National Library of Energy BETA

Sample records for research reactor sandia

  1. Annular Core Research Reactor at Sandia National Laboratories...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Sandia National Laboratories achieves 10,000th reactor pulse operation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  2. Sandia Energy - CNST and Sandia Researchers Publish a Detailed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNST and Sandia Researchers Publish a Detailed Review of Electrical Contacts in One- and Two-Dimensional Nanomaterials Home News News & Events CNST and Sandia Researchers Publish a...

  3. Sandia National Laboratories: Research: Research Foundations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of gamma-ray radiation. The Annular Core Research Reactor (ACRR) is used for reactor-driven laser experiments, space reactor fuels development, pulse reactor kinetics, reactor...

  4. Sandia Energy - Sandia Researchers Win Best Paper Award from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Analysis Computational Modeling & Simulation Highlights - Energy Research Fuel Options Sandia Researchers Win Best Paper Award from the American Institute of...

  5. Sandia Combustion Research: Technical review

    SciTech Connect (OSTI)

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  6. Sandia National Laboratories Medical Isotope Reactor concept.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  7. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling October 19, 2015 - 3:40pm Addthis Ryan Davis...

  8. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling October 5, 2015 - 12:16pm Addthis Ryan Davis...

  9. Sandia Researchers Develop Promising Chemical Technology for...

    Energy Savers [EERE]

    - 9:50am Addthis DOE-funded researchers at Sandia National Laboratories have developed new chemical technology that could lead to batteries able to cost-effectively store three...

  10. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    SciTech Connect (OSTI)

    Not Available

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

  11. Sandia Energy - Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Development Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Advanced Research & Development Advanced Research & DevelopmentCoryne...

  12. ESnet supports Sandia and APNIC IPv6 Background Radiation research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IPv6 Network IPv6 Implementation Checklist ESnet IPv6 Mirror Servers ESnet IPv6 History ESnet supports Sandia and APNIC IPv6 Background Radiation research Network...

  13. Sandia combustion research program: Annual report, 1987

    SciTech Connect (OSTI)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A.

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  14. Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies

    SciTech Connect (OSTI)

    Mckerley, Bill [Los Alamos National Laboratory; Bustamante, Jacqueline M [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Drypolcher, Anthony F [Los Alamos National Laboratory; Hickey, Joseph [Los Alamos National Laboratory

    2010-01-01

    We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is in support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.

  15. Reactor Safety Research: Semiannual report, July-December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  16. Sandia Energy - Cyber Research Facility Opens at Sandia's California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin Humphreys Home ColinSandiaCraig M.Site

  17. Sandia Energy - Caterpillar, Sandia CRADA Opens Door to Multiple Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, Sandia CRADA Opens Door to

  18. Sandia Energy - Sandia, UNM Form Alliance to Promote Research, Recruiting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompaniesMODE,Simulation Code:Sandia, UNM

  19. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center The Materials Science and Engineering (MSE) Center at Sandia provides knowledge of materials structure, properties, and performance and the processes to produce, transform,...

  20. Sandia National Laboratories: Research: International Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia provides technical expertise for the Chemical Security Engagement Program (CSP), sponsored by the U.S. Department of State. CSP works to reduce the risk of chemical...

  1. Brookhaven Graphite Research Reactor Workshop

    Broader source: Energy.gov [DOE]

    The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II.  Construction began in 1947 and the reactor started...

  2. Sandia National Laboratories: Research: Research Foundations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications Research LaboratoryResearchResearch

  3. Sandia National Laboratories: Research: Research Foundations: Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications ResearchScience Research

  4. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications ResearchScience

  5. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications ResearchScienceand

  6. Sandia National Laboratories: Research: Research Foundations: Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications ResearchScienceandEffects and

  7. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    SciTech Connect (OSTI)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012.

  8. Sandia Energy - Sandia-Electric Power Research Institute Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole OfficialsWork onand Natural Gas ResearchPublishes

  9. Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque HousingBiofuels Overcoming

  10. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandiaCOMMUNITYand

  11. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandiaCOMMUNITYandAir Force

  12. Sandia Energy - Cybersecurity Technologies Research Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin Humphreys Home ColinSandiaCraig

  13. Sandia Energy » Earth Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesTheSandians ParticipateSmallSandia,

  14. Sandia Energy - Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Center Home Energy Research EFRCs Solid-State Lighting Science EFRC Energy Frontier Research Center Energy Frontier Research CenterTara...

  15. Sandia Energy - Research Challenge 1: Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Nanowires Home Energy Research EFRCs Solid-State Lighting Science EFRC Our SSLS EFRC's Scientific Research Challenges and Publications Research Challenge 1: Nanowires Research...

  16. Summary of Sandia research on metal tritides : FY 2007.

    SciTech Connect (OSTI)

    Browning, James Frederick; Kammler, Daniel R.; Snow, Clark Sheldon; Ferrizz, Robert Matthew; Rodriguez, Mark Andrew; Wixom, Ryan R.; Espada, Loren I.

    2008-05-01

    Sandia National Laboratories has cradle to grave responsibility for all neutron generators in the US nuclear weapons stockpile. As such, much research effort is exerted to develop a comprehensive understanding of all the major components of a neutron generator. One of the key components is the tritium containing target. The target is a thin metal tritide film. Sandia's research into metal tritides began in the early 1960's with a collaboration with the Denver Research Institute (DRI) and continues to this day with a major in house research effort. This document is an attempt to briefly summarize what is known about the aging of erbium tritide and to review the major publications conducted at Sandia in FY 07. First, a review of our knowledge of helium in erbium tritide will be presented. Second, executive summaries of the six major SAND reports regarding neutron tube targets published in FY07 by Department 2735, the Applied Science and Technology Maturation Department, and research partners are presented.

  17. sandia

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afedkcp8/%2A4/%2A6/%2Asafety

  18. Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >Scientific and TechnicalSpectrometer Sandia grew out

  19. Sandia National Laboratories: Research: Facilities: Gamma Irradiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque HousingBiofuels Overcoming challengesReactorFacility

  20. Update on Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Jay Keller; Gurpreet Singh

    2001-05-14

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.

  1. Advanced Reactor Research and Development Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE)...

  2. Sandia celebrates opening of Cybersecurity Engineering Research...

    National Nuclear Security Administration (NNSA)

    celebrates opening of Cybersecurity Engineering Research Lab | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  3. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    SciTech Connect (OSTI)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  4. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  5. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications Research Laboratory

  6. Sandia Energy - Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >Scientific andInstituteAdvancedAdvanced Research

  7. Sandia Energy - Cyber Engineering Research Laboratory (CERL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyber Engineering Research Laboratory (CERL)

  8. Sandia Energy - Earth Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLED Lighting Veeco: ResearchEarth

  9. International Research Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  10. Sandia Energy - Second Annual Electric Power Research Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InstituteSandia Photovoltaic Systems Symposium Home Renewable Energy Energy Facilities Grid Integration News Distribution Grid Integration SunShot News & Events Concentrating...

  11. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara; Peters, Curtis [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2005-02-06

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an early prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.

  12. Sandia National Laboratories: Research: Facilities: Annular Core Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque HousingBiofuels Overcoming challengesReactor

  13. Sandia National Laboratories: Research: Research & Development 100 Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications Research LaboratoryResearch

  14. Sandia National Laboratories: Research: Laboratory Directed Research &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications Research Laboratory Directed

  15. Sandia National Laboratories: Research: Research Foundations: Computing and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications Research

  16. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  17. Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina)

    E-Print Network [OSTI]

    Gratta, Giorgio

    Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina) Sandia of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being

  18. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France.

    SciTech Connect (OSTI)

    Ward, Dann C.

    2011-09-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  19. ESnet supports Sandia and APNIC IPv6 Background Radiation research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDieselAbsorptionPowering6106Meetingsupports Sandia and

  20. Sandia Energy - Center for Infrastructure Research and Innovation (CIRI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, Sandia CRADA Opens Door

  1. Annular Core Research Reactor at Sandia National Laboratories achieves

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C | National Nuclear SecurityReports

  2. Supply of enriched uranium for research reactors

    SciTech Connect (OSTI)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  3. Sandia Energy - Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permalink Gallery Caterpillar, Sandia CRADA Opens Door to Multiple Research Projects Capabilities, Computational Modeling & Simulation, CRF, Materials Science, Modeling,...

  4. Fuel elements of research reactor CM

    SciTech Connect (OSTI)

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  5. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  6. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  7. Russian surety research projects in the Sandia National Laboratories Cooperative Measures Program

    SciTech Connect (OSTI)

    Smith, R.E.

    1996-07-01

    Over forty safety and security related research and development projects have been initiated between Sandia National Laboratories and the Russian nuclear weapons laboratories VNIIEF and VNIITF. About half of these projects have been completed. All relate to either safety or security methodology development, processes, accident environment analysis and testing, accident databases, assessments or product design of devices. All projects have a potential benefit to various safety or security programs and some may directly have commercial applications. In general, these projects could benefit risk assessments associated with systems that could result in accidents or incidents having high public consequences. These systems typically have already been engineered to have very low assessed probabilities of occurrence of such accidents or incidents. This paper gives an overview of the Sandia surety program with a focus on the potential for future collaboration between Sandia, three Russian Institutes; VNIIEF, VNIITF and VNIIA, and other industry and government organizations. The intent is to serve as an introduction to a roundtable session on Russian Safety Collaboration at the 14th International System Safety Conference. The current Sandia collaboration program scope and rationale is presented along with the evolved program focus. An overview of the projects is given and a few specific projects are briefly highlighted with tangible results to date.

  8. Sandia Energy - Research Challenge 2: Quantum Dots and Phosphors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2: Quantum Dots and Phosphors Home Energy Research EFRCs Solid-State Lighting Science EFRC Our SSLS EFRC's Scientific Research Challenges and Publications Research Challenge 2:...

  9. Probabilistic Safety Assessment of Tehran Research Reactor

    SciTech Connect (OSTI)

    Hosseini, Seyed Mohammad Hadi; Nematollahi, Mohammad Reza; Sepanloo, Kamran

    2004-07-01

    Probabilistic Safety Assessment (PSA) application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this paper the application of the Probabilistic Safety Assessment to the Tehran Research Reactor (TRR) is presented. The level 1 PSA application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantification, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using SAPHIRE software. This Study shows that the obtained core damage frequency for Tehran Research Reactor (8.368 E-6 per year) well meets the IAEA criterion for existing nuclear power plants (1E-4). But safety improvement suggestions are offered to decrease the most probable accidents. (authors)

  10. Sandia National Laboratories: News: Publications: Lab News: Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia, ATB research agreement; Sandia coordinates international collaboration on nuclear detection architectures; and more. May 20, 2011 Lab News -- Sandia and Cray Inc. to...

  11. Sandia Energy - JBEI Research Receives Strong Industry Interest...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Receives Strong Industry Interest in DOE Technology Transfer Call Home Renewable Energy Energy Biofuels Facilities Partnership JBEI News News & Events Research &...

  12. Sandia Energy - Sandia Expands an International Collaboration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Expands an International Collaboration and Web Database on Engine Fuel Spray Combustion Research Home Energy Transportation Energy CRF Facilities Partnership News Energy...

  13. Sandia Energy - Sandia Science & Technology Park: Acquisition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science & Technology Park: Acquisition of Companies Reflects Growth of Industry in Park Home Partnership Research & Capabilities Customers & Partners Sandia Science & Technology...

  14. Light Water Reactor Fuel Cladding Research and Testing | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The...

  15. Sandia Energy - Research Challenge 5: Enhanced Spontaneous Emission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dots, QDs). research-challenge-5-enhanced-spontaneous-emission-5001 (a) Coreshell nanoparticle geometry: (b) A cross section of the optical intensity distribution around the...

  16. Sandia Energy - Research and Development of Next Generation Scada...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Development of Next Generation Scada Systems Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for...

  17. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  18. Research Led by Sandia Reveals Leading-Edge Erosion Significantly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbine Performance January 6, 2014 - 10:00am Addthis This is an excerpt from the Fourth Quarter 2013 edition of the Wind Program R&D Newsletter. Research conducted by the...

  19. Sandia Energy - Research Challenge 4: Defect-Carrier Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology challenges. research-challenge-4-defect-carrier-interactions-5001 Measured density of an InGaN quantum well (QW) deep-level defect located 0.15 eV above the valence...

  20. A Tour of Nanoscience Research at Sandia National Laboratories

    E-Print Network [OSTI]

    Fisher, Frank

    ), and nanostructured materials (e.g., controlling the properties of quantum dots). Finally, I will describe some probe microscopies), research at the nano-bio interface (e.g., using motor proteins to move material across a surface), nanophotonics and nanoelectronics (e.g., low- dimensional semiconductor systems

  1. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Neal Singer Winners include Sandia Cooler, neutristor, solar glitter,and digital microfluidics hub Sandia researchers - competing in an international pool of universities,...

  2. IEEE honors two Sandia researchers as fellows | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch8 IEEE TRANSACTIONS ON

  3. Optics and photonics research in the Lasers, Optics and Remote Sensing Department at Sandia National Laboratories

    SciTech Connect (OSTI)

    Simmons-Potter, K.; Meister, D.C.

    1997-04-01

    Photonic system and device technologies have claimed a significant share of the current high-tech market. In particular, laser systems and optical devices impact a broad range of technological areas including telecommunications, optical computing, optical data storage, integrated photonics, remote environmental sensing and biomedical applications. Below we present an overview of photonics research being conducted within the Lasers, Optics and Remote Sensing department of the Physical and Chemical Sciences Center at Sandia National Laboratories. Recent results in the fields of photosensitive materials and devices, binary optics device applications, wavelength generation using optical parametric oscillators, and remote sensing are highlighted. 11 refs., 6 figs.

  4. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S....

  5. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy year 2008 author Robert J. Meagher, Anson V. Hatch, Ronald F. Renzi, Anup K. Singh Sandia researchers have created an integrated, portable diagnostic device suitable for...

  6. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    times Category Biofuels, Energy Security, Transportation Energy year 2009 author Seema Singh, Blake A. Simmons, Kenneth P. Vogel Sandia biofuels researchers at the Department of...

  7. Research and Medical Isotope Reactor Supply | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 tops the short list of the world's most secure, reliable uranium feedstock suppliers for dozens of research and test reactors on six continents. These reactors can be...

  8. NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944

    E-Print Network [OSTI]

    #12;#12;11 #12;2 NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944 Nuclear fission discovered 430 nuclear power reactors are operating in the world, and 103 nuclear power plants produce 20, naval reactors, and nuclear power plants. Oak Ridge experiments byArt Snell in 1944 showed that 10 tons

  9. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  10. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect (OSTI)

    Rosenthal, Murray Wilford

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  11. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and...

  12. Sodium fast reactor safety and licensing research plan. Volume II.

    SciTech Connect (OSTI)

    Ludewig, H.; Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.; Lambert, J.; Hayes, S.; Sackett, J.; Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  13. Geothermal Heat Pump research and development studies at Sandia National Laboratories

    SciTech Connect (OSTI)

    Martinez, G.M.; Sullivan, W.N.

    1994-08-01

    The Geothermal Heat Pump (GHP) concept was originally developed in the 1940`s. Recently, because of increasing energy costs, utility interest, and the development of simple and durable ground source heat exchangers, GHP`s have gained international attention as a proven means of energy conservation and electrical peak power demand reduction. GHP systems require installation of a buried heat exchanger to utilize the nearly constant ground temperature making them more efficient than conventional air source heat pumps. However, the high installation cost for both residential and commercial applications is a major obstacle to their market penetration. Sandia National Laboratories (SNL) through its sponsors, the Department of Energy (DOE), and the Department of Defense (DOD), has embarked on a research program to find ways to reduce GHP installation costs and improve performance, thereby increasing their market penetration. The major elements of the program are: data acquisition to quantify the performance of GHP`S, research and development (R&D) of the ground source heat exchanger aimed at reducing, installation costs, and support of DOE efforts to market the GHP concept. This paper describes the current status of our program, some experimental and analytical results, and plans for future activities.

  14. On the RA research reactor fuel management problems

    SciTech Connect (OSTI)

    Matausek, M.V.; Marinkovic, N.

    1997-12-01

    After 25 yr of operation, the Soviet-origin 6.5-MW heavy water RA research reactor was shut down in 1984. Basic facts about RA reactor operation, aging, reconstruction, and spent-fuel disposal have been presented and discussed in earlier papers. The following paragraphs present recent activities and results related to important fuel management problems.

  15. Sandia Energy - Sandia, the Atlantic Council, and NM Water Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia, the Atlantic Council, and NM Water Resource Research Institute Sponsor Roundtable on Western Water Scarcity Home Climate Water Security Partnership News Global Climate &...

  16. Sandia Energy - Sandia, SRI International Sign Pact to Advance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for Transportation Home Energy Transportation Energy CRF Facilities News News & Events Livermore...

  17. Annular Core Research Reactor - Critical to Science-Based Weapons...

    National Nuclear Security Administration (NNSA)

    to science-based weapons design and certification. The ACRR is a pool-type research reactor (Hazard Category 2 Nuclear Facility) that has been in operation since the 1970s...

  18. Development of Technical Nuclear Forensics for Spent Research Reactor Fuel 

    E-Print Network [OSTI]

    Sternat, Matthew Ryan 1982-

    2012-11-20

    Pre-detonation technical nuclear forensics techniques for research reactor spent fuel were developed in a collaborative project with Savannah River National Lab ratory. An inverse analysis method was employed to reconstruct ...

  19. The fight to save the university research reactors

    SciTech Connect (OSTI)

    Bobeck, L.M.; Perez, P.B.

    1993-10-01

    This article looks at impacts of Nuclear Regulatory Commission actions on nonprofit educational reactors. In mid-July the NRC issued a ruling on fee policy, which eliminated the historical fee exemeption for nonprofit research reactors. The ensuing regulatory fees placed an economic burden on these facilities which was likely to close many of them. On September 13, the NRC agreed to reconsider this rule. In part this reflects that this rule had an impact on a larger user base than just research reactors. The article summarizes this problem, and tries to put it in perspective for the reader.

  20. Sandia`s photonic program and its changing national role

    SciTech Connect (OSTI)

    Carson, R.F.; Meyer, W.J.

    1994-03-01

    Photonics activities at Sandia National Laboratories are founded on an extensive materials research program. In 1988, the Compound Semiconductor Research Laboratory (CSRL) was established at Sandia to bring together device and materials research and development, in support of Sandia`s role in weapons technologies. Recently, industrial competitiveness has been added as a major mission for the national laboratories. As a result, present photonics programs are not only directed towards internal applications-driven projects, but are increasingly tied to the Department Of Energy`s (DOE`s) Technology Transfer Initiatives (TTIs), Cooperative Research and Development Agreements (CRADAs), and participation in partnerships and consortia. This evolution yields a full range of photonics programs, ranging from materials synthesis and device fabrication to packaging, test, and subsystem development. This paper presents an overview of Sandia`s photonics-program directions, using three applications as examples.

  1. Sandia Energy - Applied Math & Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sandia technologies and programs, and more broadly to systems and infrastructure worldwide. The UQ research program at the CRF has accordingly broadened over time from its...

  2. Sandia Energy - Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview OverviewTara Camacho-Lopez2015-05-11T16:27:04+00:00 Sandia National Laboratories is home to one of...

  3. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    SciTech Connect (OSTI)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.; Cheng, L-Y; Brown, N.; Cuadra, A.

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  4. Ash Deposit Formation and Deposit Properties. A Comprehensive Summary of Research Conducted at Sandia's Combustion Research Facility

    SciTech Connect (OSTI)

    Larry L. Baxter

    2000-08-01

    This report summarizes experimental and theoretical work performed at Sandia's Combustion Research Facility over the past eight years on the fate of inorganic material during coal combustion. This work has been done under four broad categories: coal characterization, fly ash formation, ash deposition, and deposit property development. The objective was to provide sufficient understanding of these four areas to be able to predict coal behavior in current and advanced conversion systems. This work has led to new characterization techniques for fuels that provide, for the first time, systematic and species specific information regarding the inorganic material. The transformations of inorganic material during combustion can be described in terms of the net effects of the transformations of these individual species. Deposit formation mechanisms provide a framework for predicting deposition rates for abroad range of particle sizes. Predictions based on these rates many times are quite accurate although there are important exceptions. A rigorous framework for evaluating deposit has been established. Substantial data have been obtained with which to exercise this framework, but this portion of the work is less mature than is any other. Accurate prediction of deposit properties as functions of fuel properties, boiler design, and boiler operating conditions represents the single most critical area where additional research is needed.

  5. Background Radiation Measurements at High Power Research Reactors

    E-Print Network [OSTI]

    Ashenfelter, J; Baldenegro, C X; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Davee, D; Dean, D; Deichert, G; Dolinski, M J; Dolph, J; Dwyer, D A; Fan, S; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Kettell, S; Langford, T J; Littlejohn, B R; Martinez, D; McKeown, R D; Morrell, S; Mueller, P E; Mumm, H P; Napolitano, J; Norcini, D; Pushin, D; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Stemen, N T; Surukuchi, P T; Thompson, S J; Varner, R L; Wang, W; Watson, S M; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zhang, C; Zhang, X

    2015-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  6. Background Radiation Measurements at High Power Research Reactors

    E-Print Network [OSTI]

    J. Ashenfelter; B. Balantekin; C. X. Baldenegro; H. R. Band; G. Barclay; C. D. Bass; D. Berish; N. S. Bowden; C. D. Bryan; J. J. Cherwinka; R. Chu; T. Classen; D. Davee; D. Dean; G. Deichert; M. J. Dolinski; J. Dolph; D. A. Dwyer; S. Fan; J. K. Gaison; A. Galindo-Uribarri; K. Gilje; A. Glenn; M. Green; K. Han; S. Hans; K. M. Heeger; B. Heffron; D. E. Jaffe; S. Kettell; T. J. Langford; B. R. Littlejohn; D. Martinez; R. D. McKeown; S. Morrell; P. E. Mueller; H. P. Mumm; J. Napolitano; D. Norcini; D. Pushin; E. Romero; R. Rosero; L. Saldana; B. S. Seilhan; R. Sharma; N. T. Stemen; P. T. Surukuchi; S. J. Thompson; R. L. Varner; W. Wang; S. M. Watson; B. White; C. White; J. Wilhelmi; C. Williams; T. Wise; H. Yao; M. Yeh; Y. -R. Yen; C. Zhang; X. Zhang

    2015-06-11

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  7. Background Radiation Measurements at High Power Research Reactors

    E-Print Network [OSTI]

    J. Ashenfelter; B. Balantekin; C. X. Baldenegro; H. R. Band; G. Barclay; C. D. Bass; D. Berish; N. S. Bowden; C. D. Bryan; J. J. Cherwinka; R. Chu; T. Classen; D. Davee; D. Dean; G. Deichert; M. J. Dolinski; J. Dolph; D. A. Dwyer; S. Fan; J. K. Gaison; A. Galindo-Uribarri; K. Gilje; A. Glenn; M. Green; K. Han; S. Hans; K. M. Heeger; B. Heffron; D. E. Jaffe; S. Kettell; T. J. Langford; B. R. Littlejohn; D. Martinez; R. D. McKeown; S. Morrell; P. E. Mueller; H. P. Mumm; J. Napolitano; D. Norcini; D. Pushin; E. Romero; R. Rosero; L. Saldana; B. S. Seilhan; R. Sharma; N. T. Stemen; P. T. Surukuchi; S. J. Thompson; R. L. Varner; W. Wang; S. M. Watson; B. White; C. White; J. Wilhelmi; C. Williams; T. Wise; H. Yao; M. Yeh; Y. -R. Yen; C. Zhang; X. Zhang

    2015-11-11

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  8. Research and educational activities at the MIT Research Reactor : Fiscal year 1968

    E-Print Network [OSTI]

    Massachusetts Institute of Technology. Department of Nuclear Engineering; 7102 Massachusetts Institute of Technology. Research Reactor. Staff; U.S. Atomic Energy Commission

    1968-01-01

    A report of research and educational activities which utilized the Massachusetts Institute of Technology, five-megawatt, heavy water, research reactor during fiscal year 1968 has been prepared for administrative use at MIT ...

  9. Sandia Energy - Nuclear Energy Systems Laboratory (NESL) / Transient...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories is home to the United States' only operational pulsed nuclear reactor capable of a comprehensive range of transient nuclear fuels testing. The...

  10. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  11. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE, and Sandia (NMED April 2004) , 40 CFR 265 Subpart G and the Chem ical Waste Landfill Closure Plan (SNL, December 1992, as amended). This page intentionally left...

  12. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    239 Unlimited Release January 2014 How PV System Ownership Can Impact the Market Value of Residential Homes Geoffrey T. Klise - Sandia National Laboratories Jamie L. Johnson -...

  13. Sandia Cooler

    ScienceCinema (OSTI)

    Koplow, Jeff; Fornaciari, Neal; Gharagozloo, Patricia

    2014-06-23

    The Sandia Cooler is 30-times more efficient than conventional air-cooled heat exchangers and is available for licensing to electronics and solid state lighting cooling manufacturers.

  14. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    used to better understand and enhance the reliability, availability, and performance of a photovoltaic system. 5 ACKNOWLEDGMENTS EPRI and Sandia would like to acknowledge the U.S....

  15. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 12, 2014 Turning biological cells to stone improves cancer and stem cell research Sandia researchers Bryan Kaehr (1815) and Kristin Meyer (1815) analyze a silicized...

  16. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    SciTech Connect (OSTI)

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  17. Friction pressure drop measurements and flow distribution analysis for LEU conversion study of MIT Research Reactor

    E-Print Network [OSTI]

    Wong, Susanna Yuen-Ting

    2008-01-01

    The MIT Nuclear Research Reactor (MITR) is the only research reactor in the United States that utilizes plate-type fuel elements with longitudinal fins to augment heat transfer. Recent studies on the conversion to low-enriched ...

  18. Design and optimization of a high thermal flux research reactor via Kriging-based algorithm

    E-Print Network [OSTI]

    Kempf, Stephanie Anne

    2011-01-01

    In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

  19. Sandia Energy - Sandia's Continuously Recirculating Falling-Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receiver Emplaced at Top of Solar Tower Sandia researchers are working to lower the cost of solar energy systems and improve efficiencies in a big way, thanks to a system of...

  20. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scale in a multidisciplinary approach that brings in chemistry, microbiology, geomechanics, geophysics, and computer sciences. The team includes researchers from Sandia and...

  1. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and diagnosing algal pond health, draws on Sandia's longstanding expertise in microfluidics technology, its strong bioscience research program, and significant internal...

  2. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    investigation include aero-acoustics and structural health monitoring of turbines using embedded sensor systems. Researchers will also continue work on Sandia's structural...

  3. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Sandia capabilities to support multiple agencies' missions." Researchers do a risk analysis and quantify uncertainties. They look at interdependencies among systems and...

  4. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alex's goal was to develop affordable precision tracking for solar energy research, development, and production. His technology - trademarked SolarTrak by Sandia, which holds the...

  5. Sandia National Laboratories: About Sandia: Environmental Responsibili...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment, Safety & Health Policy Public Meetings Publications SandiaCalifornia Pollution Prevention Information Repository Index Long-term Stewardship About SandiaNew...

  6. Sandia National Laboratories: Working with Sandia: Procurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terms E-invoice facilitates Sandia's mission to provide efficient stewardship of taxpayer resources. Sandia also encourages use of Electronic Funds Transfer (ETF) payments (MS...

  7. Advanced sodium fast reactor accident source terms : research needs.

    SciTech Connect (OSTI)

    Powers, Dana Auburn; Clement, Bernard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  8. Role of research reactors in training of NPP personnel with special focus on training reactor VR-1

    SciTech Connect (OSTI)

    Sklenka, L.; Rataj, J.; Frybort, J.; Huml, O. [Dept. of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical Univ. in Prague, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)

    2012-07-01

    Research reactors play an important role in providing key personnel of nuclear power plants a hands-on experience from operation and experiments at nuclear facilities. Training of NPP (Nuclear Power Plant) staff is usually deeply theoretical with an extensive utilisation of simulators and computer visualisation. But a direct sensing of the reactor response to various actions can only improve the personnel awareness of important aspects of reactor operation. Training Reactor VR-1 and its utilization for training of NPP operators and other professionals from Czech Republic and Slovakia is described. Typical experimental exercises and good practices in organization of a training program are demonstrated. (authors)

  9. Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges

    SciTech Connect (OSTI)

    Snoj, L.; Sklenka, L.; Rataj, J.; Boeck, H.

    2012-07-01

    The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

  10. University Research Reactor Task Force to the Nuclear Energy Research

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear Energy Research andofRod BeeverDataAdvisory

  11. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    SciTech Connect (OSTI)

    Kennedy, S. J.

    2008-03-17

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research, radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.

  12. IGORR-IV -- Proceedings of the fourth meeting of the International Group on Research Reactors

    SciTech Connect (OSTI)

    Rosenbalm, K.F. [comp.] [comp.

    1995-12-31

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results.

  13. Reprocessing of research reactor fuel the Dounreay option

    SciTech Connect (OSTI)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  14. Sandia Energy - Sandia-Developed LED Pulser Delivers Laser-Like...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia-Developed LED Pulser Delivers Laser-Like Performance at Fraction of the Cost Home Energy CRF Facilities Capabilities News News & Events Research & Capabilities Systems...

  15. Energy Efficient Legged Robotics at Sandia Labs

    SciTech Connect (OSTI)

    Buerger, Steve

    2014-12-16

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  16. Sodium fast reactor fuels and materials : research needs.

    SciTech Connect (OSTI)

    Denman, Matthew R.; Porter, Douglas; Wright, Art; Lambert, John; Hayes, Steven; Natesan, Ken; Ott, Larry J.; Garner, Frank; Walters, Leon; Yacout, Abdellatif

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  17. Nuclear plant-aging research on reactor protection systems

    SciTech Connect (OSTI)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  18. Sandia Energy - 2014 US/German Workshop on Salt Repository Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 USGerman Workshop on Salt Repository Research, Design, and Operation Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2014 USGerman Workshop on Salt...

  19. Sandia Energy - 2016 US/German Workshop on Salt Repository Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 USGerman Workshop on Salt Repository Research, Design, and Operation Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2016 USGerman Workshop on Salt...

  20. Sandia Energy - 2015 US/German Workshop on Salt Repository Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 USGerman Workshop on Salt Repository Research, Design, and Operation Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2015 USGerman Workshop on Salt...

  1. Sodium fast reactor safety and licensing research plan. Volume I.

    SciTech Connect (OSTI)

    Sofu, Tanju; LaChance, Jeffrey L.; Bari, R.; Wigeland, Roald; Denman, Matthew R.; Flanagan, George F.

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  2. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    location Sandia National Laboratories This report describes the Virtual Control System Environment (VCSE) technology - developed a Sandia National Laboratories - to investigate...

  3. Sandia Energy - Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESOURCE: Interview with Nancy Brune, Sandia National Laboratories Nancy Brune, a Senior Policy analyst at Sandia National Laboratories and Non-Resident Senior Fellow at the Center...

  4. Sandia National Laboratories: The First Fifty Years

    SciTech Connect (OSTI)

    MORA,CARL J.

    1999-11-03

    On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.

  5. Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli

    E-Print Network [OSTI]

    Montfrooij, Wouter

    Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli Research Reactor (MURR) provides significant thermal neutron flux, which enables neutron scattering]. There are presently 5 instruments located on the beam port floor that are dedicated to neutron scattering: (1) TRIAX

  6. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  7. SANDIA REPORT

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A WholesaleRetrofitElectricalDepartment ofof EnergySANDIA

  8. SANDIA REPORT

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A WholesaleRetrofitElectricalDepartment ofof EnergySANDIA328

  9. Second generation Research Reactor Fuel Container (RRFC-II).

    SciTech Connect (OSTI)

    Abhold, M. E.; Baker, M. C.; Bourret, S. C.; Harker, W. C.; Pelowitz, D. G.; Polk, P. J.

    2001-01-01

    The second generation Research Reactor Fuel Counter (RRFC-II) has been developed to measure the remaining {sup 235}U content in foreign spent Material Test Reactor (MTR)-type fuel being returned to the Westinghouse Savannah River Site (WSRS) for interim storage and subsequent disposal. The fuel to be measured started as fresh fuel nominally with 93% enriched Uraniuin alloyed with A1 clad in Al. The fuel was irradiated to levels of up to 65% burnup. The RRFC-II, which will be located in the L-Basin spent fuel pool, is intended to assay the {sup 235}U content using a combination of passive neutron coincidence counting, active neutron coincidence counting, and active-multiplicity analysis. Measurements will be done underwater, eliminating the need for costly and hazardous handling operations of spent fuel out of water. The underwater portion of the RRFC-II consists of a watertight stainless steel housing containing neutron and gamma detectors and a scanning active neutron source. The portion of the system that resides above water consists of data-processing electronics; electromechanical drive electronics; a computer to control the operation of the counter, to collect, and to analyze data; and a touch screen interface located at the equipment rack. The RRFC-II is an improved version of the Los Alamos-designed RRFC already installed in the SRS Receipts Basin for Offsite Fuel. The RRFC-II has been fabricated and is scheduled for installation in late FY 2001 pending acceptance testing by Savannah River Site personnel.

  10. SANDIA REPORT SAND89-1397

    E-Print Network [OSTI]

    Wind Energy Research Division Sandia National Laboratories Albuquerque, New Mexico 87185 ABSTRACT Herbert J. Sutherland Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore The LIFE2 computer code is a fatigue/fracture analysis code specifically designed for the analysis of wind

  11. Foreign Research Reactor Spent Nuclear Fuel Acceptance Program

    National Nuclear Security Administration (NNSA)

    * Complete reactor control rod system. * Note: Does not include the steam turbine generator portion of the power plant. - Sensitive nuclear technology: Any information...

  12. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect (OSTI)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  13. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    SciTech Connect (OSTI)

    Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

    2004-10-03

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

  14. Sandia Energy - ECIS-Veeco: Research Driving Down the Costs of Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLED Lighting Veeco: Research

  15. DOE-NE Light Water Reactor Sustainability Program and EPRI Long Term Operations Program – Joint Research and Development

    Broader source: Energy.gov [DOE]

    Description of Joint DOE and EPRI research and development programs related to reactor sustainability INL/EXT-12-24562

  16. Inside Sandia

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    Articles in this issue include ``Molten salt corrosion testing,`` ``Pulsed ion beams for thermal surface treatment: Improved corrosion, wear, and hardness properties at low cost,`` ``Unmasking hidden armaments: Superconducting gravity sensor could find underground weapons, bunkers,`` ``Charbroiled burgers, heterocyclic amines, and cancer: Molecular modeling identifies dangerous mutagens,`` ``Revolutionary airbag offers increased safety options,`` ``EcoSys{sup TM}: an expert system for `Green Design` ``, ``Sandia, salt, and oil: Labs` diagnostics and analysis help maintain vital US oil reserve,`` and ``Automated fixture design speeds development for prototypes and production``.

  17. sandia california

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 FederalRivers andMEDA Station3/%2A ¡ ¢0/%2A 58

  18. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  19. Sandia National Laboratories (Sandia) conduc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >Scientific and TechnicalSpectrometer Sandia grew

  20. EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal to accept 409 spent fuel elements from eight foreign research reactors in seven European countries.  The spent fuel would be shipped across...

  1. Two U.S. University Research Reactors to be Converted From Highly...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy (DOE) has begun to convert research reactors from using highly-enriched uranium (HEU) to low-enriched uranium fuel (LEU) at the University of Florida and Texas A&M...

  2. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy Conversion Efficiency

  3. Sandia National Laboratories: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNewsPublications

  4. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin HumphreysDETLEC SSLS Scientist

  5. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin HumphreysDETLEC SSLS

  6. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLEDPhase Field model elucidates

  7. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLEDPhase Field model elucidates

  8. Sandia Energy - Study Rebuts Hypothesis That Comet Attacks Ended...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in North America about 13,000 years ago, Sandia lead author Mark Boslough (Discrete Mathematics & Complex Systems Dept.) and researchers from 14 academic institutions assert that...

  9. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    samples will then be thinly sliced for state-of-the-art synchrotron X-ray microscopy. (Photo by Jeff McMillan) by Bruce Balfour Sandia researchers have confirmed the...

  10. Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

    SciTech Connect (OSTI)

    Schriner, H.; Davies, B.; Sniegowski, J.; Rodgers, M.S.; Allen, J.; Shepard, C.

    1998-05-01

    Research and development in the design and manufacture of Microelectromechanical Systems (MEMS) is growing at an enormous rate. Advances in MEMS design tools and fabrication processes at Sandia National Laboratories` Microelectronics Development Laboratory (MDL) have broadened the scope of MEMS applications that can be designed and manufactured for both military and commercial use. As improvements in micromachining fabrication technologies continue to be made, MEMS designs can become more complex, thus opening the door to an even broader set of MEMS applications. In an effort to further research and development in MEMS design, fabrication, and application, Sandia National Laboratories has launched the Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program or SAMPLES program. The SAMPLES program offers potential partners interested in MEMS the opportunity to prototype an idea and produce hardware that can be used to sell a concept. The SAMPLES program provides education and training on Sandia`s design tools, analysis tools and fabrication process. New designers can participate in the SAMPLES program and design MEMS devices using Sandia`s design and analysis tools. As part of the SAMPLES program, participants` designs are fabricated using Sandia`s 4 level polycrystalline silicon surface micromachine technology fabrication process known as SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology). Furthermore, SAMPLES participants can also opt to obtain state of the art, post-fabrication services provided at Sandia such as release, packaging, reliability characterization, and failure analysis. This paper discusses the components of the SAMPLES program.

  11. Sandia National Laboratories: About Sandia: Leadership: Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael is responsible for the vision and leadership of Sandia's information technology, information management, and cyber security strategy. The balance between information...

  12. Sandia National Laboratories: About Sandia: Environmental Responsibili...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment, Safety & Health Policy Policy Statement It is the policy of Sandia National Laboratories to perform work in a safe and environmentally responsible manner by committing...

  13. Sensitivity and uncertainty analyses for thermo-hydraulic calculation of research reactor

    SciTech Connect (OSTI)

    Hartini, Entin; Andiwijayakusuma, Dinan [Center for Development of Nuclear Informatics - National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)] [Center for Development of Nuclear Informatics - National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia); Isnaeni, Muh Darwis [Center for Reactor Technology and Nuclear Safety- National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)] [Center for Reactor Technology and Nuclear Safety- National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)

    2013-09-09

    The sensitivity and uncertainty analysis of input parameters on thermohydraulic calculations for a research reactor has successfully done in this research. The uncertainty analysis was carried out on input parameters for thermohydraulic calculation of sub-channel analysis using Code COOLOD-N. The input parameters include radial peaking factor, the increase bulk coolant temperature, heat flux factor and the increase temperature cladding and fuel meat at research reactor utilizing plate fuel element. The input uncertainty of 1% - 4% were used in nominal power calculation. The bubble detachment parameters were computed for S ratio (the safety margin against the onset of flow instability ratio) which were used to determine safety level in line with the design of 'Reactor Serba Guna-G. A. Siwabessy' (RSG-GA Siwabessy). It was concluded from the calculation results that using the uncertainty input more than 3% was beyond the safety margin of reactor operation.

  14. Thermal hydraulic limits analysis for the MIT Research Reactor low enrichment uranium core conversion using statistical propagation of parametric uncertainties

    E-Print Network [OSTI]

    Chiang, Keng-Yen

    2012-01-01

    The MIT Research Reactor (MITR) is evaluating the conversion from highly enriched uranium (HEU) to low enrichment uranium (LEU) fuel. In addition to the fuel element re-design from 15 to 18 plates per element, a reactor ...

  15. MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM

    E-Print Network [OSTI]

    includes the development of a fission gas release model, particle temperature distributions, internal conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance

  16. Sandia Energy - Daniel Laird

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories' Water Power Technologies department which includes Marine Hydrokinetic, Conventional Hydro, and Offshore Wind technologies. Daniel joined...

  17. Nuclear Reactor Safeguards and Monitoring with Antineutrino Detectors

    E-Print Network [OSTI]

    Adam Bernstein; Yifang Wang; Giorgio Gratta; Todd West

    2001-08-01

    Cubic-meter-sized antineutrino detectors can be used to non-intrusively, robustly and automatically monitor and safeguard a wide variety of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors. Since the antineutrino spectra and relative yields of fissioning isotopes depend on the isotopic composition of the core, changes in composition can be observed without ever directly accessing the core itself. Information from a modest-sized antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. A group at Sandia is currently constructing a one cubic meter antineutrino detector at the San Onofre reactor site in California to demonstrate these principles.

  18. MEMS packaging efforts at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Custer, Jonathan Sloane

    2003-02-01

    Sandia National Laboratories has programs covering a broad range of MEMS technologies from LIGA to bulk to surface micromachining. These MEMS technologies are being considered for an equally broad range of applications, including sensors, actuators, optics, and microfluidics. As these technologies have moved from the research to the prototype product stage, packaging has been required to develop new capabilities to integrated MEMS and other technologies into functional microsystems. This paper discusses several of Sandia's MEMS packaging efforts, focusing mainly on inserting Sandia's SUMMIT V (5-level polysilicon) surface micromachining technology into fieldable microsystems.

  19. Proceedings of the 1990 International Meeting on Reduced Enrichment for Research and Test Reactors

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The global effort to reduce, and possibly, eliminate the international traffic in highly-enriched uranium caused by its use in research reactors requires extensive cooperation and free exchange of information among all participants. To foster this free exchange of information, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the thirteenth of a series which began in 1978. The common effort brought together, past, a large number of specialists from many countries. On hundred twenty-three participants from 26 countries, including scientists, reactor operators, and personnel from commercial fuel suppliers, research centers, and government organizations, convened in Newport, Rhode Island to discuss their results, their activities, and their plans relative to converting research reactors to low-enriched fuels. As more and more reactors convert to the use of low-enriched uranium, the emphasis of our effort has begun to shift from research and development to tasks more directly related to implementation of the new fuels and technologies that have been developed, and to refinements of those fuels and technologies. It is appropriate, for this reason, that the emphasis of this meeting was placed on safety and on conversion experiences. This individual papers in this report have been cataloged separately.

  20. SANDIA REPORT SAND841287. Unlimited Release UC60 Printed April 1985

    E-Print Network [OSTI]

    of the Sandia 34-Meter Vertical-Axis Wind Turbine Dale E. Berg Prepared by Sandia National Laboratories Braasch, super- visor of the Wind Energy Research Division, gave us his wholehearted support and acquired

  1. Sandia Energy - Sandia Wind Energy in the News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Energy in the News Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Sandia Wind Energy in the News Sandia Wind Energy in the NewsTara...

  2. Overview of Sandia National Laboratories and Antenna Development Department

    SciTech Connect (OSTI)

    Brock, B.C.

    1994-04-01

    Sandia is a multiprogram R & D laboratory. It has responsibilities in the following areas: (1) defense programs; (2) energy and environment; and (3) work for others (DOD, NSA, etc.). In 1989, the National Competitiveness Technology Transfer Act added another responsibility -- contributions to industrial competitiveness. Sandia has two major laboratory locations, New Mexico and California, and two flight testing locations, Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii. The last part of this talk was dedicated to antenna research at Sandia.

  3. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000.

    E-Print Network [OSTI]

    Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company85000. Status of Z-Pinch ICF ResearchStatus of Z-Pinch ICF Research Fusion Power Associates Meeting

  4. Sandia Energy - Sandia Labs to Share Expertise with Navajo Nation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy Surety Energy Grid Integration News Wind Energy News & Events Solar Energy Assurance Sandia Labs to Share Expertise with Navajo Nation Previous Next Sandia Labs...

  5. Sandia Energy - Two Sandia Leaders Elected American Association...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    President of Sandia's California laboratory and leader of the Labs' Energy and Climate PMU), two key members of Sandia National Laboratories' senior leadership team, have been...

  6. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    SciTech Connect (OSTI)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

  7. Solid oxide electrochemical reactor science.

    SciTech Connect (OSTI)

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  8. Sandia Energy - Desal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water supply for the United States." - Desalination and Water Purification Technology Roadmap 2003. The primary objectives of the Sandia Water Initiative are to increase the...

  9. Sandia Energy - Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    siting and device deployment. Sandia develops and compiles resource assessments for potential and existing wave energy converter test and deployment sites. We utilize consistent,...

  10. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow Batteries Factsheet (36) Recompression Brayton Cycle (335) Recompression Closed Brayton Cycle (236) Sandia Cooler (43) The First Cost-Effective Solution for CO2 Capture (47...

  11. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cybersecurity, energy storage, materials science, advanced controls, and microgrids, and is an integral part of Sandia's larger portfolio of renewable energy technology...

  12. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be...

  13. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by chemical facilities under a program for imposing greater security requirements on high-threat sites. DHS is collaborating with Sandia to determine how the Chemical Facility...

  14. Sandia Energy » Alyssa Christy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Four-color laser white illuminant demonstrating high color-rendering quality http:energy.sandia.govfour-color-laser-white-illuminant-demonstrating-high-colo...

  15. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Downloaded 235 times Category Energy Security, MEPV, Photovoltaic, Renewable Energy, Solar Energy location Sandia National Laboratories, Albuquerque, NM author Gregory N....

  16. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy year 2008 author Catherine T. Lo, Daniel J. Throckmorton, Anup K. Singh, Amy E. Herr Bioengineering experts at SandiaCalifornia have adapted many workhorse...

  17. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and industry by developing technologies that deliver cost-effective and reliable energy while also committing to the importance of environmental stewardship. Sandia leads...

  18. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that have been used to support Sandia National Laboratories' concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies...

  19. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NREL) and Sandia National Laboratories (SNL) have developed WEC---Sim to provide the wave energy converter WEC) design community with an open---source simulation tool....

  20. Sandia Energy - SCADA Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2007. B. T. Richardson, J. Michalski, Security Framework for Control System Data Classification and Protection, Tech. Rep. SAND2007-3888P, Sandia National...

  1. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Five years and 14 tenants after its first groundbreaking, Sandia Science and Tech- nology Park, a unique publicprivate eco- nomic development initiative based just outside the...

  2. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  3. Golden Mountains The Altai Republic in the Russian Federation Kyoto University Research Reactor Institute Kobayashi Tooru

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    1 Golden Mountains ­ The Altai Republic in the Russian Federation Kyoto University Research Reactor Institute Kobayashi Tooru It is said that Altai also means golden mountains. The development to these mountains easier especially during the warm summer season. Being geographically located at the central

  4. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  5. Monte Carlo determination of the neutron-gamma spectrum behind cadmium loaded polyethylene slabs irradiated by the Sandia Pulse Reactor III 

    E-Print Network [OSTI]

    Sartor, Raymond Francis

    1986-01-01

    reactor is to provide a neutron-gamma irradiation Fi e id for the testing of electronic components for radiation surviv- ability. Often ho~ever, there is a desire to test a component for resistance to damage From a neutron-gamma radiation field with a... cadmium I oaded pol yethyl ene shi el d conf i gurat i on. One of the reasons calcu let ional results of this type have not been done before i s that the gamma product ion cross sections for cadmium have not been ave i iabl e unt I I recently. A...

  6. Research and Medical Isotope Reactor Supply | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 WinnersAffiliatesMadden-JulianOut withResearch Sheds LightComplex

  7. Development of Regulatory Technical Requirements for the Advanced Integral Type Research Reactor

    SciTech Connect (OSTI)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik; Kim, Hho Jung

    2004-07-01

    This paper presents the current status of the study on the development of regulatory technical requirements for the licensing review of an advanced integral type research reactor of which the license application is expected in a few years. According to the Atomic Energy Act of Korea, both research and education reactors are subject to the technical requirements for power reactors in the licensing review. But, some of the requirements may not be applicable or insufficient for the licensing reviews of reactors with unique design features. Thus it is necessary to identify which review topics or areas can not be addressed by the existing requirements and to develop the required ones newly or supplement appropriately. Through the study performed so far, it has been identified that the following requirements need to be developed newly for the licensing review of SMART-P: the use of proven technology, the interfacial facility, the non-safety systems, and the metallic fuels. The approach and basis for the development of each of the requirements are discussed. (authors)

  8. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    SciTech Connect (OSTI)

    Mourao, Rogerio P.; Leite da Silva, Luiz; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2013-07-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  9. Sandia Technology: Engineering and science accomplishments, February 1995

    SciTech Connect (OSTI)

    1995-02-01

    Sandia National Laboratories is one of the Department of Energy`s primary research and development laboratories. Our essential mission is to support the national interests of the US in defense, energy, and the environment. Managed by Martin Marietta Corporation for DOE, Sandia focuses its resources on problems of national interest that require the integration of science and technology for their solution. We all hope that this period of sweeping alterations in international affairs will result in a successful transition from the Cold War to a period of sustainable global security and prosperity. In the meantime, our nation`s interests are best served by continued commitment to Sandia`s traditional responsibilities. Nonetheless, as momentous developments are reshaping the world, Sandia is also changing from its beginning as a closed operation concentrating on classified defense programs, Sandia has become a more accessible resource that focuses on research and development partnerships with industry and universities as a way to ensure continued success in DOE`s evolving core mission area of nuclear weapons, energy, environment, and the basis sciences. Through these collaborative efforts, Sandia and its partners are also benefiting the economic competitiveness of our nation. Sandia places a special emphasis on working with small businesses as both technology transfer partners and suppliers of goods and services. We are also reaching out the the larger community surrounding Sandia, striving to provide technological solution and accurate information to meet community needs. We believe that the dialogue we are creating will benefit Sandia, the community, and the nation. Our goal is to render `` exceptional service in the national interest`` by returning maximum value on the investment in the labs. As you review this document, look for new ways in which Sandia can contribute to the solution of problems facing our nation.

  10. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  11. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  12. A simple setup for neutron tomography at the Portuguese Nuclear Research Reactor

    E-Print Network [OSTI]

    M. A. Stanojev Pereira; J. G. Marques; R. Pugliesi

    2012-05-15

    A simple setup for neutron radiography and tomography was recently installed at the Portuguese Research Reactor. The objective of this work was to determine the operational characteristics of the installed setup, namely the irradiation time to obtain the best dynamic range for individual images and the spatial resolution. The performance of the equipment was demonstrated by imaging a fragment of a 17th century decorative tile.

  13. 1 Advisory, Consultative, Deliberative, Draft SANDIA REPORT

    E-Print Network [OSTI]

    subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security, Sandia National Laboratories Sigifredo Gonzalez, Sandia National Laboratories Technical Report Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National

  14. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    SciTech Connect (OSTI)

    Weigl, M. [Karlsruhe Institute of Technology, Projekttraeger Karlsruhe (PTKA-WTE), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not possible. The successful completion of two big D and D projects (HDR and KKN), which reached green field conditions, are showing quite the contrary. Moreover, research on D and D technologies offers the possibility to educate students on a field of nuclear technology, which will be very important in the future. In these days D and D companies are seeking for a lot of young engineers and this will not change in the coming years. (authors)

  15. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect (OSTI)

    Timothy O’Hern, Lindsey Evans, Jim Miller, Marcia Cooper, John Torczynski, Donovan Pena, and Walt Gill, SNL

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in other technologies.

  16. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect (OSTI)

    Timothy O’Hern, Lindsey Evans, Jim Miller, Marcia Cooper, John Torczynski, Donovan Pena, and Walt Gill, SNL, Will Groten, Arvids Judzis, Richard Foley, Larry Smith, and Will Cross, CR& L / CDTECH; T. Vogt, Lummus Technology / CDTECH.

    2011-06-27

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in other technologies.

  17. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Reliability Science at SandiaTara Camacho-Lopez2015-04-06T22:15:34+00:00 Placeholder Download Filename BatteryReliabilityScience.pdf filesize 1.12 MB Version 2 Date added...

  18. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 report-id SAND2012-3467P Sandia is working with several partners to bring local power generation, advanced storage technologies, and advanced load controls together in...

  19. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    581 times Category Energy Security, Energy Storage, Energy Surety, Energy Surety Microgrid, Fact Sheet report-id SAND-2012-0552P author Mark Allen year 2012 Sandia's Smart...

  20. Sandia Energy - Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Camacho-Lopez2015-07-11T18:27:34+00:00 Developing Cost-Effective, Reliable PV Energy Systems and Accelerating the Integration of PV Technology Sandia provides the technical lead...

  1. Sandia Energy - Rene Sells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Sandia National Laboratories in Albuquerque, NM. She received her B.A. (1998) in Journalism and Mass Communication and M.B.A (2002) in Marketing Management from the University...

  2. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoffrey T. Klise report-id sand2014-16948 Sandia National Laboratories, working with Energy Sense Finance developed the proof-ofconcept PV Value tool in 2011 to provide real...

  3. Sandia Energy - Success Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StoriesTara Camacho-Lopez2015-05-08T19:21:18+00:00 This collection of Sandia's Office of Energy Efficiency and Renewable Energy's (EERE) success stories which highlight the impact...

  4. Sandia Energy - Alyssa Christy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in GaNAlGaN CoreShell Nanowires" published in Nano Letters, Sandia scientist Bryan M. Wong, and EFRC scientists Franois Lonard, Qiming Li, and George T. Wang, present a...

  5. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pureAluminum.pdf filesize 193.02 kB Version 1 date April 5, 2007 Downloaded 68 times Category Energy Security, Hydrogen, Renewable Energy author C. San Marchi location Sandia...

  6. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2012 Downloaded 58 times Category Grid Integration, Photovoltaic, Renewable Energy, Solar Energy Tags sand2012-7149c report-id SAND2012-7149C The Sandia Array Performance Model...

  7. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kB Version 1 date August 2-3, 2011 Downloaded 78 times Category Energy Security, Events, Renewable Energy, Wind Energy, Workshop year 2011 location Sandia National Laboratories...

  8. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Brush, Ahmend E. Ismail, Jennifer Long year 2010 report-id SAND2010-1655C The Fracture-Matrix Transport (FMT) code developed at Sandia National Laboratories solves chemical...

  9. Thermal hydraulics analysis of the MIT research reactor in support of a low enrichment uranium (LEU) core conversion

    E-Print Network [OSTI]

    Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    The MIT research reactor (MITR) is converting from the existing high enrichment uranium (HEU) core to a low enrichment uranium (LEU) core using a high-density monolithic UMo fuel. The design of an optimum LEU core for the ...

  10. NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS

    SciTech Connect (OSTI)

    Hakan Ozaltun & Herman Shen

    2011-11-01

    This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

  11. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  12. EA-1422: Sandia National Laboratories Site-Wide Environmental Assessment/California

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories (SNL) is one of three national laboratories that support the DOE’s statutory responsibilities for nuclear weapons research and design, development of energy...

  13. RELAP5 Application to Accident Analysis of the NIST Research Reactor

    SciTech Connect (OSTI)

    Baek, J.; Cuadra Gascon, A.; Cheng, L.Y.; Diamond, D.

    2012-03-18

    Detailed safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The time-dependent analysis of the primary system is determined with a RELAP5 transient analysis model that includes the reactor vessel, the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. A post-processing of the simulation results has been conducted to evaluate minimum critical heat flux ratio (CHFR) using the Sudo-Kaminaga correlation. Evaluations are performed for the following accidents: (1) the control rod withdrawal startup accident and (2) the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur because of sufficient coolant flow through the fuel channels and the negative scram reactivity insertion.

  14. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

  15. An American company thinks it can have a commercial reactor ready and working within a decade ONE of the clichs of nuclear-power research is that a commercial fusion reactor is only 30 years away, and always1

    E-Print Network [OSTI]

    South Bohemia, University of

    of the clichés of nuclear-power research is that a commercial fusion reactor is only 30 years away, and always1An American company thinks it can have a commercial reactor ready and working within a decade ONE that Lockheed Martin,2 a big American engineering and defence company, has a new design for a fusion reactor

  16. Sandia Energy - Sandia Develops Stochastic Production Cost Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Analysis Analysis Modeling Modeling & Analysis Computational Modeling & Simulation Solar Newsletter Sandia Develops Stochastic Production Cost Model Simulator for Electric...

  17. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  18. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  19. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratory’s desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATR’s instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. “These new systems represent state-of-the-art monitoring and annunciation capabilities,” said Don Feldman, ATR Station Manager. “They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.”

  20. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment. • Reactor pressure vessel • Pumps and piping

  1. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandia National LaboratoriesSandia

  2. Sandia Corporate Ombuds Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandiaCOMMUNITY MEMBERS Sandia's

  3. Sandia Energy » Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of Minnesota's VirtualSandiaSandia's

  4. Sandia National Laboratories: About Sandia: Environmental Responsibility:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of2013NationalNew R25,39,000Sandia/New

  5. Sandia National Laboratories: About Sandia: Community Involvement:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal SandiaAnalysisEducation Programs:

  6. Sandia National Laboratories: About Sandia: Community Involvement:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal SandiaAnalysisEducation

  7. Sandia National Laboratories: About Sandia: Community Involvement:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal SandiaAnalysisEducationEducation

  8. Sandia National Laboratories: Working with Sandia: Procurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque AlbuquerqueCybernetics:Defense SystemsWorking with Sandia

  9. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompanies PilotTeachesSandia Wind Energy

  10. NOVEL CRYOGENIC ENGINEERING SOLUTIONS FOR THE NEW AUSTRALIAN RESEARCH REACTOR OPAL

    SciTech Connect (OSTI)

    Olsen, S. R.; Kennedy, S. J.; Kim, S.; Schulz, J. C.; Thiering, R.; Gilbert, E. P.; Lu, W.; James, M.; Robinson, R. A.

    2008-03-16

    In August 2006 the new 20MW low enriched uranium research reactor OPAL went critical. The reactor has 3 main functions, radio pharmaceutical production, silicon irradiation and as a neutron source. Commissioning on 7 neutron scattering instruments began in December 2006. Three of these instruments (Small Angle Neutron Scattering, Reflectometer and Time-of-flight Spectrometer) utilize cold neutrons.The OPAL Cold Neutron Source, located inside the reactor, is a 20L liquid deuterium moderated source operating at 20K, 330kPa with a nominal refrigeration capacity of 5 kW and a peak flux at 4.2meV (equivalent to a wavelength of 0.4nm). The Thermosiphon and Moderator Chamber are cooled by helium gas delivered at 19.8K using the Brayton cycle. The helium is compressed by two 250kW compressors (one with a variable frequency drive to lower power consumption).A 5 Tesla BSCCO (2223) horizontal field HTS magnet will be delivered in the 2{sup nd} half of 2007 for use on all the cold neutron instruments. The magnet is cooled by a pulse tube cryocooler operating at 20K. The magnet design allows for the neutron beam to pass both axially and transverse to the field. Samples will be mounted in a 4K to 800K Gifford-McMahon (GM) cryofurnace, with the ability to apply a variable electric field in-situ. The magnet is mounted onto a tilt stage. The sample can thus be studied under a wide variety of conditions.A cryogen free 7.4 Tesla Nb-Ti vertical field LTS magnet, commissioned in 2005 will be used on neutron diffraction experiments. It is cooled by a standard GM cryocooler operating at 4.2K. The sample is mounted in a 2{sup nd} GM cryocooler (4K-300K) and a variable electric field can be applied.

  11. Sandia National Laboratories: Research: Bioscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNewsPublicationsBioscience

  12. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETLCell for

  13. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETLCell forAnalysis

  14. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETLCell

  15. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETLCellHighlights -

  16. Sandia Energy - Research & Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole Officials Turn toRandall T. CyganCreation of 3D mesh

  17. Sandia Energy - Research & Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole Officials Turn toRandall T. CyganCreation of 3D

  18. Sandia National Laboratories: Cybersecurity Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of thePrograms: Center forFacebook Twitter YouTube Flickr

  19. Sandia National Labs: PCNSC: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of(LVOC) WorkingTableTableSciencesHome About

  20. Sandia National Laboratories: Research: Biodefense

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque Housing

  1. Sandia National Laboratories: Research: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque HousingBiofuels Overcoming challenges to make

  2. Sandia's research spans generation, storage,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque AlbuquerqueCybernetics:Defense

  3. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling TechnologyHeavyHigh-Temperature

  4. Sandia Energy - Research & Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewable Energy Integration Home StationaryRequest

  5. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pez2015-04-06T22:15:34+00:00 Order by: Title Date added Download count SNL100-01 Carbon Spar Blade Model (95) The SNL100-01 Blade: Carbon Design Studies for the Sandia 100-meter...

  6. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Lopez2015-04-06T22:15:34+00:00 Order by: Title Date added Download count SNL100-00 All-glass Baseline Blade Model (65) The Sandia 100-Meter All-Glass Baseline Wind Turbine Blade:...

  7. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to any size, Jim says, the technology could be practical for problems ranging from microfluidics to reactor cooling. The researchers discovered various flow patterns they call...

  8. Neutronic safety and transient analyses for potential LEU conversion of the IR-8 research reactor.

    SciTech Connect (OSTI)

    Deen, J. R.; Hanan, N. A.; Smith, R. S.; Matos, J. E.; Egorenkov, P. M.; Nasonov, V. A.

    1999-09-27

    Kinetic parameters, isothermal reactivity feedback coefficients and three transients for the IR-8 research reactor cores loaded with either HEU(90%), HEU(36%), or LEU (19.75%) fuel assemblies (FA) were calculated using three dimensional diffusion theory flux solutions, RELAP5/MOD3.2 and PARET. The prompt neutron generation time and effective delayed neutron fractions were calculated for fresh and beginning-of-equilibrium-cycle cores. Isothermal reactivity feedback coefficients were calculated for changes in coolant density, coolant temperature and fuel temperature in fresh and equilibrium cores. These kinetic parameters and reactivity coefficients were used in transient analysis models to predict power histories, and peak fuel, clad and coolant temperatures. The transients modeled were a rapid and slow loss-of-flow, a slow reactivity insertion, and a fast reactivity insertion.

  9. The progress of neutron texture diffractometer at China Advanced Research Reactor

    E-Print Network [OSTI]

    Li, MeiJuan; Liu, YunTao; Tian, GengFang; Gao, JianBo; Yu, ZhouXiang; Li, YuQing; Wu, LiQi; Yang, LinFeng; Sun, Kai; Wang, HongLi; Chen, DongFeng

    2015-01-01

    The first neutron texture diffractometer in China has been built at China Advanced Research Reactor due to the strong demands of texture measurement with neutrons from domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study the texture in the commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of Zr alloy plate are presented. The comparison of texture measurement among different neutron texture diffractometer of HIPPO at LANSCE, Kowari at ANSTO and neutron texture diffractometer at CARR illustrates the reliable performance of this texture diffractometer.

  10. Sandia Energy - Sandia Report Presents Analysis of Glare Impacts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presents Analysis of Glare Impacts of Ivanpah Solar Power Site Home Renewable Energy Energy News News & Events Concentrating Solar Power Solar Systems Analysis Sandia Report...

  11. Sandia Energy - Sandia-AREVA Commission Solar Thermal/Molten...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration Home Renewable Energy Energy Facilities Partnership Capabilities News SunShot News & Events...

  12. Sandia Energy - Sandia's Dr. Jeffrey Tsao Is Recognized as an...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the way, he has outlined new and counterintuitive ways of thinking about the energy economics of lighting. He continues his career at Sandia National Laboratories as a...

  13. Sandia Energy - Sandia Student Wins Best Paper Award at IEEE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Photovoltaic and Distributed Systems Dept. Matthew Reno, a Sandian and an electrical engineering PhD candidate at the Georgia Institute of Technology, was given a Best...

  14. Sandia Energy - Sandia Publishes Five Reports on the Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publishes Five Reports on the Environmental Effects of Wave-Energy Converters Home Renewable Energy Energy Water Power News News & Events Computational Modeling & Simulation Sandia...

  15. Sandia Energy - Sandia Presented at the 14th Biennial Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presented at the 14th Biennial Conference on Transportation Energy and Policy Home Energy Transportation Energy CRF Facilities News News & Events Sandia Presented at the 14th...

  16. Sandia Energy - Sandia Supported the Neuro-Inspired Computational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of circuits, digital antibodies, and virus-sized logic chips. Murat Okandan (MEMS Technologies Dept.), who proposed and helped organize the workshop for Sandia,...

  17. Sandia Energy - SNL-SWAN (Sandia National Laboratories - Simulating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Sandia National Laboratories - Simulating WAves Nearshore) is an open source wave energy converter (WEC) array simulation tool. The code is a modification of the open source...

  18. Sandia Energy - Sandia's Work with Texas Southern University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Work with Texas Southern University Cited by Representative Sheila Jackson Lee Home Infrastructure Security Facilities Partnership News NISAC News & Events Modeling...

  19. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News & Events Systems Analysis Materials Science Biofouling Studies on Sandia's Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay Previous Next Biofouling Studies...

  20. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Water Power Partnership News News & Events Biofouling Studies on Sandia's Marine Hydrokinetic (MHK) Coatings Initiated at PNNL's Sequim Bay Previous Next Biofouling...

  1. Sandia National Laboratories: Working with Sandia: Accounts Payable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    according to the instrucitons on the form. Sandia requires a W-9 form to substantiate taxpayer reporting name and tax identification numbers (TINs) prior to opening supplier...

  2. Sandia Energy - Sandia to host PV Bankability workshop at Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    host PV Bankability workshop at Solar Power International (SPI) 2013 Home Renewable Energy Energy Events Workshops News & Events Solar Conferences Seminars & Conferences Sandia to...

  3. Very High Temperature Reactor (VHTR) Survey of Materials Research and Development Needs to Support Early Deployment

    SciTech Connect (OSTI)

    Eric Shaber; G. Baccaglini; S. Ball; T. Burchell; B. Corwin; T. Fewell; M. Labar; P. MacDonald; P. Rittenhouse; Russ Vollam; F. Southworth

    2003-01-01

    The VHTR reference concept is a helium-cooled, graphite moderated, thermal neutron spectrum reactor with an outlet temperature of 1000 C or higher. It is expected that the VHTR will be purchased in the future as either an electricity producing plant with a direct cycle gas turbine or a hydrogen producing (or other process heat application) plant. The process heat version of the VHTR will require that an intermediate heat exchanger (IHX) and primary gas circulator be located in an adjoining power conversion vessel. A third VHTR mission - actinide burning - can be accomplished with either the hydrogen-production or gas turbine designs. The first ''demonstration'' VHTR will produce both electricity and hydrogen using the IHX to transfer the heat to either a hydrogen production plant or the gas turbine. The plant size, reactor thermal power, and core configuration will be designed to assure passive decay heat removal without fuel damage during accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. The purpose of this report is to identify the materials research and development needs for the VHTR. To do this, we focused on the plant design described in Section 2, which is similar to the GT-MHR plant design (850 C core outlet temperature). For system or component designs that present significant material challenges (or far greater expense) there may be some viable design alternatives or options that can reduce development needs or allow use of available (cheaper) materials. Nevertheless, we were not able to assess those alternatives in the time allotted for this report and, to move forward with this material research and development assessment, the authors of this report felt that it was necessary to use a GT-MHR type design as the baseline design.

  4. Independent Oversight Inspection, Sandia National Laboratories...

    Energy Savers [EERE]

    Emergency Management at the Sandia Site Office and Sandia National Laboratories, New Mexico, Volume III This report provides the results of an independent oversight inspection of...

  5. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOMENT - Belva Whitfield, widow of Sandia legend Willis Whitfield, inventor of the laminar airflow cleanroom, gets a gentle greeting from a Sandian in a cleanroom in Sandia's...

  6. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whitfield, widow of Sandia legend Willis Whitfield, inventor of the laminar airflow cleanroom, gets a gentle greeting from a Sandian in a cleanroom in Sandia's MESA complex....

  7. Sandia Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Sandia Field Office Sandia Field Office FY15 Semi Annual Report FY14 Year End...

  8. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    create the foundation for future prosperity. Chu visited Sandia and the University of New Mexico on Jan. 26, touring Sandia's National Solar Thermal Test Facility, and learning...

  9. Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.

    SciTech Connect (OSTI)

    Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

    2013-07-01

    The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandia's extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

  10. Sandia WIPP calibration traceability

    SciTech Connect (OSTI)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  11. Dismantling Structures and Equipment of the MR Reactor and its Loop Facilities at the National Research Center 'Kurchatov Institute' - 12051

    SciTech Connect (OSTI)

    Volkov, V.G.; Danilovich, A.S.; Zverkov, Yu. A.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Muzrukova, V.D.; Pavlenko, V.I.; Semenov, S.G.; Fadin, S.Yu.; Shisha, A.D.; Chesnokov, A.V.

    2012-07-01

    In 2008 a design of decommissioning of research reactors MR and RFT has been developed in the National research Center 'Kurchatov institute'. The design has been approved by Russian State Authority in July 2009 year and has received the positive conclusion of ecological expertise. In 2009-2010 a preparation for decommissioning of reactors MR and RFT was spent. Within the frames of a preparation a characterization, sorting and removal of radioactive objects, including the irradiated fuel, from reactor storage facilities and pool have been executed. During carrying out of a preparation on removal of radioactive objects from reactor sluice pool water treating has been spent. For these purposes modular installation for clearing and processing of a liquid radioactive waste 'Aqua - Express' was used. As a result of works it was possible to lower volume activity of water on three orders in magnitude that has allowed improving essentially of radiating conditions in a reactor hall. Auxiliary systems of ventilation, energy and heat supplies, monitoring systems of radiating conditions of premises of the reactor and its loop-back installations are reconstructed. In 2011 the license for a decommissioning of the specified reactors has been received and there are begun dismantling works. Within the frames of works under the design the armature and pipelines are dismantled in a under floor space of a reactor hall where a moving and taking away pipelines of loop facilities and the first contour of the MR reactor were replaced. A dismantle of the main equipment of loop facility with the gas coolant has been spent. Technologies which were used on dismantle of the radioactive contaminated equipment are presented, the basic works on reconstruction of systems of maintenance of on the decommissioning works are described, the sequence of works on the decommissioning of reactors MR and RFT is shown. Dismantling works were carried out with application of means of a dust suppression that, in aggregate with standard means at such works of individual protection of the personnel and devices of radiating control, has allowed to lower risk of action of radiation on the personnel, the population and environment at the expense of reduction of volume activity of radioactive aerosols in air. (authors)

  12. Connecting the physical and psychosocial space to Sandia's mission.

    SciTech Connect (OSTI)

    Emmanuel, Glory Ruth; Silva, Austin Ray

    2014-07-01

    Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460. Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.

  13. Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor

    SciTech Connect (OSTI)

    Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

    2002-02-26

    The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at the same cost without implementing this approach.

  14. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    SciTech Connect (OSTI)

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work.

  15. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

  16. Sandia National Laboratories will be on campus!

    E-Print Network [OSTI]

    Sandia National Laboratories will be on campus! Student Internship & Fellowship Programs at Sandia Learn more: www.sandia.gov Sandia National Laboratories is a multi-program laboratory managed.S. Department of Energy's National Nuclear Security Administration under contract DE=AC04-94AL85000. SAND 2013

  17. Development and operation of research-scale IIIV nanowire growth reactors

    E-Print Network [OSTI]

    Petta, Jason

    ,300,000.18­20 Unfortu- nately, the cost of commercial reactors presents a high barrier of entry into semiconductor,a A. M. Bergman, and J. R. Pettab Department of Physics, Princeton University, Princeton, New Jersey at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive

  18. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Remote Mapping (147) Advanced Reactor Designs (249) Advanced Security for Nuclear Materials and Facilities (572) Advances in Performance Assessment (430) Air Bearing...

  19. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  20. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    SciTech Connect (OSTI)

    Idaho National Laboratory

    2009-12-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement and leadership on nuclear safety and security issues.

  1. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandia National Laboratories

  2. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandia National

  3. Sandia Corporate Ombuds Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandiaCOMMUNITY MEMBERS

  4. Sandia Corporate Ombuds Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandiaCOMMUNITY MEMBERSWHAT GUIDES

  5. Sandia Energy - Alyssa Christy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandiaCOMMUNITYandAir

  6. Sandia Energy - DETL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin Humphreys Home ColinSandiaCraigCynthia A.DETL

  7. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin HumphreysDETL PermalinkAnalysis Sandia

  8. Sandia Energy - Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSampleLignin-Feasting Microbe HoldsMappingCapabilities Sandia

  9. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSampleLignin-FeastingPreviouslyComputational ModelingSandia's

  10. Sandia Energy - Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole Officials Turn to Sandia National

  11. Sandia Energy - Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole Officials Turn to Sandia NationalAdvanced Materials

  12. Sandia Energy - Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole Officials Turn to Sandia

  13. Sandia Energy - Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole Officials Turn to SandiaComputational Modeling &

  14. Sandia Energy - Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole OfficialsWorkSensors &Sandia engineer Joshua

  15. Sandia Energy - Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole OfficialsWorkSensors &Sandia

  16. Sandia Energy - Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole OfficialsWorkSensors &SandiaCapabilities

  17. Sandia Energy - Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole OfficialsWorkSensors &SandiaCapabilitiesDETL

  18. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patented rotary electrical

  19. Sandia Energy - Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patented rotary

  20. Sandia Energy - cwdd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patentedcwdd Home About cwdd

  1. Sandia Energy - kmruehl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patentedcwdd Home Aboutkmruehl

  2. Sandia Energy - lmays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patentedcwdd Home

  3. Sandia Energy - sspope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patentedcwdd Homesspope Home

  4. Sandia Energy Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patentedcwdd Homesspope

  5. Sandia Energy » Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patentedcwdd Homesspope

  6. Sandia Energy » Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patentedcwddRenewables, Other

  7. Sandia Energy » Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patentedcwddRenewables,

  8. Sandia Energy » CINT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patentedcwddRenewables,Novel

  9. Sandia Energy » EC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesTheSandians ParticipateSmallSandia, UNM

  10. Sandia Energy » Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of Minnesota's VirtualSandia

  11. sandia national lab

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 FederalRivers andMEDA Station3/%2A ¡ ¢0/%2A 58

  12. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en NNSAReference toSample Forms |

  13. sandia national laboratory

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2Anational lab | National Nuclear/%2A en

  14. The Sandia Hand Features

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(activeInforumMILC&inDepartment of3Sandia

  15. Sandia National Laboratories conducts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal Sandia National Laboratoriesconducts

  16. Sandia Energy - Chemical Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, Sandia CRADA

  17. Sandia Energy - Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, Sandia CRADAChemistry

  18. Sandia Energy - Combustion Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, Sandia

  19. Sandia Energy - Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, SandiaCombustion Kinetics Home

  20. Sandia Energy - Computations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, SandiaCombustionComputations

  1. Sandia National Laboratories: Research: Research Foundations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for subsurface engineering pursuits, as well as in a basic understanding of how fluids interact with and in deforming, porous media. Contact Thomas Dewers Funding source...

  2. Sandia National Laboratories: Research: Research Foundations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduce CO2 emission by 11% in 2030 (EPRI 2009), a critical piece to reducing CO2 gas emissions. Solution The Center for Frontiers of Subsurface Energy Security (CFSES) is pursuing...

  3. Sandia National Labs: PCNSC: Research: Research Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of(LVOC)Nanosciences Throughout the

  4. Sandia National Laboratories: Research: Research Foundations: Geoscience:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque AlbuquerqueCybernetics: PerceptionMaterials ScienceProject:

  5. Sandia National Laboratories: Research: Research Foundations: Geoscience:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque AlbuquerqueCybernetics: PerceptionMaterials

  6. Sandia National Laboratories: Research: Research Foundations: Geoscience:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque AlbuquerqueCybernetics: PerceptionMaterialsProject:

  7. Independent Oversight Targeted Review of the Sandia National...

    Office of Environmental Management (EM)

    ... B-1 i Acronyms ACRRF Annular Core Research Reactor Facility CAP Corrective Action Plan CAS Contractor Assurance System CRAD Criteria,...

  8. Sandia technology & entrepreneurs improve Lasik

    ScienceCinema (OSTI)

    Neal, Dan; Turner, Tim

    2014-02-26

    Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

  9. Advanced reactor safety research quarterly report, October-December 1982. Volume 24

    SciTech Connect (OSTI)

    None

    1984-04-01

    This report describes progress in a number of activities dealing with current safety issues relevant to both light water reactors (LWRs) and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  10. Conceptual Design of Molten Salt Loop Experiment for MIT Research Reactor

    E-Print Network [OSTI]

    Bean, Malcolm K.

    2011-08-01

    Molten salt is a promising coolant candidate for Advanced High Temperature Reactor (AHTR) Gen-IV designs. The low neutron absorption, high thermal capacity, chemical inertness, and high boiling point at low pressure of ...

  11. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    SciTech Connect (OSTI)

    Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

    2012-09-30

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

  12. 1990 DOE/SANDIA crystalline photovoltaic technology project review meeting

    SciTech Connect (OSTI)

    Ruby, D.S.

    1990-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

  13. SANDIA REPORT SAND2006-ABCD

    E-Print Network [OSTI]

    Ray, Jaideep

    for characterizing distributed micro-releases: I. The single-source case for non-contagious diseases J. Ray, Y for non-contagious diseases J. Ray Advanced Software R. & D., Sandia National Laboratories P. O. Box 969

  14. Sandia Energy - PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Systems ReliabilityCoryne Tasca2015-05-08T03:40:54+00:00 Sandia...

  15. Development of a core design optimization tool and analysis in support of the planned LEU conversion of the MIT Research Reactor (MITR-II)

    E-Print Network [OSTI]

    Connaway, Heather M. (Heather Moira)

    2012-01-01

    The MIT Research Reactor (MITR-II) is currently undergoing analysis for the planned conversion from high enriched uranium (HEU) to low enriched uranium (LEU), as part of a global effort to minimize the availability of ...

  16. Two Methods for Converting a Heavy-Water Research Reactor to Use Low-Enriched-Uranium Fuel to Improve Proliferation Resistance After Startup

    E-Print Network [OSTI]

    Kemp, R. Scott

    This article demonstrates the feasibility of converting a heavy-water research reactor from natural to low-enriched uranium in order to slow the production of weapon-usable plutonium, even if the core cannot be physically ...

  17. Sandia National Laboratories Institutional Plan FY1994--1999

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  18. LANL Transfers Glowing Bio Technology to Sandia Biotech

    ScienceCinema (OSTI)

    Rorick, Kevin

    2012-08-02

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

  19. LANL Transfers Glowing Bio Technology to Sandia Biotech

    SciTech Connect (OSTI)

    Rorick, Kevin

    2012-01-01

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

  20. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    SciTech Connect (OSTI)

    Monteleone, S. [comp.

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

  1. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

  2. Sandia National Laboratories: About Sandia: Leadership: Vice...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research, hydrogen storage, mechanical component design, thermal analysis and microfluidics. She earned her first management appointment in 1989 and held technical leadership...

  3. Sandia National Laboratories: Sandia researchers win 'best paper...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The paper, "A Priori Analysis of Flamelet-Based Modeling for a Dual-Mode Scramjet Combustor," was a result of collaborations with Jesse Quinlan and James McDaniel from the...

  4. Sandia Energy - Sandia Transportation-Energy Research Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Response: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and (Electro)chemical Processes" project under the Computer Aided Engineering (CAE) for Electric Drive...

  5. Sandia Energy - Sandia-Electric Power Research Institute Partnership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Energy Facilities Grid Integration News News & Events Photovoltaic Solar Systems Analysis Modeling & Analysis Solar Newsletter Photovoltaic Systems Evaluation...

  6. Sandia Energy - Sandia Researchers, UK Partners Publish Groundbreaking...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct kinetics measurements made of reactions of any Criegee species, in this case formaldehyde oxide (CH2OO). These measurements determine rate coefficients with key species,...

  7. Sandia Energy - Sandia's Frontier Observatory for Research In...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    well as to allow scientists to identify a replicable, commercial pathway to enhanced geothermal systems (EGSs)." In addition to the site itself, the FORGE effort will include a...

  8. Sandia Energy - Sandia Researchers Are First to Measure Thermoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Are First to Measure Thermoelectric Behavior of a Nanoporous Metal-Organic Framework Home Energy Transportation Energy CRF Office of Science Facilities Capabilities News Energy...

  9. Sandia Energy - Sandia Cyber Engineering Research Laboratory (CERL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole Officials Turn toRandallFormally Opens Cyber

  10. Sandia Energy - Sandia Optical Diagnostics Researcher Wins DOE Early

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole Officials TurnScience Metal-Organic

  11. Sandia Energy - Sandia Researchers, UK Partners Publish Groundbreaking

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole OfficialsWork on Criegee Intermediates in Science

  12. Sandia Energy - Sandia's Frontier Observatory for Research In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole OfficialsWork on CriegeeEuropeanGeothermal Energy

  13. Sandia Energy - Second Annual Electric Power Research Institute/Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole OfficialsWork onandEnvironmentalon the

  14. Sandia National Laboratories: Got Solitons? Sandia researcher sees problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovationScienceElectromagneticsNews Releasesas a

  15. Sandia Energy - Sandia Research Aims to Enhance Understanding of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompanies Pilot Program to

  16. Sandia Energy - Sandia Research Featured on Journal of Physical Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompanies Pilot Program toA Cover

  17. Sandia Energy - Sandia Research on Rooftop Structural Strength Gains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompanies Pilot Program toA

  18. Sandia Energy - Sandia Researchers Are First to Measure Thermoelectric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompanies Pilot Program toAJournal

  19. Sandia Energy - Sandia Researchers Win CSP:ELEMENTS Funding Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompanies Pilot ProgramCSP:ELEMENTS Funding

  20. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to maintain or grow its presence. Fellows are expected to bring the very best science and engineering to Sandia and the US, shape the future of Sandia's science and engineering...

  1. SANDIA REPORT SAND2006-5000

    E-Print Network [OSTI]

    O'Leary, Dianne P.

    , Clustering and Summarizing Documents Daniel M. Dunlavy, Sandia National Laboratories Dianne P. O'Leary Albuquerque, NM 87185-1318 dmdunla@sandia.gov Dianne P. O'Leary Department of Computer Science and Institute

  2. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JOEL LASH, senior manager of Z Facility R&D Org. 1670, at right, describes Sandia's Z pinch capability to an international delegation visiting Sandia to observe firsthand the...

  3. Advanced reactor safety research. Quarterly report, April-June 1982. Volume 22

    SciTech Connect (OSTI)

    None

    1983-10-01

    Overall objective of this work is to provide NRC a comprehensive data base essential to (1) defining key safety issues, (2) understanding risk-significant accident sequences, (3) developing and verifying models used in safety assessments, and (4) assuring the public that power reactor systems will not be licensed and placed in commercial service in the United States without appropriate consideration being given to their effects on health and safety. This report describes progress in a number of activities dealing with current safety issues relevant to both light water and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents, and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  4. Research and Development Assessments for Prometheus eavy Ion and Laser Driven Inertial Fusion Energy Reactor Designs

    E-Print Network [OSTI]

    Abdou, Mohamed

    -ion and laser drivers. INTRODUCTION Two commercial central station electric power plants have been conceptually designed and analyzed in the Prometheus[11study led by McDonnell Douglas Aerospace. These plants use reactors, (2) provide programmatic-decision makers with a list of important R&D tasks that need

  5. Sandia National Laboratories: Products and Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products and Services What Sandia National Laboratories Buys National Security & Pulsed Power Supports... Defense Systems & Assessments Electronic Systems Integrated Military...

  6. LOCA simulation in the national research universal reactor program: postirradiation examination results for the third materials experiment (MT-3)

    SciTech Connect (OSTI)

    Rausch, W.N.

    1984-04-01

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program. The third materials experiment (MT-3) was the sixth in the series of thermal-hydraulic and materials deformation/rutpure experiments conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The main objective of the experiment was to evaluate ballooning and rupture during active two-phase cooling in the temperature range from 1400 to 1500/sup 0/F (1030 to 1090 K). The 12 test rods in the center of the 32-rod bundle were initially pressurized to 550 psi (3.8 MPa) to insure rupture in the correct temperature range. All 12 of the rods ruptured, with an average peak bundle strain of approx. 55%. The UKAEA also funded destructive postirradiation examination (PIE) of several of the ruptured rods from the MT-3 experiment. This report describes the work performed and presents the PIE results. Information obtained during the PIE included cladding thickness measurements metallography, and particle size analysis of the cracked and broken fuel pellets.

  7. SANDIA REPORT SAND2015-2593

    E-Print Network [OSTI]

    : Final Report of Sandia R&D Activities D. Todd Griffith Wind Energy Technologies Department Sandia Management for Offshore Wind Plants: Final Report of Sandia R&D Activities D. Todd Griffith Prepared-2593 Unlimited Release Printed March 2015 Structural Health and Prognostics Management for Offshore Wind Plants

  8. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    E-Print Network [OSTI]

    Hoye, Robert L. Z.; Muñoz-Rojas, David; Nelson, Shelby F.; Illiberi, Andrea; Poodt, Paul; Roozeboom, Fred; MacManus-Driscoll, Judith L.

    2015-04-02

    given to describe this system, but in this research update, we standardize its name to the Cambridge University Close Proximity (CUCP) reactor (design details are given in Ref. 24). An illustration of the CUCP gas manifold is given in Fig. 2... times, as indicated. Reprinted with permission from D. Muñoz-Rojas, H. Sun, D. C. Iza, J. Weickert, L. Chen, H. Wang, L. Schmidt-Mende, J. L. MacManus-Driscoll, Prog. Photovoltaics: Res. Appl. 21, 393 (2013). Copyright 2013 Wiley-VCH. adherent...

  9. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    SciTech Connect (OSTI)

    Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1993-03-01

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    SciTech Connect (OSTI)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N. [Institution Project center ITER, Moscow (Russian Federation)

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and ?–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  11. Joint Statement of Intent Concerning the Arak Heavy Water Reactor Research

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public CommentInverted Attic9: JohnofReactor Modernization

  12. Sandia Energy - Severe Accident Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear energy efforts by developing risk margins, creating risk assessments, sequencing nuclear reactor accident progression, and performing reactor consequence modeling. Severe...

  13. Fuel and core testing plan for a target fueled isotope production reactor.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-12-01

    In recent years there has been an unstable supply of the critical diagnostic medical isotope 99Tc. Several concepts and designs have been proposed to produce 99Mo the parent nuclide of 99Tc, at a commercial scale sufficient to stabilize the world supply. This work lays out a testing and experiment plan for a proposed 2 MW open pool reactor fueled by Low Enriched Uranium (LEU) 99Mo targets. The experiments and tests necessary to support licensing of the reactor design are described and how these experiments and tests will help establish the safe operating envelop for a medical isotope production reactor is discussed. The experiments and tests will facilitate a focused and efficient licensing process in order to bring on line a needed production reactor dedicated to supplying medical isotopes. The Target Fuel Isotope Reactor (TFIR) design calls for an active core region that is approximately 40 cm in diameter and 40 cm in fuel height. It contains up to 150 cylindrical, 1-cm diameter, LEU oxide fuel pins clad with Zircaloy (zirconium alloy), in an annular hexagonal array on a {approx}2.0 cm pitch surrounded, radially, by a graphite or a Be reflector. The reactor is similar to U.S. university reactors in power, hardware, and safety/control systems. Fuel/target pin fabrication is based on existing light water reactor fuel fabrication processes. However, as part of licensing process, experiments must be conducted to confirm analytical predictions of steady-state power and accident conditions. The experiment and test plan will be conducted in phases and will utilize existing facilities at the U.S. Department of Energy's Sandia National Laboratories. The first phase is to validate the predicted reactor core neutronics at delayed critical, zero power and very low power. This will be accomplished by using the Sandia Critical Experiment (CX) platform. A full scale TFIR core will be built in the CX and delayed critical measurements will be taken. For low power experiments, fuel pins can be removed after the experiment and using Sandia's metrology lab, relative power profiles (radially and axially) can be determined. In addition to validating neutronic analyses, confirming heat transfer properties of the target/fuel pins and core will be conducted. Fuel/target pin power limits can be verified with out-of-pile (electrical heating) thermal-hydraulic experiments. This will yield data on the heat flux across the Zircaloy clad and establish safety margin and operating limits. Using Sandia's Annular Core Research Reactor (ACRR) a 4 MW TRIGA type research reactor, target/fuel pins can be driven to desired fission power levels for long durations. Post experiment inspection of the pins can be conducted in the Auxiliary Hot Cell Facility to observe changes in the mechanical properties of the LEU matrix and burn-up effects. Transient tests can also be conducted at the ACRR to observe target/fuel pin performance during accident conditions. Target/fuel pins will be placed in double experiment containment and driven by pulsing the ACRR until target/fuel failure is observed. This will allow for extrapolation of analytical work to confirm safety margins.

  14. Sandia National Laboratories: Sandia Digital Media

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRD Publications ResearchScienceandEffects

  15. Sandia Energy - Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science Home Energy Research Advanced Scientific Computing Research (ASCR) Computational Science Computational Sciencecwdd2015-03-26T13:35:2...

  16. Theoretical analysis of the subcritical experiments performed in the IPEN/MB-01 research reactor facility

    SciTech Connect (OSTI)

    Lee, S. M.; Dos Santos, A. [Inst. de Pesquisas Energeticas e Nucleares, Cidade Universitaria, Av. Lineu Prestes, 2242, 05508-000 Sao Paulo - SP (Brazil)

    2012-07-01

    The theoretical analysis of the subcritical experiments performed at the IPEN/MB-01 reactor employing the coupled NJOY/AMPX-II/TORT systems was successfully accomplished. All the analysis was performed employing ENDF/B-VII.0. The theoretical approach follows all the steps of the subcritical model of Gandini and Salvatores. The theory/experiment comparison reveals that the calculated subcritical reactivity is in a very good agreement to the experimental values. The subcritical index ({xi}) shows some discrepancies although in this particular case some work still have to be made to model in a better way the neutron source present in the experiments. (authors)

  17. Research on direct containment heating and pressurized melt expulsion from the reactor coolant system

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M.; Brockmann, J.E.; Powers, D.A.

    1988-01-01

    The expulsion of high temperature core debris from the reactor cavity into the containment atmosphere has recently been identified as an important potential contributor to containment failure in the event of a severe accident. Experiments and analyses have shown that failure of the reactor vessel while the primary system is pressurized can result in the rapid discharge of molten core debris into the cavity. Gas from the blowdown of the coolant system may then entrain the debris as fine particulate that may be carried out of the cavity region. Containment loading can result from the combustion of hydrogen produced by the interaction of the debris with steam from the primary system and from thermal and chemical energy transferred from the debris to the atmosphere is directed towards identifying and quantifying the phenomena associated with the pressurized discharge of the core debris and the direct containment heating processes. Experiments are being performed to provide the information needed to develop phenomenological models for use in system level code predictions. Emphasis has been primarily on the use of scaled cavities (ranging from 1:10 to 1:50 linear scale) and the quantification of the extent of the material dispersed. Information has been obtained on the physics of the jet behavior, the entrainment of the debris, debris characteristics (e.g., size and number distributions), debris-gas heat transfer and chemistry, aerosol generation, and the influence of water. Models and codes are reviewed and discussed and representative calculations are presented.

  18. Reactor Safety Research Programs. Quarterly report, July-September 1984. Volume 3. [PWR; BWR

    SciTech Connect (OSTI)

    Edler, S.K.

    1985-02-01

    This document summarizes work performed by Pacific Northwest Laboratory from July 1 through September 30, 1984, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission. Results from an instrumented fuel assembly irradiation program being performed at Halden, Norway, are reported. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Fuel assemblies and analytical support are being provided for experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory, Idaho Falls, Idaho. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Severe fuel damage accident tests are being conducted in the NRU Reactor, Chalk River, Canada.

  19. Reactor safety research programs. Quarterly report, January-March 1984. Vol. 1. [PWR; BWR

    SciTech Connect (OSTI)

    Edler, S.K.

    1984-06-01

    This document summarizes work performed by Pacific Northwest Laboratory from January 1 through March 31, 1984, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission. Results from an instrumented fuel assembly irradiation program being performed at Halden, Norway, are reported. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data on analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Fuel assemblies and analytical support are being provided for experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory, Idaho Falls, Idaho. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada.

  20. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  1. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  2. CSRI SUMMER PROCEEDINGS 2008 The Computer Science Research Institute

    E-Print Network [OSTI]

    Siefert, Chris

    A Department of Energy National Laboratory SAND2008-8257P Sandia is a multiprogram laboratory operated university faculty and students to Sandia National Laboratories for focused collaborative researchCSRI SUMMER PROCEEDINGS 2008 The Computer Science Research Institute at Sandia National

  3. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    SciTech Connect (OSTI)

    Smith, Anthony A. [Research Sites Restoration Ltd, Winfrith, Dorset (United Kingdom)] [Research Sites Restoration Ltd, Winfrith, Dorset (United Kingdom)

    2013-07-01

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] it is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)

  4. Decommissioning the Romanian Water-Cooled Water-Moderated Research Reactor: New Environmental Perspective on the Management of Radioactive Waste

    SciTech Connect (OSTI)

    Barariu, G.; Giumanca, R. [Romanian Authority for Nuclear Activity (RAAN), Subsidiary of Technology and Engineering for Nuclear Objectives (SITON), 111 Atomistilor St., Bucuresti-Magurele, Ilfov (Romania)

    2006-07-01

    Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. In accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to ensure the plant complies with current safety standards. This plant will also need to be adapted to treat wastes generated by WWER dismantling. The Baita-Bihor National Radioactive Waste Disposal Facility consists of two galleries in an abandoned uranium mine located in the central-western part of the Bihor Mountains in Transylvania. The galleries lie at a depth of 840 m. The facility requires a considerable overhaul. Several steps recommended for the upgrade of the facility are explored. Environmental concerns have lately become a crucial part of the radioactive waste management strategy. As such, all decisions must be made with great regard for land utilization around nuclear objectives. (authors)

  5. VBZ-0028- In the Matter of Sandia Corporation

    Broader source: Energy.gov [DOE]

    This decision considers a “Motion to Dismiss” filed by the Sandia Corporation (Sandia) on August 24, 1999. In its Motion, Sandia seeks judgment on the record of Complaint filed by Dr. Jiunn Yu (Yu)...

  6. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation energy storage research programs apply scientific understanding of battery degradation mechanisms to develop technologies to improve battery performance,...

  7. The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories

    SciTech Connect (OSTI)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems.

  8. Design of a low enrichment, enhanced fast flux core for the Massachusetts Institute of Technology Research Reactor

    E-Print Network [OSTI]

    Ellis, Tyler Shawn

    2009-01-01

    Worldwide, there is limited test reactor capacity to perform the required irradiation experiments on advanced fast reactor materials and fuel designs. This is particularly true in the U.S., which no longer has an operating ...

  9. Sandia Energy - American Institute of Aeronautics and Astronautics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fellow A test is performed at Sandia to validate a structural model of the Sandia Blade System Design Study (BSDS) blade concept. The innovative flatback airfoil technology...

  10. Enterprise Assessments Review of the Sandia National Laboratories...

    Energy Savers [EERE]

    Sandia National Laboratories New Mexico Emergency Management Exercise Program - November 2015 Enterprise Assessments Review of the Sandia National Laboratories New Mexico...

  11. LANL, Sandia National Lab recognize New Mexico small businesses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL, Sandia National Lab recognize New Mexico small businesses for innovation LANL, Sandia recognized New Mexico small businesses for innovation Businesses include the Pueblo of...

  12. Los Alamos National Laboratory, Sandia Labs, other major employers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM education in New Mexico Los Alamos National Laboratory, Sandia Labs, other major employers commit to STEM education in New Mexico Los Alamos, Sandia and several partners are...

  13. Sandia National Laboratories Releases Literature Survey of Crude...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport Sandia National Laboratories Releases Literature...

  14. NREL: News - NREL, Sandia Team to Improve Hydrogen Fueling Infrastruct...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    714 NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure April 30, 2014 A new project led by the Energy Department's National Renewable Energy Laboratory (NREL) and Sandia...

  15. Addressing mechanical reliability issues in Sandia MEMS devices...

    Office of Scientific and Technical Information (OSTI)

    Addressing mechanical reliability issues in Sandia MEMS devices. Citation Details In-Document Search Title: Addressing mechanical reliability issues in Sandia MEMS devices. No...

  16. PV Performance and Reliability Validation Capabilities at Sandia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Performance and Reliability Validation Capabilities at Sandia National Laboratories PV Performance and Reliability Validation Capabilities at Sandia National Laboratories This...

  17. 2014 Sandia Wind Turbine Blade Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Energy Department's Sandia National Laboratories will host its 2014 Sandia Wind Turbine Blade Workshop at the Marriott Pyramid North in Albuquerque, New Mexico. The workshop provides a unique, blade focused collaborative forum that will bring together wind energy leaders from industry, academia, and government. Stay tuned for updates. Information regarding past Wind Workshops can be found at: http://windworkshops.sandia.gov/.

  18. LANL Transfers Glowing Bio Technology to Sandia Biotech

    ScienceCinema (OSTI)

    Nakhla, Tony;

    2014-06-25

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

  19. LANL Transfers Glowing Bio Technology to Sandia Biotech

    SciTech Connect (OSTI)

    Nakhla, Tony; ,

    2012-05-21

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

  20. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Generation Vehicles (52) ECIS-Veeco: Research Driving Down the Costs of Efficient LED Lighting (172) Economic and Policy Analyses Provide Key Perspectives on Energy (408)...

  1. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Perspectives (558) ECIS-Veeco: Research Driving Down the Costs of Efficient LED Lighting (172) EFRC Fact Sheet (158) EFRC Fact Sheet (901) Energy, Climate, &...

  2. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced CSP Systems Analysis Summary (678) 2009 Power Tower Project Summary (723) 2009 Thermal Storage Research and Development Summary (805) Central Receiver Technologies - a...

  3. Sandia Energy - Computations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edge flames, and laminar jet flames, with hydrocarbon fuels such as methane, propane, n-heptane, and iso-octane. Moreover, CRF researchers have developed a flexible...

  4. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a liner aimed at helping prosthetic limbs fit better. Sandia's Intelligent Systems, Robotics, and Cybernetics group is developing a liner with sensors that tell what's going on...

  5. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diamond compact (PDC) bits, originally developed nearly 30 years ago to lower the cost of geothermal drilling. A recent demonstration project by Sandia and the US Navy brings...

  6. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    issue was identified as a key component in DOE's National Algal Biofuels Technology Roadmap. A three-pronged technical approach Sandia is addressing the algal pond crash issue...

  7. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Sandia, but Ken expects that to change. "It plays well to our strengths in microfluidics, bioassays, and system integration," he says. "This opportunity could open new...

  8. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (6533) demonstrates a liner aimed at helping prosthetic limbs fit better. Sandia's Intelligent Systems, Robotics, and Cybernetics group is developing a liner with sensors...

  9. Fact Sheet on Sandia Corporation PNOV

    Broader source: Energy.gov (indexed) [DOE]

    Preliminary Notice of Violation: Sandia Sled Track Incident June 2010 On June 1, 2010, the National Nuclear Security Administration (NNSA) issued a Preliminary Notice of Violation...

  10. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    says project lead Steve Buerger of Sandia's Intelligent Systems Control Dept. 6533. Battery life is an important concern in the usefulness of robots for emergency response. "You...

  11. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 15, 2012 Follow the sun: Sandia solar-tracking technology fuels global business WEATHERWISE - Tim Leonard, right, owner of Precision Solar Technologies Corp., and the...

  12. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia is advancing viable, low-carbon power through its collaboration on five US Regional Test Centers (RTCs) where industry can assess the performance, reliability, and...

  13. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jared (1832) sits in front of a new selective laser melting machine at Sandia for metal additive manufacturing (AM) as he holds two prototype housings designed through a...

  14. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of energy sources and improved efficiency standards fit together into secure, robust, and sustainable solutions? Sandia's transportation energy analysis program is focused on...

  15. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cell phones and boxy computers? Remember being lost? "Our lives become more convenient, flexible, dynamic, and agile every day," says Sandia Fellow and materials scientist Jerry...

  16. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detector for the military, the MicroChemLab. Ever since, Sandia has improved such microfluidics- and microelectromechanical (MEMS) systems-based instruments that identify...

  17. Independent Activity Report, Sandia National Laboratories - September...

    Broader source: Energy.gov (indexed) [DOE]

    Facility improvement plan developed by Sandia in response to recent safety basis and software quality assurance concerns raised by the Defense Nuclear Facilities Safety Board....

  18. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opportunity to connect with both academia and other organizations at Sandia to expand my knowledge and understanding of nuclear engineering." Stronger relationship with UNM The...

  19. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holinka Following the earthquake and devastating tsunami last year that damaged the nuclear power complex at Fukushima, Japan, Sandia experts were asked to apply the Labs'...

  20. Sandia National Laboratories | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    nuclear weapons Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here at...

  1. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13, 2014 AREVA building on Sandia's molten salt expertise These mirrors at the National Solar Thermal Test Facility, called Compact Linear Fresnel Reflectors, are being used in...

  2. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cycle Programs, has two decades of technical and managerial experience supporting both Yucca Mountain Project and the Waste Isolation Pilot Plant. He knew that Sandia had the...

  3. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daniel Ray inspect the Falling Particle Receiver during a cloud delay atop the National Solar Thermal Test Facility at Sandia National Laboratories. (Photo by Randy Montoya) by...

  4. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and his mentor Mark Gerling discuss Mobile Imager of Neutrons for Emergency Responders (MINER). While at Sandia last summer, Zach evaluated how the performance of MINER compares...

  5. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awe (1688) examines coils that reduce plasma instabilities in the quest for controlled nuclear fusion at Sandia's Z machine. (Photo by Randy Montoya) by Neal Singer A surprising...

  6. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AHW. The technical challenges that faced Sandia were aerodynamic stability, aerodynamic heating, and control of the missile and glide vehicle, he says. Typically, boosters fly...

  7. Sandia National Laboratories: Bringing it home:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inaugural recipients of the ICHS Robert Schefer Best Paper award. (Photo by Randy Wong) In October, Sandia scientists Katrina Groth and Ethan Hecht were recognized at the...

  8. Sandia National Laboratories: Training and Technology Demonstration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training and Technology Demonstration Area Training and Technology Demonstration Area Sandia's Training and Technology Demonstration Area (TTD) showcases technologies that can be...

  9. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the MicroChemLab. Ever since, Sandia has improved such microfluidics- and microelectromechanical (MEMS) systems-based instruments that identify chemicals based on gas...

  10. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Ray Ely, left, and Dennis Kuchar (both 2613) inspect launch accelerometer hardware before assembling units for critical flight tests. Their work is part of Sandia's...

  11. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are here collaborating." From those strained beginnings, long-term friendships and collaboration formed, he says. Those program participants and Sandia's early work in certain...

  12. Sandia National Laboratories Supplier Quality Requirements for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to print items, procured either through a Contract or a Purchase Order from qualified suppliers outside Sandia National Laboratories or through a Service Order for In House...

  13. Independent Oversight Inspection, Sandia National Laboratories...

    Office of Environmental Management (EM)

    Summary Report - February 2003 February 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Sandia National Laboratories This report provides a...

  14. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect (OSTI)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  15. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Quintana PSEL is a multi-user, multi-sponsor facility that conducts research in photovoltaic (PV) cells and modules and performs detailed analysis in PV systems design...

  16. Sandia Energy - Quantum Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Optics Home Energy Research EFRCs Solid-State Lighting Science EFRC Quantum Optics Quantum OpticsTara Camacho-Lopez2015-03-30T16:37:03+00:00 Quantum Optics with a Single...

  17. Sandia Energy - Semiconductor Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor Revolution Home Energy Research EFRCs Solid-State Lighting Science EFRC Semiconductor Revolution Semiconductor RevolutionTara Camacho-Lopez2015-05-14T14:32:12+00:00...

  18. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRFInternshipFlyer-SAND2013-10296P.pdf filesize 2.1 MB Version 1 Date added December 4, 2013 Downloaded 177 times Category Brochure, Combustion, Combustion Research Facility...

  19. Sandia Energy - Flame Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flame Chemistry Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Flame Chemistry Flame ChemistryAshley Otero2015-10-28T02:43:31+00:00 Research in...

  20. Sandia Energy - Polariton Lasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polariton Lasing Home Energy Research EFRCs Solid-State Lighting Science EFRC Polariton Lasing Polariton LasingTara Camacho-Lopez2015-03-30T16:36:47+00:00 Polariton Lasing by...

  1. Sandia Energy - Unconventional Lasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unconventional Lasing Home Energy Research EFRCs Solid-State Lighting Science EFRC Unconventional Lasing Unconventional LasingTara Camacho-Lopez2015-05-07T13:48:57+00:00...

  2. A RESEARCH ON SEAMLESS PLATFORM CHANGE OF REACTOR PROTECTION SYSTEM FROM PLC TO FPGA

    E-Print Network [OSTI]

    1. INTRODUCTION A safety grade PLC is an industrial digital computer used to develop safety Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea 2 Korea Atomic Energy Research Institute, Man. The 'FBDtoVerilog' mechanically transforms FBDs into behaviorally-equivalent [38] Verilog programs, and all V

  3. Sandia`s network for supercomputing `95: Validating the progress of Asynchronous Transfer Mode (ATM) switching

    SciTech Connect (OSTI)

    Pratt, T.J.; Vahle, O.; Gossage, S.A.

    1996-04-01

    The Advanced Networking Integration Department at Sandia National Laboratories has used the annual Supercomputing conference sponsored by the IEEE and ACM for the past three years as a forum to demonstrate and focus communication and networking developments. For Supercomputing `95, Sandia elected: to demonstrate the functionality and capability of an AT&T Globeview 20Gbps Asynchronous Transfer Mode (ATM) switch, which represents the core of Sandia`s corporate network, to build and utilize a three node 622 megabit per second Paragon network, and to extend the DOD`s ACTS ATM Internet from Sandia, New Mexico to the conference`s show floor in San Diego, California, for video demonstrations. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations supports Sandia`s overall strategies in ATM networking.

  4. DOE NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy/ne-workshops/ufd-working-group-2015/

    E-Print Network [OSTI]

    DOE NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy 1 of 5 #12;DOE NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy Level Waste Rigali UFD WG 2015-06-10 Wed Afternoon 1245 Salt Repository Research Actinide and Microbial

  5. Nuclear Fission Reactor Safety Research in FP7 and future perspectives

    E-Print Network [OSTI]

    Garbil, Roger

    2014-01-01

    The European Union (?U) has defined in the Europe 2020 strategy and 2050 Energy Roadmap its long-term vision for establishing a secure, sustainable and competitive energy system and setting up legally binding targets by 2020 for reducing greenhouse emissions, by increasing energy efficiency and the share of renewable energy sources while including a significant share from nuclear fission. Nuclear energy can enable the further reduction in harmful emissions and can contribute to the EU’s competitive energy system, security of supply and independence from fossil fuels. Nuclear fission is a valuable option for those 14 EU countries that promote its use as part of their national energy mix. The European Group on Ethics in Science and New Technologies (EGE) adopted its Opinion No.27 ‘An ethical framework for assessing research, production and use of energy’ and proposed an integrated ethics approach for the research, production and use of energy in the EU, seeking equilibrium among four criteria – access ...

  6. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    SciTech Connect (OSTI)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  7. CSRI SUMMER PROCEEDINGS 2013 The Computer Science Research Institute

    E-Print Network [OSTI]

    Siefert, Chris

    July 22, 2014 A Department of Energy National Laboratory SAND2014-20409 R Sandia National LaboratoriesCSRI SUMMER PROCEEDINGS 2013 The Computer Science Research Institute at Sandia National Laboratories Editors: Sivasankaran Rajamanickam Michael L. Parks S. Scott Collis Sandia National Laboratories

  8. SANDIA REPORT SAND2014-20612

    E-Print Network [OSTI]

    and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public Palo Alto, CA 94304 #12;4 ABSTRACT To fill a major knowledge gap, Sandia National Laboratories (SNL

  9. SANDIA REPORT SAND2010-8903

    E-Print Network [OSTI]

    Ray, Jaideep

    , California 94550 Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved for public release; further conductivity in two-dimensions. Estimation of effective conductivity is derived directly from knowledge

  10. SANDIA REPORT SAND99-2706

    E-Print Network [OSTI]

    Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further disseminationSANDIA REPORT SAND99-2706 Unlimited Release Printed October 1999 Space-Variant Post for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account

  11. SANDIA REPORT SAND2014-16610

    E-Print Network [OSTI]

    Siefert, Chris

    Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE

  12. SANDIA REPORT SAND2013-5131

    E-Print Network [OSTI]

    SANDIA REPORT SAND2013-5131 Unlimited Release July 2013 DOE/EPRI 2013 Electricity Storage Handbook. #12;DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA Issued by Sandia National/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA SAND2013-5131 Unlimited Release July 2013

  13. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adds Water Power to Clean Energy Research PortfolioTara Camacho-Lopez2015-04-06T22:15:34+00:00 Placeholder Download Filename WaterPowerDOE-Award.pdf filesize 339.62 kB Version 1...

  14. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Storage Research and Development SummaryTara Camacho-Lopez2015-04-06T22:15:34+00:00 Placeholder Download Filename StorageDOEpeer-review3-09.pdf filesize 174.9 kB Version...

  15. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposal to NSF to Sponsor a Vertical-Axis Wind Turbine Research ProgramTara Camacho-Lopez2015-04-06T22:15:34+00:00 Placeholder Download Filename SAND-74-0095.pdf filesize 3.41 MB...

  16. Reclassification of the Tritium Research Laboratory

    SciTech Connect (OSTI)

    Johnson, A.J.

    1997-01-01

    This document is a collection of the required actions that were taken to reclassify Building 968, the Tritium Research Laboratory, at Sandia National Laboratories/California.

  17. The Optimized Integration of the Decontamination Plan and the Radwaste Management Plan into Decommissioning Plan to the VVR-S Research Reactor from Romania

    SciTech Connect (OSTI)

    Barariu, G. [National Authority for Nuclear Activity-Subsidiary of Technology and Engineering for Nuclear Projects (Romania)

    2008-07-01

    The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of materials to be managed in the near future raise some issues that need to be solved swiftly, such as treatment of aluminum and lead and graphite management. It is envisaged that these materials to be treated to Subsidiary for Nuclear Research (SCN) Pitesti. (authors)

  18. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal Sandia NationalAbout Us /

  19. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal Sandia NationalAbout Us /Emergency

  20. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal Sandia NationalAbout Us

  1. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal Sandia NationalAbout UsMedical

  2. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal Sandia NationalAbout

  3. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal Sandia NationalAboutTransportation

  4. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge: Food

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal Sandia

  5. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge: Risk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal SandiaAnalysis Challenge Risk

  6. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge: Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal SandiaAnalysis Challenge

  7. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge: Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovation Portal SandiaAnalysis

  8. Sandia Energy - SNL-SWAN (Sandia National Laboratories - Simulating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewable EnergyWAves Nearshore) SNL-SWAN (Sandia

  9. Sandia Energy - Sandia Wind Energy in the News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompanies PilotTeachesSandia Wind Energy in

  10. Sandia Energy - Sandia Wins DOE Geothermal Technologies Office Funding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompanies PilotTeachesSandia WindAward

  11. Sandia Energy - Sandia Wins Funding for Programming In Situ Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompanies PilotTeachesSandia

  12. Sandia Energy - Sandia, the Atlantic Council, and NM Water Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewableCompaniesMODE,Simulation Code:Sandia,

  13. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    SciTech Connect (OSTI)

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    2008-07-01

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

  14. Trip report on IAEA Training Workshop on Implementation of Integrated Management Systems for Research Reactors (T3-TR-45496).

    SciTech Connect (OSTI)

    Pratt, Richard J.

    2013-11-01

    From 17-21 June 2013, Sandia National Laboratories, Technical Area-V (SNL TA-V) represented the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) at the International Atomic Energy Agency (IAEA) Training Workshop (T3-TR-45486). This report gives a breakdown of the IAEA regulatory structure for those unfamiliar, and the lessons learned and observations that apply to SNL TA-V that were obtained from the workshop. The Safety Report Series, IAEA workshop final report, and SNL TA-V presentation are included as attachments.

  15. Sandia National Laboratories Combustion Research Facility

    E-Print Network [OSTI]

    transfer systems: · high-P real-gas eqn-of-state, gas dynamics & heat transfer, solid storage & materials of demonstration facilities ­ Library of component models: · Existing: Reformers (SMR, ATR), electrolyzer, PV collector, compressor, high-P storage, pump, FC stack (efficiency vs power) · Developing: ICE gen-set, wind

  16. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  17. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied...

  18. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for counterterrorism hydrocode validation Available Launchers 100 mm compressed gas gun (velocities to 1 kms) 100 mm compressed light gas gun for oblique impacts (velocities...

  19. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineers, and technicians with backgrounds in chemistry, electrochemistry, metallurgy, chemical engineering, materials science, engineering, and physics. State-of-the-art...

  20. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design and test of explosively-driven valves for specialized applications; one such valve sealed a 48-inch diameter pipe in 30-ms Availability This facility is available to...