that the producing oil wells north of the town of Poplar bring to the surface nearly 20,000 barrels a day (589 gal/min) of geothermal fluid in a temperature range of 185-200 F. Following oil separation, these fluids are disposed of by pumping into a deep groundwater aquifer. While beneficial uses may be found for these geothermal fluids, even higher temperatures (in excess of 260 F) may be found directly beneath the town of Poplar and the new residential development which is being planned in the area. This project is primarily concerned with the use of geothermal energy for space heating and domestic hot water for the town of Poplar (Figure 2 and Photograph 1) and a new residential development of 250 homes which is planned for an area approximately 4 miles east of Poplar along U.S. Route 2 (Figure 2 and Photograph 2). A number of alternative engineering design approaches have been evaluated, and the cost of these systems has been compared to existing and expected heating costs.

  1. Space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology|Solar windMarch 26,SowjanyaSpace Space The

  2. Space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology|Solar windMarch 26,SowjanyaSpace Space

  3. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01T23:59:59.000Z

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  4. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    SciTech Connect (OSTI)

    J. K. Wright

    2008-04-01T23:59:59.000Z

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  5. Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer

    E-Print Network [OSTI]

    Miyashita, Yasushi

    Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

  6. PROGRAM SUPPORT FOR SOLAR HEATING AND COOLING RESEARCH AND DEVELOPMENT BRANCH

    E-Print Network [OSTI]

    Martin, M.

    2011-01-01T23:59:59.000Z

    of possible impact of passive cooling techniques for ene~·gyTechniques for EvaluaUon of Solar Heating and Cooling SysU•

  7. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    SciTech Connect (OSTI)

    Robert C. O'Brien

    2001-09-01T23:59:59.000Z

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  8. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01T23:59:59.000Z

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  9. Hot electron production and heating by hot electrons in fast ignitor research

    SciTech Connect (OSTI)

    Key, M.H.; Estabrook, K.; Hammel, B. [and others

    1997-12-01T23:59:59.000Z

    In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.

  10. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    64.9 1.4 7.9 9.5 0.5 30.6 0.3 2.1 1.4 3.9 7.3 Principal Building Activity Education ... 37.6 1.5 7.5 8.4 1.1 11.5 0.2 1.6 0.4 3.3 2.1...

  11. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    4 2 Q 14 1 35 1 1 3 Food Service ... 63 3 8 7 3 12 4 20 (*) 1 4 Health Care ... 73 2 10 12 1 31 (*) 2 1 3 11 Inpatient...

  12. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    101.2 38.0 7.8 7.2 7.8 20.0 2.5 5.6 1.2 2.8 8.4 Energy Management and Control System (EMCS) For Lighting ... 112.6 37.8 11.5 9.1 6.2 26.1 1.9...

  13. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    2 119 2 2 10 Food Service ... 217 10 28 24 10 42 13 70 2 2 15 Health Care ... 248 6 34 42 2 105 1 8 4 10 36 Inpatient...

  14. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    ... 258.3 43.1 17.4 14.8 40.4 25.4 63.5 42.1 1.0 1.0 9.5 Health Care ... 187.7 70.4 14.1 13.3 30.2 33.1 3.5 2.6 1.2 3.2...

  15. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil and

  16. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil andRevised:

  17. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil

  20. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil89.8 34.0

  1. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil89.8

  2. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil89.8

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil89.8

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil89.848.0 1.8

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil89.848.0

  6. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil89.848.0890

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100

  10. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100Released:

  11. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop

  12. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop

  13. Allegations that low-cost solar space heating systems are being ruled out in the solar in Federal Buildings Demonstration Program

    SciTech Connect (OSTI)

    Not Available

    1981-10-28T23:59:59.000Z

    Results are given of an examination of allegations that Marshall Space Flight Center, in its role as technical reviewer for the DOE, arbitrarily recommended requirements which would effectively rule out the use of low-cost solar space heating systems in the solar in Federal Buildings Demonstration Program. The examination addressed whether Marshall's recommended requirements and its evaluation of the low-cost system in question were based on supporting criteria and data, and was not a technical assessment of the allegations. It was concluded that Marshall's recommended requirements and evaluation of the low-cost system in question were indeed based on supporting criteria and data, and were based on guidelines commonly used in the heating and cooling industry and on data collected by eight independent laboratories. The background information, a discussion of the findings, and a chronology of key events surrounding Marshall's recommended requirements and its evaluation are presented. (LEW)

  14. Magnetic levitation systems for future aeronautics and space research and missions

    SciTech Connect (OSTI)

    Blankson, I.M.; Mankins, J.C.

    1996-02-01T23:59:59.000Z

    The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is projected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable `first stage` and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.

  15. Atoms for space

    SciTech Connect (OSTI)

    Buden, D.

    1990-10-01T23:59:59.000Z

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  16. Investigation of relativistic runaway electrons in electron cyclotron resonance heating discharges on Korea Superconducting Tokamak Advanced Research

    SciTech Connect (OSTI)

    Kang, C. S. [Department of Plasma Physics and Nuclear Fusion, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Lee, S. G., E-mail: sglee@nfri.re.kr [Department of Plasma Physics and Nuclear Fusion, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of); National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

    2014-07-15T23:59:59.000Z

    The behavior of relativistic runaway electrons during Electron Cyclotron Resonance Heating (ECRH) discharges is investigated in the Korea Superconducting Tokamak Advanced Research device. The effect of the ECRH on the runaway electron population is discussed. Observations on the generation of superthermal electrons during ECRH will be reported, which will be shown to be consistent with existing theory for the development of a superthermal electron avalanche during ECRH [A. Lazaros, Phys. Plasmas 8, 1263 (2001)].

  17. Research on Heat Resisting Character of Hollow Building Blocks in Energy Saving Wall

    E-Print Network [OSTI]

    Zhang, Y.; He, J.; Gao, S.

    2006-01-01T23:59:59.000Z

    By establishing a mathematical model with the finite difference method, the three-dimensional temperature fields of a new type of asymmetrical hollow building blocks in an energy saving wall are solved in this paper. The three forms of heat...

  18. Research on a Heat-supply Network Dispatching System Based on Geographical Information System (GIS) 

    E-Print Network [OSTI]

    Zhou, Z.; Zou, P.; Tang, H.; Fang, X.; Wang, W.

    2006-01-01T23:59:59.000Z

    -supply Network Dispatching System (HNDS). The system, based on Oracle database and Mapgis 6.5, compiles with Visual C++ software. With computer and communication techniques, the system dynamic inspects parameters and information of a heat-supply network, achieves...

  19. Research on Heat Resisting Character of Hollow Building Blocks in Energy Saving Wall 

    E-Print Network [OSTI]

    Zhang, Y.; He, J.; Gao, S.

    2006-01-01T23:59:59.000Z

    By establishing a mathematical model with the finite difference method, the three-dimensional temperature fields of a new type of asymmetrical hollow building blocks in an energy saving wall are solved in this paper. The three forms of heat...

  20. Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel

    E-Print Network [OSTI]

    Su, J.; Li, J.

    2006-01-01T23:59:59.000Z

    on the reviewers on the present household air conditioners, the potential requirements for new heat transfer enhancement used for household air conditioners are discussed. Investigations on condensation and boiling of refrigerants in mini/micro channels have...

  1. Research for Advanced Heat Exchangers- The U.S. DOE Program

    E-Print Network [OSTI]

    Richlen, S. L.

    Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 CooIGu __ Ex_ Brush and Ilfg Finned Heal Transfer Tube Figure 6. Aerojet Shallow Bed FBWHR The Thermo-Electron FBWHRS is a moving bed system that circulates the particle... large fluidized bed waste heat boiler and another fluidized bed waste heat recuperator is being readied for field tests. As a result of technology "needs" areas being identified during the development phases of these large systems, a stronger...

  2. Guidelines for Measuring Air Infiltration Heat Exchange Effectiveness (IHEE), Submitted to the Texas Higher Education Coordination Board Energy Research Application Program Project #227

    E-Print Network [OSTI]

    Liu, M.; Claridge, D. E.

    1993-01-01T23:59:59.000Z

    ESL-TR-93/09-01 Guidelines for Measuring Air Infiltration Heat Exchange Effectiveness (IHEE) Submitted to the Texas Higher Education Coordination Board Energy Research Application Program Project #227 i Dr. Mingsheng Liu Dr. David E. Claridge... Method 3 Co-heating Method 4 STAM Method 8 Conclusions 10 Reference 12 Appendix A 14 Appendix B 15 Appendix C 21 Guidelines for Measuring IHEE, P. 1 Guidelines for Measuring Air Infiltration Heat Exchange Effectiveness (IHEE) Introduction The rate of air...

  3. Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.; Balas, M. J.

    2006-01-01T23:59:59.000Z

    Control can improve wind turbine performance by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory, we are implementing and testing state-space controls on the Controls Advanced Research Turbine (CART), a turbine specifically configured to test advanced controls. We show the design of control systems to regulate turbine speed in Region 3 using rotor collective pitch and reduce dynamic loads in Regions 2 and 3 using generator torque. These controls enhance damping in the first drive train torsion mode. We base these designs on sensors typically used in commercial turbines. We evaluate the performance of these controls by showing field test results. We also compare results from these modern controllers to results from a baseline proportional integral controller for the CART. Finally, we report conclusions to this work and outline future studies.

  4. The Well-Group Distribution of Groundwater Source Heat Pump System Optimized Research

    E-Print Network [OSTI]

    Liu, Z.; Lu, L.; Yoshida, H.

    2006-01-01T23:59:59.000Z

    It is the key question that how does the well group arrange for application of GWSHP system. Based on the fact that the water movement is the important factor of heat transfer on aquifer, this paper presents two steps analysis method and analyze...

  5. The Well-Group Distribution of Groundwater Source Heat Pump System Optimized Research 

    E-Print Network [OSTI]

    Liu, Z.; Lu, L.; Yoshida, H.

    2006-01-01T23:59:59.000Z

    It is the key question that how does the well group arrange for application of GWSHP system. Based on the fact that the water movement is the important factor of heat transfer on aquifer, this paper presents two steps analysis method and analyze...

  6. Geothermal space heating applications for the Fort Peck Indian Reservation in the vicinity of Poplar, Montana. Final report, August 20, 1979-May 31, 1980

    SciTech Connect (OSTI)

    Birman, J.H.; Cohen, J.; Spencer, G.J.

    1980-10-01T23:59:59.000Z

    The results of a first-stage evaluation of the overall feasibility of utilizing geothermal waters from the Madison aquifer in the vicinity of Poplar, Montana for space heating are reported. A preliminary assessment of the resource characteristics, a preliminary design and economic evaluation of a geothermal heating district and an analysis of environmental and institutional issues are included. Preliminary investigations were also made into possible additional uses of the geothermal resource, including ethanol production. The results of the resource analysis showed that the depth to the top of the Madison occurs at approximately 5,500 feet at Poplar, and the Madison Group is characterized by low average porosity (about 5 percent) and permeability (about 0.004 gal/day-ft), and by hot water production rates of a few tens of gallons per minute from intervals a few feet thick. The preliminary heating district system effort for the town of Poplar included design heat load estimates, a field development concept, and preliminary design of heat extraction and hot water distribution systems. The environmental analysis, based on current data, indicated that resource development is not expected to result in undue impacts. The institutional analysis concluded that a Tribal geothermal utility could be established, but no clear-cut procedure can be identified without a more comprehensive evaluation of legal and jurisdistional issues. The economic evaluation found that, if the current trend of rapidly increasing prices for fossil fuels continues, a geothermal heating district within Poplar could be a long-term, economically attractive alternative to current energy sources.

  7. Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine 

    E-Print Network [OSTI]

    Suryanarayanan, Arun

    2010-07-14T23:59:59.000Z

    The existing 3-stage turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A and M University, is re-designed and newly installed to enable coolant gas injection on the first ...

  8. Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine

    E-Print Network [OSTI]

    Suryanarayanan, Arun

    2010-07-14T23:59:59.000Z

    The existing 3-stage turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A and M University, is re-designed and newly installed to enable coolant gas injection on the first stage rotor platform...

  9. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  10. Experimental plan for investigating building-earth heat transfer at the Joint Institute for Heavy Ion Research Building

    SciTech Connect (OSTI)

    Childs, K.W.

    1980-11-01T23:59:59.000Z

    An experimental plan is presented for investigating heat transfer between below-grade portions of building envelopes and the surrounding soil. Included is a detailing of data to be collected at an earth-sheltered structure (Joint Institute for Heavy Ion Research Building) to be constructed at Oak Ridge National Laboratory. The attributes of the required data collection instrumentation are defined and a program to assure the accuracy of the collected data is discussed. The experimental plan is intended to be used as a guide to selection, installation, and maintenance of instrumentation as well as in data collection and verification.

  11. Hydrothermal research and development assessment. Task Force report: projections for direct-heat applications

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    Low and moderate temperature hydrothermal resources suitable for direct-heat applications have been identified in 37 states. The extent to which three resources might be used over the next 20 years were evaluated and the probable impact of Federal programs on hydrothermal resource utilization was assessed. The use types that comprise the bulk of the market were determined. Representative firms and municipalities were interviewed to determine their willingness to use hydrothermal energy, and to determine the investment decision criteria that would influence their actions. (MHR)

  12. SciTech Connect: Numerical simulation of shock-heated plasma...

    Office of Scientific and Technical Information (OSTI)

    Publication: United States Language: English Subject: N70100* --Physics--Controlled Thermonuclear Research-- Confinement & Heating; *HEATING-- SHOCK HEATING; *SHOCK HEATING--...

  13. Progress in Implementing and Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.; Stol, K. A.

    2004-12-01T23:59:59.000Z

    Designing wind turbines with maximum energy production and longevity for minimal cost is a major goal of the federal wind program and the wind industry. Control can improve the performance of wind turbines by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory (NREL) we are designing state-space control algorithms for turbine speed regulation and load reduction and testing them on the Controls Advanced Research Turbine (CART). The CART is a test-bed especially designed to test advanced control algorithms on a two-bladed teetering hub upwind turbine. In this paper we briefly describe the design of control systems to regulate turbine speed in region 3 for the CART. These controls use rotor collective pitch to regulate speed and also enhance damping in the 1st drive-train torsion, 1st rotor symmetric flap mode, and the 1st tower fore-aft mode. We designed these controls using linear optimal control techniques using state estimation based on limited turbine measurements such as generator speed and tower fore-aft bending moment. In this paper, we describe the issues and steps involved with implementing and testing these controls on the CART, and we show simulated tests to quantify controller performance. We then present preliminary results after implementing and testing these controls on the CART. We compare results from these controls to field test results from a baseline Proportional Integral control system. Finally we report conclusions to this work and outline future studies.

  14. Research on direct containment heating and pressurized melt expulsion from the reactor coolant system

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M.; Brockmann, J.E.; Powers, D.A.

    1988-01-01T23:59:59.000Z

    The expulsion of high temperature core debris from the reactor cavity into the containment atmosphere has recently been identified as an important potential contributor to containment failure in the event of a severe accident. Experiments and analyses have shown that failure of the reactor vessel while the primary system is pressurized can result in the rapid discharge of molten core debris into the cavity. Gas from the blowdown of the coolant system may then entrain the debris as fine particulate that may be carried out of the cavity region. Containment loading can result from the combustion of hydrogen produced by the interaction of the debris with steam from the primary system and from thermal and chemical energy transferred from the debris to the atmosphere is directed towards identifying and quantifying the phenomena associated with the pressurized discharge of the core debris and the direct containment heating processes. Experiments are being performed to provide the information needed to develop phenomenological models for use in system level code predictions. Emphasis has been primarily on the use of scaled cavities (ranging from 1:10 to 1:50 linear scale) and the quantification of the extent of the material dispersed. Information has been obtained on the physics of the jet behavior, the entrainment of the debris, debris characteristics (e.g., size and number distributions), debris-gas heat transfer and chemistry, aerosol generation, and the influence of water. Models and codes are reviewed and discussed and representative calculations are presented.

  15. PROCEEDINGS OF THE 2003 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, HELD AT THE 2003 NEW ENGLAND FUEL INSTITUTE CONVENTION AND 30TH NORTH AMERICAN HEATING AND ENERGY EXPOSITION, HYNES CONVENTION CENTER, PRUDENTIAL CENTER, BOSTON, MASSACHUSETTS, JUNE 9 - 10, 2003.

    SciTech Connect (OSTI)

    MCDONALD,R.J.

    2003-06-09T23:59:59.000Z

    This meeting is the sixteenth oilheat industry technology meeting held since 1984 and the third since the National Oilheat Research Alliance (NORA) was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Fuel Flexibility Program under the United States Department of Energy, Distributed Energy and Electricity Reliability Program (DEER). The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  16. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    SciTech Connect (OSTI)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01T23:59:59.000Z

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  17. "Table HC14.5 Space Heating Usage Indicators by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances7835 Space

  18. "Table HC15.5 Space Heating Usage Indicators by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances783525 Space

  19. Establishment of a research facility for investigating the effects of unsteady inlet flow, pressure gradient and curvature on boundary layer development, wake development and heat transfer

    E-Print Network [OSTI]

    Pardivala, Darayus Noshir

    1991-01-01T23:59:59.000Z

    ESTABLISHMENT OF A RESEARCH FACILITY FOR INVESTIGATING THE EFFECTS OF UNSTEADY INLET FLOW) PRESSURE GRADIENT AND CURVATURE ON BOUNDARY LAYER DEVELOPMENT) %'AKE DEVELOPMENT AND HEAT TRANSFER A Thesis by DARAYUS NOSHIR PARDIVALA Submitted... THE EFFECTS OF UNSTEADY INLET FLOW, PRESSURE GRADIENT AND CURVATURE ON BOUNDARY LAYER DEVELOPMENT, WAKE DEVELOPMENT AND HEAT TRANSFER A Thesis by DARAYUS NOSHIR PARDIVALA Approved as to style and content by: Taher Schobeiri (Chair of Committee) Gerald...

  20. National Aeronautics and Space Administration Student ReSeaRch RepoRt

    E-Print Network [OSTI]

    of our collaborative environment. About JPL the Jet propulsion Laboratory (JpL) is naSa's federally is the end-to-end implementation of unprecedented robotic space missions to study earth, the Solar System of the JPL campus. #12;1 Inside Welcome 3 Solar System Science 5 earth Science 8 astrophysics & Space Science

  1. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28T23:59:59.000Z

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  2. Building America Webinar: Retrofitting Central Space Conditioning...

    Energy Savers [EERE]

    Strategies for Multifamily Buildings - Control strategies to improve hydronic space heating performance Building America Webinar: Retrofitting Central Space Conditioning...

  3. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    SciTech Connect (OSTI)

    Karagiozis, A.N.

    2007-05-15T23:59:59.000Z

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  4. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    ing the Market for Home Heating and Cooling Equipment," LBLestimating the market shares of space-heating technologiesestimating the market shares of space-heating technologies

  5. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    among different space heating technologies to household andhousehold's choice of heating technology is modeled jointlymodel five space heating technologies given central cooling

  6. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    passive and hybrid space heating systems. Space Cooling Aand hybrid solar heating and cooling systems. Experimentspassive, and hybrid systems for heating, cooling, and

  7. "Table HC13.5 Space Heating Usage Indicators by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances Housing13245

  8. "Table HC15.4 Space Heating Characteristics by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances78352

  9. "Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances783525802324

  10. "Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances7835258023245

  11. "Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home Electronics324

  12. "Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home Electronics3245

  13. "Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water0

  14. Modelling and simulation of a heat pump for simultaneous heating and cooling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    production and space cooling at the same time. An answer to a dual energy demand is the heat pump, sinceModelling and simulation of a heat pump for simultaneous heating and cooling Paul Byrne1 *, Jacques-012-0089-0 #12;1. ABSTRACT The heat pump for simultaneous heating and cooling (HPS) carries out space heating

  15. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  16. SOLAR AND SPACE PHYSICS RESEARCH: THE COMING DECADE Statement of Louis J. Lanzerotti

    E-Print Network [OSTI]

    to the study of distant stars and galaxies and are related to laboratory plasma research. And, very importantly

  17. K-State Turfgrass Research Report of Progress 2006 TITLE: Membrane Lipid Composition and Heat Tolerance in Kentucky Bluegrass,

    E-Print Network [OSTI]

    ) Identify and quantify specific lipid compositional changes under heat stress; 3) and to discover. Heat stress may damage cell membranes in cool-season turfgrasses, causing leakage of cytoplasm period. Although the temperature was thereafter increased to induce heat stress for later lipids

  18. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Q Q Q Q Q Q Q Q Q Q Food Service ... Q Q Q Q Q Q Q Q Q Q Health Care ... 11 6 2 Q 2 5.6 3.3 0.8 Q 1.3 Inpatient...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTopReleased: September,

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTopReleased:

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTopReleased:Released:

  3. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTopReleased:Released:28

  4. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTopReleased:Released:28

  5. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTopReleased:Released:28

  6. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun

  7. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun

  8. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun

  9. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,397 125 Q 69 0.11 0.09 0.01

  10. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,397 125 Q 69 0.11 0.09

  11. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,397 125 Q 69 0.11 0.09634

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,397 125 Q 69 0.11 0.09634636

  13. A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

    E-Print Network [OSTI]

    .; Sparn, B.; Christensen, D.; Maguire, J. (2012). Heat Pump Water Heater Technology Assessment Based, presenting an energy-saving opportunity for homeowners. Researchers at the National Renewable Energy is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

  14. Development of a Heat Transfer Model for the Integrated Facade Heating

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  15. Development of a Heat Transfer Model for the Integrated Facade Heating 

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  16. Opening Up Spaces for Reflexivity? Scientists’ Discourses about Stem Cell Research and Public Engagement 

    E-Print Network [OSTI]

    Marks, Nicola J

    2008-01-01T23:59:59.000Z

    This thesis starts with what the House of Lords Third Report (2000) has identified as a “crisis of trust” between science and society. It explores ways of addressing this crisis by examining stem cell researchers’ ...

  17. COSPAR/ILWS roadmap on space weather research and forecasting: community input COSPAR and the International Living With a Star (ILWS) steering committee have commissioned a strategic

    E-Print Network [OSTI]

    Schrijver, Karel

    COSPAR/ILWS roadmap on space weather research and forecasting: community input commissioned a strategic planning activity (or roadmap) focusing on the ability access as supplemental information to the roadmap report. In order

  18. JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 49985007, doi:10.1002/jgra.50479, 2013 Tracing magnetic separators and their dependence on IMF clock

    E-Print Network [OSTI]

    JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 4998­5007, doi:10.1002/jgra.50479, 2013, USA. (ckomar@mix.wvu.edu) ©2013. American Geophysical Union. All Rights Reserved. 2169

  19. Space System Architecture

    E-Print Network [OSTI]

    McManus, Dr. Hugh

    Final Report of SSPARC: the Space Systems, Policy, and Architecture Research Consortium (Thrust II and III)

  20. Heat Leak into Cryostat #1 through 304SS or G10 Supports Robert J. Weggel, Magnet Optimization Research Engineering, LLC

    E-Print Network [OSTI]

    McDonald, Kirk

    Heat Leak into Cryostat #1 through 304SS or G10 Supports Robert J. Weggel, Magnet Optimization for refrigeration to cope with the heat leak through mechanical supports of Type 304 stainless steel (SS) with warm times the cross section of the SS support) requires only 18% as much power for refrigeration

  1. Modeling of Heat Transfer in Geothermal Heat Exchangers 

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

  2. Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-31T23:59:59.000Z

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  3. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    E-Print Network [OSTI]

    Blum, Helcio

    2010-01-01T23:59:59.000Z

    2007): “Market Barriers Affecting Water Heating in Norway. ”heating and cooling energy consumed by centrally installed equipment in order to verify whether a marketheating and cooling. The non-existence of the equipment efficiency-related market

  4. 11-14 An ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is considered. The rate of heat removal from the refrigerated space, the power input to the compressor, the rate of heat rejection to the environment,

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    to the compressor, the rate of heat rejection to the environment, and the COP are to be determined. Assumptions 1 enters the compressor as a saturated vapor at the evaporator pressure, and leaves the condenser space and the power input to the compressor are determined from s and ( ) ( )( ) ( ) ( )( ) kW1.83 kW7

  5. Residential Solar Water Heating Rebates

    Broader source: Energy.gov [DOE]

    New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

  6. Thermoelectrics: From Space Power Systems to Terrestrial Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

  7. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  8. Research and design work on heat emission and aerodynamic resistance of tube bundles in air cooling equipment

    SciTech Connect (OSTI)

    Kuntysh, V.B.; Fedotova, L.M.

    1983-01-01T23:59:59.000Z

    Results of studies of heat emission using methods of local and global thermal simulation of crossflow small-array bundles of tubes finned with wound aluminum strip, and flared into the load-bearing wall, are reported. Correction factors applicable to the method of simulating convective heat transfer over the range Re = (2.5-25).10/sup 3/ are given, with variation in the number of rows over the air course from one to four.

  9. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    Research Applied to National Needs. EXPERIMENTAL SYSTEM A generalized system for solar heating and cooling

  10. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  11. 2011-12 Report on the Indirect Costs of Research Program Since 2003 the Federal Indirect Costs of Research Program provides Canadian universities with annual funding to help

    E-Print Network [OSTI]

    Brownstone, Rob

    2011-12 Report on the Indirect Costs of Research Program Since 2003 the Federal Indirect Costs or "indirect" costs of research. Examples of such costs include lighting and heating for research space, salaries for staff that provide technical or administrative research support, training costs for workplace

  12. Industrial and Commercial Heat Pump Applications in the United States

    E-Print Network [OSTI]

    Niess, R. C.

    compression cycle. Using readily available fluorocarbon refrigerants as the heat pump working fluid, this cycle is commonly used because of its wide application opportunities. Compressed Vapors Heat Pump Compressor Heat Sink PrOCess (Condenser... and refrigerants most commonly used and the open-cycle mechanical vapor compression heat pumps. Waste heat sources, heat loads served by heat pumps--and typical applications using heat pumps for large-scale space heating, domestic water heating, and industrial...

  13. notThe old maxim is at the heart of Handan Tezel's research on storing excess heat from

    E-Print Network [OSTI]

    Petriu, Emil M.

    on storing excess heat from solar panels or from power generation-- to generate more power by Celeste Mackenzie s far as HandanTezel is concerned, steam puffing out of power plants as they generate electricity the cost, says Tezel, is either increasing the energy density or reducing the price of the zeolite material

  14. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    models: aggregated by SMSA market share central cooling all gas space heat all oilmodels: aggregated by regions market share central cooling all gas space heat all oil

  15. Intelligence and Space Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National Nuclear SecurityIntellectual Property IntellectualScience

  16. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report consists of brief summaries of the activities of the Geo-Heat Center during the report period. Technical assistance was given to requests from 20 states in the following applications: space and district heating; geothermal heat pumps; greenhouses; aquaculture; industrial plants; electric power; resource/well; equipment; and resort/spa. Research and development activities progressed on (1) compilation of data on low-temperature resources and (2) evaluation of groundwater vs. ground-coupled heat pumps. Also summarized are technology transfer activities and geothermal progress monitoring activities.

  17. Geothermal direct-heat utilization assistance. Quarterly report, October--December 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-97. It describes 174 contracts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  18. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  19. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    come from space heating within homes (Boardman, 2007). If weassociated with heating the home must be an imperative. Theheating and hot water energy consumption of the homes (Zack

  20. ITP Industrial Distributed Energy: Promoting Combined Heat and...

    Broader source: Energy.gov (indexed) [DOE]

    residential applications the heat can be used for domestic hot water, space heating, absorption cooling, or dehumidifying at the building where it is produced. CHP systems consist...

  1. UNIVERSITY SPACE POLICY ALLOCATION OF UNIVERSITY SPACE

    E-Print Network [OSTI]

    UNIVERSITY COLLEGE DUBLIN UNIVERSITY SPACE POLICY #12;ALLOCATION OF UNIVERSITY SPACE I Purpose To provide a methodology for the allocation of space across the University II Background Due to the university's success in attracting research funding, the need for space and facilities has grown

  2. THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

    E-Print Network [OSTI]

    Apps, J.A.

    2011-01-01T23:59:59.000Z

    GENERATION AND NONELECTRIC HEATING I J. A. Apps I NTRODUCT IGENERATION AND NONELECTRIC HEATING li I J. A. Apps NovemberGENERATION AND NONELECTRIC HEATING J. A. Apps Earth Sciences

  3. Plasma-Materials Interactions (PMI) and High-Heat-Flux (HHF) component research and development in the US Fusion Program

    SciTech Connect (OSTI)

    Conn, R.W.

    1986-10-01T23:59:59.000Z

    Plasma particle and high heat fluxes to in-vessel components such as divertors, limiters, RF launchers, halo plasma scrapers, direct converters, and wall armor, and to the vacuum chamber itself, represent central technical issues for fusion experiments and reactors. This is well recognized and accepted. It is also well recognized that the conditions at the plasma boundary can directly influence core plasma confinement. This has been seen most dramatically, on the positive side, in the discovery of the H-mode using divertors in tokamaks. It is also reflected in the attention devoted worldwide to the problems of impurity control. Nowadays, impurities are controlled by wall conditioning, special discharge cleaning techniques, special coatings such as carbonization, the use of low-Z materials for limiters and armor, a careful tailoring of heat loads, and in some machines, through the use of divertors. All programs, all experiments, and all designers are now keenly aware that PMI and HHF issues are key to the successful performance of their machines. In this brief report we present general issues in Section 2, critical issues in Section 3, existing US PMI/HHF experiments and facilities in Section 4, US International Cooperative PMI/HHF activities in Section 5, and conclude with a discussion on major tasks in PMI/HHF in Section 6.

  4. Heating Energy Meter Validation for Apartments

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01T23:59:59.000Z

    Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

  5. Heating Energy Meter Validation for Apartments 

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01T23:59:59.000Z

    Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

  6. Relationship of fuel size and spacing to combustion characteristics of laboratory fuel cribs. Forest Service research paper

    SciTech Connect (OSTI)

    Anderson, H.E.

    1990-07-01T23:59:59.000Z

    Flaming combustion in cribs of large woody fuels, thickness 5cm or greater, is not sustained when fuel spacing ratio, fuel edge-to-edge separation distance to fuel thickness, is greater than 3:1. The flame length associated with the large-fuel burning rate was found to drop rapidly when the large-fuel spacing ratio increases beyond 2.23:1. This supports the critical spacing assigned in the large-fuel subroutine burnout of Albini's fire modeling program.

  7. Research on thermophoretic and inertial aspects of the ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1986-12-01T23:59:59.000Z

    In support of the above mentioned objectives, we have initiated theoretical studies in the following three interrelated areas : (a) Interaction of inertial- and thermophoretic effects in well-defined laminar dusty-gas'' flows. (b) Self-regulated sticking and deposit erosion in the simultaneous presence of vapor or submicron glue'' (c) Use of packed bed and tube-bank heat transfer and friction correlations to provide the basis for future tube-bank fouling predictions.During the first three months of Grant DE-FG22-86 PC 90756, we have: (1) Designed and initiated construction of the microcombustor particle-laden jet facility described in Section 3.1. (2) Initiated theoretical studies of the interaction of inertial and thermophoretic effects, the role of simultaneous vapor arrival in determining particle sticking and erosion probabilities, and mass transport phenomena in deep tube banks.

  8. Overall Project Goals The Global Ecology Research Center at Stanford

    E-Print Network [OSTI]

    -energy cooling. The Night Sky radiant system demon- strates the same principles of radiant heat loss to deep space that researchers are investigating while a Cool Tower serves as an iconic focal point that drawsOverall Project Goals The Global Ecology Research Center at Stanford University is an extremely low

  9. NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes.

    E-Print Network [OSTI]

    NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems to optimize overall space conditioning system design in both heating and cooling modes. Potential Impact

  10. Refrigerant charge management in a heat pump water heater

    DOE Patents [OSTI]

    Chen, Jie; Hampton, Justin W.

    2014-06-24T23:59:59.000Z

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  11. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1987-03-01T23:59:59.000Z

    In support of the above mentioned objectives, we are carrying out theoretical studies in the following three interrelated areas: (a) Interaction of inertial- and thermophoretic effects in well-defined laminar dusty-gas'' flows; (b) Self-regulated sticking and deposit erosion in the simultaneous presence of vapor or submicron glue''; (c) Use of packed bed and tube-bank heat transfer and friction correlations to provide the basis for future tube-bank fouling predictions. During this second quarter of Grant DE-FG22-86 PC 90756. we have: (1) done preliminary gas velocity and temperature calibrations of the micro-combustor exit gas flow jet and initiated the development of both a monodispersed droplet feed system and powder feed system to provide monodispersed particle laden jets covering a broad spectrum of particle sizes (ca. 0.5--50 m diameter); and, (2) demonstrated the ability of impacting supermicron particles to remove predeposited submicron particles on a platinum target, using real-time optical reflectivity methods. These preliminary experiments will be extended and discussed in our next Quarterly Technical Report.

  12. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1989-03-01T23:59:59.000Z

    Little is yet known (theoretically or experimentally) about the simultaneous effects of particle inertia, particle thermophoresis and high mass loading on the important engineering problem of predicting deposition rates from flowing dusty'' gases. For this reason, we investigate the motion of particles present at nonnegligible mass loading in a flowing nonisothermal gaseous medium and their deposition on strongly cooled or heated solid objects by examining the instructive case of steady axisymmetric dusty gas'' flow between two infinite disks: an inlet (porous) disk and the impermeable target'' disk -- a flow not unlike that encountered in recent seeded-flame experiments. Since this stagnation flow/geometry admits interesting self-similar solutions at all Reynolds numbers, we are able to predict laminar flow mass-, momentum- and energy-transfer rate coefficients over a wide range of particle mass loadings, dimensionless particle relaxation times (Stokes numbers), dimensionless thermophoretic diffusivities, and gas Reynolds numbers. As a by-product, we illustrate the accuracy and possible improvement of our previous diffusion model'' for tightly coupled dusty gas systems. Moreover, we report new results illustrating the dependence of the important critical'' Stokes number (for incipient particle impaction) on particle mass loading and wall/gas temperature ratio for dust-laden gas motion towards overheated'' solid surfaces. The present formulation and insulating transport coefficients should not only be useful in explaining/predicting recent deposition rate trends in seeded'' flame experiments, but also highly mass-loaded systems of technological interest.

  13. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1988-03-01T23:59:59.000Z

    During the present reporting period, we have initiated work on (a) the interpretation of our recent data (see QTR5) on deposition rates under the simultaneous influence of inertia and thermophoresis, (b) the possible rate of particle photophoresis in environments characterized by high radiative heat loads. and (c) the influence of particle size distributions on total mass deposition rates. The fruits of these initiatives will be reported in subsequent quarterly technical reports. Here, we focus on our recent theoretical results in the important but previously uncharted area of the relations between particulate deposition mechanisms, deposit microstructure and deposit properties. Experimental verification of some of the most interesting predictions will be the subject of future HTCRE-Lab studies. Recent discussions with fouling engineers have convinced us that despite recent advances in our ability to predict particle deposition rates in convective-diffusion environments, the important connection between resulting deposit properties (effective thermal conductivity permeability, [hor ellipsis]) and deposition mechanism remain poorly understood and only scarcely studied. Accordingly, as part of this DOE-PETC program we have developed a discrete stochastic model to simulate particulate deposition processes resulting from a combination of deposition mechanisms.

  14. Refundable Clean Heating Fuel Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The state of New York began offering a corporate income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

  15. Refundable Clean Heating Fuel Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The state of New York began offering a personal income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

  16. Bio-Heating Oil Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It...

  17. How Do Variations in Heat Islands in Space and Time Influence HoHow Do Variations in Heat Islands in Space and Time Influence Household Water Use?usehold Water Use? Rimjhim Aggarwal1, Subhrajit Guhathakurta1,2, Susanne Grossman-Clarke1, and Vasudha Lathey

    E-Print Network [OSTI]

    Hall, Sharon J.

    to estimate the relation between heat islands and water consumption, after adjusting for the effect consumption has remained stable over these years. To use panel data techniques to control for the unobserved consumption in Phoenix. RESULTS The heat island has expanded spatially over the study period, and also

  18. aps high heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a stiff parameter denoted as 1. The model problem Paris-Sud XI, Universit de 5 Heat Pump for High School Heat Recovery Texas A&M University - TxSpace Summary: The heat pump...

  19. aging heat treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump Texas A&M University - TxSpace Summary: The effects of outdoor heat exchanger...

  20. alloys heat treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump Texas A&M University - TxSpace Summary: The effects of outdoor heat exchanger...

  1. air heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Pump Texas A&M University - TxSpace Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water...

  2. anisothermal heat treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump Texas A&M University - TxSpace Summary: The effects of outdoor heat exchanger...

  3. air source heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Pump Texas A&M University - TxSpace Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water...

  4. Proceedings: Heat exchanger workshop

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

  5. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    the choice of space heating technology is depen- dent on thefor Fuel and Technology Choice in Home Heating and Cooling,"fuel or technology for residential space heating. The

  6. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01T23:59:59.000Z

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    SciTech Connect (OSTI)

    Lienau, P.

    1996-11-01T23:59:59.000Z

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  8. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  9. Experimental study of ion heating and acceleration during magnetic reconnection

    SciTech Connect (OSTI)

    Hsu, S.C.

    2000-01-28T23:59:59.000Z

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational reconnection research. Furthermore, much progress was made in understanding the reconnection process itself.

  10. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1990-05-01T23:59:59.000Z

    The overall goal of this research in the area of ash transport was to advance the capability of making reliable engineering predictions of the dynamics and consequences of net deposit growth for surfaces exposed to the products of coal combustion. To accomplish this for a wide variety of combustor types, coal types, and operating conditions, this capability must be based on a quantitative understanding of each of the important mechanisms of mineral matter transport, as well as the nature of the interactions between these substances and the prevailing fireside'' surface of the deposit. This level of understanding and predictive capability could ultimately be translated into very significant cost reductions for coal-fired equipment design, development and operation.

  11. Experimental Study of Ion Heating and Acceleration During

    E-Print Network [OSTI]

    and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating

  12. National Aeronautics and Space Administration Marshall Space Flight Center

    E-Print Network [OSTI]

    and Services marshall Propulsion Systems Space Transportation/ Launch Vehicles Space Systems Scientific. Advanced propulsion and power research and development including high-power electric propulsion, nuclear thermal propulsion, space nuclear power systems, nuclear surface power systems, and propellant

  13. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  14. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  15. Japan Atomic Energy Research Institute/United States Integral Neutronics Experiments and Analyses for tritium breeding, nuclear heating, and induced radioactivity

    SciTech Connect (OSTI)

    Abdou, M.A.; Youssef, M.; Kumar, A. [Univ. of California, Los Angeles, CA (United States)] [and others

    1995-08-01T23:59:59.000Z

    A large member of integral experiments for fusion blanket neutronics were performed using deuterium-tritium (D-T) neutrons at the Fusion Neutronics Source facility as part of a 10-yr collaborative program between the Japan Atomic Energy Research Institute and the United States. A number of measurement techniques were developed for tritium production, induced radioactivity, and nuclear heating. Transport calculations were performed using three-dimensional Monte Carlo and two-dimensional discrete ordinates codes and the latest nuclear data libraries in Japan and the United States. Significant differences among measurement techniques and calculation methods were found. To assure a 90% confidence level for tritium breeding calculations not to exceed measurements, designers should use a safety factor > 1.1 to 1.2, depending on the calculation method. Such a safety factor may not be affordable with most candidate blanket designs. Therefore, demonstration of tritium self-sufficiency is recommended as a high priority for testing in near-term fusion facilities such as the International Thermonuclear Experimental Reactor (ITER). The radioactivity measurements were performed for > 20 materials with the focus on gamma emitters with half-lives < 5 yr. Most discrepancies were attributed directly to deficiencies in the activation libraries, particularly errors in cross sections for certain reactions. 71 refs., 30 figs., 5 tabs.

  16. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    SciTech Connect (OSTI)

    Feng Jin

    2009-01-07T23:59:59.000Z

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  17. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01T23:59:59.000Z

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  18. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  19. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01T23:59:59.000Z

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  20. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    Space-Heating Supply Hour Load (kW) Storage CHP NG Fig. 14Space-Heating Supply Load (kW) Storage Hour CHP NG Fig. 15Supply Load (kW) Storage CHP NG Hour Fig. 16 July Weekday

  1. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  2. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  3. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  4. GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 16, doi:10.1002/grl.50640, 2013 The role of the geothermal heat flux in driving the abyssal

    E-Print Network [OSTI]

    Ferrari, Raffaele

    . Peltier1 Received 24 April 2013; revised 4 June 2013; accepted 5 June 2013. [1] The results presented-induced circulation and the Antarctic bottom water cell. The enhanced circulation ven- tilates the GHF derived heating. R. Peltier (2013), The role of the geothermal heat flux in driving the abyssal ocean circulation

  5. Heat island mitigation benefits from the collaboration between researchers and stakeholders, interdisciplinary methods, and neighborhood-scale strategies that account for

    E-Print Network [OSTI]

    York (NYC), the heat island impacts interact with aging energy and water infrastructure heat cooling and increase the amount of energy that is absorbed and stored in the city; ii) low-albedo surfaces, such as dark rooftops and asphalt roadways; iii) reduced skyview from within urban canyons, which

  6. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  7. 1.12.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/24 8. Heat pumps, heat pipes,

    E-Print Network [OSTI]

    Zevenhoven, Ron

    of low-temperature (waste) heat, replacing sources of (unnecessarily) high temperature heat (and, 3) outside water heat and 4) heat from another indoor space, or 5) waste heat from a process1.12.2014Åbo Akademi Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/24 8. Heat

  8. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    www.Zurn.com PAGE 35 Radiant Cooling Research Scoping Study1988. “Radiant Heating and Cooling, Displacement VentilationHeat Recovery and Storm Water Cooling: An Environmentally

  9. Space Physics at UNH FROM THE DAWN OF SPACE EXPLORATION, UNH space scientists, engineers, and

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    Space Physics at UNH FROM THE DAWN OF SPACE EXPLORATION, UNH space scientists, engineers, and students in the Institute for the Study of Earth, Oceans, and Space (EOS) have worked on mission design and modeling. The Space Science Center, housed at EOS, is engaged in research and graduate education in all

  10. E-Print Network 3.0 - address heat tolerance Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    greenhouses... temperature and flows are suggested for spas and pools, space and district heating, greenhouse and aquaculture... pond heating, and industrial applications....

  11. Building America Webinar: Retrofitting Central Space Conditioning...

    Broader source: Energy.gov (indexed) [DOE]

    of various control strategies to improve hydronic space heating performance in three low-rise multifamily buildings in Cambridge, MA. Presenters showed results from an analysis...

  12. The Homopolar Pulse Billet Heating Process

    E-Print Network [OSTI]

    Keith, R. E.; Weldon, W. F.

    1982-01-01T23:59:59.000Z

    - or gas-fired furnace machine. (7) Also during 1981, under the heating. Although most billet heating sponsorship of the Electric Power Research today is done using fuel-fired furnaces, Institute (EPRI), CEM-UT carried out a electric heating... obtained frDm Electromechanics at The University of Texas the EPRI study. at Austin (CEM-UT) has been engaged in research on large pulsed power supplies for use in experiments leading to controlled TEMPERATURE GRADIENTS IN BILLET HEATING...

  13. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipal Investigators PostdoctoralResearch

  14. Energy Saving Guidelines for Portland State University Heating and Ventilation

    E-Print Network [OSTI]

    Caughman, John

    Energy Saving Guidelines for Portland State University Heating and Ventilation Conditioned spaces will be heated to a temperature range of 67-70 in the winter and cooled, where applicable, to a temperature range will not be allowed, unless approval from FPM has been granted for cases where spaces cannot otherwise be heated

  15. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30T23:59:59.000Z

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  16. Research Note on a Parabolic Heat-Balance Integral Method with Unspecified Exponent: An Entropy Generation Approach in Optimal Profile Determination

    E-Print Network [OSTI]

    Jordan Hristov

    2010-12-12T23:59:59.000Z

    The heat-balance integral method of Goodman is studied with two simple 1-D heat conduction problems with prescribed temperature and flux boundary conditions. These classical problems with well known exact solutions enable to demonstrate the heat-balance integral method performance by a parabolic profile and the entropy generation minimization concept in definition of the appropriate profile exponent. The basic assumption generating the additional constraints needed to perform the solution is based on the requirement to minimize the difference in the local thermal entropy generation rates calculated by the approximate and the exact profile, respectively. This concept is easily applicable since the general concept has simple implementation of the condition requiring the thermal entropy generations calculated through both profiles to be the same at the boundary. The entropy minimization generation approach automatically generates the additional requirement which is deficient in the set of conditions defined by the heat-balance integral method concept.

  17. National Aeronautics and Space Administration

    E-Print Network [OSTI]

    Deep Space Atomic Clock Composite Strut Structural Testing Exoskeleton Solar Sail and Boom Fab MSL heat shield with instrumentation Inflatable Re-entry Vehicle Experiment Additive Manufacturing BIRD focal

  18. Free-piston Stirling technology for space power

    SciTech Connect (OSTI)

    Slaby, J.G.

    1994-09-01T23:59:59.000Z

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA`s new Civil Space Technology Initiative (CSTI). The overall goal of CSTI`s High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE.

  19. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTim ReinhardtSystem

  20. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTim

  1. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  2. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  3. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  4. National Aeronautics and Space Administration

    E-Print Network [OSTI]

    Lüttgen, Gerald

    National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681 ICASE, Hampton, Virginia Victor Carreño NASA Langley Research Center, Hampton, Virginia Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton, VA Operated

  5. ASHRAE Research PROGRAM OVERVIEW

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    of appliances , such as heat pump water heaters 2. Our equipment rating methods are (at best) obsolete's Strategic Plan for Research · Research and Objectives related to Heat Pumps · GSHP System at ASHRAE HQ: · Indoor Environmental Quality (IEQ) · Sustainability: Solar, Geothermal, Heat Pumps, Fuel Cells, CHP, etc

  6. U.S. geothermal district heating : barriers and enablers

    E-Print Network [OSTI]

    Thorsteinsson, Hildigunnur H

    2008-01-01T23:59:59.000Z

    Geothermal district heating experience in the U.S. is reviewed and evaluated to explore the potential impact of utilizing this frequently undervalued renewable energy resource for space and hot water heating. Although the ...

  7. air heat exchanger: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre...

  8. air heat exchangers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre...

  9. areas heat shinku: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Analysis for Applying the Double-Stage Coupled Heat Pump System in the Villa of Cold Area Texas A&M University - TxSpace Summary: The conventional heating mode is a...

  10. auxiliary radiofrequency heating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atalar, Ergin 3 Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System Texas A&M University - TxSpace Summary: This paper presents two common...

  11. auxiliary heating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topic Index 1 Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System Texas A&M University - TxSpace Summary: This paper presents two common...

  12. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Gregory P. Meisner General Motors Global Research & Development March 21, 2012 3rd Thermoelectric...

  13. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water

    E-Print Network [OSTI]

    Cawley, R.

    heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

  14. air-side heat transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    space to satisfy the space cooling load (free cooling... Shami, U. F. 1996-01-01 12 HEAT TRANSFER ANALYSIS OF A PULSE DETONATION Engineering Websites Summary: HEAT TRANSFER...

  15. Retrofit Integrated Space & Water Heating: Field Assessment,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    directly replace the existing forced air furnace and water heater, and consist of a high efficiency water heater or boiler and an optimized hydronic air handler. The air handlers...

  16. Solar Space Heat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to: navigation,PanelsLight Energy Systems

  17. Solar space heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic Malaysia Sdn Bhdspace cooling

  18. Solar space heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlassourceResource

  19. Passive Solar Space Heat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) JumpPalcanPassiv Systems

  20. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  1. A study of contact angles in porous solids using heat pipes

    E-Print Network [OSTI]

    Collins, Richard Clark

    1971-01-01T23:59:59.000Z

    Aviation and Space Conference, 1968, 655-658. 25 Brosens, P. , "Thermionic Converters with Heat Pipe Radiators, " Advances in Energy Conversion Engineering, 1967, 181-187. 33 26 Werner, R. W. , and G. A. Carlson, "Heat Pipe Radiator for Space Power... heat from a nuclear source to a thermionic generator (~29 , since thermionic generators are sensitive to high levels of radiation. Heat pipes have been suggested for controlling cryogenic boiloff in space (~30 . An investigation of using heat pipes...

  2. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    natural gas generator with waste heat recovery at a facilityCCHP locations that are using waste heat for cooling alsouse some of the waste heat directly for water or space

  3. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    Passive and Hybrid Heating Cooling Systems Michael]. Holtz,PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS Michael J.of passive and hybrid space heating and cooling systems are

  4. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

  5. Space of Spaces

    E-Print Network [OSTI]

    Edward Anderson

    2014-11-30T23:59:59.000Z

    Wheeler emphasized the study of Superspace - the space of 3-geometries on a spatial manifold of fixed topology. This is a configuration space for GR; knowledge of configuration spaces is useful as regards dynamics and QM.In this Article I consider furthmore generalized configuration spaces to all levels within the conventional `equipped sets' paradigm of mathematical structure used in fundamental Theoretical Physics. This covers A) the more familiar issue of topology change in the sense of topological manifolds (tied to cobordisms), including via pinched manifolds. B) The less familiar issue of not regarding as fixed the yet deeper levels of structure: topological spaces themselves (and their metric space subcase), collections of subsets and sets. Isham has previously presented quantization schemes for a number of these. I consider some classical preliminaries for this program, aside from the most obvious (classical dynamics for each). Rather, I provide I) to all levels Relational and Background Independence criteria, which have Problem of Time facets as consequences. I demonstrate that many of these issues descend all the way down, whilst also documenting at which level the others cease to apply. II) Probability theory on configuration spaces. In fact such a stochastic treatment is how to further mathematize the hitherto fairly formal and sketchy subject of records theory (a type of formultion of quantum gravity). Along these lines I provide a number of further examples of records theories. This is in addition to Kendall's shape statistics being the example corresponding to relational mechanics models. To this example I now add 1) Cech cohomology, 2) Kendall's random sets, 3) the lattice of topologies on a fixed set. I finally consider 4) sheaves, both as a generalization of Cech cohomology and in connection to the study of stratified manifolds such as Superspace itself.

  6. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Nick Rosenberry, Harris Companies

    2012-05-04T23:59:59.000Z

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  7. auxiliary heating system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute...

  8. Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast

    SciTech Connect (OSTI)

    Ueno, K.; Loomis, H.

    2014-11-01T23:59:59.000Z

    Transformations, Inc. has extensive experience building their high performance housing at a variety of Massachusetts locations, in both a production and custom home setting. The majority of their construction uses mini-split heat pumps (MSHPs) for space conditioning. This research covered the long-term performance of MSHPs in Zone 5A; it is the culmination of up to three years' worth of monitoring in a set of eight houses. This research examined electricity use of MSHPs, distributions of interior temperatures and humidity when using simplified (two-point) heating systems in high performance housing, and the impact of door open/closed status on temperature distributions. The use of simplified space conditioning distribution (MSHPs) provides significant first cost savings, which are used to offset the increased investment in the building enclosure.

  9. Small Reactor for Deep Space Exploration

    SciTech Connect (OSTI)

    None

    2012-11-29T23:59:59.000Z

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  10. Small Reactor for Deep Space Exploration

    ScienceCinema (OSTI)

    None

    2014-05-30T23:59:59.000Z

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  11. PROCEEDINGS OF THE 1998 OIL HEAT TECHNOLOGY CONFERENCE

    SciTech Connect (OSTI)

    MCDONALD,R.J.

    1998-04-01T23:59:59.000Z

    The 1998 Oil Heat Technology Conference will be held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting will be held in cooperation with the Petroleum Marketers Association of America (PMAA). The 1998 Oil Heat Technology Conference, will be the twelfth since 1984, is an important technology transfer activity and is supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The reason for the conference is to provide a forum for the exchange of information and perspectives among international researchers, engineers, manufacturers and marketers of oil-fired space-conditioning equipment. They will provide a channel by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the Conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  12. Modularization and simulation techniques for heat balance-based energy and load calculation

    E-Print Network [OSTI]

    Richard K. Strand

    2001-01-01T23:59:59.000Z

    the Loads Toolkit research project is to obtain a heat balance based load calculation procedure that

  13. The effects of airflow modulation and multi-stage defrost on the performance of an air source heat pump

    E-Print Network [OSTI]

    Payne, William Vance

    1992-01-01T23:59:59.000Z

    . This transfer of heat energy from a low temperature ambient to the high temperature conditioned space is accomplished by the input of electrical energy to the compressor. During the heating season, the heat pump transfers heat energy from the low temperature... pump refrigeration circuit includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, an expansion device, and fans to transfer heat energy from a low temperature heat energy source to a higher temperature heat energy sink...

  14. Center for Space Research, Conference Room 2.806, WPR Building, 2nd Floor, 3925 W. Braker Lane, Suite 200, Austin, Texas 78759

    E-Print Network [OSTI]

    Lightsey, Glenn

    .csr.utexas.edu/seminars Four related talks concerning work for the Joint Space Operations Center (JSPOC) Thursday, October 9 at the Joint Space Operations Center (JSPOC) for the Air Force. Force modeling and estimation techniques, Senior Scientist with Space Environment Technologies Abstract: Discussion of density variations and how

  15. Temperature and Heat Transfer Measurements Cengiz Camci

    E-Print Network [OSTI]

    Camci, Cengiz

    mainly because of thermal reasons. Satel- lite thermal management systems, hot sections of propulsion systems, combustors, aerodynamic heating of supersonic/ hypersonicvehiclesurfaces is not meaningful, since there are no agitated particles in empty space. A body in which "thermal agitation

  16. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  17. Heat transfer in the plate heat exchanger of an ammonia-synthesis column

    SciTech Connect (OSTI)

    Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.

    1983-01-01T23:59:59.000Z

    The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.

  18. Geothermal heating for Caliente, Nevada

    SciTech Connect (OSTI)

    Wallis, F.; Schaper, J.

    1981-02-01T23:59:59.000Z

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  19. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22T23:59:59.000Z

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  20. Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.

    2011-10-01T23:59:59.000Z

    The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

  1. Heat exchange assembly

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08T23:59:59.000Z

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  2. Proceedings of the 1993 oil heat technology conference and workshop

    SciTech Connect (OSTI)

    McDonald, R.J.

    1993-09-01T23:59:59.000Z

    This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Utility solar water heating workshops

    SciTech Connect (OSTI)

    Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

    1992-01-01T23:59:59.000Z

    The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

  4. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  5. Guidelines for Measuring Air Infiltration Heat Exchange Effectiveness (IHEE), Submitted to the Texas Higher Education Coordination Board Energy Research Application Program Project #227 

    E-Print Network [OSTI]

    Liu, M.; Claridge, D. E.

    1993-01-01T23:59:59.000Z

    This report is presented to the Texas Higher Education Coordination Board as a deliverable under the Energy Research and Applications Program Project #227, which targeted reducing the design size of HVAC systems in houses since the actual air...

  6. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  7. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  8. STATE OF CALIFORNIA SPACE CONDITIONING SYSTEMS, DUCTS AND FANS

    E-Print Network [OSTI]

    , crawl- space, etc.) Duct R-value Heating Load (Btu/hr) Heating Capacity (Btu/hr) Equip Type (package Load (Btu/hr) Cooling Capacity (Btu/hr) 1. If project is new construction, see Footnotes to Standards

  9. Copyright The Korean Space Science Society 33 http://janss.kr pISSN: 2093-5587 eISSN: 2093-1409 Research Paper

    E-Print Network [OSTI]

    California at Berkeley, University of

    Copyright © The Korean Space Science Society 33 http://janss.kr pISSN: 2093-5587 eISSN: 2093.29.1.033 Development of CINEMA Mission Uplink Communication System NayoungYoon1 , SeyoungYoon1 ,Yongho Kim2 , Jiwon University, Yongin 446-701, Korea 3 Space Science Laboratory, University of California, Berkeley, CA 94705

  10. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  11. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  12. Heating Season Has Ended An Update On The Numbers

    E-Print Network [OSTI]

    Heating Season Has Ended An Update On The Numbers Heating Season Has Ended The snow in the mid to last at least 10 days!! So, we are declaring an end to the heating season and entering late into what season, if your space falls out of range or the ventilation does not appear to work properly, please

  13. Design Development Analyses in Support of a Heat pipe-Brayton Cycle Heat Exchanger

    SciTech Connect (OSTI)

    Steeve, Brian E. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-07-01T23:59:59.000Z

    One of the power systems under consideration for future space exploration applications, including nuclear electric propulsion or as a planetary surface power source, is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heat pipes to the Brayton gas via a heat exchanger attached to the heat pipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration. (authors)

  14. Heating 7. 2 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01T23:59:59.000Z

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  15. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  16. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V., E-mail: bair@berkeley.edu; Bogy, David B., E-mail: dbogy@berkeley.edu [University of California, Etcheverry Hall, MC 1740, Berkeley, California 94720-1740 (United States)

    2014-02-10T23:59:59.000Z

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  17. Heat-driven acoustic cooling engine having no moving parts

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

  18. Using a cold radiometer to measure heat loads and survey heat leaks

    SciTech Connect (OSTI)

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P. [Cryogenics and Fluids Branch, NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

    2014-01-29T23:59:59.000Z

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  19. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  20. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  1. Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration Instrument Science Report ACS 2005-06

    E-Print Network [OSTI]

    Sirianni, Marco

    Aeronautics and Space Administration Instrument Science Report ACS 2005-06 Demonstration of a Significant examples where major scien- #12;Instrument Science Report ACS 2005-06 2 tific discoveries have only been

  2. Copyright The Korean Space Science Society 23 http://janss.kr pISSN: 2093-5587 eISSN: 2093-1409 Research Paper

    E-Print Network [OSTI]

    California at Berkeley, University of

    , Electron, MAgnetic fields (CINEMA) is a space science mission with three identical CubeSats. ThreeCopyright © The Korean Space Science Society 23 http://janss.kr pISSN: 2093-5587 eISSN: 2093.29.1.023 Thermal Analysis of TRIO-CINEMA Mission JaegunYoo1 , Ho Jin1 , Jongho Seon1 ,Yun-Hwang Jeong2 , David

  3. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Quarterly techical report, December 1, 1986--February 28, 1987

    SciTech Connect (OSTI)

    Rosner, D.E.

    1987-03-01T23:59:59.000Z

    In support of the above mentioned objectives, we are carrying out theoretical studies in the following three interrelated areas: (a) Interaction of inertial- and thermophoretic effects in well-defined laminar ``dusty-gas`` flows; (b) Self-regulated sticking and deposit erosion in the simultaneous presence of vapor or submicron ``glue``; (c) Use of packed bed and tube-bank heat transfer and friction correlations to provide the basis for future tube-bank fouling predictions. During this second quarter of Grant DE-FG22-86 PC 90756. we have: (1) done preliminary gas velocity and temperature calibrations of the micro-combustor exit gas flow jet and initiated the development of both a monodispersed droplet feed system and powder feed system to provide monodispersed particle laden jets covering a broad spectrum of particle sizes (ca. 0.5--50 m diameter); and, (2) demonstrated the ability of impacting supermicron particles to remove predeposited submicron particles on a platinum target, using real-time optical reflectivity methods. These preliminary experiments will be extended and discussed in our next Quarterly Technical Report.

  4. Research on thermophoretic and inertial aspects of ash particle: Deposition on heat exchanger surfaces in coal-fired equipment: Quarterly technical report, June 1, 1988--August 31, 1988

    SciTech Connect (OSTI)

    Rosner, D.E.

    1988-09-01T23:59:59.000Z

    DOE-PETC has initiated at the Yale HTCRE Laboratory a systematic three-year experimental and theoretical research program directed toward providing engineers with the data, methods, and rational correlations needed to improve the generality and accuracy of prediction of inorganic particle deposition rates under typical coal combustion conditions i.e., those leading to the importance of thermophoretically-enhanced diffusion (submicron mode) and the inertially-enhanced ''impaction'' (supermicron mode), often in the presence of simultaneous alkali salt vapor condensation. After a brief statement of objectives (Section 2) we outline our experimental and theoretical progress during this quarterly reporting period (Section 3), with our results summarized in the references documented in Section 5. Section 4 gives relevant administrative information (personnel, research plans). 15 refs., 3 figs.

  5. Air flow in a high aspect ratio heat sink

    E-Print Network [OSTI]

    Allison, Jonathan Michael

    2010-01-01T23:59:59.000Z

    The increasing heat output of modern electronics requires concomitant advances in heat sinking technology: reductions in thermal resistance and required pumping power are necessary. This research covers the development of ...

  6. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    USA MODELLING THE IMPACT OF USER BEHAVIOUR ON HEAT ENERGY CONSUMPTIONUSA The second point of interest to research was modelling the excess energy consumptionUSA Figure 3. Actual heating and hot water energy consumption

  7. Designing, testing, and analyzing coupled, flux transformer heat

    E-Print Network [OSTI]

    Renzi, Kimberly Irene

    1998-01-01T23:59:59.000Z

    The proposed research involves designing, testing, and ics. analyzing a coupled, flux transformer heat pipe system following the patent of Oktay and Peterson (1997). Experiments were conducted utilizing four copper heat pipes, lined with copper mesh...

  8. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    SciTech Connect (OSTI)

    Hughes, Patrick [ORNL; Im, Piljae [ORNL

    2012-01-01T23:59:59.000Z

    Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three par

  9. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric Heat

  10. Process and apparatus for indirect-fired heating and drying

    DOE Patents [OSTI]

    Abbasi, Hamid Ali; Chudnovsky, Yaroslav

    2005-04-12T23:59:59.000Z

    A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.

  11. AB Space Engine

    E-Print Network [OSTI]

    Alexander Bolonkin

    2008-03-02T23:59:59.000Z

    On 4 January 2007 the author published the article Wireless Transfer of Electricity in Outer Space in http://arxiv.org wherein he offered and researched a new revolutionary method of transferring electric energy in space. In that same article, he offered a new engine which produces a large thrust without throwing away large amounts of reaction mass (unlike the conventional rocket engine). In the current article, the author develops the theory of this kind of impulse engine and computes a sample project which shows the big possibilities opened by this new AB-Space Engine. The AB-Space Engine gets the energy from ground-mounted power; a planet electric station can transfer electricity up to 1000 millions (and more) of kilometers by plasma wires. Author shows that AB-Space Engine can produce thrust of 10 tons (and more). That can accelerate a space ship to some thousands of kilometers/second. AB-Space Engine has a staggering specific impulse owing to the very small mass expended. The AB-Space Engine reacts not by expulsion of its own mass (unlike rocket engine) but against the mass of its planet of origin (located perhaps a thousand of millions of kilometers away) through the magnetic field of its plasma cable. For creating this plasma cable the AB-Space Engine spends only some kg of hydrogen.

  12. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment: Quarterly technical report, September 1, 1987-November 30, 1987

    SciTech Connect (OSTI)

    Rosner, D.E.

    1987-12-01T23:59:59.000Z

    DOE-PETC has initiated at the Yale HTCRE Laboratory a systematic three-year experimental and theoretical research program directed toward providing engineers with the data, methods, and rational correlations needed to dramatically improve the generality and accuracy of prediction of inorganic particle deposition rates under typical coal combustion conditions (i.e., those leading to the importance of thermophoretically-enhanced diffusion (submicron mode) and the inertially-enhanced ''impaction'' (supermicron mode)), often in the presence of simultaneous alkali salt vapor condensation. 9 refs., 1 fig.

  13. Space Kimchi

    E-Print Network [OSTI]

    Hacker, Randi; Oborny, Jaimie; Tsutsui, William

    2006-07-05T23:59:59.000Z

    Broadcast Transcript: In space, no one can hear you scream... but did you know that in space no one can detect your smell either? The smell-taste connection means that food in space is not only weightless but tasteless, too. What's a flavor...

  14. Space Heaters The University recognizes that individuals have different levels of comfort associated with

    E-Print Network [OSTI]

    de Lijser, Peter

    for space heating. 14. Do not use space heaters or any other electric appliance around water. 15Space Heaters The University recognizes that individuals have different levels of comfort associated with temperature and heat. The use of electric space heaters as a temporary measure is permitted

  15. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01T23:59:59.000Z

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  16. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01T23:59:59.000Z

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  17. $?$--Rindler space

    E-Print Network [OSTI]

    J. Kowalski-Glikman

    2009-07-18T23:59:59.000Z

    In this paper we construct, and investigate some thermal properties of, the non-commutative counterpart of Rindler space, which we call $\\kappa$--Rindler space. This space is obtained by changing variables in the defining commutators of $\\kappa$--Minkowski space. We then re-derive the commutator structure of $\\kappa$--Rindler space with the help of an appropriate star product, obtained from the $\\kappa$--Minkowski one. Using this star product, following the idea of Padmanabhan, we find the leading order, $1/\\kappa$ correction to the Hawking thermal spectrum.

  18. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  19. Ceramic heat exchanger

    DOE Patents [OSTI]

    LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

    1998-06-16T23:59:59.000Z

    A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

  20. Thermionic generator module with heat pipes

    SciTech Connect (OSTI)

    Horner-Richardson, K.; Ernst, D.M.

    1993-06-15T23:59:59.000Z

    A thermionic converter module is described comprising: a first heat pipe with an annular casing which has a first surface located on an inside surface of the annular casing, at least part of the first surface of the casing of the first heat pipe having constructed upon it a thermionic converter emitter located so that heat will be transferred by conduction from the first heat pipe casing to the thermionic converter emitter; a second heat pipe with a casing which has a second surface, the second surface being located within the first surface of the annular casing of the first heat pipe so that it is surrounded by the first surface; a thermionic converter collector located so as to transfer heat by conduction to the second surface of the casing of the second heat pipe with the thermionic converter collector being adjacent to the thermionic converter emitter but being separated from the thermionic converter emitter by an inter electrode space; and end fitting structures located so that, with the thermionic converter collector and the thermionic converter emitter, they complete an enclosure around the inter electrode space and form an evacuated enclosure within which are located the thermionic converter collector and the thermionic converter emitter.

  1. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Final technical report, September 1, 1986--April 30, 1990

    SciTech Connect (OSTI)

    Rosner, D.E.

    1990-05-01T23:59:59.000Z

    The overall goal of this research in the area of ash transport was to advance the capability of making reliable engineering predictions of the dynamics and consequences of net deposit growth for surfaces exposed to the products of coal combustion. To accomplish this for a wide variety of combustor types, coal types, and operating conditions, this capability must be based on a quantitative understanding of each of the important mechanisms of mineral matter transport, as well as the nature of the interactions between these substances and the prevailing ``fireside`` surface of the deposit. This level of understanding and predictive capability could ultimately be translated into very significant cost reductions for coal-fired equipment design, development and operation.

  2. MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER

    E-Print Network [OSTI]

    Lahey, Richard T.

    MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER "ENGINEERING APPLICATIONS OF FRACTAL AND CHAOS THEORY" RICHARD T. LAHEY, JR. Center for Multiphase Research Rensselaer Polytechnic Institute Troy and multiphase flow & heat transfer will be stressed. This paper will begin by reviewing some important concepts

  3. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diagnostics in the fields of thermodynamics, heat transfer, fluid mechanics, multiphase flows, aerosols, and material decomposition. Our experimental research activities...

  4. Journal of Machine Learning Research 7 (2006) 11831204 Submitted 12/05; Revised 3/06; Published 7/06 Computational and Theoretical Analysis of Null Space and

    E-Print Network [OSTI]

    Ye, Jieping

    2006-01-01T23:59:59.000Z

    statistical approach for supervised dimensionality reduction. It aims to maximize the ratio of the between/06 Computational and Theoretical Analysis of Null Space and Orthogonal Linear Discriminant Analysis Jieping Ye pre-processing step in many applications. Linear discrim- inant analysis (LDA) is a classical

  5. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  6. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  7. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  8. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  9. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  10. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  11. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  12. CURRENT RESEARCH, MONITORING, AND EDUCATION PROJECTS

    E-Print Network [OSTI]

    Almor, Amit

    Research (ONR), National Aeronautics and Space Administration (NASA), and the SC Department of Health

  13. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report

    SciTech Connect (OSTI)

    Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

    1992-07-01T23:59:59.000Z

    Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  14. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California

    SciTech Connect (OSTI)

    Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

    1992-07-01T23:59:59.000Z

    Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  15. JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 19, doi:10.1002/jgra.50230, 2013 Modulation of auroral electrojet currents using dual modulated

    E-Print Network [OSTI]

    Active Auroral Research Program (HAARP) are performed employing dual HF beams amplitude modulated at ELF Research Program (HAARP) in Gakona, Alaska (62.4i N and 145.2i W) has been actively used to generate ELF, 2011; Golkowski et al., 2011; Cohen et al., 2012]. Since 2007, the HAARP facility has been capable

  16. Report on Solar Pool Heating Quantitative Survey

    SciTech Connect (OSTI)

    Synapse Infusion Group, Inc. (Westlake Village, California)

    1999-05-06T23:59:59.000Z

    This report details the results of a quantitative research study undertaken to better understand the marketplace for solar pool-heating systems from the perspective of residential pool owners.

  17. Recovery Act-Funded Water Heating Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into water heating technologies and applications. Projects funded by the...

  18. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  19. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  20. GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    the cost and feasibility of a residential ground coupled heat pump space conditioning system requiring#12;GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz _Solar and Renewables house in Upton, Long Island, New York has been heated and cooled by a liquid source heat pump using

  1. An analytical model for the design of in-slab electric heating panels

    SciTech Connect (OSTI)

    Ritter, T.L.; Kilkis, B.I. [Heatway, Springfield, MO (United States)

    1998-10-01T23:59:59.000Z

    In this paper, a steady-state heat transfer model is described for design and sizing of electric radiant panel heating systems embedded in a slab. This model is applicable both for ceiling and floor panels. An approximate panel surface heat output algorithm is also given as a function of size and orientation of the heated space and outdoor exposure.

  2. Gap between active and passive solar heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  3. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  4. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  5. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  6. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  7. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    transient the heat transfer model. T h i s required the roofto develop and calibrate heat transfer models to be able toE S station, the heat transfer models described i n sections

  8. RESEARCH BRIEF wcec.ucdavis.edu

    E-Print Network [OSTI]

    California at Davis, University of

    . For this reason, a large fraction of cooling research has focused on techniques to reduce heat sink temperatures. Research WCEC collaborated with Geremia Pools to monitor a pool-coupled heat pump system installedRESEARCH BRIEF wcec.ucdavis.edu FOR MORE INFORMATION: Swimming Pools as Heat Sinks for Air

  9. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16T23:59:59.000Z

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  10. Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates

    E-Print Network [OSTI]

    Johnson, K. F.; Shedd, A. C.

    Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

  11. ITP Distributed Energy: Combined Heat and Power Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Governor COMBINED HEAT AND POWER MARKET ASSESSMENT Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: ICF International,...

  12. Fluid Circulation and Heat Extraction from Engineered Geothermal...

    Open Energy Info (EERE)

    A large amount of fluid circulation and heat extraction (i.e., thermal power production) research and testing has been conducted on engineered geothermal reservoirs in the...

  13. NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)

    SciTech Connect (OSTI)

    Hudon, K.

    2012-05-01T23:59:59.000Z

    A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

  14. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, Robert (Churchill, PA); Lackey, Robert S. (Pittsburgh, PA); Fagan, Jr., Thomas J. (Penn HIlls, PA); Veyo, Stephen E. (Murrysville, PA); Humphrey, Joseph R. (Grand Rapids, MI)

    1984-01-01T23:59:59.000Z

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  15. Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  16. DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)

    SciTech Connect (OSTI)

    Culver, G.

    1990-11-01T23:59:59.000Z

    The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.

  17. RENEWABLES RESEARCH Boiler Burner Energy System Technology

    E-Print Network [OSTI]

    RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER Renewables Research September 2010 The Issue Researchers at Altex Technologies Corporation in Sunnyvale, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research

  18. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research

    E-Print Network [OSTI]

    Geubelle, Philippe H.

    - uated by heating (or cooling) the system, creating the void space that constitutes the network to the author for internal non-commercial research and education use, including for instruction at the authors's personal copy Multi-physics design of microvascular materials for active cooling applications Alejandro M

  19. University Turbine Systems Research Program

    SciTech Connect (OSTI)

    Leitner, Robert; Wenglarz, Richard

    2010-12-31T23:59:59.000Z

    The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

  20. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliability. To date, research has been conducted both on externally heated Stirling, organic Rankine, and steam Rankine engines and on the ... Rotating Platform On...