Powered by Deep Web Technologies
Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

International Atomic Energy Agency support of research reactor highly enriched uranium to low enriched uranium fuel conversion projects  

SciTech Connect (OSTI)

The IAEA has been involved for more than twenty years in supporting international nuclear non- proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly assisted efforts to convert research reactors from HEU to LEU fuel. HEU to LEU fuel conversion projects differ significantly depending on several factors including the design of the reactor and fuel, technical needs of the member state, local nuclear infrastructure, and available resources. To support such diverse endeavours, the IAEA tailors each project to address the relevant constraints. This paper presents the different approaches taken by the IAEA to address the diverse challenges involved in research reactor HEU to LEU fuel conversion projects. Examples of conversion related projects in different Member States are fully detailed. (author)

Bradley, E.; Adelfang, P.; Goldman, I.N. [Research Reactors Unit, Division of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria)

2008-07-15T23:59:59.000Z

2

Development of a core design optimization tool and analysis in support of the planned LEU conversion of the MIT Research Reactor (MITR-II) ; Development of a core design optimization tool and analysis in support of the planned low enriched uranium conversion of the MIT Research Reactor (MITR-II) .  

E-Print Network [OSTI]

??The MIT Research Reactor (MITR-II) is currently undergoing analysis for the planned conversion from high enriched uranium (HEU) to low enriched uranium (LEU), as part… (more)

Connaway, Heather M. (Heather Moira)

2012-01-01T23:59:59.000Z

4

University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor  

SciTech Connect (OSTI)

The Department of Energy’s Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project team’s experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

Eric C. Woolstenhulme; Dana M. Hewit

2008-09-01T23:59:59.000Z

5

Expanding and optimizing fuel management and data analysis capabilities of MCODE-FM in support of MIT research reactor (MITR-II) LEU conversion  

E-Print Network [OSTI]

Studies are underway in support of the MIT research reactor (MITR-II) conversion from high enriched Uranium (HEU) to low enriched Uranium (LEU), as required by recent non-proliferation policy. With the same core configuration ...

Horelik, Nicholas E. (Nicholas Edward)

2012-01-01T23:59:59.000Z

6

Thermal hydraulics analysis of the MIT research reactor in support of a low enrichment uranium (LEU) core conversion .  

E-Print Network [OSTI]

??The MIT research reactor (MITR) is converting from the existing high enrichment uranium (HEU) core to a low enrichment uranium (LEU) core using a high-density… (more)

Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

7

Research reactors - an overview  

SciTech Connect (OSTI)

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

8

US, Russian Federation Sign Joint Statement on Reactor Conversion |  

Broader source: Energy.gov (indexed) [DOE]

US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion June 26, 2012 - 12:00pm Addthis News Media Contact (202) 586-4940 This release is cross-posted from NNSA.energy.gov. MOSCOW - The U.S. and Russian Federation jointly announced today that the first stage of work defined in the Implementing Agreement between the Russian State Corporation for Atomic Energy (Rosatom) and the Department of Energy (DOE) Regarding Cooperation in Concluding Feasibility Studies of the Conversion of Russian Research Reactors of Dec. 7, 2010, has been completed. The announcement comes at the close of the most recent session of the Working Group on Nuclear Energy and Nuclear Security under the U.S.-Russia bilateral Presidential Commission, co-chaired by Daniel

9

US, Russian Federation Sign Joint Statement on Reactor Conversion |  

Broader source: Energy.gov (indexed) [DOE]

US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion June 26, 2012 - 12:00pm Addthis News Media Contact (202) 586-4940 This release is cross-posted from NNSA.energy.gov. MOSCOW - The U.S. and Russian Federation jointly announced today that the first stage of work defined in the Implementing Agreement between the Russian State Corporation for Atomic Energy (Rosatom) and the Department of Energy (DOE) Regarding Cooperation in Concluding Feasibility Studies of the Conversion of Russian Research Reactors of Dec. 7, 2010, has been completed. The announcement comes at the close of the most recent session of the Working Group on Nuclear Energy and Nuclear Security under the U.S.-Russia bilateral Presidential Commission, co-chaired by Daniel

10

U.S. domestic reactor conversion program  

SciTech Connect (OSTI)

The RERTR U.S. Domestic Conversion program continues in its support of the Global Treat Reduction Initiative (GTRI) to convert seven U.S reactors to low enriched uranium (LEU) by 2010. These reactors are located at the University of Florida, Texas A and M University, Purdue University, Washington State University, Oregon State University, the University of Wisconsin, and the Idaho National Laboratory. The reactors located at the University of Florida and Texas A and M Nuclear Science Center were successfully converted to LEU in September of 2006 through an integrated and collaborative effort involving INL, Argonne National Laboratory (ANL), DOE (headquarters and the field office), the Nuclear Regulatory Commission (NRC), the universities, and the contractors involved in analyses, fuel design and fabrication, and spent nuclear fuel (SNF) shipping and disposition. With this work completed and in anticipation of other impending conversion projects, a meeting was established to engage the project participants in a structured discussion to capture the lessons learned. The objectives of this meeting were to document the observations, insights, issues, concerns, and ideas of those involved in the reactor conversions so that future efforts could be conducted with greater effectiveness, efficiency, and with fewer challenges. The lessons learned from completing the University of Florida and Texas A and M conversions, the Purdue reactor conversion status, and an overview of the upcoming reactor conversions will be presented at the meeting. (author)

Meyer, Dana M.; Woolstenhulme, Eric C. [Idaho National Laboratory, Idaho Falls, Idaho 83415 (United States)

2008-07-15T23:59:59.000Z

11

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

SciTech Connect (OSTI)

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

12

Conversion of Biomass Syngas to DME Using a Microchannel Reactor  

Science Journals Connector (OSTI)

Conversion of Biomass Syngas to DME Using a Microchannel Reactor ... The purpose of the research discussed here is to develop such a process capable of converting syngas generated from gasification of dispersed biomass resources. ... MeOH was converted to water and hydrocarbons, with up to 70% selectivity to C2-4 olefins, at 100% conversion, over ZSM-5 class zeolite catalysts modified with P compds. ...

Jianli Hu; Yong Wang; Chunshe Cao; Douglas C. Elliott; Don J. Stevens; James F. White

2005-02-18T23:59:59.000Z

13

Developing fuel management capabilities based on coupled Monte Carlo depletion in support of the MIT Research Reactor (MITR) conversion .  

E-Print Network [OSTI]

??Pursuant to a 1986 NRC ruling, the MIT Reactor (MITR) is planning on converting from the use of highly enriched uranium (HEU) to low enriched… (more)

Romano, Paul K. (Paul Kollath)

2009-01-01T23:59:59.000Z

14

Cross section generation strategy for high conversion light water reactors  

E-Print Network [OSTI]

High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

Herman, Bryan R. (Bryan Robert)

2011-01-01T23:59:59.000Z

15

Developing fuel management capabilities based on coupled Monte Carlo depletion in support of the MIT Research Reactor (MITR) conversion  

E-Print Network [OSTI]

Pursuant to a 1986 NRC ruling, the MIT Reactor (MITR) is planning on converting from the use of highly enriched uranium (HEU) to low enriched uranium (LEU) for fuel. Prior studies have shown that the MITR will be able to ...

Romano, Paul K. (Paul Kollath)

2009-01-01T23:59:59.000Z

16

Advanced Nuclear Research Reactor  

SciTech Connect (OSTI)

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

17

Nuclear Research Reactors  

Science Journals Connector (OSTI)

... their countries for the advent of nuclear power. A few countries had built large research reactors for the production of isotopes and to study the behaviour of nuclear fuel, but ... production of isotopes and to study the behaviour of nuclear fuel, but the small training reactor had not been developed. Since then, research ...

T. E. ALLIBONE

1963-07-20T23:59:59.000Z

18

Canadian university research reactors  

SciTech Connect (OSTI)

In Canada there are seven university research reactors: one medium-power (2-MW) swimming pool reactor at McMaster University and six low-power (20-kW) SLOWPOKE reactors at Dalhousie University, Ecole Polytechnique, the Royal Military College, the University of Toronto, the University of Saskatchewan, and the University of Alberta. This paper describes primarily the McMaster Nuclear Reactor (MNR), which operates on a wider scale than the SLOWPOKE reactors. The MNR has over a hundred user groups and is a very broad-based tool. The main applications are in the following areas: (1) neutron activation analysis (NAA); (2) isotope production; (3) neutron beam research; (4) nuclear engineering; (5) neutron radiography; and (6) nuclear physics.

Ernst, P.C.; Collins, M.F.

1989-11-01T23:59:59.000Z

19

Implications of Fast Reactor Transuranic Conversion Ratio  

SciTech Connect (OSTI)

Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

2010-11-01T23:59:59.000Z

20

Reactor Safety Research Programs  

SciTech Connect (OSTI)

This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear Security Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Domestic U.S. Reactor Conversions: Fact Sheet Fact Sheet Domestic U.S. Reactor Conversions: Fact Sheet Mar 23, 2012 The National Nuclear Security Administration (NNSA) helps convert research

22

GLOBAL THREAT REDUCTION INITIATIVE REACTOR CONVERSION PROGRAM: STATUS AND CURRENT PLANS  

SciTech Connect (OSTI)

The U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Reactor Conversion Program supports the minimization, and to the extent possible, elimination of the use of high enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors and radioisotope production processes to the use of low enriched uranium (LEU). The Reactor Conversion Program is a technical pillar of the NNSA Global Threat Reduction Initiative (GTRI) which is a key organization for implementing U.S. HEU minimization policy and works to reduce and protect vulnerable nuclear and radiological material domestically and abroad.

Staples, Parrish A.; Leach, Wayne; Lacey, Jennifer M.

2009-10-07T23:59:59.000Z

23

University Reactor Conversion Lessons Learned Workshop for the University of Florida  

SciTech Connect (OSTI)

The Department of Energy’s (DOE) Idaho National Laboratory (INL), under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at the University of Florida. This project was successfully completed through an integrated and collaborative effort involving the INL, Argonne National Laboratory (ANL), DOE (Headquarters and Field Office), the Nuclear Regulatory Commission, the Universities, and contractors involved in analyses, fuel design and fabrication, and SNF shipping and disposition. With the work completed with these two universities, and in anticipation of other impending conversion projects, INL convened and engaged the project participants in a structured discussion to capture lessons learned. The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the reactor conversions so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges.

Eric C. Woolstenhulme; Dana M. Meyer

2007-04-01T23:59:59.000Z

24

NREL: Biomass Research - Biochemical Conversion Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

25

Corrosion Minimization for Research Reactor Fuel  

SciTech Connect (OSTI)

Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

Eric Shaber; Gerard Hofman

2005-06-01T23:59:59.000Z

26

Direct conversion nuclear reactor space power systems  

SciTech Connect (OSTI)

This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions.

Britt, E.J.; Fitzpatrick, G.O.

1982-08-01T23:59:59.000Z

27

University Reactor Conversion Lessons Learned Workshop for Texas A&M University Nuclear Science Center Reactor  

SciTech Connect (OSTI)

The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the Texas A&M University Nuclear Science Center (TAMU NSC) TRIGA Reactor Conversion so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges. This workshop was held in conjunction with a similar workshop for the University of Florida Reactor Conversion. Some of the generic lessons from that workshop are included in this report for completeness.

Eric C. Woolstenhulme; Dana M. Meyer

2007-04-01T23:59:59.000Z

28

Advanced Reactor Research and Development Funding Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE)...

29

Microplasma Ball Reactor for Liquid Hydrocarbon Conversion  

E-Print Network [OSTI]

of the main advantages of a transient arc discharge is the combination of relatively high power input and low plasma temperature. 2.1.2 Microplasmas An important new field in plasma research is the field of microplasmas. A microplasma is a plasma on a...

Slavens, Stephen M

2014-04-24T23:59:59.000Z

30

2012 Annual Report Research Reactor Infrastructure Program  

SciTech Connect (OSTI)

The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

Douglas Morrell

2012-11-01T23:59:59.000Z

31

NREL: Biomass Research - Thermochemical Conversion Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

32

NREL: Biomass Research - Biochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

33

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

34

RERTR 2009 (Reduced Enrichment for Research and Test Reactors)  

SciTech Connect (OSTI)

The U.S. Department of Energy/National Nuclear Security Administration's Office of Global Threat Reduction in cooperation with the China Atomic Energy Authority and International Atomic Energy Agency hosted the 'RERTR 2009 International Meeting on Reduced Enrichment for Research and Test Reactors.' The meeting was organized by Argonne National Laboratory, China Institute of Atomic Energy and Idaho National Laboratory and was held in Beijing, China from November 1-5, 2009. This was the 31st annual meeting in a series on the same general subject regarding the conversion of reactors within the Global Threat Reduction Initiative (GTRI). The Reduced Enrichment for Research and Test Reactors (RERTR) Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets.

Totev, T.; Stevens, J.; Kim, Y. S.; Hofman, G.; Matos, J.; Hanan, N.; Garner, P.; Dionne, B.; Olson, A.; Feldman, E.; Dunn, F.; Nuclear Engineering Division; Atomic Research Center; Inst. of Nuclear Physics; LLNL; INL; Korea Atomic Energy Research Inst.; Comisi?n Nacional de Energ?a At?mica; Nuclear Reactor Lab.; Inst. of Atomic Energy-Poland; AECL-Canada; Hungarian Academy of Sciences KFKI Atomic Energy Research Inst.; Japan Atomic Energy Agency; Nuclear Power Inst. of China; Kyoto Univ. Research Reactor Inst.

2010-03-01T23:59:59.000Z

35

Recovery of Carbon Dioxide in Advanced Fossil Energy Conversion Processes Using a Membrane Reactor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide in Advanced Fossil Energy Conversion Processes Carbon Dioxide in Advanced Fossil Energy Conversion Processes Using a Membrane Reactor Ashok S. Damle * Research Triangle Institute P.O. Box 12194 Research Triangle Park, NC 27709 Phone: (919) 541-6146 Fax: (919) 541-6965 E-mail: adamle@rti.org Thomas P. Dorchak National Energy Technology Laboratory P.O. Box 880, Mail Stop C04 Morgantown, WV 26507-0880 Phone: (304) 285-4305 E-mail: tdorch@netl.doe.gov Abstract Increased awareness of the global warming trend has led to worldwide concerns regarding "greenhouse gas" emissions, with CO 2 being the single greatest contributor to global warming. Fossil fuels (i.e., coal, oil, and natural gas) currently supply over 85% of the world's energy needs, and their utilization is the major source of the anthropogenic greenhouse gas emissions of

36

BNL | Our History: Reactors as Research Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> See also: Accelerators > See also: Accelerators Brookhaven History: Using Reactors as Research Tools BGRR Brookhaven Graphite Research Reactor The Brookhaven Graphite Research Reactor (BGRR) was the Laboratory's first big machine and the first peace-time reactor built in the United States following World War II. The reactor's primary mission was to produce neutrons for scientific experimentation and to refine reactor technology. At the time, the BGRR could accommodate more simultaneous experiments than any other reactor. Scientists and engineers from every corner of the U.S. came to use the reactor, which was not only a source of neutrons for experiments, but also an excellent training facility. Researchers used the BGRR's neutrons as tools for studying atomic nuclei and the structure of solids, and to investigate many physical, chemical and

37

History of Research Reactors at Brookhaven  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History of Research Reactors at Brookhaven History of Research Reactors at Brookhaven Brookhaven National Laboratory has three nuclear reactors on its site that were used for scientific research. The reactors are all shut down, and the Laboratory is addressing environmental issues associated with their operations. photo of BGRR Brookhaven Graphite Research Reactor - Beginning operations in 1950, the graphite reactor was used for research in medicine, biology, chemistry, physics and nuclear engineering. One of the most significant achievements at this facility was the development of technetium-99m, a radiopharmaceutical widely used to image almost any organ in the body. The graphite reactor was shut down in 1969. Parts of it have been decommissioned, with the remainder to be addressed by 2011. More history

38

Ocean energy conversion systems annual research report  

SciTech Connect (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

39

Research Program of a Super Fast Reactor  

SciTech Connect (OSTI)

Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki [Nuclear Professional School / Department of Nuclear Engineering and Management, The University of Tokyo, Tokaimura, Naka-gun, Ibaraki, 319-1188 (Japan); Mori, Hideo [Department of Mechanical Engineering, Kyushu University (Japan); Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki [Japan Atomic Energy Agency (Japan); GOTO, Shoji [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

40

A neutronic feasibility study for LEU conversion of the high flux isotope reactor (HFIR).  

SciTech Connect (OSTI)

A neutronic feasibility study was performed to determine the uranium densities that would be required to convert the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) from HEU (93%) to LEU (<20%)fuel. The LEU core that was studied is the same as the current HEU core, except for potential changes in the design of the fuel plates. The study concludes that conversion of HFIR from HEU to LEU fuel would require an advanced fuel with a uranium density of 6-7 gU/cm{sup 3} in the inner fuel element and 9-10 gU/cm{sup 3} in the outer fuel element to match the cycle length of the HEU core. LEU fuel with uranium density up to 4.8 gU/cm{sup 3} is currently qualified for research reactor use. Modifications in fuel grading and burnable poison distribution are needed to produce an acceptable power distribution.

Mo, S. C.

1998-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

University Research Reactor Task Force to the Nuclear Energy Research  

Broader source: Energy.gov (indexed) [DOE]

University Research Reactor Task Force to the Nuclear Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel," universities, and other sources pertaining to university reactors including their research and training capabilities, costs to operate, and operating data, and * Provide DOE with clear, near-term recommendations as to actions that should be taken by the Federal Government and a long-term strategy to assure the continued operation of vital university reactor facilities in

42

Investigation of the low enrichment conversion of the Texas A and M Nuclear Science Center Reactor  

SciTech Connect (OSTI)

The use of highly enriched uranium as a fuel research reactors is of concern due to the possibility of diversion for nuclear weapons applications. The Texas A M TRIGA reactor currently uses 70% enriched uranium in a FLIP (Fuel Life Improvement Program) fuel element manufactured by General Atomics. Thus fuel also contains 1.5 weight percent of erbium as a burnable poison to prolong useful core life. US university reactors that use highly enriched uranium will be required to covert to 20% or less enrichment to satisfy Nuclear Regulatory Commission requirements for the next core loading if the fuel is available. This investigation examined the feasibility of a material alternate to uranium-zirconium hydride for LEU conversion of a TRIGA reactor. This material is a beryllium oxide uranium dioxide based fuel. The theoretical aspects of core physics analyses were examined to assess the potential advantages of the alternative fuel. A basic model was developed for the existing core configuration since it is desired to use the present fuel element grid for the replacement core. The computing approach was calibrated to the present core and then applied to a core of BeO-UO{sub 2} fuel elements. Further calculations were performed for the General Atomics TRIGA low-enriched uranium zirconium hydride fuel.

Reuscher, J.A.

1988-01-01T23:59:59.000Z

43

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electricity, will become increasingly important. Indeed enhancements in efficiencies of energy conversion technologies that are readily adaptable in any environment will con-...

44

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

most pressing problems. Indeed, our success at discovering new paradigms for efficient energy conversion, with minimal environmental impact, will largely determine humankind's...

45

Conversion of methanol to light olefins on SAPO-34: kinetic modeling and reactor design  

E-Print Network [OSTI]

design of an MTO reactor, accounting for the strong exothermicity of the process. Multi-bed adiabatic and fluidized bed technologies show good potential for the industrial process for the conversion of methanol into olefins....

Al Wahabi, Saeed M. H.

2005-02-17T23:59:59.000Z

46

Methane-to-hydrogen conversion in a reversible flow filtration combustion reactor at a high pressure  

Science Journals Connector (OSTI)

The noncatalytic process of partial oxidation of methane to syngas in a reversible flow filtration combustion reactor at high pressures has been considered. ... conversion process — the maximum temperature in the...

Yu. M. Dmitrenko; P. A. Klyovan

2013-09-01T23:59:59.000Z

47

Status of reduced enrichment program for research reactors in Japan  

SciTech Connect (OSTI)

The status of reduced enrichment program for research reactors in Japan will be reviewed. The reduced enrichment programs for the JRR-3M, JRR-4 and JMTR of Japan Atomic Energy Agency (JAEA, former name is Japan Atomic Energy Research Institute (JAERI)) has been completed by 1999, and the reactors are being satisfactory operated using LEU fuels. The KUR of Kyoto University Research Reactor Institute (KURRI) has been partially completed and is still in progress under the Joint Study Program with Argonne National Laboratory (ANL). The JRR-3M using LEU silicide fuel elements have done a functional test by the Japanese Government in 2000, and the property of the reactor core was satisfied. JAEA has established a 'U-Mo fuel ad hoc committee' and has been studying the U-Mo fuel installation plan by carefully observing the development situation of the U-Mo fuel. In KURRI, the KUR has terminated its operation using HEU fuel on February 2006. The HEU KUR spent fuel elements will be sent to the U.S. by March 2008. Licensing for the full core conversion of KUR to LEU fuel is under progress and the core conversion to LEU is expected to be completed in 2008. (author)

Unesaki, Hironobu [Research Reactor Institute, Kyoto University, Asashiro-nishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Ohta, Kazunori; Inoue, Takeshi [Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

2008-07-15T23:59:59.000Z

48

NREL: Biomass Research - Thermochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

49

A probabilistic safety analysis of incidents in nuclear research reactors  

Science Journals Connector (OSTI)

......System for Research Reactor (IRSRR). Available...System for Research Reactor (IRSRR). Available...76. 7 Manual on reliability data collection for research reactor PSAs. (1992) IAEA...probabilistic safety analysis of incidents in nuclear......

Valdir Maciel Lopes; Gian Maria Agostinho Angelo Sordi; Mauricio Moralles; Tufic Madi Filho

2012-06-01T23:59:59.000Z

50

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Journals Connector (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

51

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 Awards ... 12 S p r I N g 2 0 1 1 Intermediate Band Solar Energy Conversion in ZnTe:O and ZnTeZnSe Affordable photovoltaic solar cells are highly...

52

Development of CFD models to support LEU Conversion of ORNL s High Flux Isotope Reactor  

SciTech Connect (OSTI)

The US Department of Energy s National Nuclear Security Administration (NNSA) is participating in the Global Threat Reduction Initiative to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. As an integral part of one of NNSA s subprograms, Reduced Enrichment for Research and Test Reactors, HFIR is being converted from the present HEU core to a low enriched uranium (LEU) core with less than 20% of U-235 by weight. Because of HFIR s importance for condensed matter research in the United States, its conversion to a high-density, U-Mo-based, LEU fuel should not significantly impact its existing performance. Furthermore, cost and availability considerations suggest making only minimal changes to the overall HFIR facility. Therefore, the goal of this conversion program is only to substitute LEU for the fuel type in the existing fuel plate design, retaining the same number of fuel plates, with the same physical dimensions, as in the current HFIR HEU core. Because LEU-specific testing and experiments will be limited, COMSOL Multiphysics was chosen to provide the needed simulation capability to validate against the HEU design data and previous calculations, and predict the performance of the proposed LEU fuel for design and safety analyses. To achieve it, advanced COMSOL-based multiphysics simulations, including computational fluid dynamics (CFD), are being developed to capture the turbulent flows and associated heat transfer in fine detail and to improve predictive accuracy [2].

Khane, Vaibhav B [ORNL] [ORNL; Jain, Prashant K [ORNL] [ORNL; Freels, James D [ORNL] [ORNL

2012-01-01T23:59:59.000Z

53

Reliability analysis of a passive cooling system using a response surface with an application to the Flexible Conversion Ratio Reactor .  

E-Print Network [OSTI]

??A comprehensive risk-informed methodology for passive safety system design and performance assessment is presented and demonstrated on the Flexible Conversion Ratio Reactor (FCRR). First, the… (more)

Fong, Christopher J. (Christopher Joseph)

2008-01-01T23:59:59.000Z

54

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brookhaven Graphite Research Reactor Documents Brookhaven Graphite Research Reactor Documents Feasibility Study (PDF) Proposed Remedial Action Plan (PDF) Record of Decision (PDF) RD/RA Work Plan for the BGRR Pile (PDF) RD/RA Work Plan for the Bioshield (PDF) RD/RA Work Plan for the BGRR Cap (PDF) Brookhaven Graphite Research Reactor Explanation of Significant Differences (PDF) (4/12) NYSDEC Approval Letter for BGRR ESD (PDF) (5/12) USEPA Approval Letter for BGRR ESD (PDF) (6/12) DOE BGRR ESD Transmittal Letter (PDF) (7/12) Remedial Design Implementation Report (PDF) (12/11) Completion Reports Removal of the Above-Ground Ducts and Preparation of the Instrument House (708) for Removal (PDF) - April 2002 Below-Ground Duct Outlet Air Coolers, Filters and Primary Liner Removal (PDF) - April 2005 Canal and Deep Soil Pockets Excavation and Removal (PDF) - August

55

Environmental Management Brookhaven Graphite Research Reactor  

E-Print Network [OSTI]

-out report · Transition to long-term surveillance and maintenance · Office of Environmental ManagementEnvironmental Management Brookhaven Graphite Research Reactor (BGRR) Project Completion John Sattler Federal Project Director Office of Environmental Management U.S. Department of Energy BNL

Homes, Christopher C.

56

Lunar electric power systems utilizing the SP?100 reactor coupled to dynamic conversion systems  

Science Journals Connector (OSTI)

An integration study was performed by Rocketdyne coupling an SP?100 reactor to either a Brayton Stirling or K?Rankine power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the National Aeronautics and Space Administration (NASA) Space Exploration Initiative 90?day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one standby unit. Integration design studies indicated that either of the three power conversion systems could be integrated with the SP?100 reactor. From a performance consideration the Brayton and Stirling mass was approximately 45% higher than the K?Rankine. The K?Rankine radiator area was 45% of the Stirling which in turn was about 40% of the Brayton.

Richard B. Harty; Gregory A. Johnson

1992-01-01T23:59:59.000Z

57

Brookhaven Lab Completes Decommissioning of Graphite Research Reactor:  

Broader source: Energy.gov (indexed) [DOE]

Brookhaven Lab Completes Decommissioning of Graphite Research Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal September 1, 2012 - 12:00pm Addthis The Brookhaven Graphite Research Reactor’s bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. The Brookhaven Graphite Research Reactor's bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. Pictured here is the Brookhaven Graphite Research Reactor, where major decommissioning milestones were recently reached after the remaining radioactive materials from the facility’s bioshield were shipped to a licensed offsite disposal facility.

58

Testing of an advanced thermochemical conversion reactor system  

SciTech Connect (OSTI)

This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

Not Available

1990-01-01T23:59:59.000Z

59

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect (OSTI)

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

60

Sterile Neutrino Search Using China Advanced Research Reactor  

E-Print Network [OSTI]

We study the feasibility of a sterile neutrino search at the China Advanced Research Reactor by measuring $\\bar {\

Gang Guo; Fang Han; Xiangdong Ji; Jianglai Liu; Zhaoxu Xi; Huanqiao Zhang

2013-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Conceptual design of the bimodal nuclear power system based on the ‘‘Romashka’’ type reactor with thermionic energy conversion system  

Science Journals Connector (OSTI)

The paper presents conceptual design of the bimodal space nuclear power system (NPS) based on the high?temperature reactor of ROMASHKA type with thermoninic energy conversion system. At the heart of the design is an employment of close?spaced thermionic diodes operating in a quasi?vacuum mode. The paper gives preliminary estimates of the NPS neutron?physical electric thermophysical and mass?dimensional parameters for the reactor electric power of 25 kW and propulsive thrust of about 80 N. Discussed are peculiarities of the combined mode wherein electric power is generated along with propulsive thrust. The paper contains results of the design studies performed by the Small Business ‘‘NP Energotech’’ under the Agreement with Rockwell International/Rocketdyne Division and according to the Rocketdyne Division provided Design Requirements. Involved in the work was the team of specialists of RRC ‘‘Kurchatov Institute’’ ‘‘Red Star’’ State Enterprise and Research Institute of SPA ‘‘Luch’’

Nikolai N. Ponmarev?Stepnoi; Veniamin A. Usov; Yuri V. Nikolaev; Stanislav A. Yeriemin; Yevgeny Ye. Zhabotinski; Anatoly Ya. Galkin; Yevgeny D. Avdoshyn

1995-01-01T23:59:59.000Z

62

Ames Laboratory Research Reactor Facility Ames, Iowa  

Office of Legacy Management (LM)

,, *' ; . Final Radiological Condition of the Ames Laboratory Research Reactor Facility Ames, Iowa _, . AGENCY: Office of Operational Safety, Department of Energy ' ACTION: Notice of Availability of Archival Information Package SUMMARY: The'Office of Operational Safety of the Department O i Energy (DOE) has reviewed documentation relating to the decontamination and decommissioning operations conducted at the Ames Laboratory Research Reactor Facility, Ames, Iowa and has prepared an archival informati0.n package to permanently document the results of the action and the site conditions and use restriction placed on the . site at the tim e of release. This review is based on post-decontamination survey data and other pertinent documentation referenced in and included in the archival package. The material and

63

Chapter 1 - Reactor configurations and design parameters for thermochemical conversion of biomass into fuels, energy, and chemicals  

Science Journals Connector (OSTI)

Abstract This chapter describes reactors for thermochemical conversion of lignocellulosic biomass into fuels, energy, and chemicals. The chapter covers basic definitions and concepts involved in biofuels and thermochemical conversion of biomass, and it also includes more advanced topics such as the main reactor configurations currently in use for thermochemical technologies, important parameters for reactor design, discussion of how parameters affect reactor performance, and several examples and case studies. The focus is on fast pyrolysis and gasification systems. The topics discussed include energy and carbon efficiencies, convenience of operation and scale-up, and several other parameters related to reactor design. After reading this chapter, the reader will understand the main characteristics of reactors for thermochemical conversion of biomass, their strengths, and their weaknesses for specific applications.

Fernando L.P. Resende

2014-01-01T23:59:59.000Z

64

Chicago Pile reactors create enduring research legacy - Argonne's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chicago Pile reactors create enduring research Chicago Pile reactors create enduring research legacy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

65

Reliability analysis of a passive cooling system using a response surface with an application to the Flexible Conversion Ratio Reactor  

E-Print Network [OSTI]

A comprehensive risk-informed methodology for passive safety system design and performance assessment is presented and demonstrated on the Flexible Conversion Ratio Reactor (FCRR). First, the methodology provides a framework ...

Fong, Christopher J. (Christopher Joseph)

2008-01-01T23:59:59.000Z

66

Foreign Research Reactor Spent Nuclear Fuel Acceptance Program  

Broader source: Energy.gov (indexed) [DOE]

Global Threat Reduction Initiative: Global Threat Reduction Initiative: U.S. Nuclear Remove Program Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance 2007 DOE TEC Meeting Chuck Messick DOE/NNSA/SRS 2 Contents * Program Objective and Policy * Program implementation status * Shipment Information * Operational Logistics * Lessons Learned * Conclusion 3 U.S. Nuclear Remove Program Objective * To play a key role in the Global Threat Reduction Remove Program supporting permanent threat reduction by accepting program eligible material. * Works in conjunction with the Global Threat Reduction Convert Program to accept program eligible material as an incentive to core conversion providing a disposition path for HEU and LEU during the life of the Acceptance Program. 4 Reasons for the Policy

67

Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program  

SciTech Connect (OSTI)

Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

Not Available

1987-05-01T23:59:59.000Z

68

Conversion and upgrade of the Rhode Island Nuclear Science Center Reactor  

SciTech Connect (OSTI)

The Rhode Island Atomic Energy Commission, an agency of the state of Rhode Island, has operated a 2-MW swimming pool research reactor at the Rhode Island Nuclear Science Center (RINSC) since 1964. The reactor, which utilizes plate-type materials test reactor fuel elements, is used primarily by facility and research scientists from the University of Rhode Island for neutron scattering, using the beam tubes and activation analysis programs that use irradiation facilities both inside and adjacent to the core. Along with most other university research reactors, the RINSC reactor is now required, pursuant to 10CFR50.64, to convert from the use of high-enrichment uranium fuel elements to the use of low-enriched uranium (LEU) fuel elements. It is apparent that the US Nuclear Regulatory Commission mandate to convert the RINSC reactor to the use of LEU will result in a new core, designed to use the standard fuel plate and at the same time enhance the available neutron flux and spectrum for research using neutron scattering and activation analysis.

DiMeglio, A.F.

1987-01-01T23:59:59.000Z

69

Brookhaven Graphite Research Reactor Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Brookhaven Graphite Research Reactor Workshop Brookhaven Graphite Research Reactor Workshop The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II. Construction began in 1947 and the reactor started operating in August 1950. In the next 18 years, an estimated 25,000 scientific experiments were carried out at the BGRR using neutrons produced in the facility's 700-ton graphite core, made up of more than 60,000 individual graphite blocks. The BGRR was placed on standby in 1968 and then permanently shut down as the next-generation reactor, the High Flux Beam Reactor (HFBR), was

70

German Pebble Bed Research Reactor Highly Enriched Uranium (HEU...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Potential Acceptance and Disposition of German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel Environmental Assessment Maxcine Maxted, DOE-SR Used Nuclear Fuel...

71

Annular Core Research Reactor - Critical to Science-Based Weapons...  

National Nuclear Security Administration (NNSA)

Annular Core Research Reactor - Critical to Science-Based Weapons Design, Certification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

72

Health physics research reactor reference dosimetry  

SciTech Connect (OSTI)

Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

Sims, C.S.; Ragan, G.E.

1987-06-01T23:59:59.000Z

73

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Was the BGRR Decommissioned? Why Was the BGRR Decommissioned? BGRR The Brookhaven Graphite Research Reactor (BGRR) at Brookhaven National Laboratory (BNL) was decommissioned to ensure the complex is in a safe and stable condition and to reduce sources of groundwater contamination. The BGRR contained over 8,000 Curies of radioactive contaminants from past operations consisting of primarily nuclear activation products such as hydrogen-3 (tritium) and carbon-14 and fission products cesium-137 and strontium-90. The nature and extent of contamination varied by location depending on historic uses of the systems and components and releases, however, the majority of the contamination (over 99 percent) was bound within the graphite pile and biological shield. Radioactive contamination was identified in the fuel handling system deep

74

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Cleanup Actions - Cleanup Actions Since the Brookhaven Graphite Research Reactor (BGRR) was shut down in 1968, many actions have been taken as part of the complex decommissioning. The actions undertaken throughout the BGRR complex ensure that the structures that remain are in a safe and stable condition and prepared it for long-term surveillance and maintenance. Regulatory Requirements The decommissioning of the BGRR was conducted under the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1992, an Interagency Agreement (PDF) among the DOE, the U.S. Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC) became effective. The IAG provided the overall framework for conducting environmental restoration activities at

75

(Liquid metal reactor/fast breeder reactor research and development)  

SciTech Connect (OSTI)

The second meeting of the UJCC was held in Japan on June 6--8, 1990. The first day was devoted to presentations of the status of the US and Japanese Fast Breeder Reactor (FBR) programs and the status of specific areas of cooperative work. Briefly, the Japanese are following the FBR development program which has been in place since the 1970s. This program includes an FBR test reactor (JOYO), a pilot-scale reactor (MONJU), a demonstration-scale plant, and commercial-scale plants by about 2020. The US program has been redirected toward an actinide recycle mission using metal fuel and pyroprocessing of spent fuel to recovery both Pu and the higher actinides for return to the Liquid Metal Reactor (LMR). The second day was spent traveling from Tokyo to Tsuruga for a tour of the MONJU reactor. The tour was especially interesting. The third day was spent writing the minutes of the meeting and the return trip to Tokyo.

Homan, F.J.

1990-06-20T23:59:59.000Z

76

Diversion assumptions for high-powered research reactors  

SciTech Connect (OSTI)

This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

Binford, F.T.

1984-01-01T23:59:59.000Z

77

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research  

Broader source: Energy.gov (indexed) [DOE]

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program The Department of Energy's (DOE's) Light Water Reactor Sustainability (LWRS) Program is a five year effort that works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operation of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging

78

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear  

National Nuclear Security Administration (NNSA)

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Maria Research Reactor loaded with LEU - ... Maria Research Reactor loaded with LEU - Otwock, Poland Maria Research Reactor loaded with LEU - Otwock, Poland

79

2007 international meeting on Reduced Enrichment for Research and Test Reactors (RERTR). Abstracts and available papers presented at the meeting  

SciTech Connect (OSTI)

The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems.

NONE

2008-07-15T23:59:59.000Z

80

RERTR program reduces use of enriched uranium in research reactors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RERTR program reduces use of enriched uranium in research reactors RERTR program reduces use of enriched uranium in research reactors worldwide Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share RERTR program reduces use of enriched uranium in research reactors worldwide The High Flux Reactor in Petten, the Netherlands READY TO CONVERT - The High Flux Reactor in Petten, the Netherlands, has

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Proceedings of the 1990 International Meeting on Reduced Enrichment for Research and Test Reactors  

SciTech Connect (OSTI)

The global effort to reduce, and possibly, eliminate the international traffic in highly-enriched uranium caused by its use in research reactors requires extensive cooperation and free exchange of information among all participants. To foster this free exchange of information, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the thirteenth of a series which began in 1978. The common effort brought together, past, a large number of specialists from many countries. On hundred twenty-three participants from 26 countries, including scientists, reactor operators, and personnel from commercial fuel suppliers, research centers, and government organizations, convened in Newport, Rhode Island to discuss their results, their activities, and their plans relative to converting research reactors to low-enriched fuels. As more and more reactors convert to the use of low-enriched uranium, the emphasis of our effort has begun to shift from research and development to tasks more directly related to implementation of the new fuels and technologies that have been developed, and to refinements of those fuels and technologies. It is appropriate, for this reason, that the emphasis of this meeting was placed on safety and on conversion experiences. This individual papers in this report have been cataloged separately.

Not Available

1993-07-01T23:59:59.000Z

82

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

SciTech Connect (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were solved by finite difference method. The solution of the model equations is complicated by the coupled reactions. At the inlet, if there is no hydrogen, rate expressions become singular. To overcome this problem, the first element of the reactor was treated as a continuous stirred tank reactor (CSTR). Several alternative numerical schemes were implemented in the solution algorithm to get a converged, stable solution. The model was also capable of handling steam-methane reforming reactions under non-membrane condition and equilibrium reaction conversions. Some of the numerical results were presented in the previous report. To test the membrane reactor model, we fabricated Pd-stainless steel membranes in tubular configuration using electroless plating method coupled with osmotic pressure. Scanning Electron Microscopy (SEM) and Energy Dispersive Xray (EDX) were used to characterize the fabricated Pd-film composite membranes. Gas-permeation tests were performed to measure the permeability of hydrogen, nitrogen and helium using pure gas. Some of these results are discussed in this progress report.

Shamsuddin Ilias

2004-02-17T23:59:59.000Z

83

Advanced Reactor Research and Development Funding Opportunity Announcement  

Broader source: Energy.gov (indexed) [DOE]

Reactor Research and Development Funding Opportunity Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and industry. During FY12, DOE established a Technical Review Panel (TRP) process to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. That process involved the use of a Request for Information (RFI) to solicit concept information from industry and engage technical experts to evaluate those concepts. Having completed this process, DOE desires to

84

Advanced Reactor Research and Development Funding Opportunity Announcement  

Broader source: Energy.gov (indexed) [DOE]

Advanced Reactor Research and Development Funding Opportunity Advanced Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and industry. During FY12, DOE established a Technical Review Panel (TRP) process to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. That process involved the use of a Request for Information (RFI) to solicit concept information from industry and engage technical experts to evaluate those concepts. Having completed this process, DOE desires to

85

Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Pulsed Reactor Facility - Critical Experiments Sandia Pulsed Reactor Facility - Critical Experiments Sandia scientist John Ford places fuel rods in the Seven Percent Critical Experiment (7uPCX) at the Sandia Pulsed Reactor Facility Critical Experiments (SPRF/CX) test reactor - a reactor stripped down to its simplest form. The Sandia Pulsed Reactor Facility - Critical Experiments (SPRF/CX) provides a flexible, shielded location for performing critical experiments that employ different reactor core configurations and fuel types. The facility is also available for hands-on nuclear criticality safety training. Research and other activities The 7% series, an evaluation of various core characteristics for higher commercial-fuel enrichment, is currently under way at the SPRF/CX. Past critical experiments at the SPRF/CX have included the Burnup Credit

86

Comparative analysis of high conversion achievable in thorium-fueled slightly modified CANDU and PWR reactors  

Science Journals Connector (OSTI)

We study here the conversion performance of thorium-fueled standard or only slightly modified CANDU and PWR reactors with unchanged core envelope and equipments, to be eventually used as the third and last tier of symbiotic scenarios. For instance, plutonium extracted from the spent fuel of UOX \\{PWRs\\} could be converted in Th/Pu \\{CANDUs\\} to uranium (mainly 233U), finally used to feed a thorium-fueled water-cooled high converting third component. This could be a convenient way to replace likely delayed Generation IV in the case of an important increase of uranium-based energy demand. In order to assess the competitiveness of such symbiotic scenarios, detailed burnup and conversion data are obtained by means of a core-equivalent simulation methodology developed for CANDU-6 and adapted to N4-type PWR. Once-through cycles in CANDU are firstly evaluated for various Th/Pu and Th/233U fuels as regards detailed conversion and basic safety performance. Breeding in Th/233U CANDU is achieved for a 1.30 wt% homogeneous fissile enrichment and a relatively short burnup of 7 GWd/t. Small increase of enrichment (to 1.35 wt%) considerably extends cycle length (to 14 GWd/t) at the cost of slight sub-breeding. Heterogeneity of fissile load can bring another 70% gain on burnup with no significant impact on conversion. Multirecycling gives even shorter burnup (about 5 GWd/t) for the breeding case, while performance close to the once-through 1.35 wt% case is obtained for a slightly sub-breeding regime sustained by a small add of uranium from Th/Pu CANDU. Th/U cycle neutronic analysis explains the convenient feature of almost constant burnup as 233U load is unchanged at each recycle. Two symbiotic scenarios based on UOX PWRs, Th/Pu \\{CANDUs\\} and Th/233U \\{CANDUs\\} in a first open version or optimized Th/U \\{CANDUs\\} in a second closed version are compared. At standard power and moderation levels, Th/233U PWR conversion performance is much lower than CANDU with only a bit more than half of initial fissile load remaining after 50 GWd/t. Contrary to CANDU, fuel heterogeneity does not increase burnup. Conversion is mainly improved by enhanced sub-moderation down to minimal acceptable water over fuel volume ratio of 0.8 at standard power. In this limit case, a 3.00 wt% enrichment ensures a burnup of 33 GWd/t with 80% of initial fissile load remaining. By comparing a few Th/233U CANDU and PWR high converting cases, we understand that main part of the CANDU-PWR conversion gap results from neutron-economical CANDU operation conditions based on frequent online refueling and therefore why sub-moderation improves PWR conversion. From this better understanding, we deduce and preliminarily evaluate two possible ways to really higher conversion with thorium fuel in PWR envelope based on faster spectra either with light water and power derating or with heavy water and Spectral Shift Control.

A. Nuttin; P. Guillemin; A. Bidaud; N. Capellan; R. Chambon; S. David; O. Méplan; J.N. Wilson

2012-01-01T23:59:59.000Z

87

Hydro-mechanical analysis of low enriched uranium fuel plates for University of Missouri Research Reactor .  

E-Print Network [OSTI]

??As part of the Global Threat Reduction Initiative (GTRI) Reactor Conversion program, work is underway to analyze and validate a new fuel assembly for the… (more)

Kennedy, John C.

2012-01-01T23:59:59.000Z

88

NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944  

E-Print Network [OSTI]

#12;#12;11 #12;2 NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944 Nuclear fission discovered Oak Ridge selected as site for World War II Manhattan Project First sustained and controlled nuclear 430 nuclear power reactors are operating in the world, and 103 nuclear power plants produce 20

Pennycook, Steve

89

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor  

Science Journals Connector (OSTI)

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor ... The first design uses optimal control theory to obtain a more uniform distribution of the entropy production. ... This optimized design is found to perform the best, but it requires significant changes in the heating equipment in order to approximately realize the optimal temperature profiles. ...

Leen V. van der Ham; Joachim Gross; Ad Verkooijen; Signe Kjelstrup

2009-08-06T23:59:59.000Z

90

Photoneutron effects on pulse reactor kinetics for the Annular Core Research Reactor (ACRR).  

SciTech Connect (OSTI)

The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the kinetics associated with the reactor to ensure that the transient behavior of the electronic device is understood. Since the ACRR fuel maintains a substantial amount of beryllium, copious quantities of photoneutrons are produced that can significantly alter the expected behavior of the reactor power, especially following a reactor pulse. In order to understand these photoneutron effects on the reactor kinetics, the KIFLE transient reactor-analysis code was modified to include the photoneutron groups associated with the beryllium. The time-dependent behavior of the reactor power was analyzed for small and large pulses, assuming several initial conditions including following several pulses during the day, and following a long steady-state power run. The results indicate that, for these types of initial conditions, the photoneutron contribution to the reactor pulse energy can have a few to tens of percent effect.

Parma, Edward J., Jr.

2009-06-01T23:59:59.000Z

91

A probabilistic safety analysis of incidents in nuclear research reactors  

Science Journals Connector (OSTI)

......ICRP-64. INTRODUCTION Nuclear research reactors are considered important tools in nuclear science. For more than...as well as prevention policy, have stimulated the development...level 3 in the International Nuclear Events Scale (INES) of......

Valdir Maciel Lopes; Gian Maria Agostinho Angelo Sordi; Mauricio Moralles; Tufic Madi Filho

2012-06-01T23:59:59.000Z

92

Managerial Aspects of BNCT at a Nuclear Research Reactor  

Science Journals Connector (OSTI)

All BNCT facilities worldwide, performing clinical trials, are presently located at a nuclear research reactor. They are nevertheless, to all ... 43/EURATOM which stipulates that radiotherapy quality assurance programmes

Wolfgang A. G. Sauerwein; Ray Moss

2012-01-01T23:59:59.000Z

93

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We investigate the molecular and structural origins of energy conversion (absorption, carrier generation and recombination processes, transport) phenomena in organic and hybrid...

94

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the...

95

Argonne's pyroprocessing and advanced reactor research featured on WGN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne's pyroprocessing and advanced reactor research featured on WGN Argonne's pyroprocessing and advanced reactor research featured on WGN radio Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Argonne's pyroprocessing and advanced reactor research featured on WGN radio Uranium dendrites These tiny branches, or "dendrites," of pure uranium form when engineers

96

Minor Actinide Transmutation Physics for Low Conversion Ratio Sodium Fast Reactors  

SciTech Connect (OSTI)

The effects of varying the reprocessing strategy used in the closed cycle of a Sodium Fast Reactor (SNF) prototype are presented in this paper. The isotopic vector from the aqueous separation of transuranic (TRU) elements in Light Water Reactor (LWR) spent nuclear fuel (SNF) is assumed to also vary according to the reprocessing strategy of the closed fuel cycle. The decay heat, gamma energy, and neutron emission of the fuel discharge at equilibrium are found to vary depending on the separation strategy. The SFR core used in this study corresponds to a burner configuration with a conversion ratio of ~0.5 based on the Super-PRISM design. The reprocessing strategies stemming from the choice of either metal or oxide fuel for the SFR are found to have a large impact on the equilibrium discharge decay heat, gamma energy, and neutron emission. Specifically, metal fuel SFR with pyroprocessing of the discharge produces the largest amount of TRU consumption (166 kg per Effective Full Power Year or EFPY), but also the highest decay heat, gamma energy, and neutron emission. On the other hand, an oxide fuel SFR with PUREX reprocessing minimizes the decay heat and related parameters of interest to a minimum, even when compared to thermal Mixed Oxide (MOX) or Inert Matrix Fuel (IMF) on a per mass basis. On an assembly basis, however, the metal SFR discharge has a lower decay heat than an equivalent oxide SFR assembly for similar minor actinide consumptions (~160 kg/EFPY.) Another disadvantage in the oxide PUREX reprocessing scenario is that there is no consumption of americium and curium, since PUREX reprocessing separates these minor actinides (MA) and requires them to be disposed of externally.

Mehdi Asgari; Samuel E. Bays; Benoit Forget; Rodolfo Ferrer

2007-09-01T23:59:59.000Z

97

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thrust of CSTEC focuses on fundamental transport processes that govern solid state energy conversion, i.e., how the charge and energy flow through the atomic lattice or an...

98

Research and educational activities at the MIT Research Reactor : Fiscal year 1968  

E-Print Network [OSTI]

A report of research and educational activities which utilized the Massachusetts Institute of Technology, five-megawatt, heavy water, research reactor during fiscal year 1968 has been prepared for administrative use at MIT ...

Massachusetts Institute of Technology. Department of Nuclear Engineering; 7102 Massachusetts Institute of Technology. Research Reactor. Staff; U.S. Atomic Energy Commission

1968-01-01T23:59:59.000Z

99

The RERTR (Reduced Enrichment Research and Test Reactor) program: A progress report  

SciTech Connect (OSTI)

The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1985, the activities, results, and new developments which occurred in 1986 are reviewed. The second miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was expanded and its irradiation continued. Postirradiation examinations of several of these miniplates and of six previously irradiated U/sub 3/Si/sub 2/-Al full-size elements were completed with excellent results. The whole-core ORR demonstration with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/ is well under way and due for completion before the end of 1987. DOE removed an important barrier to conversions by announcing that the new LEU fuels will be accepted for reprocessing. New DOE prices for enrichment and reprocessing services were calculated to have minimal effect on HEU reactors, and to reduce by about 8 to 10% the total fuel cycle costs of LEU reactors. New program activities include preliminary feasibility studies of LEU use in DOE reactors, evaluation of the feasibility to use LEU targets for the production of fission-product /sup 99/Mo, and responsibility for coordinating safety evaluations related to LEU conversions of US university reactors, as required by NRC. Achievement of the final program goals is projected for 1990. This progress could not have been achieved without close international cooperation, whose continuation and intensification are essential to the achievement of the ultimate goals of the RERTR Program.

Travelli, A.

1986-11-01T23:59:59.000Z

100

Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs.

Woodall, D.M.; Dolan, T.J.; Stephens, A.G. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

SciTech Connect (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application this new development. We designed and built a membrane reactor to study the reforming reaction. A two-dimensional pseudo-homogeneous reactor model was developed to study the performance of the membrane reactor parametrically. The important results are presented in this report.

Shamsuddin Illias

2002-06-10T23:59:59.000Z

102

Thermochemical Conversion Research and Development: Gasification and Pyrolysis (Fact Sheet)  

SciTech Connect (OSTI)

Biomass gasification and pyrolysis research and development activities at the National Renewable Energy Laboratory and Pacific Northwest National Laboratory.

Not Available

2009-09-01T23:59:59.000Z

103

Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos  

SciTech Connect (OSTI)

This reports presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

Heeger, Karsten M [Yale University

2014-09-13T23:59:59.000Z

104

Design and optimization of a high thermal flux research reactor via Kriging-based algorithm  

E-Print Network [OSTI]

In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

Kempf, Stephanie Anne

2011-01-01T23:59:59.000Z

105

CUSTOM SYNTHESIS by TDC RESEARCH,Inc. To follow up on our conversation regarding TDC Research Custom Synthesis program  

E-Print Network [OSTI]

CUSTOM SYNTHESIS by TDC RESEARCH,Inc. To follow up on our conversation regarding TDC Research Custom Synthesis program: Here is a brief description of what we can/will do in the custom synthesis area will perform re-synthesis and scale up of any length for any compound up to 500 g. Occasionally we will do kilo

Hudlicky, Tomas

106

SUPPLEMENT ANALYSIS OF FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL  

Broader source: Energy.gov (indexed) [DOE]

FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL TRANSPORTATION ALONG OTHER THAN~. PRESENTATIVE ROUTE FROM CONCORD NAVAL WEAPO~~ STATION TO IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LADORA TORY Introduction The Department of Energy is planning to transport foreign research reactor spent nuclear fuel by rail from the Concord Naval Weapons Station (CNWS), Concord, California, to the Idaho National Engineering and Environmental Laboratory (INEEL). The environmental analysis supporting the decision to transport, by rail or truck, foreign research reactor spent nuclear fuel from CNWS to the INEEL is contained in +he Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliftration Policy Concerning Foreign Research Reactor

107

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from geostrophic flows into  

E-Print Network [OSTI]

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean that linear lee wave theory gives a good prediction of the energy conversion rate at sub-critical and critical

Ferrari, Raffaele

108

Qualification of JEFF3.1.1 library for high conversion reactor calculations using the ERASME/R experiment  

SciTech Connect (OSTI)

With its low CO{sub 2} production, Nuclear Energy appears to be an efficient solution to the global warming due to green-house effect. However, current LWR reactors are poor uranium users and, pending the development of Fast Neutron Reactors, alternative concepts of PWR with higher conversion ratio (HCPWR) are being studied again at CEA, first studies dating from the middle 80's. In these French designs, low moderation ratio has been performed by tightening the lattice pitch, achieving a conversion ratio of 0.8-0.9 with a MOX fuel coming from PWR UOX recycling. Theses HCPWRs are characterized by a harder neutron spectrum and the calculation uncertainties on the fundamental neutronics parameters are increased by a factor 3 regarding a standard PWR lattice, due to the major contribution of the Plutonium isotopes and of the epithermal energy range to the reaction rates. In order to reduce these uncertainties, a 3-year experimental validation program called ERASME has been performed by CEA from 1984 to 1986 in the EOLE reactor. Monte Carlo analysis of the ERASME/R experiments with the Monte Carlo code TRIPOLI4 allowed the qualification of the recommended JEFF.3.1.1 library for major neutronics parameters. K{sub eff} of the MOX under-moderated lattice is over-predicted by 440 {+-} 830 pcm (2{sigma}); the conversion ratio, indicator of the good use of uranium, is also slightly over-predicted: 2 % {+-} 4 % (2{sigma}) and the same for B4C absorber rods worth and soluble boron worth, over-predicted by 2 %, both in the 2 standard deviations range. The radial fission maps of heterogeneities (water-holes, B4C and fertile rods) are well reproduced: maximal (C-E)/E dispersion is 1.3 %, maximal power peak error is 2.7 %. The void reactivity worth is the only parameter poorly calculated with an overprediction of +12.4% {+-} 1.5%. ERASME/R analysis of MOX reactivity, void effect and spectral indexes will contribute to the reevaluation of {sup 241}Am and Plutonium isotopes nuclear data for the next library JEFF3.2. (authors)

Vidal, J. F.; Noguere, G.; Peneliau, Y.; Santamarina, A. [CEA, DEN, DER/SPRC/LEPh, Cadarache, F-13108 Saint-Paul-lez-Durance (France)

2012-07-01T23:59:59.000Z

109

Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges  

SciTech Connect (OSTI)

The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

Snoj, L. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Sklenka, L.; Rataj, J. [Dept. of Nuclear Reactor, Czech Technical Univ. in Prague, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Boeck, H. [Vienna Univ. of Technology/Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

2012-07-01T23:59:59.000Z

110

Research in nondestructive evaluation techniques for nuclear reactor concrete structures  

SciTech Connect (OSTI)

The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

Clayton, Dwight; Smith, Cyrus [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2014-02-18T23:59:59.000Z

111

Role of research reactors in training of NPP personnel with special focus on training reactor VR-1  

SciTech Connect (OSTI)

Research reactors play an important role in providing key personnel of nuclear power plants a hands-on experience from operation and experiments at nuclear facilities. Training of NPP (Nuclear Power Plant) staff is usually deeply theoretical with an extensive utilisation of simulators and computer visualisation. But a direct sensing of the reactor response to various actions can only improve the personnel awareness of important aspects of reactor operation. Training Reactor VR-1 and its utilization for training of NPP operators and other professionals from Czech Republic and Slovakia is described. Typical experimental exercises and good practices in organization of a training program are demonstrated. (authors)

Sklenka, L.; Rataj, J.; Frybort, J.; Huml, O. [Dept. of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical Univ. in Prague, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)

2012-07-01T23:59:59.000Z

112

Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

2012-04-05T23:59:59.000Z

113

IGORR-IV -- Proceedings of the fourth meeting of the International Group on Research Reactors  

SciTech Connect (OSTI)

The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results.

Rosenbalm, K.F. [comp.] [comp.

1995-12-31T23:59:59.000Z

114

A global approach of the representativity concept: Application on a high-conversion light water reactor MOX lattice case  

SciTech Connect (OSTI)

The development of new types of reactor and the increase in the safety specifications and requirements induce an enhancement in both nuclear data knowledge and a better understanding of the neutronic properties of the new systems. This enhancement is made possible using ad hoc critical mock-up experiments. The main difficulty is to design these experiments in order to obtain the most valuable information. Its quantification is usually made by using representativity and transposition concepts. These theories enable to extract some information about a quantity of interest (an integral parameter) on a configuration, but generally a posteriori. This paper presents a more global approach of this theory, with the idea of optimizing the representativity of a new experiment, and its transposition a priori, based on a multiparametric approach. Using a quadratic sum, we show the possibility to define a global representativity which permits to take into account several quantities of interest at the same time. The maximization of this factor gives information about all quantities of interest. An optimization method of this value in relation to technological parameters (over-clad diameter, atom concentration) is illustrated on a high-conversion light water reactor MOX lattice case. This example tackles the problematic of plutonium experiment for the plutonium aging and a solution through the optimization of both the over-clad and the plutonium content. (authors)

Santos, N. D.; Blaise, P.; Santamarina, A. [CEA, DEN/DER/SPRC Cadarache, F-13108 Saint Paul-lez-Durance (France)

2013-07-01T23:59:59.000Z

115

EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear  

Broader source: Energy.gov (indexed) [DOE]

2: Urgent-Relief Acceptance of Foreign Research Reactor Spent 2: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel SUMMARY This EA evaluates the environmental impacts of a proposal to accept 409 spent fuel elements from eight foreign research reactors in seven European countries. The spent fuel would be shipped across the ocean in spent fuel transportation casks from the country of origin to one or more United States eastern seaboard ports. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 22, 1994 EA-0912: Finding of No Significant Impact Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel April 22, 1994 EA-0912: Final Environmental Assessment Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

116

E-Print Network 3.0 - application research reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Technologies 28 Research Aptitude Problem 1 Scavenging of aerosol particles by ice crystals Summary: strategies that would be required to operate these reactor systems....

117

Y-12 fulfills major milestone in fuel conversion commitment for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fulfills major ... Y-12 fulfills major milestone in fuel conversion commitment for Jamaican research reactor Posted: June 3, 2014 - 4:42pm The Y-12 National Security Complex...

118

Dual bed reactor for the study of catalytic biomass tars conversion  

SciTech Connect (OSTI)

A dual fixed bed laboratory scale set up has been used to compare the activity of a novel Rh/LaCoO{sub 3}/Al{sub 2}O{sub 3} catalyst to that of dolomite, olivine and Ni/Al{sub 2}O{sub 3}, typical catalysts used in fluidized bed biomass gasification, to convert tars produced during biomass devolatilization stage. The experimental apparatus allows the catalyst to be operated under controlled conditions of temperature and with a real gas mixture obtained by the pyrolysis of the biomass carried out in a separate fixed bed reactor operated under a selected and controlled heating up rate. The proposed catalyst exhibits much better performances than conventional catalysts tested. It is able to completely convert tars and also to strongly decrease coke formation due to its good redox properties. (author)

Ammendola, P.; Piriou, B.; Lisi, L.; Ruoppolo, G.; Chirone, R.; Russo, G. [Istituto di Ricerche sulla Combustione - CNR, P.le V. Tecchio 80, 80125 Napoli (Italy)

2010-04-15T23:59:59.000Z

119

The RERTR (Reduced Enrichment Research and Test Reactor) Program: Progress and plans  

SciTech Connect (OSTI)

The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1986, the activities, results, and new developments which occurred in 1987 are reviewed. Irradiation of the second miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was completed and postirradiation examinations were performed on many of its miniplates. The whole-core ORR demonstration with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/ was completed at the end of March with excellent results and with 29 elements estimated to have reached at least 40% average burnup. Good progress was made in the area of LEU usage for the production of fission /sup 99/Mo, and in the coordination of safety evaluations related to LEU conversions of US university reactors. Planned activities include testing and demonstrating advanced fuels intended to allow use of reduced enrichment uranium in very-high-performance reactors. Two candidate fuels are U/sub 3/Si-Al with 19.75% enrichment and U/sub 3/Si/sub 2/-Al with 45% enrichment. Demonstration of these fuels will include irradiation of full-size elements and, possibly, a full-core demonstration. Achievement of the final program goals is still projected for 1990. This progress could not have been possible without the close international cooperation which has existed from the beginning, and which is essential to the ultimate success of the RERTR Program.

Travelli, A.

1987-01-01T23:59:59.000Z

120

PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.  

SciTech Connect (OSTI)

Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron and photon transport calculations were performed with the MCNP code to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim safety arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim safety arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core power transient is terminated by a reactor trip at 26 MW. The calculations show that both the peak reactor power and the excursion energy depend on the negative reactivity insertion from reactor trip. In one of the loss-of-flow accidents offsite electrical power is assumed lost to the three operating primary pumps. A slightly delayed reactor scram is initiated as a result of primary flow coast down. The RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur, because of the momentum of the coolant flowing through the fuel channels and the negative scram reactivity insertion. For both the primary pump seizure and inadvertent throttling of a flow control valve, the RELAP5 analyses indicate that the reduction in power following the trip is sufficient to ensure that there is adequate margin to CHF and that the fuel cladding does not fail. The analysis of the loss-of-flow accident in the extremely unlikely case where both shutdown pumps fail, shows that the cooling provided by the D{sub 2}O is sufficient to ensure the cladding does not fail. The power distributions were examined for a set of fuel misloadings in which a fresh fuel element is moved from a peripheral low-reactivity location to a central high-reactivity location. The calculations show that there is adequate margin to CHF and the cladding does not fail. An additional analysis was performed to simulate the operation at low power (500 kW) without forced flow cooling. The result indicates that natural convection cooling is adequate for operation of the NBSR at a power level of 500 kW.

CHENG,L.HANSON,A.DIAMOND,D.XU,J.CAREW,J.RORER,D.

2004-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear plant-aging research on reactor protection systems  

SciTech Connect (OSTI)

This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

Meyer, L.C.

1988-01-01T23:59:59.000Z

122

MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM  

E-Print Network [OSTI]

Annual Report Page ii MODULAR PEBBLE BED REACTOR ABSTRACT This project is developing a fundamental. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor Abstract

123

Diversion assumptions for high-powered research reactors. ISPO C-50 Phase 1  

SciTech Connect (OSTI)

This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

Binford, F.T.

1984-01-01T23:59:59.000Z

124

PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.  

SciTech Connect (OSTI)

Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional MCNP Monte Carlo neutron and photon transport calculations were performed to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model including the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core power transient is terminated by a reactor trip at 30 MW. The calculations show that both the peak reactor power and the excursion energy depend on the negative reactivity insertion from reactor trip. Two cases were considered for loss of electrical power. In the first case offsite power is lost, resulting in an immediate scram caused by loss of power to the control rod system. In the second case power is lost to only the three operating primary pumps, resulting in a slightly delayed scram when loss-of-flow is detected as the pumps coast down. In both instances, RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur, because of the momentum of the coolant flowing through the fuel channels and the negative scram reactivity insertion. For both the primary pump seizure and inadvertent throttling of a flow control valve, the RELAP5 analyses indicate that the reduction in power following the trip is sufficient to ensure that there is adequate margin to CHF and the fuel cladding does not fail. The analysis of the loss-of-flow accident in the extremely unlikely case where both shutdown pumps fail shows that the cooling provided by the D{sub 2}O is sufficient to ensure the cladding does not fail. The power distributions were examined for a set of fuel misloadings in which a fresh fuel element is moved from a peripheral low-reactivity location to a central high-reactivity location. The calculations show that there is adequate margin to CHF and the cladding does not fail.

CAREW,J.CHENG,L.HANSON,AXU,J.RORER,D.DIAMOND,D.

2003-08-26T23:59:59.000Z

125

Investigation of the Performance of D2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations  

SciTech Connect (OSTI)

This report presents FY13 activities for the analysis of D2O cooled tight-pitch High-Conversion PWRs (HCPWRs) with U-Pu and Th-U fueled cores aiming at break-even or near breeder conditions while retaining the negative void reactivity. The analyses are carried out from several aspects which could not be covered in FY12 activities. SCALE 6.1 code system is utilized, and a series of simple 3D fuel pin-cell models are developed in order to perform Monte Carlo based criticality and burnup calculations. The performance of U-Pu fueled cores with axial and internal blankets is analyzed in terms of their impact on the relative fissile Pu mass balance, initial Pu enrichment, and void coefficient. In FY12, Pu conversion performances of D2O-cooled HCPWRs fueled with MOX were evaluated with small sized axial/internal DU blankets (approximately 4cm of axial length) in order to ensure the negative void reactivity, which evidently limits the conversion performance of HCPWRs. In this fiscal year report, the axial sizes of DU blankets are extended up to 30 cm in order to evaluate the amount of DU necessary to reach break-even and/or breeding conditions. Several attempts are made in order to attain the milestone of the HCPWR designs (i.e., break-even condition and negative void reactivity) by modeling of HCPWRs under different conditions such as boiling of D2O coolant, MOX with different 235U enrichment, and different target burnups. A similar set of analyses are performed for Th-U fueled cores. Several promising characteristics of 233U over other fissile like 239Pu and 235U, most notably its higher fission neutrons per absorption in thermal and epithermal ranges combined with lower ___ in the fast range than 239Pu allows Th-U cores to be taller than MOX ones. Such an advantage results in 4% higher relative fissile mass balance than that of U-Pu fueled cores while retaining the negative void reactivity until the target burnup of 51 GWd/t. Several other distinctions between U-Pu and Th-U fueled cores are identified by evaluating the sensitivity coefficients of keff, mass balance, and void coefficient. The effect of advanced iron alloy cladding (i.e., FeCrAl) on the performance of Pu conversion in MOX fueled cores is studied instead of using standard stainless-steel cladding. Variations in clad thickness and coolant-to-fuel volume ratio are also exercised. The use of FeCrAl instead of SS as a cladding alloy reduces the required Pu enrichment and improves the Pu conversion rate primarily due to the absence of nickel in the cladding alloy that results in the reduction of the neutron absorption. Also the difference in void coefficients between SS and FeCrAl alloys is nearly 500 pcm over the entire burnup range. The report also shows sensitivity and uncertainty analyses in order to characterize D2O cooled HCPWRs from different aspects. The uncertainties of integral parameters (keff and void coefficient) for selected reactor cores are evaluated at different burnup points in order to find similarities and trends respect to D2O-HCPWR.

Hikaru Hiruta; Gilles Youinou

2013-09-01T23:59:59.000Z

126

Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli  

E-Print Network [OSTI]

Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli Research Reactor (MURR) provides significant thermal neutron flux, which enables neutron scattering]. There are presently 5 instruments located on the beam port floor that are dedicated to neutron scattering: (1) TRIAX

Montfrooij, Wouter

127

Fuel Cycle System Analysis Implications of Sodium-Cooled Metal-Fueled Fast Reactor Transuranic Conversion Ratio  

SciTech Connect (OSTI)

If advanced fuel cycles are to include a large number of fast reactors (FRs), what should be the transuranic (TRU) conversion ratio (CR)? The nuclear energy era started with the assumption that they should be breeder reactors (CR > 1), but the full range of possible CRs eventually received attention. For example, during the recent U.S. Global Nuclear Energy Partnership program, the proposal was burner reactors (CR < 1). Yet, more recently, Massachusetts Institute of Technology's "Future of the Nuclear Fuel Cycle" proposed CR [approximately] 1. Meanwhile, the French company EDF remains focused on breeders. At least one of the reasons for the differences of approach is different fuel cycle objectives. To clarify matters, this paper analyzes the impact of TRU CR on many parameters relevant to fuel cycle systems and therefore spans a broad range of topic areas. The analyses are based on a FR physics parameter scan of TRU CR from 0 to [approximately]1.8 in a sodium-cooled metal-fueled FR (SMFR), in which the fuel from uranium-oxide-fueled light water reactors (LWRs) is recycled directly to FRs and FRs displace LWRs in the fleet. In this instance, the FRs are sodium cooled and metal fueled. Generally, it is assumed that all TRU elements are recycled, which maximizes uranium ore utilization for a given TRU CR and waste radiotoxicity reduction and is consistent with the assumption of used metal fuel separated by electrochemical means. In these analyses, the fuel burnup was constrained by imposing a neutron fluence limit to fuel cladding to the same constant value. This paper first presents static, time-independent measures of performance for the LWR [right arrow] FR fuel cycle, including mass, heat, gamma emission, radiotoxicity, and the two figures of merit for materials for weapon attractiveness developed by C. Bathke et al. No new fuel cycle will achieve a static equilibrium in the foreseeable future. Therefore, additional analyses are shown with dynamic, time-dependent measures of performance including uranium usage, TRU inventory, and radiotoxicity to evaluate the complex impacts of transition from the current uranium-fueled LWR system, and other more realistic impacts that may not be intuited from the time-independent steady-state conditions of the end-state fuel cycle. These analyses were performed using the Verifiable Fuel Cycle Simulation Model VISION. Compared with static calculations, dynamic results paint a different picture of option space and the urgency of starting a FR fleet. For example, in a static analysis, there is a sharp increase in uranium utilization as CR exceeds 1.0 (burner versus breeder). However, in dynamic analyses that examine uranium use over the next 1 to 2 centuries, behavior as CR crosses the 1.0 threshold is smooth, and other parameters such as the time required outside of reactors to recycle fuel become important. Overall, we find that there is no unambiguously superior value of TRU CR; preferences depend on the relative importance of different fuel cycle system objectives.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays; Gretchen E. Matthern; Jacob J. Jacobson; Ryan Clement; David W. Gerts

2013-03-01T23:59:59.000Z

128

Development and transfer of fuel fabrication and utilization technology for research reactors  

SciTech Connect (OSTI)

Approximately 300 research reactors supplied with US-enriched uranium are currently in operation in about 40 countries, with a variety of types, sizes, experiment capabilities and applications. Despite the usefulness and popularity of research reactors, relatively few innovations in their core design have been made in the last fifteen years. The main reason can be better understood by reviewing briefly the history of research reactor fuel technology and enrichment levels. Stringent requirements on the enrichment of the uranium to be used in research reactors were considered and a program was launched to assist research reactors in continuing their operation with the new requirements and with minimum penalties. The goal of the new program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is to develop the technical means to utilize LEU instead of HEU in research reactors without significant penalties in experiment performance, operating costs, reactor modifications, and safety characteristics. This paper reviews briefly the RERTR Program activities with special emphasis on the technology transfer aspects of interest to this conference.

Travelli, A.; Domagala, R.F.; Matos, J.E.; Snelgrove, J.L.

1982-01-01T23:59:59.000Z

129

Medical isotope production: A new research initiative for the Annular Core Research Reactor  

SciTech Connect (OSTI)

An investigation has been performed to evaluate the capabilities of the Annular Core Research Reactor and its supporting Hot Cell Facility for the production of {sup 99}Mo and its separation from the fission product stream. Various target irradiation locations for a variety of core configurations were investigated, including the central cavity, fuel and reflector locations, and special target configurations outside the active fuel region. Monte Carlo techniques, in particular MCNP using ENDF B-V cross sections, were employed for the evaluation. The results indicate that the reactor, as currently configured, and with its supporting Hot Cell Facility, would be capable in meeting the current US demand if called upon. Modest modifications, such as increasing the capacity of the external heat exchangers, would permit significantly higher continuous power operation and even greater {sup 99}Mo production ensuring adequate capacity for future years.

Coats, R.L.; Parma, E.J.

1993-12-31T23:59:59.000Z

130

Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels  

SciTech Connect (OSTI)

The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way of two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.

Thibodeaux, J.; Hensley, J.

2013-01-01T23:59:59.000Z

131

A RESEARCH ON SEAMLESS PLATFORM CHANGE OF REACTOR PROTECTION SYSTEM FROM PLC TO FPGA  

E-Print Network [OSTI]

A RESEARCH ON SEAMLESS PLATFORM CHANGE OF REACTOR PROTECTION SYSTEM FROM PLC TO FPGA JUNBEOM YOO1 1. INTRODUCTION A safety grade PLC is an industrial digital computer used to develop safety-critical systems such as RPS (Reactor Protection System) for nuclear power plants. The software loaded into a PLC

132

Reactor Safety Research Programs Quarterly Report October - December 1981  

SciTech Connect (OSTI)

This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1982-03-01T23:59:59.000Z

133

Risk management at the Oak Ridge National Laboratory research reactors  

SciTech Connect (OSTI)

In November of 1986, the High Flux Isotope Reactor (HFIR) was shut down by Oak Ridge National Laboratory (ORNL) due to a concern regarding embrittlement of the reactor vessel. A massive review effort was undertaken by ORNL and the Department of Energy (DOE). This review resulted in an extensive list of analyses and design modifications to be completed before restart could take place. The review also focused on the improvement of management practices including implementation of several of the Institute of Nuclear Power Operations (INPO) requirements. One of the early items identified was the need to perform a Probabilistic Risk Assessment (PRA) on the reactor. It was decided by ORNL management that this PRA would not be just an exercise to assess the ``bottom`` line in order to restart, but would be used to improve the overall safety of the reactor, especially since resources (both manpower and dollars) were severely limited. The PRA would become a basic safety tool to be used instead of a more standard deterministic approach to safety used in commercial reactor power plants. This approach was further reinforced, because the reactor was nearly 25 years old at this time, and the design standards and regulations had changed significantly since the original design, and many of the safety issues could not be addressed by compliance to codes and standards.

Flanagan, G.F.; Linn, M.A.; Proctor, L.D.; Cook, D.H.

1994-12-31T23:59:59.000Z

134

Light Water Reactor Fuel Cladding Research and Testing | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Water Reactor Fuel Cladding Research Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The purpose of this research is to furnish U.S. industry (EPRI, Areva, Westinghouse), and regulators (NRC) with much-needed data supporting safe and economical nuclear power generation and used fuel management. LWR fuel cladding work is tightly integrated with ORNL accident tolerant fuel development and used fuel disposition programs thereby providing a powerful capability that couples basic materials science research with the nuclear applications research and development. The ORNL LWR fuel cladding program consists of five complementary areas of research: Accident tolerant fuel and cladding material testing under design

135

Two U.S. University Research Reactors to be Converted From Highly Enriched  

Broader source: Energy.gov (indexed) [DOE]

U.S. University Research Reactors to be Converted From Highly U.S. University Research Reactors to be Converted From Highly Enriched Uranium to Low-Enriched Uranium Two U.S. University Research Reactors to be Converted From Highly Enriched Uranium to Low-Enriched Uranium April 11, 2005 - 11:34am Addthis WASHINGTON, D.C. - As part of the Bush administration's aggressive effort to reduce the amount of weapons-grade nuclear material worldwide, Secretary of Energy Samuel W. Bodman announced today that the Department of Energy (DOE) has begun to convert research reactors from using highly-enriched uranium (HEU) to low-enriched uranium fuel (LEU) at the University of Florida and Texas A&M University. This effort, by DOE's National Nuclear Security Administration (NNSA) and the Office of Nuclear Energy, Science and Technology, are the latest steps

136

Effect of reduced enrichment on the fuel cycle for research reactors  

SciTech Connect (OSTI)

The new fuels developed by the RERTR Program and by other international programs for application in research reactors with reduced uranium enrichment (<20% EU) are discussed. It is shown that these fuels, combined with proper fuel-element design and fuel-management strategies, can provide at least the same core residence time as high-enrichment fuels in current use, and can frequently significantly extend it. The effect of enrichment reduction on other components of the research reactor fuel cycle, such as uranium and enrichment requirements, fuel fabrication, fuel shipment, and reprocessing are also briefly discussed with their economic implications. From a systematic comparison of HEU and LEU cores for the same reference research reactor, it is concluded that the new fuels have a potential for reducing the research reactor fuel cycle costs while reducing, at the same time, the uranium enrichment of the fuel.

Travelli, A.

1982-01-01T23:59:59.000Z

137

Enhanced arrangement for recuperators in supercritical CO2 Brayton power cycle for energy conversion in fusion reactors  

Science Journals Connector (OSTI)

Abstract A domestic research program called TECNO_FUS was launched in Spain in 2009 to support technological developments related to a dual coolant breeding blanket concept for fusion reactors. This concept of blanket uses Helium (300 °C/400 °C) to cool part of it and a liquid metal (480 °C/700 °C) to cool the rest; it also includes high temperature (700 °C/800 °C) and medium temperature (566 °C/700 °C) Helium cooling circuits for divertor. This paper proposes a new layout of the classical recompression supercritical CO2 Brayton cycle which replaces one of the recuperators (the one with the highest temperature) by another which by-passes the low temperature blanket source. This arrangement allows reaching high turbine inlet temperatures (around 600 °C) with medium pressures (around 225 bar) and achieving high cycle efficiencies (close to 46.5%). So, the proposed cycle reveals as a promising design because it integrates all the available thermal sources in a compact layout achieving high efficiencies with the usual parameters prescribed in classical recompression supercritical CO2 Brayton cycles.

I.P. Serrano; J.I. Linares; A. Cantizano; B.Y. Moratilla

2014-01-01T23:59:59.000Z

138

German concept and status of the disposal of spent fuel elements from German research reactors  

SciTech Connect (OSTI)

Eight research reactors with a power {>=} 100 kW are currently being operated in the Federal Republic of Germany. These comprise three TRIGA-type reactors (power 100 kW to 250 kW), four swimming-pool reactors (power 1 MW to 10 MW) and one DIDO type reactor (power 23 MW). The German research reactors are used for neutron scattering for basic research in the field of solid state research, neutron metrology, for the fabrication of isotopes and for neutron activation analysis for medicine and biology, for investigating the influence of radiation on materials and for nuclear fuel behavior. It will be vital to continue current investigations in the future. Further operation of the German research reactors is therefore indispensable. Safe, regular disposal of the irradiated fuel elements arising now and in future operation is of primary importance. Furthermore, there are several plants with considerable quantities of spent fuel, the safe disposal of which is a matter of urgency. These include above all the VKTA facilities in Rossendorf and also the TRIGA reactors, where disposal will only be necessary upon decommissioning. The present paper report is concerned with the disposal of fuel from the German research reactors. It briefly deals with the situation in the USA since the end of 1988, describes interim solutions for current disposal requirements and then mainly concentrates on the German disposal concept currently being prepared. This concept initially envisages the long-term (25--50 years) dry interim storage of fuel elements in special containers in a central German interim store with subsequent direct final disposal without reprocessing of the irradiated fuel.

Komorowski, K. [Bundesministerium fuer Bildung Wissenschaft, Bonn (Germany); Storch, S.; Thamm, G. [Forschungszentrum Juelich GmbH (Germany)

1995-12-31T23:59:59.000Z

139

Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report  

SciTech Connect (OSTI)

This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOE’s Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

2002-11-01T23:59:59.000Z

140

Dry Storage of Research Reactor Spent Nuclear Fuel - 13321  

SciTech Connect (OSTI)

Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)

Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)] [Moore Nuclear Energy, LLC (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Materials Research Needs for Near-Term Nuclear Reactors  

Science Journals Connector (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Material

John R. Weeks

142

Mo-99 production at the Annular Core Research Reactor - recent calculative results  

SciTech Connect (OSTI)

Significant progress has been made over the past year in understanding the chemistry and processing challenges associated with {sup 99}Mo production using Cintichem type targets. Targets fabricated at Los Alamos National Laboratory have been successfully irradiated in fuel element locations at the Annular Core Research Reactor (ACRR) and processed at the Sandia Hot Cell Facility. The next goal for the project is to remove the central cavity experiment tube from the reactor core, allowing for the irradiation of up to 37 targets. After the in-core work is complete, the reactor will be capable of producing significant quantities of {sup 99}Mo.

Parma, E.J.

1997-11-01T23:59:59.000Z

143

6 - Other nuclear energy applications: Hydrogen for transport desalination ships space research reactors for radioisotopes  

Science Journals Connector (OSTI)

Publisher Summary This chapter describes several nuclear energy applications. Hydrogen itself is likely to be an important future fuel; like electricity, it is an energy carrier. Nuclear energy can be used to make hydrogen electrolytically; and in the future, high-temperature reactors are likely to be used for thermochemical production. Desalination is energy-intensive. Nuclear energy is already being used for desalination, and nuclear energy has the potential for much greater use. Nuclear power has also revolutionized the navy; it is particularly suitable for vessels that need to be at sea for long periods without refueling, or for powerful submarine propulsion. After a gap of several years, there is a revival of interest in the use of nuclear fission power for space missions as well. Many of the world's nuclear reactors are used for research and training, materials testing, or the production of radioisotopes for medicine and industry. Research reactors are much smaller than power reactors or those propelling ships, and many are on university campuses. Research reactors are simpler than power reactors and operate at lower temperatures.

Ian Hore-Lacy

2007-01-01T23:59:59.000Z

144

Using low-enriched uranium in research reactors: The RERTR program  

SciTech Connect (OSTI)

The goal of the RERTR program is to minimize and eventually eliminate use of highway enriched uranium (HEU) in research and test reactors. The program has been very successful, and has developed low-enriched uranium (LEU) fuel materials and designs which can be used effectively in approximately 90 percent of the research and test reactors which used HEU when the program began. This progress would not have been possible without active international cooperation among fuel developers, commercial vendors, and reactor operators. The new tasks which the RERTR program is undertaking at this time include development of new and better fuels that will allow use of LEU fuels in all research and test reactors; cooperation with Russian laboratories, which will make it possible to minimize and eventually eliminate use of HEU in research reactors throughout the world, irrespective of its origin; and development of an LEU-based process for the production of {sup 99}Mo. Continuation and intensification of international cooperation are essential to the achievement of the ultimate goals of the RERTR program.

Travelli, A.

1994-05-01T23:59:59.000Z

145

Major Safety Aspects of Advanced Candu Reactor and Associated Research and Development  

SciTech Connect (OSTI)

The Advanced Candu{sup R} Reactor design is built on the proven technology of existing Candu plants and on AECL's knowledge base acquired over decades of nuclear power plant design, engineering, construction and research. Two prime objectives of ACR-700TM1 are cost reduction and enhanced safety. To achieve them some new features were introduced and others were improved from the previous Candu 6 and Candu 9 designs. The ACR-700 reactor design is based on the modular concept of horizontal fuel channels surrounded by a heavy water moderator, the same as with all Candu reactors. The major novelty in the ACR-700 is the use of slightly enriched fuel and light water as coolant circulating in the fuel channels. This results in a more compact reactor design and a reduction of heavy water inventory, both contributing to a significant decrease in cost compared to Candu reactors, which employ natural uranium as fuel and heavy water as coolant. The reactor core design adopted for ACR-700 also has some features that have a bearing on inherent safety, such as negative power and coolant void reactivity coefficient. Several improvements in engineered safety have been made as well, such as enhanced separation of the safety support systems. Since the ACR-700 design is an evolutionary development of the currently operating Candu plants, limited research is required to extend the validation database for the design and the supporting safety analysis. A program of safety related research and development has been initiated to address the areas where the ACR-700 design is significantly different from the Candu designs. This paper describes the major safety aspects of the ACR-700 with a particular focus on novel features and improvements over the existing Candu reactors. It also outlines the key areas where research and development efforts are undertaken to demonstrate the effectiveness and robustness of the design. (authors)

Bonechi, M.; Wren, D.J.; Hopwood, J.M. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2002-07-01T23:59:59.000Z

146

Utilization of the Philippine Research Reactor as a training facility for nuclear power plant operators  

SciTech Connect (OSTI)

The Philippines has a 1-MW swimming-pool reactor facility operated by the Philippine Atomic Energy Commission (PAEC). The reactor is light-water moderated and cooled, graphite reflected, and fueled with 90% enriched uranium. Since it became critical in 1963 it has been utilized for research, radioisotope production, and training. It was used initially in the training of PAEC personnel and other research institutions and universities. During the last few years, however, it has played a key role in training personnel for the Philippine Nuclear Power Project (PNPP).

Palabrica, R.J.

1981-01-01T23:59:59.000Z

147

On the operator action analysis to reduce operational risk in research reactors  

Science Journals Connector (OSTI)

Abstract Human errors during operation and the resulting increase in operational risk are major concerns for nuclear reactors, just as they are for all industries. Additionally, human reliability analysis together with probabilistic risk analysis is a key element in reducing operational risk. The purpose of this paper is to analyze human reliability using appropriate methods for the probabilistic representation and calculation of human error to be used alongside probabilistic risk analysis in order to reduce the operational risk of the reactor operation. We present a technique for human error rate prediction and standardized plant analysis risk. Human reliability methods have been utilized to quantify different categories of human errors, which have been applied extensively to nuclear power plants. The Tehran research reactor is selected here as a case study, and after consultation with reactor operators and engineers human errors have been identified and adequate performance shaping factors assigned in order to calculate accurate probabilities of human failure.

Ramin Barati; Saeed Setayeshi

2014-01-01T23:59:59.000Z

148

Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel  

SciTech Connect (OSTI)

A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

2006-02-01T23:59:59.000Z

149

Photo of the Week: The Brookhaven Graphite Research Reactor ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

which is a research collaboration between institutions from the U.S., Brazil, U.K., Germany, Spain and Switzerland. The survey aims to explore the dynamics of the universe's...

150

RERTR Program: goals, progress and plans. [Reduced Enrichment Research and Test Reactor  

SciTech Connect (OSTI)

The status of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of RERTR Program objectives and goals, program accomplishments are discussed with emphasis on the development, demonstration and application of new LEU fuels. Most program activities have proceeded as planned, and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) holds excellent promise for achieving the long-term program goals. Current plans and schedules project the uranium density of qualified RERTR fuels for plate-type reactors to grow by approximately 1 g U/cm/sup 3/ each year, from the nearly null value of 1982 to the 7.0 g U/cm/sup 3/ which will be reached in early 1989. The technical needs of research reactors for HEU exports are also estimated to undergo a gradual but dramatic decline in the coming years.

Travelli, A.

1984-09-25T23:59:59.000Z

151

MYRRHA a multi-purpose hybrid research reactor for high-tech applications  

SciTech Connect (OSTI)

MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental accelerator driven system (ADS) in development at SCK-CEN. MYRRHA is able to work both in subcritical (ADS) as in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for generation IV (GEN IV) systems, material developments for fusion reactors, radioisotope production and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. MYRRHA is based on the heavy liquid metal technology and so it will contribute to the development of lead fast reactor (LFR) technology and in critical mode, MYRRHA will play the role of European technology pilot plant in the roadmap for LFR. In this paper the historical evolution of MYRRHA and the rationale behind the design choices is presented and the latest configuration of the reactor core and primary system is described. (authors)

Abderrahim, H. A.; Baeten, P. [SCK CEN, Boeretang 200, 2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

152

Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel  

SciTech Connect (OSTI)

The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

Not Available

1994-04-01T23:59:59.000Z

153

MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT  

SciTech Connect (OSTI)

The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

Vinson, D.

2010-07-11T23:59:59.000Z

154

Research Reactors and Radiation Facilities for Joint Use Program  

E-Print Network [OSTI]

Observatory, a facility of the Graduate School of Science of Kyoto University, was constructed in 1968's current main research target is to unveil the origin of the solar magnetic activities that govern science and technology, material science, radiation life science, and radiation medical science

Takada, Shoji

155

Analysis of ITU TRIGA Mark II research reactor using Monte Carlo method  

Science Journals Connector (OSTI)

Abstract Research reactors include many complicated components with various shapes and sizes. Such complex parts also observed in TRIGA core are modelled by the researchers as simplified physical geometries when a particle transport computer code is used to analyse the reactors. These models are used to gain information on possible modifications in the reactors with no cost except a certain computational time demand. Besides, they can be used to understand the fabrication uncertainties of the core components and the methodologies used in the design process. The main objective of this study is to make a detailed three-dimensional full-core model of ITU (Istanbul Technical University) TRIGA Mark II research reactor for the use of Monte Carlo method and making a comparison of the simulation with the experimental observations. In case of lacking of experimental values reported, Final Safety Analysis Report values are used as reference. Furthermore, it is aimed to observe possible influences of using various neutron cross-section libraries (ENDF/Bs and JEFFs) onto the simulation results. The Monte Carlo simulations are carried out by using MCNP5 radiation transport code. All unsteady conditions are ignored, assuming the reactor operates at cold-zero power under the steady-state condition. For comparison, effective core multiplication factor (keff) and effective delayed neutron fraction (?eff) are computed. Reactivity worth ($) of control rods with rod position is presented. Pin power distribution within the fuel elements, axial power peaking distribution along the fuel length and normalized distribution of fast/thermal neutron flux throughout the core are analysed. The simulation results show that MCNP5 model of the reactor is properly established with sufficient detail in such a way that all simulation results are in an excellent agreement with the experimental data (or FSAR values). Results also show that the model yields more or less the same value even different neutron libraries are used.

Mehmet Türkmen; Üner Çolak

2014-01-01T23:59:59.000Z

156

Nuclear nonproliferation: Concerns with US delays in accepting foregin research reactors` spent fuel  

SciTech Connect (OSTI)

One key US nonproliferation goal is to discourage use of highly enriched uranium fuel (HEU), which can be used to make nuclear bombs, in civilian nuclear programs worldwide. DOE`s Off-Site Fuels Policy for taking back spent HEU from foreign research reactors was allowed to expire due to environmental reasons. This report provides information on the effects of delays in renewing the Off-Site Fuels Policy on US nonproliferation goals and programs (specifically the reduced enrichment program), DOE`s efforts to renew the fuels policy, and the price to be charged to the operators of foreign reactors for DOE`s activities in taking back spent fuel.

NONE

1994-03-25T23:59:59.000Z

157

Conceptual design analysis of an MHD power conversion system for droplet-vapor core reactors. Final report  

SciTech Connect (OSTI)

A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses.

Anghaie, S.; Saraph, G.

1995-12-31T23:59:59.000Z

158

Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria  

SciTech Connect (OSTI)

The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

K. J. Allen; T. G. Apostolov; I. S. Dimitrov

2009-03-01T23:59:59.000Z

159

Experience with the operation, maintenance and utilisation of the 3 MW TRIGA Mark-II research reactor of Bangladesh  

Science Journals Connector (OSTI)

The 3 MW TRIGA (Training, Research, Isotope, General Atomics) Mark-II research reactor of the Bangladesh Atomic Energy Commission (BAEC) has been operating at Atomic Energy Research Establishment (AERE), Savar, Dhaka, since September 1986. Since its commissioning, the reactor has been used in various fields of research and utilisation, such as Neutron Activation Analysis (NAA), Neutron Radiography (NRG), Neutron Scattering (NS), manpower training and education, and production of radioisotopes for medical applications. The reactor facility encountered a couple of incidents, which were successfully handled by BAEC personnel. In some cases, the help of experts from various local organisations/institutions as well as from the International Atomic Energy Agency (IAEA) was obtained. The upgrading of the Safety Analysis Report (SAR) of the reactor facility was completed in 2005 as per the format of the IAEA Safety Guide, SG-35-G1. The cooling system of the reactor as well as some parts of the instrumentations used in the reactor systems were also upgraded/modified during this period. The paper highlights the experience with the operation, maintenance and utilisation of the research reactor for the last 21 years. It also presents some of the modification and upgrading works carried out to enhance the operational safety of the research reactor.

M.A. Zulquarnain; M.M. Haque; M.A. Salam; M.S. Islam; P.K. Saha; M.A. Sarder; A. Haque; M.A.M. Soner; M.M. Uddin; M.M. Rahman; I. Kamal; M.N. Islam; S.M. Hossain

2009-01-01T23:59:59.000Z

160

EVALUATION OF CORE PHYSICS ANALYSIS METHODS FOR CONVERSION OF THE INL ADVANCED TEST REACTOR TO LOW-ENRICHMENT FUEL  

SciTech Connect (OSTI)

Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR.

Mark DeHart; Gray S. Chang

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of core physics analysis methods for conversion of the INL advanced test reactor to low-enrichment fuel  

SciTech Connect (OSTI)

Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR. (authors)

DeHart, M. D.; Chang, G. S. [Idaho National Laboratory, 2525 Fremont Street, Idaho Falls, ID 83415-3870 (United States)

2012-07-01T23:59:59.000Z

162

Strategic Plan for Light Water Reactor Research and Development  

SciTech Connect (OSTI)

The purpose of this strategic plan is to establish a framework that will allow the Department of Energy (DOE) and the nuclear power industry to jointly plan the nuclear energy research and development (R&D) agenda important to achieving the Nation's energy goals. This strategic plan has been developed to focus on only those R&D areas that will benefit from a coordinated government/industry effort. Specifically, this plan focuses on safely sustaining and expanding the electricity output from currently operating nuclear power plants and expanding nuclear capacity through the deployment of new plants. By focusing on R&D that addresses the needs of both current and future nuclear plants, DOE and industry will be able to take advantage of the synergism between these two technology areas, thus improving coordination, enhancing efficiency, and further leveraging public and private sector resources. By working together under the framework of this strategic plan, DOE and the nuclear industry reinforce their joint commitment to the future use of nuclear power and the National Energy Policy's goal of expanding its use in the United States. The undersigned believe that a public-private partnership approach is the most efficient and effective way to develop and transfer new technologies to the marketplace to achieve this goal. This Strategic Plan is intended to be a living document that will be updated annually.

None

2004-02-01T23:59:59.000Z

163

Pit disassembly and conversion demonstration environmental assessment and research and development activities  

SciTech Connect (OSTI)

A significant portion of the surplus plutonium is in the form of pits, a nuclear weapons component. Pits are composed of plutonium which is sealed in a metallic shell. These pits would need to be safely disassembled and permanently converted to an unclassified form that would be suitable for long-term disposition and international inspection. To determine the feasibility of an integrated pit disassembly and conversion system, a Pit Disassembly and Conversion Demonstration is proposed to take place at the Los Alamos National Laboratory (LANL). This demonstration would be done in existing buildings and facilities, and would involve the disassembly of up to 250 pits and conversion of the recovered plutonium to plutonium metal ingots and plutonium dioxide. This demonstration also includes the conversion of up to 80 kilograms of clean plutonium metal to plutonium dioxide because, as part of the disposition process, some surplus plutonium metal may be converted to plutonium dioxide in the same facility as the surplus pits. The equipment to be used for the proposed demonstration addressed in this EA would use some parts of the Advanced Recovery and Integrated Extraction System (ARIES) capability, other existing equipment/capacities, plus new equipment that was developed at other sites. In addition, small-scale R and D activities are currently underway as part of the overall surplus plutonium disposition program. These R and D activities are related to pit disassembly and conversion, MOX fuel fabrication, and immobilization (in glass and ceramic forms). They are described in Section 7.0. On May 16, 1997, the Office of Fissile Materials Disposition (MD) notified potentially affected states and tribes that this EA would be prepared in accordance with NEPA. This EA has been prepared to provide sufficient information for DOE to determine whether a Finding of No Significant Impact (FONSI) is warranted or whether an EIS must be prepared.

NONE

1998-08-01T23:59:59.000Z

164

Planning Document for an NBSR Conversion Safety Analysis Report  

SciTech Connect (OSTI)

The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

2013-09-25T23:59:59.000Z

165

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect (OSTI)

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

166

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect (OSTI)

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

167

A simple setup for neutron tomography at the Portuguese Nuclear Research Reactor  

E-Print Network [OSTI]

A simple setup for neutron radiography and tomography was recently installed at the Portuguese Research Reactor. The objective of this work was to determine the operational characteristics of the installed setup, namely the irradiation time to obtain the best dynamic range for individual images and the spatial resolution. The performance of the equipment was demonstrated by imaging a fragment of a 17th century decorative tile.

M. A. Stanojev Pereira; J. G. Marques; R. Pugliesi

2012-05-15T23:59:59.000Z

168

IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)  

SciTech Connect (OSTI)

The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

Yamada, K. [Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Aksan, S. N. [International Atomic Energy Agency, 1400 Vienna (Austria)

2012-07-01T23:59:59.000Z

169

DOE/EIS-0218-SA-3: Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (November 2004)  

Broader source: Energy.gov (indexed) [DOE]

SUPPLEMENT ANALYSIS FOR THE FOREIGN SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM NOVEMBER 2004 DOE/EIS-0218-SA-3 U.S. Department of Energy National Nuclear Security Administration Washington, DC Final Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program Final i TABLE OF CONTENTS Page 1. Introduction.............................................................................................................................................. 1 2. Background .............................................................................................................................................. 1 3. The Proposed Action ...............................................................................................................................

170

Energy conversion analysis and performance research on a cone-type dielectric electroactive  

Science Journals Connector (OSTI)

As a type of intelligent material, dielectric electroactive polymer (DEAP) has shown considerable promise for energy harvesting purposes as well as in actuator mode. Theoretical analysis on DEAP generators is important to guide the optimization and design of a DEAP generator. In this paper, firstly, four working phases of a DEAP generator and energy conversion between mechanical energy input and electrical energy generated have been studied. Then, the model of a cone-type DEAP generator is established. On the basis of that, some key issues of a DEAP generator, such as capacitance, force–displacement relationship, distribution of stress and stretch ratio in the membrane, have been achieved by solving the differential and algebraic equations. It is demonstrated that the stretch displacement of a DEAP generator and bias voltage are the main factors influencing the amount of electrical energy generated and the efficiency of energy conversion. In addition, the failure rule of a DEAP generator has also been discussed. Finally, the proposed model is proved by experimental results, which shows the model is reliable for analyzing the cone-type DEAP generator.

Yinlong Zhu; Huaming Wang; Dongbiao Zhao; Jun Zhao

2011-01-01T23:59:59.000Z

171

Research and Development Roadmaps for Nondestructive Evaluation of Cables, Concrete, Reactor Pressure Vessels, and Piping Fatique  

SciTech Connect (OSTI)

To address these research needs, the MAaD Pathway supported a series of workshops in the summer of 2012 for the purpose of developing R&D roadmaps for enhancing the use of Nondestructive Evaluation (NDE) technologies and methodologies for detecting aging and degradation of materials and predicting the remaining useful life. The workshops were conducted to assess requirements and technical gaps related to applications of NDE for cables, concrete, reactor pressure vessels (RPV), and piping fatigue for extended reactor life. An overview of the outcomes of the workshops is presented here. Details of the workshop outcomes and proposed R&D also are available in the R&D roadmap documents cited in the bibliography and are available on the LWRS Program website (http://www.inl.gov/lwrs).

Clayton, Dwight A [ORNL] [ORNL; Bakhtiari, Sasan [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Smith, Cyrus M [ORNL] [ORNL; Simmons, Kevin [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Coble, Jamie [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Brenchley, David [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Meyer, Ryan [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

2013-01-01T23:59:59.000Z

172

ORNL/TM-2012/380 Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research  

Broader source: Energy.gov (indexed) [DOE]

2/380 2/380 Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program September 2012 Prepared by Cyrus Smith Randy Nanstad Robert Odette Dwight Clayton Katie Matlack Pradeep Ramuhalli Glenn Light DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900

173

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

SciTech Connect (OSTI)

The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

J. K. Wright; R. N. Wright

2008-04-01T23:59:59.000Z

174

Processing and Conversion  

Broader source: Energy.gov [DOE]

The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts...

175

Current status of the development of high density LEU fuel for Russian research reactors  

SciTech Connect (OSTI)

One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiation examinations of U-Mo dispersion fuel in experimental tubular and pin fuel elements under parameters similar to operation conditions of Russian design pool-type research reactors. The results received both in Russia and abroad enabled to go on to the next stage of development which includes irradiation tests both of full-scale IRT pin-type and tube-type fuel assemblies with U-Mo dispersion fuel and of mini-fuel elements with modified U-Mo dispersion fuel and monolithic fuel. The paper gives a generalized review of the results of U-Mo fuel development accomplished by now. (author)

Vatulin, A.; Dobrikova, I.; Suprun, V.; Trifonov, Y. [Federal State Unitary Enterprise, A.A. Bochvar All-Russian Scientific Research Institute of Inorganic Materials (VNIINM), 123060 Rogov 5a, Moscow (Russian Federation); Kartashev, E.; Lukichev, V. [Federal State Unitary Enterprise RDIPE, 101000 P.O. Box 788, Moscow (Russian Federation)

2008-07-15T23:59:59.000Z

176

Performance characteristics of the annular core research reactor fuel motion detection system  

SciTech Connect (OSTI)

Recent proof tests have shown that the annular core research reactor (ACRR) fuel motion detection system has reached its design goals of providing high temporal and spatial resolution pictures of fuel distributions in the ACRR. The coded aperture imaging system (CAIS) images the fuel by monitoring the fission gamma rays from the fuel that pass through collimators in the reactor core. The gamma-ray beam is modulated by coded apertures before producing a visible light coded image in thin scintillators. Each coded image is then amplified and recorded by an opticalimage-intensifier/fast-framing-camera combination. The proximity to the core and the coded aperture technique provide a high data collection rate and high resolution. Experiments of CAIS at the ACRR conducted under steady-state operation have documented the beneficial effects of changes in the radiation shielding and imaging technique. The spatial resolutions are 1.7 mm perpendicular to the axis of a single liquid-metal fast breeder reactor fuel pin and 9 mm in the axial dimension. Changes in mass of 100 mg in each resolution element can be detected each frame period, which may be from 5 to 100 ms. This diagnostic instrument may help resolve important questions in fuel motion phenomenology.

Kelly, J.G.; Stalker, K.T.

1983-12-01T23:59:59.000Z

177

RAMI Analysis Program Design and Research for CFETR (Chinese Fusion Engineering Testing Reactor) Tokamak Machine  

Science Journals Connector (OSTI)

Chinese Fusion Engineering Testing Reactor (CFETR) is a test reactor which shall be constructed by National Integration Design Group for Magnetic Confinement Fusion Reactor of China with an ambitious scientific ...

Shijun Qin; Yuntao Song; Damao Yao; Yuanxi Wan; Songtao Wu…

2014-10-01T23:59:59.000Z

178

Progress of the RERTR (Reduced Enrichment Research and Test Reactor) Program in 1989  

SciTech Connect (OSTI)

The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1988, the major events, findings, and activities of 1989 are reviewed. The scope of the RERTR Program activities was curtailed, in 1989, by an unexpected legislative restriction which limited the ability of the Arms Control and Disarmament Agency to adequately fund the program. Nevertheless, the thrust of the major planned program activities was maintained, and meaningful results were obtained in several areas of great significance for future work. 15 refs., 12 figs.

Travelli, A.

1989-01-01T23:59:59.000Z

179

Fischer-Tropsch Synthesis: Influence of CO Conversion on Selectivities H2/CO Usage Ratios and Catalyst Stability for a 0.27 percent Ru 25 percent Co/Al2O3 using a Slurry Phase Reactor  

SciTech Connect (OSTI)

The effect of CO conversion on hydrocarbon selectivities (i.e., CH{sub 4}, C{sub 5+}, olefin and paraffin), H{sub 2}/CO usage ratios, CO{sub 2} selectivity, and catalyst stability over a wide range of CO conversion (12-94%) on 0.27%Ru-25%Co/Al{sub 2}O{sub 3} catalyst was studied under the conditions of 220 C, 1.5 MPa, H{sub 2}/CO feed ratio of 2.1 and gas space velocities of 0.3-15 NL/g-cat/h in a 1-L continuously stirred tank reactor (CSTR). Catalyst samples were withdrawn from the CSTR at different CO conversion levels, and Co phases (Co, CoO) in the slurry samples were characterized by XANES, and in the case of the fresh catalysts, EXAFS as well. Ru was responsible for increasing the extent of Co reduction, thus boosting the active site density. At 1%Ru loading, EXAFS indicates that coordination of Ru at the atomic level was virtually solely with Co. It was found that the selectivities to CH{sub 4}, C{sub 5+}, and CO{sub 2} on the Co catalyst are functions of CO conversion. At high CO conversions, i.e. above 80%, CH{sub 4} selectivity experienced a change in the trend, and began to increase, and CO{sub 2} selectivity experienced a rapid increase. H{sub 2}/CO usage ratio and olefin content were found to decrease with increasing CO conversion in the range of 12-94%. The observed results are consistent with water reoxidation of Co during FTS at high conversion. XANES spectroscopy of used catalyst samples displayed spectra consistent with the presence of more CoO at higher CO conversion levels.

W Ma; G Jacobs; Y Ji; T Bhatelia; D Bukur; S Khalid; B Davis

2011-12-31T23:59:59.000Z

180

E-Print Network 3.0 - advanced reactor research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to build the world's most advanced nuclear fusion reactor... ) International Thermonuclear Experimental Reactor (ITER), which will be built at Cadarache, near the...

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - advanced research reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to build the world's most advanced nuclear fusion reactor... ) International Thermonuclear Experimental Reactor (ITER), which will be built at Cadarache, near the...

182

E-Print Network 3.0 - austrian research reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to build the world's most advanced nuclear fusion reactor... ) International Thermonuclear Experimental Reactor (ITER), which will be built at Cadarache, near the...

183

E-Print Network 3.0 - anuclear research reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to build the world's most advanced nuclear fusion reactor... ) International Thermonuclear Experimental Reactor (ITER), which will be built at Cadarache, near the...

184

Development of a system model for advanced small modular reactors.  

SciTech Connect (OSTI)

This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

2014-01-01T23:59:59.000Z

185

Status of the RERTR (Reduced Enrichment Research and Test Reactor) Program  

SciTech Connect (OSTI)

The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1987, the major events, findings and activities of 1988 are reviewed. The US Nuclear Regulatory Commission issued a formal and generic approval of the use of U3Si2-Al dispersion fuel in research and test reactors, with densities up to 4.8 g U/cmT. New significant findings from postirradiation examinations, from ion-beam irradiations, and from analytical modeling, have raised serious doubts about the potential of LEU U3Si-Al dispersion fuel for applications requiring very high uranium densities and high burnups (>6 g U/cmT, >50% burnup). As a result of these findings, the fuel development efforts have been redirected towards three new initiatives: (1) a systematic application of ion-beam irradiations to screen new materials; (2) application of Hot Isostatic Pressing (HIP) procedures to produce U3Si2-Al plates with high uranium densities and thin uniform cladding; and (3) application of HIP procedures to produce plates with U3Si wires imbedded in an aluminum matrix, achieving stability, high uranium density, and thin uniform cladding. The new fuel concepts hold the promise of extraordinary performance potential and require approximately five years to develop.

Travelli, A.

1988-01-01T23:59:59.000Z

186

Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310  

SciTech Connect (OSTI)

Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

Zhang, M.

2013-04-01T23:59:59.000Z

187

Record of Decision for the Final EIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel  

Broader source: Energy.gov (indexed) [DOE]

5091 5091 Friday May 17, 1996 Part IV Department of Energy Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel; Notice 25092 Federal Register / Vol. 61, No. 97 / Friday, May 17, 1996 / Notices DEPARTMENT OF ENERGY Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: DOE, in consultation with the Department of State, has decided to implement a new foreign research reactor spent fuel acceptance policy as specified in the Preferred Alternative contained in the Final Environmental Impact Statement on a Proposed

188

Biomass Thermochemical Conversion Program. 1983 Annual report  

SciTech Connect (OSTI)

Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1984-08-01T23:59:59.000Z

189

LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR  

SciTech Connect (OSTI)

Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J

1981-02-01T23:59:59.000Z

190

NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669  

SciTech Connect (OSTI)

The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1992-08-01T23:59:59.000Z

191

A computer model for the transient analysis of compact research reactors with plate type fuel  

SciTech Connect (OSTI)

A coupled neutronics and core thermal-hydraulic performance model has been developed for the analysis of plate type U-Al fueled high-flux research reactor transients. The model includes point neutron kinetics, one-dimensional, non-homogeneous, equilibrium two-phase flow and beat transfer with provision for subcooled boiling, and spatially averaged one-dimensional beat conduction. The feedback from core regions other than the fuel elements is included by employing a lumped parameter approach. Partial differential equations are discretized in space and the combined equation set representing the model is converted to an initial value problem. A variable-order, variable-time-step time advancement scheme is used to solve these ordinary differential equations. The model is verified through comparisons with two other computer code results and partially validated against SPERT-II tests. It is also used to analyze a series of HFIR reactivity transients.

Sofu, T. [Argonne National Lab., IL (United States); Dodds, H.L. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

1994-03-01T23:59:59.000Z

192

Final Site Specific Decommissioning Inspection Report #2 for the University of Washington Research and Test Reactor, Seattle, Washington  

SciTech Connect (OSTI)

During the period of August through November 2006, ORISE performed a comprehensive IV at the University of Washington Research and Test Reactor Facility. The objective of the ORISE IV was to validate the licensee’s final status survey processes and data, and to assure the requirements of the DP and FSSP were met.

S.J. Roberts

2007-03-20T23:59:59.000Z

193

Avatar augmented online conversation  

E-Print Network [OSTI]

One of the most important roles played by technology is connecting people and mediating their communication with one another. Building technology that mediates conversation presents a number of challenging research and ...

Vilhjálmsson, Hannes Högni

2003-01-01T23:59:59.000Z

194

Radiation Exposures Associated with Shipments of Foreign Research Reactor Spent Nuclear Fuel  

SciTech Connect (OSTI)

Experience has shown that the analyses of marine transport of spent fuel in the Environmental Impact Statement (EIS) were conservative. It is anticipated that for most shipments. The external dose rate for the loaded transportation cask will be more in line with recent shipments. At the radiation levels associated with these shipments, we would not expect any personnel to exceed radiation exposure limits for the public. Package dose rates usually well below the regulatory limits and personnel work practices following ALARA principles are keeping human exposures to minimal levels. However, the potential for Mure shipments with external dose rates closer to the exclusive-use regulatory limit suggests that DOE should continue to provide a means to assure that individual crew members do not receive doses in excess of the public dose limits. As a minimum, the program will monitor cask dose rates and continue to implement administrative procedures that will maintain records of the dose rates associated with each shipment, the vessel used, and the crew list for the vessel. DOE will continue to include a clause in the contract for shipment of the foreign research reactor spent nuclear fuel requiring that the Mitigation Action Plan be followed.

MASSEY,CHARLES D.; MESSICK,C.E.; MUSTIN,T.

1999-11-01T23:59:59.000Z

195

Status of the RERTR program: overview, progress and plans. [Reduced Enrighment Research and Test Reactor  

SciTech Connect (OSTI)

The status of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a summary of the accomplishments which the RERTR Program had achieved by the end of 1984 with its many international partners, emphasis is placed on the progress achieved during 1985 and on current plans and schedules. A new miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was fabricated and is well into irradiation. The whole-core ORR demonstration is scheduled to begin in November 1985, with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/. Altogether, 921 full-size test and prototype elements have been ordered for fabrication with reduced enrichment and the new technologies. Qualification of U/sub 3/Si-Al fuel with approx.7 g U/cm/sup 3/ is still projected for 1989. This progress could not have been achieved without the close international cooperation which has existed since the beginning, and whose continuation and intensification will be essential to the achievement of the long-term RERTR goals.

Travelli, A.

1985-01-01T23:59:59.000Z

196

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect (OSTI)

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

197

Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel, Magnetically Fluidized-Bed Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is committed to improving methods for co-producing power and chemicals, fuels, and hydrogen (H2). Gasification is a process by which fuels such as coal can be used to produce synthesis gas (syngas), a mixture of H2, carbon monoxide (CO), and carbon

198

Research and Development of High Temperature Light Water Cooled Reactor Operating at Supercritical-Pressure in Japan  

SciTech Connect (OSTI)

This paper summarizes the status and future plans of research and development of the high temperature light water cooled reactor operating at supercritical-pressure in Japan. It includes; the concept development; material for the fuel cladding; water chemistry under supercritical pressure; thermal hydraulics of supercritical fluid; and the conceptual design of core and plant system. Elements of concept development of the once-through coolant cycle reactor are described, which consists of fuel, core, reactor and plant system, stability and safety. Material studies include corrosion tests with supercritical water loops and simulated irradiation tests using a high-energy transmission electron microscope. Possibilities of oxide dispersion strengthening steels for the cladding material are studied. The water chemistry research includes radiolysis and kinetics of supercritical pressure water, influence of radiolysis and radiation damage on corrosion and behavior on the interface between water and material. The thermal hydraulic research includes heat transfer tests of single tube, single rod and three-rod bundles with a supercritical Freon loop and numerical simulations. The conceptual designs include core design with a three-dimensional core simulator and sub-channel analysis, and balance of plant. (authors)

Yoshiaki Oka [Nuclear Engineering Research Laboratory, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 112-0006 (Japan); Katsumi Yamada [Isogo Nuclear Engineering Center, Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 (Japan)

2004-07-01T23:59:59.000Z

199

Conceptual Design of Molten Salt Loop Experiment for MIT Research Reactor  

E-Print Network [OSTI]

Molten salt is a promising coolant candidate for Advanced High Temperature Reactor (AHTR) Gen-IV designs. The low neutron absorption, high thermal capacity, chemical inertness, and high boiling point at low pressure of ...

Bean, Malcolm K.

2011-08-01T23:59:59.000Z

200

Researching a New Fuel for the HFIR Advancements at ORNL Require Multiphysics Simulation to Contribute to Safety and Reliability  

SciTech Connect (OSTI)

Research into the conversion of the High Flux Isotope Reactor to low-enriched uranium fuel to meet requirements established by the Global Threat Reduction Initiative is ongoing at Oak Ridge National Laboratory. Researchers have turned to multiphysics simulations to evaluate the safety and performance of the new fuel and reactor core design.

Curtis, Franklin G [ORNL] [ORNL; Freels, James D [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Analysis of a research reactor under anticipated transients without scram events using the RELAP5/MOD3.2 computer program  

E-Print Network [OSTI]

Simulations for two series of anticipated transients phics. without scram (ATWS) events have been carried out for a small, hypothetical, research reactor based on the High Flux Australian Reador HIFAR using the RELAPS/MOD3.Z computer program...

Hari, Sridhar

1998-01-01T23:59:59.000Z

202

Status of axial heterogeneous liquid-metal fast breeder reactor core design studies and research and development  

SciTech Connect (OSTI)

The current status of axial heterogeneous core (AHC) design development in Japan, which consists of an AHC core design in a pool-type demonstration fast breeder reactor (DFBR) and research and development activities supporting AHC core design, is presented. The DFBR core design objectives developed by The Japan Atomic Power Company include (a) favorable core seismic response, (b) core compactness, (c) high availability, and (d) lower fuel cycle cost. The AHC concept was selected as a reference pool-type DFBR core because it met these objectives more suitably than the homogeneous core (HOC). The AHC core layouts were optimized emphasizing the reduction of the burnup reactivity swing, peak fast fluence, and power peaking. The key performance parameters resulting from the AHC, such as flat axial power/flux distribution, lower peak fast fluence, lower burnup reactivity swing, etc., were evaluated in comparison with the HOC. The critical experiments at the Japan Atomic Energy Research Institute's Fast Critical Assembly facility demonstrate the key AHC performance characteristics. The large AHC engineering benchmark experiments using the zero-power plutonium reactor and the AHC fuel pin irradiation test program using the JOYO reactor are also presented.

Nakagawa, H.; Inagaki, T.; Yoshimi, H.; Shirakata, K.; Watari, Y.; Suzuki, M.; Inoue, K.

1988-11-01T23:59:59.000Z

203

EXPERIMENT OPERATIONS PLAN FOR A LOSS-OF-COOLANT ACCIDENT SIMULATION IN THE NATIONAL RESEARCH UNIVERSAL REACTOR  

SciTech Connect (OSTI)

Pressurized water reactor loss-of-coolant accident phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship between the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. This document contains both experiment proposal and assembly proposal information. The intent of this document is to supply information required by the Chalk River Nuclear Laboratories (CRNL), and to identify the planned procedures and data that will be used both to establish readiness to proceed from one test phase to the next and to operate the experiment. Operating control settings and limits are provided for both experimenter systems and CRNL systems. A hazards review summarizes safety issues that have been addressed during the development of the experiment plan.

Russcher, G. E.; Cannon, L. W.; Goodman, R. L.; Hesson, G. M.; King, L. L.; McDuffie, P. N.; Marshall, R. K.; Nealley, C.; Pilger, J. P.; Mohr, C. L.

1981-04-01T23:59:59.000Z

204

Status of core conversion with LEU silicide fuel in JRR-4  

SciTech Connect (OSTI)

Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10{sup 13}(n/cm{sup 2}/s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities.

Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

1997-08-01T23:59:59.000Z

205

Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335  

SciTech Connect (OSTI)

The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

Netter, J.

2013-08-01T23:59:59.000Z

206

Light Water Reactors Technology Development - Nuclear Reactors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

207

Apparatus and method for improving electrostatic precipitator performance by plasma reactor conversion of SO.sub.2 to SO.sub.3  

DOE Patents [OSTI]

An apparatus and process that utilize a low temperature nonequilibrium plasma reactor, for improving the particulate removal efficiency of an electrostatic precipitator (ESP) are disclosed. A portion of the flue gas, that contains a low level of SO.sub.2 O.sub.2 H.sub.2 O, and particulate matter, is passed through a low temperature plasma reactor, which defines a plasma volume, thereby oxidizing a portion of the SO.sub.2 present in the flue gas into SO.sub.3. An SO.sub.2 rich flue gas is thereby generated. The SO.sub.3 rich flue gas is then returned to the primary flow of the flue gas in the exhaust treatment system prior to the ESP. This allows the SO.sub.3 to react with water to form H.sub.2 SO.sub.4 that is in turn is absorbed by fly ash in the gas stream in order to improve the removal efficiency of the EPS.

Huang, Hann-Sheng (Darien, IL); Gorski, Anthony J. (Woodridge, IL)

1999-01-01T23:59:59.000Z

208

The BGU/CERN solar hydrothermal reactor  

E-Print Network [OSTI]

We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

2014-01-01T23:59:59.000Z

209

DOE Drops Plan to Restart Reactor  

Science Journals Connector (OSTI)

...longer in flux. Hanford research reactor...decision to scrap the Hanford reactor, which...research. At public meetings, however...decision to scrap the Hanford reactor, which...research. At public meetings, however, FFTF...

Robert F. Service

2000-12-01T23:59:59.000Z

210

Conversion Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

211

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan…

2012-01-01T23:59:59.000Z

212

Examples of the use of PSA in the design process and to support modifications at two research reactors  

SciTech Connect (OSTI)

Many, if not most, of the world`s commercial nuclear power plants have been the subject of plant-specific probabilistic safety assessments (PSA). A growing number of other nuclear facilities as well as other types of industrial installations have been the focus of plant-specific PSAs. Such studies have provided valuable information concerning the nature of the risk of the individual facility and have been used to identify opportunities to manage that risk. This paper explores the risk management activities associated with two research reactors in the United States as a demonstration of the versatility of the use of PSA to support risk-related decision making.

Johnson, D.H.; Bley, D.C.; Lin, J.C. [PLG, Inc., Newport Beach, CA (United States); Ramsey, C.T.; Linn, M.A. [Oak Ridge National Lab., TN (United States)

1994-03-01T23:59:59.000Z

213

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

214

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

215

The Argonaut Reactor - Reactors designed/built by Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

216

Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters  

SciTech Connect (OSTI)

Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

Konzek, G.J.

1983-07-01T23:59:59.000Z

217

Experimental evaluation of gamma fluence-rate predictions from Argon-41 releases to the atmosphere over a nuclear research reactor site  

Science Journals Connector (OSTI)

......radiation experimental dataset has been subsequently...reactor at the Belgium Nuclear Research Center...measurements. The dataset obtained may also...3, 4) used for nuclear emergency preparedness...radiation experimental dataset has been subsequently...RIMPUFF. | Belgian Nuclear Research Center......

Carlos Rojas-Palma; Helle Karina Aage; Poul Astrup; Kim Bargholz; Martin Drews; Hans E. Jørgensen; Uffe Korsbech; Bent Lauritzen; Torben Mikkelsen; Søren Thykier-Nielsen; Raf Van Ammel

2004-01-01T23:59:59.000Z

218

Report of the ANS Project Feasibility Workshop for a High Flux Isotope Reactor-Center for Neutron Research Facility  

SciTech Connect (OSTI)

The Advanced Neutron Source (ANS) Conceptual Design Report (CDR) and its subsequent updates provided definitive design, cost, and schedule estimates for the entire ANS Project. A recent update to this estimate of the total project cost for this facility was $2.9 billion, as specified in the FY 1996 Congressional data sheet, reflecting a line-item start in FY 1995. In December 1994, ANS management decided to prepare a significantly lower-cost option for a research facility based on ANS which could be considered during FY 1997 budget deliberations if DOE or Congressional planners wished. A cost reduction for ANS of about $1 billion was desired for this new option. It was decided that such a cost reduction could be achieved only by a significant reduction in the ANS research scope and by maximum, cost-effective use of existing High Flux Isotope Reactor (HFIR) and ORNL facilities to minimize the need for new buildings. However, two central missions of the ANS -- neutron scattering research and isotope production-were to be retained. The title selected for this new option was High Flux Isotope Reactor-Center for Neutron Research (HFIR-CNR) because of the project`s maximum use of existing HFIR facilities and retention of selected, central ANS missions. Assuming this shared-facility requirement would necessitate construction work near HFIR, it was specified that HFIR-CNR construction should not disrupt normal operation of HFIR. Additional objectives of the study were that it be highly credible and that any material that might be needed for US Department of Energy (DOE) and Congressional deliberations be produced quickly using minimum project resources. This requirement made it necessary to rely heavily on the ANS design, cost, and schedule baselines. A workshop methodology was selected because assessment of each cost and/or scope-reduction idea required nearly continuous communication among project personnel to ensure that all ramifications of propsed changes.

Peretz, F.J.; Booth, R.S. [comp.

1995-07-01T23:59:59.000Z

219

Impact of the HEU/LEU conversion on experimental facilities  

SciTech Connect (OSTI)

The LVR-15 reactor is a multipurpose research facility used for basic research on horizontal channels, material and corrosion studies in loops and irradiation rigs, and for the isotope production. A conversion from HEU (IRT-2M 36%, so far used) to LEU (IRT-3M 19.5%, IRT- 4M 19.5%) is planned till 2010. The influence of the new type of fuel on the performance of the experimental facilities operated at the reactor has been studied. The comparison of the calculated neutron fluence rates and spectra using NODER operational code (3D nodal diffusion) and MCNP code for both the fresh and depleted cores was performed. Results of the analyses and future plans are presented in the article. (author)

Marek, M.; Kysela, J.; Ernest, J.; Flibor, S.; Broz, V. [Reactor Services Division, Nuclear Research Institute Rez, plc., Husinec 130, CZ-25068 (Czech Republic)

2008-07-15T23:59:59.000Z

220

Energy Conversion to Electricity  

Science Journals Connector (OSTI)

30 May 1974 research-article Energy Conversion to Electricity D. Clark...continuing growth in the demand for energy, and of electricity as the route...the electricity share of the total energy market and of the substitution of electricity...

1974-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Theoretical analysis of the subcritical experiments performed in the IPEN/MB-01 research reactor facility  

SciTech Connect (OSTI)

The theoretical analysis of the subcritical experiments performed at the IPEN/MB-01 reactor employing the coupled NJOY/AMPX-II/TORT systems was successfully accomplished. All the analysis was performed employing ENDF/B-VII.0. The theoretical approach follows all the steps of the subcritical model of Gandini and Salvatores. The theory/experiment comparison reveals that the calculated subcritical reactivity is in a very good agreement to the experimental values. The subcritical index ({xi}) shows some discrepancies although in this particular case some work still have to be made to model in a better way the neutron source present in the experiments. (authors)

Lee, S. M.; Dos Santos, A. [Inst. de Pesquisas Energeticas e Nucleares, Cidade Universitaria, Av. Lineu Prestes, 2242, 05508-000 Sao Paulo - SP (Brazil)

2012-07-01T23:59:59.000Z

222

Calculational-experimental research models for a fast reactor with a heterogeneous core  

SciTech Connect (OSTI)

The physical characteristics of heterogeneous metallic oxide cores were experimentally studied by physical tests of the critical assemblies BFS-46 and BFS-46AZ, which simulate a reactor of the BN-1600 type, into the core of which a fuel assembly with metallic uranium is inserted. A calculational model for the critical assemblies being investigated, showing the zones and their dimensions, is presented. The critical assembly BFS-46AZ is a modification of the basic critical assembly BFS-46 which adds plutonium to the IBZ to simulate its accumulation during reactor operation. The BFS-46 and BFS-46AZ assemblies have identical dimensions for the IBZ and LEZ, and have different HEZ dimensions, necessary to ensure the criticality of each assembly. Plutonium with a /sup 240/Pu content equal to 3.8% is used in the LEZ. The critically parameters are calculated using one-dimensional and two-dimensional models in a 26-group diffusion approximation based on the BNAP-78 system of group constants.

Belov, S.P.; Bobrov, S.B.; Kazanskii, Yu.A.; Kuzin, E.N.; Matveev, V.I.; Novozhilov, A.I.; Chernyi, V.A.

1987-11-01T23:59:59.000Z

223

Irradiation research capabilities at HFIR (High Flux Isotope Reactor) and ANS (Advanced Neutron Source)  

SciTech Connect (OSTI)

A variety of materials irradiation facilities exist in the High Flux Isotope Reactor (HFIR) and are planned for the Advanced Neutron Source (ANS) reactor. In 1986 the HFIR Irradiation Facilities Improvement (HIFI) project began modifications to the HFIR which now permit the operation of two instrumented capsules in the target region and eight capsules of 46-mm OD in the RB region. Thus, it is now possible to perform instrumented irradiation experiments in the highest continuous flux of thermal neutrons available in the western world. The new RB facilities are now large enough to permit neutron spectral tailoring of experiments and the modified method of access to these facilities permit rotation of experiments thereby reducing fluence gradients in specimens. A summary of characteristics of irradiation facilities in HFIR is presented. The ANS is being designed to provide the highest thermal neutron flux for beam facilities in the world. Additional design goals include providing materials irradiation and transplutonium isotope production facilities as good, or better than, HFIR. The reference conceptual core design consists of two annular fuel elements positioned one above the other instead of concentrically as in the HFIR. A variety of materials irradiation facilities with unprecedented fluxes are being incorporated into the design of the ANS. These will include fast neutron irradiation facilities in the central hole of the upper fuel element, epithermal facilities surrounding the lower fuel element, and thermal facilities in the reflector tank. A summary of characteristics of irradiation facilities presently planned for the ANS is presented. 2 tabs.

Thoms, K.R.

1990-01-01T23:59:59.000Z

224

Preliminary Investigation of Zircaloy-4 as a Research Reactor Cladding Material  

SciTech Connect (OSTI)

As part of a scoping study for the ATR fuel conversion project, an initial comparison of the material properties of Zircaloy-4 and Aluminum-6061 (T6 and O-temper) is performed to provide a preliminary evaluation of Zircaloy-4 for possible inclusion as a candidate cladding material for ATR fuel elements. The current fuel design for the ATR uses Aluminum 6061 (T6 and O temper) as a cladding and structural material in the fuel element and to date, no fuel failures have been reported. Based on this successful and longstanding operating history, Zircaloy-4 properties will be evaluated against the material properties for aluminum-6061. The preliminary investigation will focus on a comparison of density, oxidation rates, water chemistry requirements, mechanical properties, thermal properties, and neutronic properties.

Brian K Castle

2012-05-01T23:59:59.000Z

225

Greek research reactor performance characteristics after addition of beryllium reflector and LEU fuel  

SciTech Connect (OSTI)

The GRR-1 is a 5-MW pool-type, light-water-moderated and-cooled reactor fueled with MTR-type fuel elements. Recently received Be reflector blocks will soon be added to the core to add additional reactivity until fresh LEU fuel arrives. REBUS-3 xy fuel cycle analyses, using burnup dependent cross sections, were performed to assist in fuel management decisions for the water- and Be-reflected HEU nonequilibrium cores. Cross sections generated by EPRI-CELL have been benchmarked to identical VIM Monte Carlo models. The size of the Be-reflected LEU core has been reduced to 30 elements compared to 35 for the HEU water-reflected core, and an equilibrium cycle calculation has been performed.

Deen, J.R.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Papastergiou, C. [National Center for Scientific Research, Athens (Greece)

1992-12-31T23:59:59.000Z

226

Greek research reactor performance characteristics after addition of beryllium reflector and LEU fuel  

SciTech Connect (OSTI)

The GRR-1 is a 5-MW pool-type, light-water-moderated and-cooled reactor fueled with MTR-type fuel elements. Recently received Be reflector blocks will soon be added to the core to add additional reactivity until fresh LEU fuel arrives. REBUS-3 xy fuel cycle analyses, using burnup dependent cross sections, were performed to assist in fuel management decisions for the water- and Be-reflected HEU nonequilibrium cores. Cross sections generated by EPRI-CELL have been benchmarked to identical VIM Monte Carlo models. The size of the Be-reflected LEU core has been reduced to 30 elements compared to 35 for the HEU water-reflected core, and an equilibrium cycle calculation has been performed.

Deen, J.R.; Snelgrove, J.L. (Argonne National Lab., IL (United States)); Papastergiou, C. (National Center for Scientific Research, Athens (Greece))

1992-01-01T23:59:59.000Z

227

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

Clavero, Cesar

2014-01-01T23:59:59.000Z

228

Alternative Fuels Data Center: Alternative Fuel School Bus Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

School Bus Conversion Research to someone by E-mail School Bus Conversion Research to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Google Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Delicious Rank Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel School Bus Conversion Research

229

Groundwater Monitoring and Control Before Decommissioning of the Research Reactor VVR-S from Magurele-Bucharest  

SciTech Connect (OSTI)

The research reactor type VVR-S (tank type, water is cooler, moderator and reflector, thermal power- 2 MW, thermal energy- 9. 52 GW d) was put into service in July 1957 and, in December 1997 was shout down. In 2002, Romanian Government decided to put the research reactor in the permanent shut-down in order to start the decommissioning. This nuclear facility was used in nuclear research and radioisotope production for 40 years, without events, incidents or accidents. Within the same site, in the immediate vicinity of the research reactor, there are many other nuclear facilities: Radioactive Waste Treatment Plant, Tandem Van der Graaf heavy ions accelerator, Cyclotron, Industrial Irradiator, Radioisotope Production Center. The objectives of this work were dedicated on the water underground analyses described in the following context: - presentation of the approaches in planning the number of drillings, vertical soil profiles (characteristics, analyses, direction of the flow of underground water, uncertainties in measurements); - presentation of the instrumentation used in analyses of water, soil and vegetation samples - analyses and final conclusions on results of the measurements; - comparison of the results of measurements on underground water from drillings with the measurements results on samples from the town and the system of drinking water - supplied from the second level of underground water. According to the analysis, in general, no values higher than the Minimum Detectable Activity were detected in water samples (MDA) for Pb{sup 212}, Bi{sup 214}, Pb{sup 214}, Ac{sup 228}, but situated under values foreseen in drinking water. Distribution of Uranium As results of the Uranium determination, values higher than 0,004 mg/l (4 ppb) were detected, values that represent the average contents in the underground water. The higher values, 2-3 times higher than background, were detected in the water from the drillings F15, F12, F5, F13, drillings located between RWTP (Radioactive Waste Treatment Plant) - the 300 m{sup 3} tanks and the Spent Filters Storage (SFS). At south of this area, on the leaking direction of the underground water layer, in the drillings F1, F2, F3, F18 and at east, in F6, F7, the natural Uranium values are within the background for the underground-water. Distribution of Radon For the Radon determination with RAD 7 equipment, water samples were taken from the same piezo-metrical drilling, 2 or 4 times during of six months period, and then, the average contents were calculated, which varied between 0,35 - 2,1 Bq/l. The values higher than 1,1 -1,2 Bq/l were detected in the water taken from the drillings located in the northern part (F10, F11) and in the eastern part (F6, F8) of the Institute fences (around of the radioactive waste storage facilities). The concentrations of 0,3 - 0,5 Bq/l are in the underground-water layer 'intercepted' by the piezo-metrical drillings (F1, F2, F3) located near the Nuclear Reactor. Concentration of heavy metals: 0.04-0.08 mg/l Pb in F5, F14, F7, F8 exceeding MCA-Maximum Admissible Concentration (0.01 mg/l) for Pb, and for Zn in F5, F7, F8, F14 are 0.2-0.5 mg/l situated under MCA , and 0.18 mg/l in F18, in accordance with tendency of decreasing of concentration of contaminants. After 50 years of deploying nuclear activities on the site the underground water quality is in very good condition. Taking into consideration the direction of the underground water flow, it results that, only in the area of underground pipe, around of the research reactor and radioactive waste treatment plant, the quality of water is influenced, and remediation actions are not necessary. Based on measurements executed in F18, the water quality is the same with any other part of the region. During the decommissioning of the Research Reactor, the samples from 18 drillings will be analysed monthly, and the contents of the heavy metals, Pb and Zn, will be monitored carefully, together with all the factors: air, soil, vegetation, subsoil, water surface and underground water. A great attention will be paid t

Dragusin, Mitica [National Institute of Physics and Nuclear Engineering-Horia Hulubei - IFIN-HH, Bucharest-Magurele, Romania, POBox MG-6, 077125, Ilfov (Romania)

2008-01-15T23:59:59.000Z

230

Advanced Test Reactor Tour  

SciTech Connect (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2011-01-01T23:59:59.000Z

231

Advanced Test Reactor Tour  

ScienceCinema (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2013-05-28T23:59:59.000Z

232

Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs  

SciTech Connect (OSTI)

This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

1994-04-01T23:59:59.000Z

233

Benchmark calculations for a heavy water research reactor using the WIMS-D4M code and a ENDF/B-V based library  

SciTech Connect (OSTI)

The results of unit-cell and global diffusion and transport calculations performed for the Georgia Tech heavy water research reactor using the WIMS-D4m code and a new ENDF/B-V based library are presented in this paper. Key cross sections, eigenvalues, neutron fluxes and peak power densities obtained from global diffusion calculations are compared.

Mo, S.C.

1993-12-31T23:59:59.000Z

234

Functional reliability evaluation of an MTR-pool type research reactor core using the load–capacity interference model  

Science Journals Connector (OSTI)

Abstract This paper presents the functional reliability evaluation of Tehran Research Reactor (TRR) core in normal operation. The concept of functional reliability, borrowed from reliability physics, uses the well-known resistance–stress or load–capacity interference model that is used in the structural reliability framework. To use the load–capacity interference model, uncertainties of significant parameters in system performance are propagated into system dynamics modeled with RELAP5/Mod 3.2 using Latin Hypercube Sampling (LHS) method and exceedance probability (EP) model is used as quantification method. The proposed method in this paper solves a common problem in reliability analysis, i.e., lack of sufficient failure data in specific operating conditions. Although defining failure criteria in normal operation are difficult, this paper focuses on the application of multiple states criteria to determine the status of a system. The status of the reactor core in normal operation is considered multiple states regarding to a performance representative parameter that is temperature in this work. Outlet temperatures of fuel hot and average channels were selected to be performance indicators in normal operation. Consulting with TRR engineers and operators as well as safety analysis report, two failure states were considered exceeding 65.1 °C and 58.9 °C for the hot channel and 50.4 °C and 45.6 °C for the average channel as upper and lower limits respectively. The calculated reliability was 9.1e?01 with 95% of confidence interval, which is in good agreement with experimental results. Using sensitivity analysis in input parameters, it was concluded that the value of the heat transfer coefficient parameter in fuel has the most significant effect on the results.

Ramin Barati; Saeed Setayeshi

2013-01-01T23:59:59.000Z

235

Nuclear Reactor (atomic reactor)  

Science Journals Connector (OSTI)

A nuclear reactor splits Uranium or Plutonium nuclei, and the...235 is fissionable but more than 99% of the naturally occurring Uranium is U238 that makes enrichment mandatory. In some reactors U238 and Thorium23...

2008-01-01T23:59:59.000Z

236

Nuclear Fission Reactor Safety Research in FP7 and future perspectives  

E-Print Network [OSTI]

The European Union (?U) has defined in the Europe 2020 strategy and 2050 Energy Roadmap its long-term vision for establishing a secure, sustainable and competitive energy system and setting up legally binding targets by 2020 for reducing greenhouse emissions, by increasing energy efficiency and the share of renewable energy sources while including a significant share from nuclear fission. Nuclear energy can enable the further reduction in harmful emissions and can contribute to the EU’s competitive energy system, security of supply and independence from fossil fuels. Nuclear fission is a valuable option for those 14 EU countries that promote its use as part of their national energy mix. The European Group on Ethics in Science and New Technologies (EGE) adopted its Opinion No.27 ‘An ethical framework for assessing research, production and use of energy’ and proposed an integrated ethics approach for the research, production and use of energy in the EU, seeking equilibrium among four criteria – access ...

Garbil, Roger

2014-01-01T23:59:59.000Z

237

Developing Functionalized Graphene Materials for Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Functionalized Graphene Materials for Biomass Conversion The goal of this research is to develop low cost catalysts based on graphene-derived nanomaterials, and use them...

238

Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Tests 1 and 2  

SciTech Connect (OSTI)

A loss of Coolant Accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects of LOCA conditions on pressurized water reactor test fuel bundles. This experiment operation plan for the second and third experiments of the program will provide peak fuel cladding temperatures of up to 1172K (1650{degree}F) and 1061K (1450{degree}) respectively. for a long enough time to cause test fuel cladding deformation and rupture in both. Reflood coolant delay times and the reflooding rates for the experiments were selected from thermal-hydraulic data measured in the National Research Universal (NRU) reactor facilities and test train assembly during the first experiment.

Russcher, G. E.; Wilson, C. L.; Marshall, R, K.; King, L. L.; Parchen, L. J.; Pilger, J. P.; Hesson, G. M.; Mohr, C. L.

1981-09-01T23:59:59.000Z

239

Sixteenth water reactor safety information meeting: Proceedings: Volume 5, NUREG-1150, accident managment, recent advances in severe accident research, TMI-2, BWR Mark l shell failure  

SciTech Connect (OSTI)

This five-volume report contains 141 papers out of the 175 that were presented at the Sixteenth Water Reactor Safety Information Meeting held at the National Institute of Standards and Technology, Gaithersburg, Maryland, during the week of October 24--27, 1988. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included twenty different papers presented by researchers from Germany, Italy, Japan, Sweden, Switzerland, Taiwan and the United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This document, Volume 5, discusses NUREG-1150, Accident Management, Recent Advances in Severe Accident Research, BWR Mark I Shell Failure, and the Three Mile Island-2 Reactor.

Weiss, A.J. (comp.)

1989-03-01T23:59:59.000Z

240

Direct Conversion of Biomass to Fuel | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Conversion of Biomass to Fuel UGA, ORNL research team engineers microbes for the direct conversion of biomass to fuel July 11, 2014 New research from the University of...

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Radiological Survey of Contaminated Installations of Research Reactor before Dismantling in High Dose Conditions with Complex for Remote Measurements of Radioactivity - 12069  

SciTech Connect (OSTI)

Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. These research reactors have a long history and many installations - nine loop facilities for experiments with different kinds of fuel. When decommissioning nuclear facilities it is necessary to measure the distribution of radioactive contamination in the rooms and at the equipment at high levels of background radiation. At 'Kurchatov Institute' some special remote control measuring systems were developed and they are applied during dismantling of the reactors MR and RFT. For a survey of high-level objects a radiometric system mounted on the robotic Brokk vehicle is used. This system has two (4? and collimated) dose meters and a high resolution video camera. Maximum measured dose rate for this system is ?8.5 Sv/h. To determine the composition of contaminants, a portable spectrometric system is used. It is a remotely controlled, collimated detector for scanning the distribution of radioactive contamination. To obtain a detailed distribution of contamination a remote-controlled gamma camera is applied. For work at highly contaminated premises with non-uniform background radiation, another camera is equipped with rotating coded mask (coded aperture imaging). As a result, a new system of instruments for remote radioactivity measurements with wide range of sensitivity and angular resolution was developed. The experience and results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. These activities are conducted under the Federal Program for Nuclear and Radiation Safety of Russia. Adaptation of complex remote measurements of radioactivity and survey of contaminated installations of research reactor before dismantling in high dose conditions has proven successful. The radioactivity measuring devices for operation at high, non-uniform dose background were tested in the field and a new data of measurement of contamination distribution in the premises and installations were obtained. (authors)

Danilovich, Alexey; Ivanov, Oleg; Lemus, Alexey; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly [National Research Centre 'Kurchatov Institute', Moscow (Russian Federation)

2012-07-01T23:59:59.000Z

242

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network [OSTI]

research on conversion and storage of solar energy, with anof the solar resource, energy storage is a critical

Dasgupta, Neil

2014-01-01T23:59:59.000Z

243

Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485  

SciTech Connect (OSTI)

This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

Dowe, N.

2014-05-01T23:59:59.000Z

244

Biofuel Conversion Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

245

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Broader source: Energy.gov (indexed) [DOE]

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

246

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

247

Isotope correlations for determining the isotopic composition of plutonium produced in research and power reactors using the experimental data obtained by alpha and mass spectrometry  

Science Journals Connector (OSTI)

Correlations have been developed for obtaining the isotopic composition of Pu produced in Indian research (CIRUS, DHRUVA) and power (PHWR) reactors. The experimental data obtained on 238Pu/(239Pu + 240Pu) alpha activity ratio using alpha spectrometry and on 240Pu/239Pu, 241Pu/239Pu, 242Pu/239Pu atom ratios by thermal ionisation mass spectrometry were used for developing isotope correlations.

S.K. Aggarwal; D. Alamelu

2005-01-01T23:59:59.000Z

248

Thermal stabilization of chemical reactors. I The mathematical description of the Endex reactor  

Science Journals Connector (OSTI)

...efficiently by steam generation. Conversely...of fossil or nuclear fuels, which...limits of the reactor. The physico...wasted. The Endex reactor can be thought...conventional steam generation that is currently...Rates of heat generation by reaction...functions of reactor temperature...

1999-01-01T23:59:59.000Z

249

Reactor Thermal-Hydraulics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

250

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Si as part of RG-3 research efforts (Chris Gladden, LBNL) The Scientific Vision of the "Light-Material Interactions in Energy Conversion Energy Frontier Research Center"...

251

RERTR program activities related to the development and application of new LEU fuels. [Reduced Enrichment Research and Test Reactor; low-enriched uranium  

SciTech Connect (OSTI)

The statue of the U.S. Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of RERTR Program objectives and goals, program accomplishments are discussed with emphasis on the development, demonstration and application of new LEU fuels. Most program activities have proceeded as planned, and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) holds excellent promise for achieving the long-term program goals. Current plans and schedules project the uranium density of qualified RERTR fuels for plate-type reactors to grow by approximately 1 g U/cm/sup 3/ each year, from the current 1.7 g U/cm/sup 3/ to the 7.0 g U/cm/sup 3/ which will be reached in late 1988. The technical needs of research and test reactors for HEU exports are also forecasted to undergo a gradual but dramatic decline in the coming years.

Travelli, A.

1983-01-01T23:59:59.000Z

252

OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS  

SciTech Connect (OSTI)

The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

1998-04-01T23:59:59.000Z

253

Benchmark Evaluation of the NRAD Reactor LEU Core Startup Measurements  

SciTech Connect (OSTI)

The Neutron Radiography (NRAD) reactor is a 250-kW TRIGA-(Training, Research, Isotope Production, General Atomics)-conversion-type reactor at the Idaho National Laboratory; it is primarily used for neutron radiography analysis of irradiated and unirradiated fuels and materials. The NRAD reactor was converted from HEU to LEU fuel with 60 fuel elements and brought critical on March 31, 2010. This configuration of the NRAD reactor has been evaluated as an acceptable benchmark experiment and is available in the 2011 editions of the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) and the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Significant effort went into precisely characterizing all aspects of the reactor core dimensions and material properties; detailed analyses of reactor parameters minimized experimental uncertainties. The largest contributors to the total benchmark uncertainty were the 234U, 236U, Er, and Hf content in the fuel; the manganese content in the stainless steel cladding; and the unknown level of water saturation in the graphite reflector blocks. A simplified benchmark model of the NRAD reactor was prepared with a keff of 1.0012 {+-} 0.0029 (1s). Monte Carlo calculations with MCNP5 and KENO-VI and various neutron cross section libraries were performed and compared with the benchmark eigenvalue for the 60-fuel-element core configuration; all calculated eigenvalues are between 0.3 and 0.8% greater than the benchmark value. Benchmark evaluations of the NRAD reactor are beneficial in understanding biases and uncertainties affecting criticality safety analyses of storage, handling, or transportation applications with LEU-Er-Zr-H fuel.

J. D. Bess; T. L. Maddock; M. A. Marshall

2011-09-01T23:59:59.000Z

254

Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, November 1, 1979-January 31, 1980  

SciTech Connect (OSTI)

The biomass allocation model has been developed and is undergoing testing. Data bases for biomass feedstock and thermochemical products are complete. Simulated data on process efficiency and product costs are being used while more accurate data are being developed. Market analyses data are stored for the biomass allocation model. The modeling activity will assist in providing process efficiency information required for the allocation model. Process models for entrained bed and fixed bed gasifiers based on coal have been adapted to biomass. Fuel product manufacturing costs will be used as inputs for the data banks of the biomass allocations model. Conceptual economics have been generated for seven of the fourteen process configurations via a biomass economic computer program. The PDU studies are designed to demonstrate steady state thermochemical conversions of biomass to fuels in fluidized, moving and entrained bed reactor configurations. Pulse tests in a fluidized bed to determine the effect of particle size on reaction rates and product gas composition have been completed. Two hour shakedown tests using peanut hulls and wood as the biomass feedstock and the fluidized bed reactor mode have been carried out. A comparison was made of the gas composition using air and steam - O/sub 2/. Biomass thermal profiles and biomass composition information shall be provided. To date approximately 70 biomass types have been collected. Chemical characterization of this material has begun. Thermal gravimetric, pyrogaschromatographic and effluent gas analysis has begun on pelletized samples of these biomass species.

Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.; Stringer, R.P.; Bailie, R.C.

1980-01-01T23:59:59.000Z

255

Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors  

SciTech Connect (OSTI)

Concern about global climate change has led to research on low CO{sub 2} emission in the process of the energy conversion of fossil fuel. One of the solutions is the conversion of fossil fuel into carbon-free energy carriers, hydrogen, and electricity with CO{sub 2} capture and storage. In this paper, the main purpose is to investigate the thermodynamics performance of converting coal to a hydrogen and electricity system with chemical-looping reactors and to explore the influences of operating parameters on the system performance. Using FeO/Fe{sub 3}O{sub 4} as an oxygen carrier, we propose a carbon-free coproduction system of hydrogen and electricity with chemical-looping reactors. The performance of the new system is simulated using ASPEN PLUS software tool. The influences of the chemical-looping reactor's temperature, steam conversion rate, and O{sub 2}/coal quality ratio on the system performance, and the exergy performance are discussed. The results show that a high-purity of H{sub 2} (99.9%) is reached and that CO{sub 2} can be separated. The system efficiency is 57.85% assuming steam reactor at 815 C and the steam conversion rate 37%. The system efficiency is affected by the steam conversion rate, rising from 53.17 to 58.33% with the increase of the steam conversion rate from 28 to 41%. The exergy efficiency is 54.25% and the losses are mainly in the process of gasification and HRSG. 14 refs., 12 figs., 3 tabs.

Xiang Wenguo; Chen Yingying [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

2007-08-15T23:59:59.000Z

256

Generation -IV Reactor Concepts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation-IV Reactor Concepts Generation-IV Reactor Concepts Thomas H. Fanning Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439, USA The Generation-IV International Forum (GIF) is a multi-national research and development (R&D) collaboration. The GIF pursues the development of advanced, next generation reactor technology with goals to improve: a) sustainability (effective fuel utilization and minimization of waste) b) economics (competitiveness with respect to other energy sources) c) safety and reliability (e.g., no need for offsite emergency response), and d) proliferation resistance and physical protection The GIF Technology Roadmap exercise selected six generic systems for further study: the Gas- cooled Fast Reactor (GFR), the Lead-cooled Fast Reactor (LFR), the Molten Salt Reactor (MSR),

257

E-Print Network 3.0 - advanced fission reactors Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fission reactors, which release energy by splitting atoms... ) International Thermonuclear Experimental Reactor (ITER), which will be ... Source: Fusiongnition Research...

258

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0  

SciTech Connect (OSTI)

The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

Evan Harpenau

2011-07-15T23:59:59.000Z

259

Analytical support for the ORR (Oak Ridge Research Reactor) whole-core LEU U/sub 3/Si/sub 2/-Al fuel demonstration  

SciTech Connect (OSTI)

Analytical methods used to analyze neutronic data from the whole-core LEU fuel demonstration in the Oak Ridge Research Reactor are briefly discussed. Calculated eigenvalues corresponding to measured critical control rod positions are presented for each core used in the gradual transition from an all HEU to an all LEU configuration. Some calculated and measured results, including ..beta../sub eff//l/sub p/, are compared for HEU and LEU fresh fuel criticals. Finally, the perturbing influences of the six voided beam tubes on certain core parameters are examined. For reasons yet to be determined, differential shim rod worths are not well-calculated in partially burned cores.

Bretscher, M.M.

1986-01-01T23:59:59.000Z

260

NREL: Biomass Research - Josh Schaidle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Josh Schaidle Josh Schaidle Photo of Josh Schaidle Josh Schaidle works in the Thermochemical Catalysis Research and Development group, headed by Jesse Hensley. He manages a $500,000 per year task focused on developing catalysts, processes, and reactor systems for the catalytic upgrading of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices Photochemical and electrochemical routes for fuel production Rational design of catalysts through the combination of experiment and theory Early transition metal carbide and nitride catalysts Process design and optimization Life-cycle Assessment (LCA) Catalysts for automotive exhaust treatment Education Ph.D., Chemical Engineering; Concentration in Environmental

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Engineering Development of Ceramic Membrane Reactor  

E-Print Network [OSTI]

ceramic Ion Transport Membrane (ITM) reactor system for low-cost conversion of natural gas to hydrogen;7 A Revolutionary Technology Using Ceramic Membranes Ion Transport Membranes (ITM) ­ Non-porous multiEngineering Development of Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen

262

BETO Conversion Program  

Broader source: Energy.gov [DOE]

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing BETO Conversion Program Bryna Berendzen, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

263

Photoelectrochemical solar energy conversion  

Science Journals Connector (OSTI)

In the present paper the progress in the field of solar energy conversion for the production of electricity and storable ... critically analyzed in view of their stability and conversion efficiency. A number of factors

Rüdiger Memming

1988-01-01T23:59:59.000Z

264

Solar Thermoelectric Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

265

EA-1207: Pit Disassembly and Conversion Demonstration Environmental  

Broader source: Energy.gov (indexed) [DOE]

207: Pit Disassembly and Conversion Demonstration Environmental 207: Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities EA-1207: Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities SUMMARY This EA evaluates the potential environmental impacts associated with a proposal to test an integrated pit disassembly and conversion process on a relatively small sample of pits and plutonium metal at the Los Alamos National Laboratory in New Mexico. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 14, 1998 EA-1207: Finding of No Significant Impact Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities August 14, 1998

266

Advanced Reactor Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

267

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

a novel method of solar energy conversion that can lead tofundamentals of plasmonic energy conversion are reviewed in3. Plasmonic energy conversion fundamentals Surface plasmons

Clavero, Cesar

2014-01-01T23:59:59.000Z

268

Iterated multidimensional wave conversion  

SciTech Connect (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

269

The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases  

SciTech Connect (OSTI)

The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest status and plans are presented.

Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

2012-10-01T23:59:59.000Z

270

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center...

271

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Millikan Board Room map California Institute of Technology Pasadena, CA The Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center...

272

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Energy Steven Chu visits Caltech labs For more information or questions about the Light-Material Interactions in Energy Conversion Energy Frontier Research Center, please...

273

Numerical simulations of ion transport membrane oxy-fuel reactors for CO? capture applications  

E-Print Network [OSTI]

Numerical simulations were performed to investigate the key features of oxygen permeation and hydrocarbon conversion in ion transport membrane (ITM) reactors. ITM reactors have been suggested as a novel technology to enable ...

Hong, Jongsup

2013-01-01T23:59:59.000Z

274

REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.  

SciTech Connect (OSTI)

The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have been systematically upgraded to a 5 Mw power facility to further enhance its experimental capability while still maintaining its safe margin as designed.

HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

2005-05-08T23:59:59.000Z

275

Algae Harvest Energy Conversion  

Science Journals Connector (OSTI)

Resolution of many workshops on algae harvest energy conversion is that low productivity, high capital intensity ... and maintenance, respiration, and photoinhibition are few factors militating against viability ...

Yung-Tse Hung Ph.D.; P.E.; DEE; O. Sarafadeen Amuda Ph.D.…

2010-01-01T23:59:59.000Z

276

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network [OSTI]

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

277

New developments in direct nuclear fission energy conversion devices  

SciTech Connect (OSTI)

Some experimental and theoretical results obtained in the investigations undertaken at the Central Institute of Physics (CIP) in Bucharest-Romania concerning the direct nuclear energy conversion into electrical energy are presented. Open-circuit voltages (U /SUB oc/ ) of tens of kV and short-circuit currents (J /SUB sc/ ) of several ..mu..A were obtained in experiments with vacuum fission-electric cells (FEC) developed in the CIP and irradiated in the VVR-S reactor at a 10/sup 9/ neutrons/cm/sup 2/s thermal neutron flux. A gas filled FEC (GAFFC) has been devised and tested in the reactor at the same neutron flux. With this GAFEC U /SUB oc/ of hundreds of kV, J /SUB sc/ of hundreds of ..mu..A and powers of hundreds of mW have been obtained. Our researches pointed out the essential part played by the electrons in the charge transport dynamics occuring in the FEC and the influence of the secondary emission on the FEC operation.

Ursu, I.; Badescu-Singureann, A.I.; Schachter, L.

1983-08-01T23:59:59.000Z

278

Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Test 2  

SciTech Connect (OSTI)

A loss-of-coolant accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects on pressurized water reactor (PWR) test fuel bundles. This Experiment Operation Plan (EOP) Addendum 2, together with the referenced EOP, describes the desired operating conditions and additional hazards review associated with the four-part MT-2 experiment. The primary portions of the experiment, MT-2.2 and MT-2.3, will evaluate the following: 1) the mechanical deformation of pressurized fuel rods subjected to a slow LOCA, using reflood water for temperature control, that is designed to produce cladding temperatures in the range from 1033 to 1089K (1400 to 1500°F) for an extended time, and 2) the effects of the deformed and possibly failed cladding on the thermal-hydraulic performance of the test assembly during simulated LOCA heating and reflooding. The secondary portions of the experiment, MT-2.1 and MT-2.4, are intended to provide thermal-hydraulic calibration information during two-stage reflood conditions for 1) relatively low cladding temperatures, <839K (1050°F), on nondeformed rods, and 2) moderately high cladding temperatures, <1089K (1500°F), on deformed rods.

Russcher, G. E.; Barner, J. O.; Hesson, G. M.; Wilson, C. L.; Parchen, L. J.; Cunningham, M. E.; Marshall, R. K.; Mohr, C. L.

1981-09-01T23:59:59.000Z

279

Photovoltaic Energy Conversion  

E-Print Network [OSTI]

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Make solar cells more efficient Theoretical energy conversion efficiency limit of single junction-bandgap photons are not absorbed: Carrier relaxation to band edges: Photon energy exceeding bandgap is lost

Glashausser, Charles

280

Radiological consequences of ship collisions that might occur in U.S. Ports during the shipment of foreign research reactor spent nuclear fuel to the United States in break-bulk freighters  

SciTech Connect (OSTI)

Accident source terms, source term probabilities, consequences, and risks are developed for ship collisions that might occur in U.S. ports during the shipment of spent fuel from foreign research reactors to the United States in break-bulk freighters.

Sprung, J.L.; Bespalko, S.J.; Massey, C.D.; Yoshimura, R. [Sandia National Laboratory, Albuquerque, NM (United States); Johnson, J.D. [GRAM Inc., Albuquerque, NM (United States); Reardon, P.C. [PCRT Technologies, Albuquerque, NM (United States); Ebert, M.W.; Gallagher D.W. [Science Applications International Corp., Reston, VA (United States)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fusion reactor systems  

Science Journals Connector (OSTI)

In this review we consider deuterium-tritium (D-T) fusion reactors based on four different plasma-confinement and heating approaches: the tokamak, the theta-pinch, the magnetic-mirror, and the laser-pellet system. We begin with a discussion of the dynamics of reacting plasmas and basic considerations of reactor power balance. The essential plasma physical aspects of each system are summarized, and the main characteristics of the corresponding conceptual power plants are described. In tokamak reactors the plasma densities are about 1020 m-3, and the ? values (ratio of plasma pressure to confining magnetic pressure) are approximately 5%. Plasma burning times are of the order of 100-1000 sec. Large superconducting dc magnets furnish the toroidal magnetic field, and 2-m thick blankets and shields prevent heat deposition in the superconductor. Radially diffusing plasma is diverted away from the first wall by means of null singularities in the poloidal (or transverse) component of the confining magnetic field. The toroidal theta-pinch reactor has a much smaller minor diameter and a much larger major diameter, and operates on a 10-sec cycle with 0.1-sec burning pulses. It utilizes shock heating from high-voltage sources and adabatic-compression heating powered by low-voltage, pulsed cryogenic magnetic or inertial energy stores, outside the reactor core. The plasma has a density of about 1022 m-3 and ? values of nearly unity. In the power balance of the reactor, direct-conversion energy obtained by expansion of the burning high-? plasma against the containing magnetic field is an important factor. No divertor is necessary since neutral-gas flow cools and replaces the "spent" plasma between pulses. The open-ended mirror reactor uses both thermal conversion of neutron energy and direct conversion of end-loss plasma energy to dc electrical power. A fraction of this direct-convertor power is then fed back to the ioninjection system to sustain the reaction and maintain the plasma. The average ion energy is 600 keV, plasma diameter 6 m, and the plasma beta 85%. The power levels of the three magnetic-confinement devices are in the 500-2000 MWe range, with the exception of the mirror reactor, for which the output is approximately 200 MWe. In Laser-Pellet reactors, frozen D-T pellets are ignited in a cavity which absorbs the electromagnetic, charged particle, and neutron energy from the fusion reaction. The confinement is "inertial," since the fusion reaction occurs during the disassembly of the heated pellet. A pellet-cavity unit would produce about 200 MWt in pulses with a repetition rate of the order of 10 sec-1. Such units could be clustered to give power plants with outputs in the range of 1000 MWe.

F. L. Ribe

1975-01-01T23:59:59.000Z

282

Conversion of municipal solid waste to hydrogen  

SciTech Connect (OSTI)

LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

Richardson, J.H.; Rogers, R.S.; Thorsness, C.B. [and others

1995-04-01T23:59:59.000Z

283

Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373  

SciTech Connect (OSTI)

In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ?5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ?19% LEU. (authors)

Magoulas, Virginia [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

284

NUCLEAR REACTORS.  

E-Print Network [OSTI]

??Nuclear reactors are devices containing fissionable material in sufficient quantity and so arranged as to be capable of maintaining a controlled, self-sustaining NUCLEAR FISSION chain… (more)

Belachew, Dessalegn

2010-01-01T23:59:59.000Z

285

Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Achievements > Achievements > Legacy > Reactors: Modern-Day Alchemy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

286

Achievements: Nuclear Reactors designed/built by Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Achievements > Achievements > Argonne National Laboratory Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

287

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

288

Use of phenomena identification and ranking (PIRT) process in research related to design certification of the AP600 advanced passive light water reactor (LWR)  

SciTech Connect (OSTI)

The AP600 LWR is a new advanced passive design that has been submitted to the USNRC for design certification. Within the certification process the USNRC will perform selected system thermal hydraulic response audit studies to help confirm parts of the vendor`s safety analysis submittal. Because of certain innovative design features of the safety systems, new experimental data and related advances in the system thermal hydraulic analysis computer code are being developed by the USNRC. The PIRT process is being used to focus the experimental and analytical work to obtain a sufficient and cost effective research effort. The objective of this paper is to describe the application and most significant results of the PIRT process, including several innovative features needed in the application to accommodate the short design certification schedule. The short design certification schedule has required that many aspects of the USNRC experimental and analytical research be performed in parallel, rather than in series as was normal for currently operating LWRS. This has required development and use of management techniques that focus and integrate the various diverse parts of the research. The original PIRTs were based on inexact knowledge of an evolving reactor design, and concentrated on the new passive features of the design. Subsequently, the PIRTs have evolved in two more stages as the design became more firm and experimental and analytical data became available. A fourth and final stage is planned and in progress to complete the PIRT development. The PIRTs existing at the end of each development stage have been used to guide the experimental program, scaling analyses and code development supporting the audit studies.

Wilson, G.E.; Fletcher, C.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Eltawila, F. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1996-07-01T23:59:59.000Z

289

Wave Energy Conversion Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

290

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

291

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

292

U.S./Belarus/Ukraine joint research on the biomedical effects of the Chernobyl Reactor Accident. Final report  

SciTech Connect (OSTI)

The National Cancer Institute has negotiated with the governments of Belarus and Ukraine (Ministers/Ministries of Health, institutions and scientists) to develop scientific research protocols to study the effects of radioactive iodine released by the Chernobyl accident upon thyroid anatomy and function in defined cohorts of persons under the age of 19 years at the time of the accident. These studies include prospective long term medical follow-up of the cohort and the reconstruction of the radiation dose to each cohort subject's thyroid. The protocol for the study in Belarus was signed by the US and Belorussian governments in May 1994 and the protocol for the study in Ukraine was signed by the US and Ukraine in May 1995. A second scientific research protocol also was negotiated with Ukraine to study the feasibility of a long term study to follow the development of leukemia and lymphoma among Ukrainian cleanup workers; this protocol was signed by the US and Ukraine in October 1996.

Bruce Wachholz

2000-06-20T23:59:59.000Z

293

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network [OSTI]

of applications, notably energy conversion. As researchnanowires for energy conversion. Chemical Reviews, 2010.Implications for solar energy conversion. Physical Review

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

294

Using reactor operating experience to improve the design of a new Broad Application Test Reactor  

SciTech Connect (OSTI)

Increasing regulatory demands and effects of plant aging are limiting the operation of existing test reactors. Additionally, these reactors have limited capacities and capabilities for supporting future testing missions. A multidisciplinary team of experts developed sets of preliminary safety requirements, facility user needs, and reactor design concepts for a new Broad Application Test Reactor (BATR). Anticipated missions for the new reactor include fuels and materials irradiation testing, isotope production, space testing, medical research, fusion testing, intense positron research, and transmutation doping. The early BATR design decisions have benefited from operating experiences with existing reactors. This paper discusses these experiences and highlights their significance for the design of a new BATR.

Fletcher, C.D.; Ryskamp, J.M.; Drexler, R.L.; Leyse, C.F.

1993-07-01T23:59:59.000Z

295

Structured luminescence conversion layer  

DOE Patents [OSTI]

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

296

Conversion Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation of new and converted filesdatabases; coordinates the...

297

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

of solar energy into electricity in photovoltaic cells orsolar energy conversion aimed at photovoltaic applicationsenergy conversion, opening a new venue for photovoltaic and

Clavero, Cesar

2014-01-01T23:59:59.000Z

298

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

of carriers allows maintaining the energy conversionenergy conversion 8 Timescale of charge separation, carrierin this energy conversion method, i.e. carrier regeneration

Clavero, Cesar

2014-01-01T23:59:59.000Z

299

Hydrogen production from methane steam reforming: parametric and gradient based optimization of a Pd-based membrane reactor  

Science Journals Connector (OSTI)

In this work three mathematical models for methane steam reforming in membrane reactors were developed. The first ... , the influence of five important parameters on methane conversion (X ...

Leandro C. Silva; Valéria V. Murata; Carla E. Hori…

2010-09-01T23:59:59.000Z

300

Reactor and Nuclear Systems Division (RNSD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RNSD Home RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Staff Details (CV/Bios) Publications Org Chart Contact Us ORNL Staff Only Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Reactor and Nuclear Systems Division News Highlights U.S. Rep. Fleischmann touts ORNL as national energy treasure Martin Peng wins Fusion Power Associates Leadership Award

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinary. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper.The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle.

Chang Oh

2004-07-01T23:59:59.000Z

302

The Integral Fast Reactor (IFR) - Reactors designed/built by Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integral Fast Reactor Integral Fast Reactor About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

303

Process feasibility of DME to olefin conversion  

SciTech Connect (OSTI)

The production of hydrocarbons via a synthetic route has been extensively studied by Mobil through its methanol based Methanol-to-Gasoline (MTG) process. An alternative approach using dimethyl ether (DME) has been developed by the University of Akron -- UA/EPRI DME-to-Hydrocarbons Process. The process feasibility of the production of hydrocarbons from DME has been illustrated in a bench scale, fluidized bed reactor using ZSM-5 type catalyst. In an effort to satisfy the growing demand for olefins as an intermediate chemical feedstocks a mechanistic/kinetic study was developed. The synthesis of olefins has been studied in packed bed micro-reactor using ZSM-5 catalyst. Experimental work has given details of reaction kinetics and mechanism in the conversion of DME to olefins. DME concentration weight hourly space velocity (WHSV), as well as reactor temperature and pressure were investigated in the study. This work was used as a precursor to the production of olefins/hydrocarbons from DME in a fluidized bed reactor. Product gas analysis was performed using an external GC standard method.

Tartamella, T.L.; Fullerton, K.L.; Lee, S. [Univ. of Akron, OH (United States); Kulik, C.J. [Electric Power Research Inst., Palo Alto, CA (United States)

1994-12-31T23:59:59.000Z

304

Energy Conversion | Global and Regional Solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Conversion Group Energy Conversion Group The Energy Conversion Group offers advanced technical solutions to achieve reduced fossil fuel use in geothermal power and building energy applications. Focus is on advanced materials, biofuel end use, combustion and system concepts. We seek to continuously improve the capabilities of relevant research tools being applied in collaborative initiatives to achieving these goals. Capabilities The group conducts research in a number of energy-related areas. These include advanced materials for geothermal energy, applications of biofuels and alternative fuels, efficiency in heating/cooling equipment, advanced oil burner development and particulate emissions for wood boilers. Advanced Materials for Geothermal Energy Supercritical carbon dioxide has properties midway between a gas and a

305

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

306

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

307

naval reactors  

National Nuclear Security Administration (NNSA)

After operating for 34 years and training over 14,000 sailors, the Department of Energy S1C Prototype Reactor Site in Windsor, Connecticut, was returned to "green field"...

308

Thermonuclear Reflect AB-Reactor  

E-Print Network [OSTI]

The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical project. The main point of preference for the offered reactor is its likely cheapness as a power source. Key words: Micro-thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, Self-magnetic AB-thermonuclear reactor, aerospace thermonuclear engine.

Alexander Bolonkin

2008-03-26T23:59:59.000Z

309

Early Exploration - Reactors designed/built by Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Early Exploration Early Exploration About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

310

Energy Conversion Advanced Heat Transport Loop and Power Cycle  

SciTech Connect (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va

Oh, C. H.

2006-08-01T23:59:59.000Z

311

A gas-cooled reactor surface power system  

Science Journals Connector (OSTI)

A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed depending on the number of astronauts level of scientific activity and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

Ronald J. Lipinski; Steven A. Wright; Roger X. Lenard; Gary A. Harms

1999-01-01T23:59:59.000Z

312

Overview of Thermochemical Conversion Technology of Biomass and Wastes in Japan  

Science Journals Connector (OSTI)

Compared with the research activity of biochemical conversion, that of thermochemical conversion of biomass and organic wastes in Japan is still ... Trade and Industry(MITI). Thermochemical processing of biomass ...

Shin-ya Yokoyama

1993-01-01T23:59:59.000Z

313

Solar Energy Conversion  

Science Journals Connector (OSTI)

If solar energy is to become a practical alternative to fossil fuels we must have efficient ways to convert photons into electricity fuel and heat. The need for better conversion technologies is a driving force behind many recent developments in biology materials and especially nanoscience.

George W. Crabtree; Nathan S. Lewis

2008-01-01T23:59:59.000Z

314

Campus Conversations: CLIMATE CHANGE  

E-Print Network [OSTI]

review and input from scholars with expertise in climate change and communication. #12; Welcome Thank youCampus Conversations: CLIMATE CHANGE AND THE CAMPUS Southwestern Pennsylvania Program booklet is an adaptation and updating of Global Warming and Climate Change, a brochure developed in 1994

Attari, Shahzeen Z.

315

Solar energy conversion.  

SciTech Connect (OSTI)

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

316

New process speeds conversion of biomass to fuels  

E-Print Network [OSTI]

- 1 - New process speeds conversion of biomass to fuels February 7, 2013 Fuels synthesis insight forward recently towards transforming biomass-derived molecules into fuels. The team led by Los Alamos published the research. Trash to Treasure "Efficient conversion of non-food biomass into fuels and chemical

317

Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)  

SciTech Connect (OSTI)

The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre Étude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

David Petti; Philippe Martin; Mayeul Phélip; Ronald Ballinger; Petti does not have NT account

2004-12-01T23:59:59.000Z

318

DOE - Office of Legacy Management -- Ames Laboratory Research...  

Office of Legacy Management (LM)

Ames Laboratory Research Reactor Facility - IA 03 FUSRAP Considered Sites Site: Ames Laboratory Research Reactor Facility (IA.03) Designated Name: Alternate Name: Location:...

319

Laser spectroscopy of primary energy conversion in  

Science Journals Connector (OSTI)

A review is given of the current status of research on primary processes of energy conversion in photosynthesis. The structural and functional organization of photosynthetic apparatus of higher plants is considered. A description is given of laser probing methods, applications of high-speed optical shutters, and picosecond spectrofluorometry involving the use of image converters. A functional scheme of primary energy conversion by Rhodopseudomonas sphaeroides bacteria is given for the 10?12–10?4 sec range of time intervals. Some nonlinear processes resulting from intense excitation of the pigment apparatus of photosynthesizing organisms are considered.

V Z Pashchenko; L B Rubin

1978-01-01T23:59:59.000Z

320

Light Water Reactor Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fast Spectrum Molten Salt Reactor Options  

SciTech Connect (OSTI)

During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

2011-07-01T23:59:59.000Z

322

Catalytic reactor  

DOE Patents [OSTI]

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

323

Photovoltaic Cell Conversion Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conversion Efficiency Basics Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of the energy from sunlight reaching a PV cell is lost before it can be converted into electricity. But certain characteristics of solar cell materials also limit a cell's efficiency to convert the sunlight it receives. Wavelength of Light Light is composed of photons-or packets of energy-that range in

324

NETL: Gasification Systems - Conversion and Fouling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Fouling Conversion and Fouling NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 3 Project Description The objective for this NETL in-house conversion and fouling project is to improve the reliability, availability and maintainability (RAM) of gasification plants by providing tools that can be used to evaluate the impact that fuel properties have on slag and refractory interaction, and to reduce plugging and fouling throughout the syngas cooling system. Utilizing these tools will aid in minimizing plugging and fouling-increasing overall plant efficiency due to improved heat transfer in heat exchangers. Particle deposition experimental schematic Particle deposition experimental schematic (click to enlarge) Project Details Program Background and Project Benefits

325

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

326

Assessing the Power Generation Solution by Thermal-chemical Conversion of Meat Processing Industry Waste  

Science Journals Connector (OSTI)

Abstract The paper presents a waste to energy conversion solution using a pyro-air-gasification process applied to biodegradable residues from meat processing industry integrated with small scale thermodynamic cycle for power generation. The solution of air- gasification at atmospheric pressure is based on experimental research and engineering computation developed during the study. The input data, such as: waste chemical composition, low/high heating value and proximate analysis, correspond to real waste products, sampled directly from the industrial processing line. Separate drying as first stage pre-treatment and integrated partial drying inside the reactor was used. The syngas low heating value of about 4.3 MJ/Nm3 is insured by its combustible fraction (H2– 12.2%, CO – 19.2%, CH4 – 1.6%). According to syngas composition the thermodynamic cycle was chosen – Otto gas engine. For a given waste feed-in flow considered in our computation of about 110 kg/h the power output obtained is about 50 kWel. The global energy efficiency of the unit is about 15%. The results offer answers to energy recovery waste disposal for residues with characteristics that are not suitable for classic incineration or limit the energy efficiency of the process making it non-economical (the average humidity of the raw waste is about 42% in mass). The research focused on waste to energy conversion process energy efficiency, waste neutralization and power generation.

Cosmin Marculescu; Florin Alexe

2014-01-01T23:59:59.000Z

327

Single-stage conversion of associated petroleum gas and natural gas to syngas in combustion and auto-ignition processes  

Science Journals Connector (OSTI)

Single-stage conversion of alkane mixtures simulating associated petroleum gas (APG) to syngas is studied in a static installation and ... in a flow reactor based on the rocket combustion chamber. Yields of the d...

Yu. A. Kolbanovskii; I. V. Bilera; I. V. Rossikhin…

2011-12-01T23:59:59.000Z

328

Session: Energy Conversion  

SciTech Connect (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

329

Energy from the Biological Conversion of Solar Energy [and Discussion  

Science Journals Connector (OSTI)

7 February 1980 research-article Energy from the Biological Conversion of Solar Energy [and Discussion] N. K. Boardman M...are well designed for the collection and storage of solar energy. Moreover, photosynthetic organisms show...

1980-01-01T23:59:59.000Z

330

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Get Involved The LMI-EFRC is a synergistic, engaged team of researchers devoted to light management for solar energy conversion. If you are interested in learning more about the...

331

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which authors are part of the LMI-EFRC: "A.A.A. was supported as part of the DOE "Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under...

332

Light Water Reactor Sustainability Technical Documents | Department of  

Broader source: Energy.gov (indexed) [DOE]

Reactor Technologies » Light Water Reactor Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2013 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. April 30, 2013 Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and

333

ANALYSIS OF SEPCTRUM CHOICES FOR SMALL MODULAR REACTORS-PERFORMANCE AND DEVELOPMENT  

E-Print Network [OSTI]

. The research mainly focused on producing a small modular reactor (Pebble Bed Modular Reactor) design to analyze the fuel depletion and plutonium and minor actinide accumulation with varying power densities. The reactors running at low power densities were found...

Kafle, Nischal

2011-04-26T23:59:59.000Z

334

Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction  

Science Journals Connector (OSTI)

(5, 6) The ideal process to produce biofuels from lignocellulosic biomass would be a single step reactor at short residence times where solid biomass is directly converted into a liquid fuel. ... with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). ... conversion processes that include combustion, gasification, liquefaction, hydrogenation and pyrolysis, have been used to convert the biomass into various energy products. ...

Yu-Ting Cheng; George W. Huber

2011-04-26T23:59:59.000Z

335

Conversion of Questionnaire Data  

SciTech Connect (OSTI)

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL

2011-01-01T23:59:59.000Z

336

Modeling a Catalytic Reactor for Hydrotreating of Straight-Run Gas Oil Blended with Fluid Catalytic Cracking Naphtha and Light Cycle Oil: Influence of Vapor–Liquid Equilibrium  

Science Journals Connector (OSTI)

Model results were validated using the industrial test run data, and very good predictions of overall sulfur conversion and reactor temperature were obtained. ...

Ivana M. Mijatovi?; Sandra B. Glisic; Aleksandar M. Orlovi?

2014-11-17T23:59:59.000Z

337

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network [OSTI]

Nanowires and Nanotubes for Energy Conversion By MelissaNanowires and Nanotubes for Energy Conversion by MelissaNanowires and Nanotubes for Energy Conversion by Melissa

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

338

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

339

Advanced Conversion Roadmap Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. ctabwebinardoe.pdf More Documents & Publications Conversion...

340

Recovery Act Workers Clear Reactor Shields from Brookhaven Lab | Department  

Broader source: Energy.gov (indexed) [DOE]

Workers Clear Reactor Shields from Brookhaven Lab Workers Clear Reactor Shields from Brookhaven Lab Recovery Act Workers Clear Reactor Shields from Brookhaven Lab American Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb neutrons produced for research. The Brookhaven National Laboratory is using $39 million from the Recovery Act to decommission the Brookhaven Graphite Research Reactor, the world's first reactor built solely for peaceful research purposes. Recovery Act Workers Clear Reactor Shields from Brookhaven Lab More Documents & Publications Brookhaven Graphite Research Reactor Workshop 2011 ARRA Newsletters Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

energy conversion . . . . . . . . . . . . . . . . . . . . . . . . . .other pyroelectric energy conversion methods . . . . Chapter6 Pyroelectric Energy Conversion using PLZT and

Lee, Felix

2012-01-01T23:59:59.000Z

342

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

343

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

Sugama, T.

1997-02-18T23:59:59.000Z

344

Flow Simulation and Optimization of Plasma Reactors for Coal Gasification  

Science Journals Connector (OSTI)

This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.

Ji Chunjun; Zhang Yingzi; Ma Tengcai

2003-01-01T23:59:59.000Z

345

22 - Conversion Factors  

Science Journals Connector (OSTI)

Abstract This chapter details the viscosity and pressure conversion chart. To convert absolute or dynamic viscosity from one set of units to another, one must locate the given set of units in the left-hand column then multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also explains that to convert kinematic viscosity from one set of units to another, one must locate the given set of units in the left-hand column and multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also defines how the conversion from natural gas to other fuels has progressed from possibility to reality for many companies and will become necessary for many others in months and years ahead. Fuels that are considered practical replacements for gas include coal, heavy fuel oils, middle distillates (such as kerosine–typeturbo fuel and burner fuel oils) and liquefied petroleum gas.

2014-01-01T23:59:59.000Z

346

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

347

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

348

One- and Two-Phase Conversion of Biomass to Furfural - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

One- and Two-Phase Conversion of Biomass to Furfural Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryExploiting the energy...

349

Development of a system for characterizing biomass quality of lignocellulosic feedstocks for biochemical conversion.  

E-Print Network [OSTI]

??The purpose of this research was twofold: (i) to develop a system for screening lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to… (more)

Murphy, Patrick Thomas

2009-01-01T23:59:59.000Z

350

Investigation into discrete molecular catalysts for biomass conversion into 5-hydroxymethylfurfural.  

E-Print Network [OSTI]

??As part of ongoing research into the conversion of biomass into the platform chemical 5-hydroxymethylfurfural (HMF), two primary investigations have been performed. The first is… (more)

Dunn, Eric F.

2013-01-01T23:59:59.000Z

351

Proceedings of the 25th intersociety energy conversion engineering conference  

SciTech Connect (OSTI)

This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

Nelson, P.A.; Schertz, W.W.; Till, R.H.

1990-01-01T23:59:59.000Z

352

Early Argonne reactor lit the way for worldwide nuclear industry -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Early Argonne reactor lit the way for worldwide Early Argonne reactor lit the way for worldwide nuclear industry About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

353

Biochemical Conversion Pilot Plant (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biochemical Conversion Biochemical Conversion Pilot Plant A pilot-scale conversion plant for researchers, industry partners, and stakeholders to test a variety of biochemical conversion processes and technologies. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. In the biochemical conversion pilot plant, NREL's engineers and scientists focus on all aspects of the efficiency and cost reduction of biochemical conversion processes. Our capabilities accommodate research from bench-scale to pilot-scale (up to one ton per day). NREL's biochemical conversion pilot plant is located in the Integrated Biorefinery Research Facility (IBRF). Photo by Dennis Schroeder, NREL/PIX 20248

354

Comparison and validation of HEU and LEU modeling results to HEU experimental benchmark data for the Massachusetts Institute of Technology MITR reactor.  

SciTech Connect (OSTI)

The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Towards this goal, comparisons of MCNP5 Monte Carlo neutronic modeling results for HEU and LEU cores have been performed. Validation of the model has been based upon comparison to HEU experimental benchmark data for the MITR-II. The objective of this work was to demonstrate a model which could represent the experimental HEU data, and therefore could provide a basis to demonstrate LEU core performance. This report presents an overview of MITR-II model geometry and material definitions which have been verified, and updated as required during the course of validation to represent the specifications of the MITR-II reactor. Results of calculations are presented for comparisons to historical HEU start-up data from 1975-1976, and to other experimental benchmark data available for the MITR-II Reactor through 2009. This report also presents results of steady state neutronic analysis of an all-fresh LEU fueled core. Where possible, HEU and LEU calculations were performed for conditions equivalent to HEU experiments, which serves as a starting point for safety analyses for conversion of MITR-II from the use of HEU fuel to the use of UMo LEU fuel.

Newton, T. H.; Wilson, E. H; Bergeron, A.; Horelik, N.; Stevens, J. (Nuclear Engineering Division); (MIT Nuclear Reactor Lab.)

2011-03-02T23:59:59.000Z

355

Research News November 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

They also toured several of NETL's laboratories, including the Fuel Cells Lab, Chemical Looping Reactor, and the Supercomputer and Visualization Center. There, NETL's researchers...

356

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

Michael Swanson; Daniel Laudal

2008-03-31T23:59:59.000Z

357

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

358

Quantum optical waveform conversion  

E-Print Network [OSTI]

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

D Kielpinski; JF Corney; HM Wiseman

2010-10-11T23:59:59.000Z

359

GT-MHR power conversion system: Design status and technical issues  

SciTech Connect (OSTI)

The Modular Helium Reactor (MHR) builds on 30 years of international gas-cooled reactor experience utilizing the unique properties of helium gas coolant, graphite moderator and coated particle fuel. To efficiently utilize the high temperature potential of the MHR, an innovative power conversion system has been developed featuring an intercooled and recuperated gas turbine. The gas turbine replaces a conventional steam turbine and its many auxiliary components. The Power Conversion System converts the thermal energy of the helium directly into electrical energy utilizing a closed Brayton cycle. The Power Conversion System draws on even more years of experience than the MHR: the world`s first closed-cycle plant, fossil fired and utilizing air as working fluid, started operation in Switzerland in 1939. Shortly thereafter, in 1945, the coupling of a closed-cycle plant to a nuclear heat generation system was conceived. Directly coupling the closed-cycle gas turbine concept to a modern, passively safe nuclear reactor opens a new chapter in power generation technology and brings with it various design challenges. Some of these challenges are associated with the direct coupling of the Power Conversion System to a nuclear reactor. Since the primary coolant is also the working fluid, the Power Conversion System has to be designed for reactor radionuclide plateout. As a result, issues like component maintainability and replaceability, and fission product effects on materials must be addressed. Other issues concern the integration of the Power Conversion System components into a single vessel. These issues include the selection of key technologies for the power conversion components such as submerged generator, magnetic bearings, seals, compact heat exchangers, and the overall system layout.

Etzel, K.; Baccaglini, G.; Schwartz, A. [General Atomics, San Diego, CA (United States); Hillman, S.; Mathis, D. [AlliedSignal Aerospace, Tempe, AZ (United States)

1994-12-01T23:59:59.000Z

360

Reactor Project Presses Ahead Despite Protests  

Science Journals Connector (OSTI)

...existing research reactors-in Berlin, Braunschweig, Jiilich, Geesthacht, and Munich were built in the 1950s and '60s and, even...the United States and 15 reactors abroad (including one in Geesthacht, Germany) have so far been converted to low-enriched uranium...

Robert Koenig

1995-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

362

Biochemical Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products. Lignocellulose (mainly lignin,...

363

Energy conversion by gravitational waves  

Science Journals Connector (OSTI)

... out that if such particles are charged, the accelerations will constitute a mechanism for the conversion of gravitational ... of gravitational energy into electromagnetic ...

H. BONDI; F. A. E. PIRANI

1988-03-17T23:59:59.000Z

364

Photocatalytic reactor  

DOE Patents [OSTI]

A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

1999-01-19T23:59:59.000Z

365

Muon to electron conversion: how to find an electron in a muon haystack  

Science Journals Connector (OSTI)

...accelerator-driven sub-critical reactors (ADSR), cancer therapy...conventional nuclear reactors, which makes it inherently...issues with ensuring the reliability of the accelerator beam...University Research Reactor Institute in Japan...software and physics analysis. In his spare time...

2010-01-01T23:59:59.000Z

366

Alternative Fuels Data Center: Conversion Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversion Regulations Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on AddThis.com... Conversion Regulations All vehicle and engine conversions must meet standards instituted by the U.S. Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), and state agencies like the California Air Resources Board (CARB).

367

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Broader source: Energy.gov (indexed) [DOE]

DOE Selects Contractor for Depleted Hexafluoride Conversion Project DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

368

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Broader source: Energy.gov (indexed) [DOE]

Contractor for Depleted Hexafluoride Conversion Project Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

369

Hybrid adsorptive membrane reactor  

DOE Patents [OSTI]

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

2011-03-01T23:59:59.000Z

370

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ceramic Electrochemistry Ceramic Electrochemistry * Members * Contact * Publications * Overview * Solid Oxide Fuel Cells * Steam Electrolysis Catalysis & Energy Conversion Home Ceramic Electrochemistry Dave Carter and solid oxide fuel cell Materials scientist John David Carter prepares a solid oxide electrochemical cell for high temperature testing. Research activities in the Ceramic Electrochemistry Group are focused on the development of ceramic-based electrochemical devices and components, such as Solid Oxide Fuel Cells (SOFC) and High Temperature Steam Electrolyzers (HTSE). This extends to materials synthesis, fabrication, and characterization. Solid Oxide Fuel Cell Research As part of the Solid State Energy Conversion Alliance (SECA) Core Technology Program, the goal of this research is the development of solid

371

Advance Reactor Concepts Technical Review Panel Public Report  

Broader source: Energy.gov [DOE]

The Office of Nuclear Energy supports research and development for advanced reactor technologies. This report documents the results of the 2014 Technical Review Panel (TRP) review of seven advanced reactor concepts. The intent of the process was to identify R&D needs for advanced reactor concepts in order to inform Department of Energy (DOE) Office of Nuclear Energy R&D investment decisions.

372

Overview of Sandia National Laboratories pulse nuclear reactors  

SciTech Connect (OSTI)

Sandia National Laboratories has designed, constructed and operated bare metal Godiva-type and pool-type pulse reactors since 1961. The reactor facilities were designed to support a wide spectrum of research, development, and testing activities associated with weapon and reactor systems.

Schmidt, T.R. [Sandia National Labs., Albuquerque, NM (United States); Reuscher, J.A. [Texas A& M Univ., College Station, TX (United States)

1994-10-01T23:59:59.000Z

373

NREL: Biomass Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

374

5, 35333559, 2005 Catalytic conversion  

E-Print Network [OSTI]

measurement technique, employing selective gas- phase catalytic conversion of methanol to formaldehyde it the second most abundant organic trace gas after methane. Methanol can play an important role in upper tropoACPD 5, 3533­3559, 2005 Catalytic conversion of methanol to formaldehyde S. J. Solomon et al. Title

Paris-Sud XI, Université de

375

Design of a nuclear reactor system for lunar base applications  

E-Print Network [OSTI]

disadvantages. U02 and Pu02 fuels both have extremely poor ther mal conductivities, about 4 W/m K at 500 C, which would normally limit the maximum linear power in the reactor core to unacceptably low levels. For tunately, the ver y high melting temperatur es... conversion, however, high reactor exit temperatures are both necessary and desirable. The efficiency of the power conversion cycle is directly related to the difference between the high and low temperatur es in the system. Since the heat rejection...

Griffith, Richard Odell

2012-06-07T23:59:59.000Z

376

Management of Naval Reactors' Cyber Security Program, OIG-0884  

Broader source: Energy.gov (indexed) [DOE]

Naval Reactors' Naval Reactors' Cyber Security Program DOE/IG-0884 April 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 April 12, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Management of Naval Reactors' Cyber Security Program" INTRODUCTION AND OBJECTIVE The Naval Reactors Program (Naval Reactors), an organization within the National Nuclear Security Administration, provides the military with safe and reliable nuclear propulsion plants to power warships and submarines. Naval Reactors maintains responsibility for activities supporting the United States Naval fleet nuclear propulsion systems, including research and

377

A multi-reactor configuration for multi-megawatt spacecraft power supplies  

E-Print Network [OSTI]

, and various conceptual designs were explored. One design was selected for further refinement and analysis. Various configurations of power units with differing number, size, and conversion technology were involved. Optimum reactor/payload separation... distances were found to run from 60 to 80m. It was found that reliability studies utilizing spare power conversion units and reactors do not necessarily result in the most mass effective means of insuring mission success for NEP vehicles. By increasing...

George, Jeffrey Alan

2012-06-07T23:59:59.000Z

378

Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management  

SciTech Connect (OSTI)

The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B. [eds.

1996-12-31T23:59:59.000Z

379

GEN-IV Reactors  

Science Journals Connector (OSTI)

Generation-IV reactors are a set of nuclear reactors currently being developed under international collaborations targeting ... economics, proliferation resistance, and physical protection of nuclear energy. Nuclear

Taek K. Kim

2013-01-01T23:59:59.000Z

380

The Netherlands Reactor Centre  

Science Journals Connector (OSTI)

... Two illustrated brochures in English have recently J. been issued by the Netherlands Reactor Centre ( ... Centre (Reactor Centrum Nederland). The first* gives a general survey of the ...

S. WEINTROUB

1964-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Concept development of rotating bed chemical looping combustion reactor:.  

E-Print Network [OSTI]

??In this research a new rotary chemical looping combustion (CLC) reactor was developed which is suitable for larger scales and solves some of the issues… (more)

Hermans, C.W.M.

2013-01-01T23:59:59.000Z

382

Transient thermal analysis of a space reactor power system  

E-Print Network [OSTI]

Thermoelectric Power Conversion Module Heat Pipe Radiator Module . Auxiliary Modules . Flow of Calculation . Transient Test Cases Studied Summary . 10 10 CHAPTER II. ENERGY EQUATION FINITE DIFFERENCING . . 12 Energy Equation for a Solid Finite..., but this stud~ uses a generic liquid metal cooled fast reactor concept as the model to test the code. The space power svstem to be modeled consists of a liquid lithium cooled fast reactor, primarv and secondary loops svith a sell-induced thermoelectric...

Gaeta, Michael J.

1988-01-01T23:59:59.000Z

383

Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview  

SciTech Connect (OSTI)

Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

1988-12-01T23:59:59.000Z

384

Research departments Materials Research Department  

E-Print Network [OSTI]

research reactor and X- radiation from the synchrotron facilities in Hamburg and Grenoble. In this con-parameter experiments in RERAF. Systems Analysis Department The objective of the research is to de- velop and apply are systems reliability, organisation, toxi- cology, informatics, simulation methods, work studies, economics

385

High pressure synthesis gas conversion. Task 3: High pressure profiles  

SciTech Connect (OSTI)

The purpose of this research project was to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by C. 1jungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors.

Not Available

1993-05-01T23:59:59.000Z

386

Management and Uses Conversion Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

387

The integral fast reactor fuel cycle  

SciTech Connect (OSTI)

The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management.

Chang, Y.I. (Argonne National Lab., IL (United States))

1990-01-01T23:59:59.000Z

388

EPA Redesigns Conversion Certification Policies  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EPA Redesigns EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's Enforcement Office. The meeting, attended by representatives of more than 60 organizations, was held to discuss actions addressing AFV emission certification. Specifically, topics included * Conversion emissions perfor- mance data * Status of environmental laws pertaining to alternative fuel

389

Thermal Conversion Process (TCP) Technology  

Broader source: Energy.gov (indexed) [DOE]

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

390

SRS Small Modular Reactors  

SciTech Connect (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2012-04-27T23:59:59.000Z

391

SRS Small Modular Reactors  

ScienceCinema (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2014-05-21T23:59:59.000Z

392

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...multiple carrier generation...renewable energy|solar energy conversion|photovoltaic...photovoltaic energy conversion process...minority carriers in the p-type...efficiency carrier multiplication...for solar energy conversion. Phys...

2007-01-01T23:59:59.000Z

393

Alternative Fuels Data Center: Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversions on AddThis.com... Vehicle Conversions Photo of converted to run on propane. What kinds of conversions are available? Natural Gas Propane Electric Hybrid Ethanol An aftermarket conversion is a vehicle or engine modified to operate using

394

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

395

Catalytic Membrane Reactor: Multilayer membranes elaboration A. Julian1,2,*  

E-Print Network [OSTI]

-en-Josas Cedex, France Abstract Methane conversion to syngas is very attractive for hydrogen or clean fuel production and provides an alternative to oil products. An efficient architecture for the membrane reactor-sintering, perovskite, syngas, mixed conducting materials. Introduction Membrane reactors with mixed oxygen

Paris-Sud XI, Université de

396

NREL: Biomass Research - Chemical and Catalyst Science Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Catalyst Science Projects Chemical and Catalyst Science Projects A photo of a large white tank the size of a water heater. Several metal fittings stick out of the sides of the tank. Thin tubes are attached to some of the fittings and lead to flow meters and other metal pipes. Researchers use experimental data from this four-inch fluidized bed reactor to develop and validate gasification process models. NREL uses chemical analysis to study biomass-derived products online during the conversion process. Catalysts are used in the thermochemical conversion process to convert tars (a byproduct of gasification) to syngas and to convert syngas to liquid transportation fuels. Among the chemical and catalyst science projects at NREL are: Catalyst Fundamentals NREL is working to develop and understand the performance of catalyst and

397

Chemical Conversions of Natural Precursors  

Science Journals Connector (OSTI)

Many products from the flavour industry are primary products from renewable resources or secondary products obtained by chemical conversions of the primary products. In general these secondary products are key...

Peter H. van der Schaft

2007-01-01T23:59:59.000Z

398

Solar Energy Conversion Efficiency Project  

Science Journals Connector (OSTI)

Report of a discussion on possible collaborative experimentation to test and refine biomass production models based on the conversion of solar energy by plant stands, and to evaluate alternative models.

J. S. Pereira; J. J. Landsberg

1989-01-01T23:59:59.000Z

399

US energy conversion and use characteristics  

SciTech Connect (OSTI)

The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

Imhoff, C.H.; Liberman, A.; Ashton, W.B.

1982-02-01T23:59:59.000Z

400

Nuclear reactor  

DOE Patents [OSTI]

A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

Thomson, Wallace B. (Severna Park, MD)

2004-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The High Flux Isotope Reactor at Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

The High Flux Isotope Reactor at ORNL The High Flux Isotope Reactor at ORNL Aerial of the High Flux Isotope Reactor Site The High Flux Isotope Reactor site is located on the south side of the ORNL campus and is about a three-minute drive from her sister neutron facility, the Spallation Neutron Source. Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the United States, and it provides one of the highest steady-state neutron fluxes of any research reactor in the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than 500 researchers each year for neutron scattering research into

402

Data Domain to Model Domain Conversion Package | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Domain to Model Domain Conversion Package Data Domain to Model Domain Conversion Package Data Domain to Model Domain Conversion Package The Data Domain to Model Domain Conversion Package project will develop methods and implement a novel approach for generating data ensembles by using the latest available statistical modeling tools and knowledge of relevant physical and chemical process to develop climatologically aware methods for processing ACRF and other spatially sparse data sets. Data collected at the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF) sites are employed mainly in column radiation models, to validate the models and develop new parameterizations. Currently, no single methodology can be used with data collected at the spatial scale of the ACRF sites or from specific AmeriFlux locations, to

403

Selective Conversion of Biomass Hemicellulose to Furfural Using Maleic Acid with Microwave Heating  

Science Journals Connector (OSTI)

Selective Conversion of Biomass Hemicellulose to Furfural Using Maleic Acid with Microwave Heating ... With the aim to develop an ecological method to convert xylose into furfural without the use of inorganic acids, a ... ... Sulfonated lignin was converted to phenol and phenolic compounds using a conventional batch or a microwave reactor. ...

Eurick S. Kim; Shuo Liu; Mahdi M. Abu-Omar; Nathan S. Mosier

2012-01-10T23:59:59.000Z

404

Conversion model aids scale-up of mobil's fluid-bed MTG process  

Science Journals Connector (OSTI)

Mobil's fluid-bed Methanol-to-Gasoline (MTG) process was successfully scaled-up, from 0.04m diameter reactor, through 0.1m, to 0.6m diameter demonstration plant. Gas tracer responses in cold flow models were interpreted by a one-dimensional axial dispersion model, and combined with reaction kinetics to develop a conversion model.

M. Edwards; A. Avidan

1986-01-01T23:59:59.000Z

405

Energy Conversion Devices | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Energy Conversion Devices Place: Rochester Hills, MI Website: http:www.energyconversiondev References: Energy Conversion Devices1...

406

Postdoctoral Research Awards Annual Research Meeting: Jared Clark...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications EERE Postdoctoral Research Awards Annual Meeting Posters Biofuels Report Final Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

407

Production of 5-Hydroxymethylfurfural from Glucose Using a Combination of Lewis and Brønsted Acid Catalysts in Water in a Biphasic Reactor with an Alkylphenol Solvent  

Science Journals Connector (OSTI)

Production of 5-Hydroxymethylfurfural from Glucose Using a Combination of Lewis and Brønsted Acid Catalysts in Water in a Biphasic Reactor with an Alkylphenol Solvent ... We report the catalytic conversion of glucose in high yields (62%) to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. ... The development of economically viable processes for the production of chemical intermediates from biomass-derived carbohydrates has become an important challenge for research in this area, such as the development of efficient processes for the production of the platform chemical 5-hydroxymethylfurfural (HMF). ...

Yomaira J. Pagán-Torres; Tianfu Wang; Jean Marcel R. Gallo; Brent H. Shanks; James A. Dumesic

2012-04-18T23:59:59.000Z

408

Research Capabilities | ANSER Center | Argonne-Northwestern National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities Home > Research > Research Capabilities The basic energy conversion steps of charge photogeneration, separation, and recombination link research themes and principal...

409

Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report  

SciTech Connect (OSTI)

Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsin’s 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800ºC.

Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

2006-09-01T23:59:59.000Z

410

Why Nuclear Energy? - Reactors designed/built by Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy: Nuclear Energy: Why Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

411

Manhattan Project: Production Reactor (Pile) Design, Met Lab, 1942  

Office of Scientific and Technical Information (OSTI)

Schematic of the X-10 Graphite Reactor, Oak Ridge PRODUCTION REACTOR (PILE) DESIGN Schematic of the X-10 Graphite Reactor, Oak Ridge PRODUCTION REACTOR (PILE) DESIGN (Met Lab, 1942) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 By 1942, scientists had established that some of the uranium exposed to radioactivity in a reactor (pile) would eventually decay into plutonium, which could then be separated by chemical means from the uranium. Important theoretical research on this was ongoing, but the work was scattered at various universities from coast to coast. In early 1942, Arthur Compton arranged for all pile research to be moved to the Met Lab at the University of Chicago.

412

System modeling for the advanced thermionic initiative single cell thermionic space nuclear reactor  

SciTech Connect (OSTI)

Incore thermionic space reactor design concepts which operate in a nominal power output range of 20 to 40 kWe are described. Details of the neutronics, thermionic, shielding, and heat rejection performance are presented. Two different designs, ATI-Driven and ATI-Driverless, are considered. Comparison of the core overall performance of these two configurations are described. The comparison of these two cores includes the overall conversion efficiency, reactor mass, shield mass, and heat rejection mass. An overall system design has been developed to model the advanced incore thermionic energy conversion based nuclear reactor systems for space applications in this power range.

Lee, H.H.; Lewis, B.R.; Klein, A.C. (Department of Nuclear Engineering, Oregon State University, Radiation Center, C116, Corvallis, Oregon 97331-5902 (United States)); Pawlowski, R.A. (Battelle Pacific Northwest Laboratories, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

413

Features of a subcritical nuclear reactor  

Science Journals Connector (OSTI)

Abstract A subcritical nuclear reactor is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. Using the MCNP5 code, a three-dimensional model of the subcritical reactor was developed to estimate the effective multiplication factor, the neutron spectra, and the total and thermal neutron fluences along the radial and axial axis. The MCNP5 results of the effective multiplication factor were compared with those obtained from the six-factor formula. The effective dose and the Ambient dose equivalent, at three sites outside the reactor, were estimated; the Ambient dose equivalent was also measured and compared with the calculated values.

Hector Rene Vega-Carrillo; Isvi Ruben Esparza-Garcia; Alvaro Sanchez

2015-01-01T23:59:59.000Z

414

Small Modular Nuclear Reactors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reactor Technologies » Small Modular Reactor Technologies » Small Modular Nuclear Reactors Small Modular Nuclear Reactors Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. The development of clean, affordable nuclear power options is a key element of the Department of Energy's Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. Begun

415

SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Thermionic Solar Next-Generation Thermionic Solar Energy Conversion to someone by E-mail Share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Facebook Tweet about SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Twitter Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Google Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Delicious Rank SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Digg Find More places to share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload

416

Controlled Fusion and Reactors of the Tokamak Type  

Science Journals Connector (OSTI)

Research on fusion reactor problems has increased dramatically as the plasma physics of magnetic confinement continues to make substantial progress. As part of this research several studies (1–6) have been comple...

Robert W. Conn

1977-01-01T23:59:59.000Z

417

UCLA program in reactor studies: The ARIES tokamak reactor study  

SciTech Connect (OSTI)

The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

Not Available

1991-01-01T23:59:59.000Z

418

Fifteenth DOE solar photochemistry research conference  

SciTech Connect (OSTI)

This is a compilation of abstracts from the Fifteenth DOE Solar Photochemistry Research Conference hosted by the Solar Energy Research Institute which took place June 2--6, 1991. A large variety of topics pertinent to solar energy conversion are covered, including photoinduced electron transfer, photochemical energy conversion, and photosynthetic energy conversion. (GHH)

Not Available

1991-01-01T23:59:59.000Z

419

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. February 7, 2013 Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, so these linear chains can then be converted into alkanes used in gasoline and diesel fuel. Image by Josh Smith, Los Alamos National Laboratory. Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the

420

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. February 7, 2013 Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, so these linear chains can then be converted into alkanes used in gasoline and diesel fuel. Image by Josh Smith, Los Alamos National Laboratory. Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

2013-03-31T23:59:59.000Z

422

High Flux Beam Reactor | Environmental Restoration Projects | BNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Protection Division Environmental Protection Division Home Reactor Projects Celebrating DOE's Cleanup Accomplishments (PDF) Brookhaven Graphite Research Reactor(BGRR) BGRR Overview BGRR Complex Description Decommissioning Decision BGRR Complex Cleanup Actions BGRR Documents BGRR Science & Accomplishments High Flux Beam Reactor (HFBR) HFBR Overview HFBR Complex Description Decommissioning Decision HFBR Complex Cleanup Actions HFBR Documents HFBR Science & Accomplishments Groundwater Protection Group Environmental Protection Division Contact > See also: HFBR Science & Accomplishments High Flux Beam Reactor Under the U.S. Department of Energy (DOE), the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) underwent stabilization and partial decommissioning to prepare the HFBR confinement for long-term safe

423

Light Water Reactor Sustainability (LWRS) Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Light Water Reactor Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program The Light Water Reactor Sustainability (LWRS) Program is developing the scientific basis to extend existing nuclear power plant operating life beyond the current 60-year licensing period and ensure long-term reliability, productivity, safety, and security. The program is conducted in collaboration with national laboratories, universities, industry, and international partners. Idaho National Laboratory serves as the Technical Integration Office and coordinates the research and development (R&D) projects in the following pathways: Materials Aging and Degradation Assessment, Advanced Instrumentation, Information, and Control Systems

424

(Biotechnology for the conversion of lignocellulosics)  

SciTech Connect (OSTI)

This report summarizes the results of the traveler's participation in the International Energy Agency (IEA) Network planning meeting for Biotechnology for the Conversion of Lignocellulosics,'' held at the Institut Francais du Petrole (IFP), Rueil-Malmaison, France. It also summarizes the results of discussions held at Aston University, Birmingham, UK, with Dr. Martin Beevers with whom the traveler is attempting to initiate a collaborative research project that will be beneficial to ongoing research programs at Oak Ridge National Laboratory (ORNL). The itinerary for the trip is given in Appendix A; the names of the people contacted are listed in Appendix B. Also, pertinent information about the Institut Francais du Petrole is attached (Appendix C). 1 tab.

Woodward, J.

1990-10-25T23:59:59.000Z

425

Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

426

Nuclear Energy Research Brookhaven National  

E-Print Network [OSTI]

Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National&T Department #12;Nuclear Energy Today 435 Operable Power Reactors, 12% electrical generation (100 in US, 19

Ohta, Shigemi

427

Conversion Electrons of Radium D  

Science Journals Connector (OSTI)

The conversion electrons of radium D have been studied with thin sources on thin backings in a beta-ray spectrograph using calibrated photographic emulsions. The number of conversion electrons due to the 47-kev gamma-ray has been measured to be 74±5 per hundred disintegrations. The L:M:N ratio is 1:0.26:0.077. This implies a complex decay scheme for radium D, since earlier results give 3.5 unconverted 47-kev gamma-rays per hundred disintegrations.

Lawrence Cranberg

1950-01-15T23:59:59.000Z

428

Recirculation in multiple wave conversions  

SciTech Connect (OSTI)

A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

2008-07-30T23:59:59.000Z

429

Attrition reactor system  

DOE Patents [OSTI]

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28T23:59:59.000Z

430

Elementary Reactor Physics  

Science Journals Connector (OSTI)

... THERE are few subjects which have developed at the rate at which reactor physics and ... physics and reactor theory have done. This, of course, is largely due to the circumstances in ...

J. F. HILL

1962-02-10T23:59:59.000Z

431

Colliding Beam Fusion Reactors  

Science Journals Connector (OSTI)

The recirculating power for virtually all types of fusion reactors has previously been calculated [1] with the Fokker–Planck equation. The reactors involve non-Maxwellian plasmas. The calculations are ... the rec...

Norman Rostoker; Artan Qerushi; Michl Binderbauer

2003-06-01T23:59:59.000Z

432

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

2013-03-01T23:59:59.000Z

433

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

Broader source: Energy.gov [DOE]

This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

434

Basic Engineering Research for D&D of R. Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation  

SciTech Connect (OSTI)

Collaborating researchers at the University of South Carolina (USC), Clemson University (CU), and the Savannah River Site (SRS) are investigating the fundamentals of a combined extraction and destruction process for the decontamination and decommissioning (D&D) of PCB-contaminated materials as found at DOE sites. Currently, the volume of PCBs and PCB contaminated wastes at DOE sites nationwide is approximately 19,000 m3. While there are a number of existing and proposed processes for the recovery and/or destruction of these persistent 4 pollutants, none has emerged as the preferred choice. Therefore, this research focuses on combining novel processes to solve the problem. The research objectives are to investigate benign dense-fluid extraction with either carbon dioxide (USC) or hot water (CU), followed by destruction of the extracted PCBs via either electrochemical (USC) or hydrothermal (CU) oxidation. Based on the results of these investigations, a combined extraction and destruction process that incorporates the most successful elements of the various processes will be recommended for application to contaminated DOE sites.

Hamilton, Edward A.; Bruce, David A.; Oji, Lawrence; White, Ralph E.; Matthews, Michael A.; Thies, Mark C.

1999-06-01T23:59:59.000Z

435

HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research  

E-Print Network [OSTI]

HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research Hawaii Natural Energy Development Pathways for Bioenergy Systems Crops Intermediate Products Conversion Technologies Bioenergy.hnei.hawaii.edu Research and the Bioenergy Industry Value Chain Feedstock Production Feedstock Logistics Conversion

436

Prospects for spheromak fusion reactors  

Science Journals Connector (OSTI)

The reactor study of Hagenson and Krakowski demonstrated the attractiveness of the spheromak as a compact fusion reactor, based on...

T. K. Fowler; D. D. Hua

1995-06-01T23:59:59.000Z

437

"Fundamental Challenges in Solar Energy Conversion" workshop hosted by  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications Contact BES Home 06.02.10 "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Print Text Size: A A A Subscribe FeedbackShare Page July 7, 2010 :: The Light-Material Interactions in Energy Conversion EFRC at the California Institute of Technology will host a one day "Fundamental Challenges in Solar Energy Conversion" workshop for faculty, staff, postdoctoral, and graduate researchers from EFRCs focused on solar energy conversion. More information can be found here .pdf file (553KB

438

Light Water Reactor Sustainability Nondestructive Evaluation for Concrete  

Broader source: Energy.gov (indexed) [DOE]

Nondestructive Evaluation for Nondestructive Evaluation for Concrete Research and Development Roadmap Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap Materials issues are a key concern for the existing nuclear reactor fleet as material degradation can lead to increased maintenance, increased downtown, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. The purpose of the US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend

439

Improved vortex reactor system  

DOE Patents [OSTI]

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

440

System modeling and reactor design studies of the Advanced Thermionic Initiative space nuclear reactor  

SciTech Connect (OSTI)

In-core thermionic space reactor design concepts that operate at a nominal power output range of 20 to 50 kW(electric) are described. Details of the neutronic, thermionic, thermal hydraulics, and shielding performance are presented. Because of the strong absorption of thermal neutrons by natural tungsten and the large amount of natural tungsten within the reactor core, two designs are considered. An overall system design code has been developed at Oregon State University to model advanced in-core thermionic energy conversion-based nuclear reactor systems for space applications. The results show that the driverless single-cell Advanced Thermionic Initiative (ATI) configuration, which does not have driver fuel rods, proved to be more efficient than the driven core, which has driver rods. The results also show that the inclusion of the true axial and radial power distribution decrease the overall conversion efficiency. The flattening of the radial power distribution by three different methods would lead to a higher efficiency. The results show that only one TFE works at the optimum emitter temperature; all other TFEs are off the optimum performance and result in a 40% decrease of the efficiency of the overall system. The true axial profile is significantly different as there is a considerable amount of neutron leakage out of the top and bottom of the reactor. The analysis reveals that the axial power profile actually has a chopped cosine shape. For this axial profile, the reactor core overall efficiency for the driverless ATI reactor version is found to be 5.84% with a total electrical power of 21.92 kW(electric). By considering the true axial power profile instead of the uniform power profile, each TFE loses {approximately}80 W(electric).

Lee, H.H.; Abdul-Hamid, S.; Klein, A.C. [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering Radiation Center] [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering Radiation Center

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MUTUAL CONVERSION SOLAR AND SIDEREAL  

E-Print Network [OSTI]

TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

Roegel, Denis

442

HELIOPHYSICS II. ENERGY CONVERSION PROCESSES  

E-Print Network [OSTI]

of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other forms approaches to the problems involved in phys- ically characterizing the solar atmosphere; see also the lecture

Hudson, Hugh

443

The Activation Energy of the para-Hydrogen Conversion on Tungsten  

Science Journals Connector (OSTI)

...research-article The Activation Energy of the para-Hydrogen Conversion on Tungsten A. Couper D. D. Eley...has been made of the activation energy, E, and frequency factor, B , for the conversion of para-hydrogen on tungsten...

1952-01-01T23:59:59.000Z

444

Conversion of microalgae to jet fuel: Process design and simulation  

Science Journals Connector (OSTI)

Abstract Microalgae’s aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II’s thermodynamic data manager. Hydrotreating is analyzed within PRO/II’s case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230 °C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming.

Hui-Yuan Wang; David Bluck; Bernard J. Van Wie

2014-01-01T23:59:59.000Z

445

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

446

BASIC ENGINEERING RESEARCH FOR D&D OF R REACTOR STORAGE POND SLUDGE: ELECTROKINETICS, CARBON DIOXIDE EXTRACTION, AND SUPERCRITICAL WATER OXIDATION  

SciTech Connect (OSTI)

Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D&D operations at DOE sites across the country. Currently, the volume of these wastes is approximately 23,500 m3, and the majority of these wastes (i.e., almost 19,000 m3) consist of PCBs and PCB-contaminated materials. Further, additional PCB-contaminated waste will be generated during D&D operations in the future. The standard process for destruction of this waste is incineration, which generates secondary waste that must be disposed, and the TSCA incinerator at Oak Ridge has an uncertain future. Beyond incineration, no proposed process for the recovery and/or destruction of these persistent pollutants has emerged as the preferred choice for DOE cleanup. The main objective of the project was to investigate and develop a deeper understanding of the thermodynamic and kinetic reactions involved in the extraction and destruction of polychlorinated biphenyls (PCBs) from low-level mixed waste solid matrices in order to provide data that would permit the design of a combined-cycle extraction/destruction process. The specific research objectives were to investigate benign dense-fluid extraction with either carbon dioxide (USC) or hot water (CU), followed by destruction of the extracted PCBs via either electrochemical (USC) or hydrothermal (CU) oxidation. Two key advantages of the process are that it isolates and concentrates the PCBs from the solid matrices (thereby reducing waste volume greatly and removing the remaining low-level mixed waste from TSCA control), and little, if any, secondary solvent or solid wastes are generated. This project was a collaborative effort involving the University of South Carolina (USC), Clemson University (CU), and Westinghouse Savannah River Company (WSRC) (including the Savannah River Technology Center, Facilities Decommissioning Division and Regulatory Compliance). T he project was directed and coordinated by the South Carolina Universities Research and Education Foundation (SCUREF), a consortium of the four public research universities in South Carolina. The original plan was to investigate two PCB extraction processes (supercritical carbon dioxide and hot, pressurized water) and two PCB destruction processes (electrochemical oxidation and hydrothermal oxidation). However, at approximately the mid-point of the three year project, it was decided to focus on the more promising extraction process (supercritical carbon dioxide) and the more promising destruction process (supercritical water oxidation). This decision was taken because the investigation of two processes simultaneously by each university was stretching resources too thin, and because the electrochemical oxidation process needed more concentrated research before it would be ready for application to PCB destruction. The solid matrix chosen for experimental work was Toxi-dry, a commonly used adsorbent made from plant material that is used in cleanup of spills and/or liquid solvents. The Toxi-dry was supplied by the research team member from the Facilities Decommissioning Division, WSRC. This adsorbent is a major component of job control waste.

Matthews, Michael A.; Bruce,David; Davis,Thomas; Thies, Mark; Weidner, John; White, Ralph

2001-12-31T23:59:59.000Z

447

Reactor vessel support system  

DOE Patents [OSTI]

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01T23:59:59.000Z

448

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

449

Reactor water cleanup system  

DOE Patents [OSTI]

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

450

Reactor water cleanup system  

DOE Patents [OSTI]

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

Gluntz, D.M.; Taft, W.E.

1994-12-20T23:59:59.000Z

451

NREL: Biomass Research - Thomas Foust  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

452

Exploratory Research on Novel Coal Liquefaction Concept.  

SciTech Connect (OSTI)

Microautoclave tests confirmed that first-stage subbituminous coal conversions were greater in a more aromatic first-stage solvent. First-stage liquefaction tests with hydride ion `E` showed that high coal conversions can be obtained with a number of different first-stage water-gas-shift catalysts. Eight one-liter autoclave tests were completed. All tests used Black Thunder Mine subbituminous coal and Reilly Industries anthracene oil. Differences among the tests were the hydride ion reagent used, the post-run flash of water, and the shift catalyst. Filtration tests were conducted with five one-liter autoclave products of subbituminous coal. The filtration rates were slower than those that had been obtained with North Dakota lignite products, but were still within a commercially acceptable range. The influence of the first-stage shift catalyst on filtration rates is being investigated. Second-stage hydrotreating of products of tests made to simulate the British coal LSE process and the Wilsonville pilot plant preheaters had lower resid conversion and higher hydrogen uptake than the products of the hydride ion liquefaction reaction. The 300 mL second-stage reactor system went on line this quarter. Refinements in the experimental procedures are under way. A conceptual commercial plant design for the hydride ion reagent `A` case was completed. Evaluations of hydride ion reagent `D` and `E` cases were initiated, and an integrated liquefaction system balance for the hydride ion reagent `E` case was begun. A preliminary review of the final technical and economic reports from the Alberta Research Council study of low-rank coal conversion using the CO-steam process generated a number of questions on the published reports; further analysis of the reports is planned.

Brandes, S.D.; Winschel, R.A.

1997-06-12T23:59:59.000Z

453

Heterogeneous Recycling in Fast Reactors  

SciTech Connect (OSTI)

Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

Dr. Benoit Forget; Michael Pope; Piet, Steven J.; Michael Driscoll

2012-07-30T23:59:59.000Z

454

Engineered microbial systems for enhanced conversion of lignocellulosic biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

752; 752; NO. OF PAGES 6 Please cite this article in press as: Elkins JG, et al. Engineered Q1microbial systems for enhanced conversion of lignocellulosic biomass, Curr Opin Biotechnol (2010), doi:10.1016/ j.copbio.2010.05.008 Available online at www.sciencedirect.com Engineered microbial systems for enhanced conversion of lignocellulosic biomass James G Elkins, Babu Raman and Martin Keller In order for plant biomass to become a viable feedstock for meeting the future demand for liquid fuels, efficient and cost- effective processes must exist to breakdown cellulosic materials into their primary components. A one-pot conversion strategy or, consolidated bioprocessing, of biomass into ethanol would provide the most cost-effective route to renewable fuels and the realization of this technology is being actively pursued by both multi-disciplinary research centers and

455

Method of producing gaseous products using a downflow reactor  

DOE Patents [OSTI]

Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

2014-09-16T23:59:59.000Z

456

Micro -Thermonuclear AB-Reactors for Aerospace  

E-Print Network [OSTI]

The author offers several innovations that he first suggested publicly early in 1983 for the AB multi-reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB-Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. The Lawson criterion increases by hundreds of times. The author also suggests a new method of heating the power-making fuel pellet by outer electric current as well as new direct method of transformation of ion kinetic energy into harvestable electricity. These offered innovations dramatically decrease the size, weight and cost of thermonuclear reactor, installation, propulsion system and electric generator. Non-industrial countries can produce these researches and constructions. Currently, the author is researching the efficiency of these innovations for two types of the micro-thermonuclear reactors: multi-reflection reactor (ICF) and self-magnetic reactor (MCF).

Alexander Bolonkin

2007-01-08T23:59:59.000Z

457

Modeling for Anaerobic Fixed-Bed Biofilm Reactors  

SciTech Connect (OSTI)

The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

Liu, B. Y. M.; Pfeffer, J. T.

1989-06-01T23:59:59.000Z

458

Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation  

SciTech Connect (OSTI)

Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

2002-04-01T23:59:59.000Z

459