Powered by Deep Web Technologies
Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The LEU conversion status of U.S. Research Reactors.  

SciTech Connect

This paper summarizes the conversion status of US research and test reactors and estimates uranium densities needed to convert reactors with power levels 21 MW from HEU ({ge} 20% U-235) to LEU (<20% U-235) fuels. Detailed conversion studies for each reactor need to be completed in order to establish the feasibility of using LEU fuels.

Matos, J. E.

1997-11-14T23:59:59.000Z

2

LEU conversion status of US research reactors, September 1996  

SciTech Connect

This paper summarizes the conversion status of research and test reactors in the United States from the use of fuels containing highly- enriched uranium (HEU, greater than or equal to 20%) to the use of fuels containing low-enriched uranium (LEU, < 20%). Estimates of the uranium densities required for conversion are made for reactors with power levels greater than or equal to 1 MW that are not currently involved in the LEU conversion process.

Matos, J.E.

1996-10-07T23:59:59.000Z

3

Friction pressure drop measurements and flow distribution analysis for LEU conversion study of MIT Research Reactor  

E-Print Network (OSTI)

The MIT Nuclear Research Reactor (MITR) is the only research reactor in the United States that utilizes plate-type fuel elements with longitudinal fins to augment heat transfer. Recent studies on the conversion to low-enriched ...

Wong, Susanna Yuen-Ting

2008-01-01T23:59:59.000Z

4

Reactor core design and modeling of the MIT research reactor for conversion to LEU  

SciTech Connect

Feasibility design studies for conversion of the MIT Research Reactor (MITR) to LEU are described. Because the reactor fuel has a rhombic cross section, a special input processor was created in order to model the reactor in great detail with the REBUS-PC diffusion theory code, in 3D (triangular-z) geometry. Comparisons are made of fuel assembly power distributions and control blade worth vs. axial position, between REBUS-PC results and Monte Carlo predictions from the MCNP code. Results for the original HEU core at zero burnup are also compared with measurement. These two analysis methods showed remarkable agreement. Ongoing fuel cycle studies are summarized. A status report will be given as to results thus far that affect key design decisions. Future work plans and schedules to achieve completion of the conversion are presented. (author)

Newton, Thomas H. Jr. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Olson, Arne P.; Stillman, John A. [RERTR Program, Argonne National Laboratory, Argonne, IL 60439 (United States)

2008-07-15T23:59:59.000Z

5

Analyses for conversion of the Georgia Tech Research Reactor from HEU to LEU fuel  

SciTech Connect

This document presents information concerning: analyses for conversion of the Georgia Tech Research Reactor from HEU to LEU; changes to technical specifications mandated by the conversion of the GTRR to low enrichment fuel; changes in the Safety Analysis Report mandated by the conversion of the GTRR to low enrichment fuel; and copies of all changed pages of the SAR and the technical specifications.

Matos, J.E.; Mo, S.C.; Woodruff, W.L.

1992-09-01T23:59:59.000Z

6

A Review of Previous Research in Direct Energy Conversion Fission Reactors  

DOE Green Energy (OSTI)

From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this day, but there have been no recent significant programs to develop the technology.

DUONG,HENRY; POLANSKY,GARY F.; SANDERS,THOMAS L.; SIEGEL,MALCOLM D.

1999-09-22T23:59:59.000Z

7

Leu conversion status of U.S. research reactors: September 1996  

SciTech Connect

At the request of the Department of Energy, the RERTR Program has summarized the conversion status of research and test reactors in the United States and has made estimates of the uranium densities that would be needed to convert the reactors with power levels greater than or equal to 1 MW from Highly Enriched Uranium (HEU) (greater than or equal to 20% U-235) to Lightly Enriched Uranium (LEU) (less than 20% U-235) fuels. Detailed conversion studies for each of the reactors need to be completed in order to establish the feasibility of using LEU fuels.

Matos, J.E.

1996-09-01T23:59:59.000Z

8

Thermal hydraulic limits analysis for the MIT Research Reactor low enrichment uranium core conversion using statistical propagation of parametric uncertainties  

E-Print Network (OSTI)

The MIT Research Reactor (MITR) is evaluating the conversion from highly enriched uranium (HEU) to low enrichment uranium (LEU) fuel. In addition to the fuel element re-design from 15 to 18 plates per element, a reactor ...

Chiang, Keng-Yen

2012-01-01T23:59:59.000Z

9

Neutronic safety parameters and transient analyses for potential LEU conversion of the Budapest Research Reactor.  

SciTech Connect

An initial safety study for potential LEU conversion of the Budapest Research Reactor was completed. The study compares safety parameters and example transients for reactor cores with HEU and LEU fuels. Reactivity coefficients, kinetic parameters and control rod worths were calculated for cores with HEU(36%) UAl alloy fuel and UO{sub 2}-Al dispersion fuel, and with LEU (19.75%)UO{sub 2}-Al dispersion fuel that has a uranium density of about 2.5 g/cm{sup 3}. A preliminary fuel conversion plan was developed for transition cores that would convert the BRR from HEU to LEU fuel after the process is begun.

Pond, R. B.; Hanan, N. A.; Matos, J. E.; Maraczy, C.

1999-09-27T23:59:59.000Z

10

Analyses for conversion of the Georgia Tech Research Reactor from HEU to LEU fuel  

SciTech Connect

The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. Results of design and safety analyses performed by the RERTR Program at the Argonne National Laboratory for LEU conversion of the GTRR are summarized. Only those parameters which could change as a result of replacing the fuel are addressed. The performance of the reactor and all safety margins with LEU fuel are expected to be about the same as those with the current HEU fuel.

Matos, J.E.; Mo, S.C.; Woodruff, W.L.

1992-01-01T23:59:59.000Z

11

Analyses for conversion of the Georgia Tech Research Reactor from HEU to LEU fuel  

Science Conference Proceedings (OSTI)

The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. Results of design and safety analyses performed by the RERTR Program at the Argonne National Laboratory for LEU conversion of the GTRR are summarized. Only those parameters which could change as a result of replacing the fuel are addressed. The performance of the reactor and all safety margins with LEU fuel are expected to be about the same as those with the current HEU fuel.

Matos, J.E.; Mo, S.C.; Woodruff, W.L.

1992-12-31T23:59:59.000Z

12

Preliminary neutronics calculations for conversion of the Tehran research reactor core from HEU to LEU fuel  

SciTech Connect

The 5-MW highly enriched uranium (HEU)-fueled Tehran Research Reactor is considered for conversion to high-density, low-enriched uranium (LEU) fuel. A preliminary neutronics calculation is performed as part of the conversion goal. In this study, two cores are considered: the HEU reference core and a proposed LEU core similar to the reference core, and a proposed LEU core similar to the reference core, using standardized U[sub 3]Si[sub 2] plates with the option of different [sup 235]U loadings. Various possibilities are investigated for the conversion of HEU to LEU fuel elements with 20% enriched [sup 235]U loadings of 207 to 297 g [sup 235]U/element. For the same equilibrium cycle length, the fuels are compared for flux, power distribution, burnup, and reactivity.

Nejat, S.M.R. (McMaster Univ., Hamilton, Ontario (Canada). Dept. of Engineering Physics.)

1993-08-01T23:59:59.000Z

13

A neutronic feasibility study for LEU conversion of the Budapest research reactor.  

SciTech Connect

A neutronic feasibility study for conversion of the Budapest Research Reactor (BRR) from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with the KFKI Atomic Energy Research Institute in Hungary. Comparisons were made of the reactor performance with the current HEU (36%) fuel and with a proposed LEU (19.75%) fuel. Cycle lengths, thermal neutron fluxes, and rod worths were calculated in equilibrium-type cores for each type of fuel. Relative to the HEU fuel, the LEU fuel has up to a 50% longer fuel cycle length, but a 7-10% smaller thermal neutron flux in the experiment locations. The rod worths are smaller with the LEU fuel, but are still large enough to easily satisfy the BRR shutdown margin criteria. Irradiation testing of four VVR-M2 LEU fuel assemblies that are nearly the same as the proposed BRR LEU fuel assemblies is currently in progress at the Petersburg Nuclear Physics Institute.

Pond, R. B.

1998-10-16T23:59:59.000Z

14

Thermal-hydraulic calculations for the conversion to LEU of a research reactor core  

SciTech Connect

The thermal-hydraulic analysis performed for the needs of the conversion of the open pool 5MW Greek Research Reactor (GRR-1) to a pure Low Enrichment (LEU) configuration is presented. The methodology was based on a complete set of neutronic calculations performed for the new core configuration, in compliance with pre-defined Operation Limiting Conditions. The hottest channel analysis approach was adopted, and peaking factors were used to account for fabrication or measuring uncertainties. Calculations were carried out using the numerical codes NATCON, PLTEMP and PARET provided by Argonne National Laboratory (ANL). Two main different classes of conditions were considered, namely i) steady state normal operating conditions and ii) transient cases related to accidental events including reactivity feedback effects. For steady state operating conditions the behaviour of the new configuration was examined both for forced and natural convection cooling modes. Transient calculations considered several initiating events including reactivity insertion accidents (slow or fast reactivity insertion) and total or partial loss-of-flow accidents, i.e. in accordance to guidelines provided by the IAEA for research Reactors. (author)

Grigoriadis, D. [National Center for Scientific Research 'DEMOKRITOS', 153 10 Aghia Paraskevi (Greece); Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678 (Cyprus); Varvayanni, M.; Catsaros, N.; Stakakis, E. [National Center for Scientific Research 'DEMOKRITOS', 153 10 Aghia Paraskevi (Greece)

2008-07-15T23:59:59.000Z

15

A neutronic feasibility study for LEU conversion of the WWR-SM research reactor in Uzbekistan.  

SciTech Connect

The WWR-SM research reactor in Uzbekistan has operated at 10 MW since 1979, using Russian-supplied IRT-3M fuel assemblies containing 90% enriched uranium. Burnup tests of three full-sized IRT-3M FA with 36% enrichment were successfully completed to a burn up of about {approximately}50% in 1987-1989. In August 1998, four IRT-3M FA with 36% enriched uranium were loaded into the core to initiate conversion of the entire core to 36% enriched fuel. This paper presents the results of equilibrium fuel cycle comparisons of the reactor using HEU (90%) and HEU (36%) IRT-3M fuel and compares results with the performance of IRT-4M FA containing LEU (19.75%). The results show that an LEU (19.75%) density of 3.8 g/cm{sup 3} is required to match the cycle length of the HEU (90%) core and an LEU density 3.9 g/cm{sup 3} is needed to match the cycle length of the HEU (36%) core.

Rakhmanov, A.

1998-10-19T23:59:59.000Z

17

Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion  

SciTech Connect

Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

2012-09-30T23:59:59.000Z

18

A neutronics feasibility study for the LEU conversion of Poland's Maria research reactor.  

SciTech Connect

The MARIA reactor is a high-flux multipurpose research reactor which is water-cooled and moderated with both beryllium and water. Standard HEU (80% {sup 235}U)fuel assemblies consist of six concentric fuel tubes of a U-Al alloy clad in aluminum. Although the inventory of HEU (80%) fuel is nearly exhausted, a supply of highly-loaded 36%-enriched fuel assemblies is available at the reactor site. Neutronic equilibrium studies have been made to determine the relative performance of fuels with enrichments of 80%, 36% and 19.7%. These studies indicate that LEU (19.7%) densities of about 2.5 gU/cm{sup 3} and 3.8 gU/cm{sup 3} are required to match the performance of the MARIA reactor with 80%-enriched and with 36%-enriched fuels, respectively.

Bretscher, M. M.

1998-10-14T23:59:59.000Z

19

Expanding and optimizing fuel management and data analysis capabilities of MCODE-FM in support of MIT research reactor (MITR-II) LEU conversion  

E-Print Network (OSTI)

Studies are underway in support of the MIT research reactor (MITR-II) conversion from high enriched Uranium (HEU) to low enriched Uranium (LEU), as required by recent non-proliferation policy. With the same core configuration ...

Horelik, Nicholas E. (Nicholas Edward)

2012-01-01T23:59:59.000Z

20

Development of a core design optimization tool and analysis in support of the planned LEU conversion of the MIT Research Reactor (MITR-II)  

E-Print Network (OSTI)

The MIT Research Reactor (MITR-II) is currently undergoing analysis for the planned conversion from high enriched uranium (HEU) to low enriched uranium (LEU), as part of a global effort to minimize the availability of ...

Connaway, Heather M. (Heather Moira)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A neutronic feasibility study for LEU conversion of the Brookhaven Medical Research Reactor (BMRR).  

SciTech Connect

A neutronic feasibility study for converting the Brookhaven Medical Research Reactor from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with Brookhaven National Laboratory. Two possible LEU cores were identified that would provide nearly the same neutron flux and spectrum as the present HEU core at irradiation facilities that are used for Boron Neutron Capture Therapy and for animal research. One core has 17 and the other has 18 LEU MTR-type fuel assemblies with uranium densities of 2.5g U/cm{sup 3} or less in the fuel meat. This LEU fuel is fully-qualified for routine use. Thermal hydraulics and safety analyses need to be performed to complete the feasibility study.

Hanan, N. A.

1998-01-14T23:59:59.000Z

22

A neutronic feasibility study for LEU conversion of the IR-8 research reactor.  

SciTech Connect

Equilibrium fuel cycle comparisons for the IR-8 research reactor were made for HEU(90%), HEU(36%), and LEU (19.75%) fuel assembly (FA) designs using three dimensional multi-group diffusion theory models benchmarked to detailed Monte Carlo models of the reactor. Comparisons were made of changes in reactivity, cycle length, average {sup 235}U discharge burnup, thermal neutron flux, and control rod worths for the 90% and 36% enriched IRT-3M fuel assembly and the 19.75% enriched IRT-4M fuel assembly with the same fuel management strategy. The results of these comparisons showed that a uranium density of 3.5 g/cm{sup 3} in the fuel meat would be required in the LEU IRT-4M fuel assembly to match the cycle length of the HEU(90%) IRT-3M FA and an LEU density of 3.7 g/cm{sup 3} is needed to match the cycle length of the HEU(36%) IRT-3M FA.

Deen, J. R.

1998-10-22T23:59:59.000Z

23

Neutronic safety and transient analyses for potential LEU conversion of the IR-8 research reactor.  

SciTech Connect

Kinetic parameters, isothermal reactivity feedback coefficients and three transients for the IR-8 research reactor cores loaded with either HEU(90%), HEU(36%), or LEU (19.75%) fuel assemblies (FA) were calculated using three dimensional diffusion theory flux solutions, RELAP5/MOD3.2 and PARET. The prompt neutron generation time and effective delayed neutron fractions were calculated for fresh and beginning-of-equilibrium-cycle cores. Isothermal reactivity feedback coefficients were calculated for changes in coolant density, coolant temperature and fuel temperature in fresh and equilibrium cores. These kinetic parameters and reactivity coefficients were used in transient analysis models to predict power histories, and peak fuel, clad and coolant temperatures. The transients modeled were a rapid and slow loss-of-flow, a slow reactivity insertion, and a fast reactivity insertion.

Deen, J. R.; Hanan, N. A.; Smith, R. S.; Matos, J. E.; Egorenkov, P. M.; Nasonov, V. A.

1999-09-27T23:59:59.000Z

24

Thermal hydraulics analysis of the MIT research reactor in support of a low enrichment uranium (LEU) core conversion.  

E-Print Network (OSTI)

??The MIT research reactor (MITR) is converting from the existing high enrichment uranium (HEU) core to a low enrichment uranium (LEU) core using a high-density… (more)

Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

25

Brookhaven Medical Research Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Research Reactor BMRR The last of the Lab's reactors, the Brookhaven Medical Research Reactor (BMRR), was shut down in December 2000. The BMRR was a three megawatt...

26

Thermal hydraulics analysis of the MIT research reactor in support of a low enrichment uranium (LEU) core conversion  

E-Print Network (OSTI)

The MIT research reactor (MITR) is converting from the existing high enrichment uranium (HEU) core to a low enrichment uranium (LEU) core using a high-density monolithic UMo fuel. The design of an optimum LEU core for the ...

Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

27

Research reactors - an overview  

SciTech Connect

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

28

US, Russian Federation Sign Joint Statement on Reactor Conversion |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion June 26, 2012 - 12:00pm Addthis News Media Contact (202) 586-4940 This release is cross-posted from NNSA.energy.gov. MOSCOW - The U.S. and Russian Federation jointly announced today that the first stage of work defined in the Implementing Agreement between the Russian State Corporation for Atomic Energy (Rosatom) and the Department of Energy (DOE) Regarding Cooperation in Concluding Feasibility Studies of the Conversion of Russian Research Reactors of Dec. 7, 2010, has been completed. The announcement comes at the close of the most recent session of the Working Group on Nuclear Energy and Nuclear Security under the U.S.-Russia bilateral Presidential Commission, co-chaired by Daniel

29

US, Russian Federation Sign Joint Statement on Reactor Conversion |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion June 26, 2012 - 12:00pm Addthis News Media Contact (202) 586-4940 This release is cross-posted from NNSA.energy.gov. MOSCOW - The U.S. and Russian Federation jointly announced today that the first stage of work defined in the Implementing Agreement between the Russian State Corporation for Atomic Energy (Rosatom) and the Department of Energy (DOE) Regarding Cooperation in Concluding Feasibility Studies of the Conversion of Russian Research Reactors of Dec. 7, 2010, has been completed. The announcement comes at the close of the most recent session of the Working Group on Nuclear Energy and Nuclear Security under the U.S.-Russia bilateral Presidential Commission, co-chaired by Daniel

30

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

Science Conference Proceedings (OSTI)

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

31

Reactor technology: power conversion systems and reactor operation and maintenance  

SciTech Connect

The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He/sup 3/ reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored.

Powell, J.R.

1977-01-01T23:59:59.000Z

32

Developing fuel management capabilities based on coupled Monte Carlo depletion in support of the MIT Research Reactor (MITR) conversion  

E-Print Network (OSTI)

Pursuant to a 1986 NRC ruling, the MIT Reactor (MITR) is planning on converting from the use of highly enriched uranium (HEU) to low enriched uranium (LEU) for fuel. Prior studies have shown that the MITR will be able to ...

Romano, Paul K. (Paul Kollath)

2009-01-01T23:59:59.000Z

33

Cross section generation strategy for high conversion light water reactors  

E-Print Network (OSTI)

High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

Herman, Bryan R. (Bryan Robert)

2011-01-01T23:59:59.000Z

34

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

35

Novel reactor configuration for synthesis gas conversion to alcohols  

SciTech Connect

Research continued on the conversion of synthesis gas to alcohols and reactor configuration. Objectives for this quarter: the project stated on October 1, 1989 and according to the Task Schedule provided in the original work breakdown schedule, Task I was to be completed in the first quarter and Task II to be started. Task I consisted of construction of the slurry reactor set-up to be used in Task IV for determination of the reactor kinetics and procurement of the parts for automation equipment, separators, computer activated parts etc. for automation of the trickle bed rector and GC equipment. Task II consisted of standardization and automation of GC analysis protocols. 1 fig.

Akgerman, A.; Anthony, R.G. (Texas A and M Univ., College Station, TX (USA). Dept. of Chemical Engineering)

1989-01-01T23:59:59.000Z

36

Validation of the MULCH-II code for thermal-hydraulic safety analysis of the MIT research reactor conversion to LEU  

SciTech Connect

An in-house thermal hydraulics code was developed for the steady-state and loss of primary flow analysis of the MIT Research Reactor (MITR). This code is designated as MULti-CHannel-II or MULCH-II. The MULCH-II code is being used for the MITR LEU conversion design study. Features of the MULCH-II code include a multi-channel analysis, the capability to model the transition from forced to natural convection during a loss of primary flow transient, and the ability to calculate safety limits and limiting safety system settings for licensing applications. This paper describes the validation of the code against PLTEMP/ANL 3.0 for steady-state analysis, and against RELAP5-3D for loss of primary coolant transient analysis. Coolant temperature measurements obtained from loss of primary flow transients as part of the MITR-II startup testing were also used for validating this code. The agreement between MULCH-II and the other computer codes is satisfactory. (author)

Ko, Y.-C. [Nuclear Science and Engineering Department, MIT, Cambridge, MA 02139 (United States); Hu, L.-W. [Nuclear Reactor Laboratory, MIT, Cambridge, MA 02139 (United States)], E-mail: lwhu@mit.edu; Olson, Arne P.; Dunn, Floyd E. [RERTR Program, Argonne National Laboratory, Argonne, IL 60439 (United States)

2008-07-15T23:59:59.000Z

37

Validation of the MULCH-II code for thermal-hydraulic safety analysis of the MIT research reactor conversion to LEU.  

SciTech Connect

An in-house thermal hydraulics code was developed for the steady-state and loss of primary flow analysis of the MIT Research Reactor (MITR). This code is designated as MULti-CHannel-II or MULCH-II. The MULCH-II code is being used for the MITR LEU conversion design study. Features of the MULCH-II code include a multi-channel analysis, the capability to model the transition from forced to natural convection during a loss of primary flow transient, and the ability to calculate safety limits and limiting safety system settings for licensing applications. This paper describes the validation of the code against PLTEMP/ANL 3.0 for steady-state analysis, and against RELAP5-3D for loss of primary coolant transient analysis. Coolant temperature measurements obtained from loss of primary flow transients as part of the MITR-II startup testing were also used for validating this code. The agreement between MULCH-II and the other computer codes is satisfactory.

Ko, Y. C.; Hu, L. W.; Olson, A. P.; Dunn, F. E.; Nuclear Engineering Division; MIT

2007-01-01T23:59:59.000Z

38

Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator...  

National Nuclear Security Administration (NNSA)

Research ReactorDomestic Research Reactor Receipt Coordinator, Savannah River Nuclear Solutions | National Nuclear Security Administration Our Mission Managing the Stockpile...

39

Implications of Fast Reactor Transuranic Conversion Ratio  

SciTech Connect

Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

2010-11-01T23:59:59.000Z

40

Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Reactor Conversions: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Direct Energy Conversion for Fast Reactors  

DOE Green Energy (OSTI)

Thermoelectric generators (TEG) are a well-established technology for compact low power output long-life applications. Solid state TEGs are the technology of choice for many space missions and have also been used in remote earth-based applications. Since TEGs have no moving parts and can be hermetically sealed, there is the potential for nuclear reactor power systems using TEGs to be safe, reliable and resistant to proliferation. Such power units would be constructed in a manner that would provide decades of maintenance-free operation, thereby minimizing the possibility of compromising the system during routine maintenance operations. It should be possible to construct an efficient direct energy conversion cascade from an appropriate combination of solid-state thermoelectric generators, with each stage in the cascade optimized for a particular range of temperature. Performance of cascaded thermoelectric devices could be further enhanced by exploitation of compositionally graded p-n couples, as well as radial elements to maximize utilization of the heat flux. The Jet Propulsion Laboratory in Pasadena has recently reported segmented unicouples that operate between 300 and 975 K and have conversion efficiencies of 15 percent [Caillat, 2000]. TEGs are used in nuclear-fueled power sources for space exploration, in power sources for the military, and in electrical generators on diesel engines. Second, there is a wide variety of TE materials applicable to a broad range of temperatures. New materials may lead to new TEG designs with improved thermoelectric properties (i.e. ZT approaching 3) and significantly higher efficiencies than in designs using currently available materials. Computational materials science (CMS) has made sufficient progress and there is promise for using these techniques to reduce the time and cost requirements to develop such new TE material combinations. Recent advances in CMS, coupled with increased computational power afforded by the Accelerated Strategic Computing Initiative (ASCI), should improve the speed and decrease the cost of developing new TEGs. The system concept to be evaluated is shown in Figure 1. Liquid metal is used to transport heat away from the nuclear heat source and to the TEG. Air or liquid (water or a liquid metal) is used to transport heat away from the cold side of the TEG. Typical reactor coolants include sodium or eutectic mixtures of lead-bismuth. These are coolants that have been used to cool fast neutron reactors. Heat from the liquid metal coolant is rejected through the thermal electric materials, thereby producing electrical power directly. The temperature gradient could extend from as high as 1300 K to 300 K, although fast reactor structural materials (including those used to clad the fuel) currently used limit the high temperature to about 825K.

Brown, N.; Cooper, J.; Vogt, D.; Chapline, G.; Turchi, P.; Barbee Jr., T.; Farmer, J.

2000-07-01T23:59:59.000Z

42

ADMINISTRATION OF ORNL RESEARCH REACTORS  

SciTech Connect

Organization of the ORNL Operations division for administration of the Oak Ridge Research Reactor, the Low Intensity Testing Reactor, and the Oak Ridge Graphite Reactor is described. (J.R.D.)

Casto, W.R.

1962-08-20T23:59:59.000Z

43

Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear Security Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Domestic U.S. Reactor Conversions: Fact Sheet Fact Sheet Domestic U.S. Reactor Conversions: Fact Sheet Mar 23, 2012 The National Nuclear Security Administration (NNSA) helps convert research

44

NREL: Biomass Research - Biochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

45

GLOBAL THREAT REDUCTION INITIATIVE REACTOR CONVERSION PROGRAM: STATUS AND CURRENT PLANS  

SciTech Connect

The U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Reactor Conversion Program supports the minimization, and to the extent possible, elimination of the use of high enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors and radioisotope production processes to the use of low enriched uranium (LEU). The Reactor Conversion Program is a technical pillar of the NNSA Global Threat Reduction Initiative (GTRI) which is a key organization for implementing U.S. HEU minimization policy and works to reduce and protect vulnerable nuclear and radiological material domestically and abroad.

Staples, Parrish A.; Leach, Wayne; Lacey, Jennifer M.

2009-10-07T23:59:59.000Z

46

Conversion and standardization of US university reactor fuels using LEU, status 1989  

SciTech Connect

In 1986, the US Department of Energy initiated a program to change the fuel used in most of the US university research reactors using HEU (93%) to LEU({lt}20{percent}) in order to minimize the risk of theft or diversion of this weapons-useable material. An important consideration in the LEU conversion planning process has been the desire to standardize the fuels that are used and to enhance the performance and utilization of the reactors. This paper describes the current status of this conversion process and the plans and schedules to complete an orderly transition from HEU to LEU fuel in most of these reactors. To date, three university reactors have been converted to LEU fuel, completed safety documentation for three reactors is being evaluated by the USNRC, and work on the safety documentation for six reactors is in progress. 13 refs., 9 tabs.

Brown, K.R.; Matos, J.E. (EG and G Idaho, Inc., Idaho Falls, ID (USA); Argonne National Lab., IL (USA))

1989-01-01T23:59:59.000Z

47

University Reactor Conversion Lessons Learned Workshop for the University of Florida  

Science Conference Proceedings (OSTI)

The Department of Energy’s (DOE) Idaho National Laboratory (INL), under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at the University of Florida. This project was successfully completed through an integrated and collaborative effort involving the INL, Argonne National Laboratory (ANL), DOE (Headquarters and Field Office), the Nuclear Regulatory Commission, the Universities, and contractors involved in analyses, fuel design and fabrication, and SNF shipping and disposition. With the work completed with these two universities, and in anticipation of other impending conversion projects, INL convened and engaged the project participants in a structured discussion to capture lessons learned. The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the reactor conversions so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges.

Eric C. Woolstenhulme; Dana M. Meyer

2007-04-01T23:59:59.000Z

48

Preliminary Advanced Test Reactor LEU Fuel Conversion Feasibility Study  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density, high neutron flux research reactor operating in the United States. The ATR has large irradiation test volumes located in high flux areas. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2–s. As a result, the ATR is a representative candidate for assessing the necessary modifications and evaluating the subsequent operating effects associated with low-enriched uranium (LEU) fuel conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed for the fuel cycle burnup comparison analysis. Using the current HEU 235U enrichment of 93.0 % as a baseline, an analysis can be performed to determine the LEU uranium density and 235U enrichment required in the fuel meat to yield an equivalent Keff between the HEU core and a LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the 235U loading in the LEU core, such that the differences in Keff between the HEU and LEU core can be minimized for operation at 150 EFPD with a total core power of 115 MW. The Monte-Carlo with ORIGEN-2 (MCWO) method was used to calculate Keff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the LEU core conversion designer should be able to optimize the 235U content of each fuel plate, so that the Keff and relative radial fission heat flux profile are similar to the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Upgraded Final Safety Analysis Report (UFSAR) safety requirements, a further study will be required in order to investigate the detailed radial, axial, and azimuthal heat flux profile variations versus EFPDs.

G. S. Chang; R. G. Ambrosek

2005-11-01T23:59:59.000Z

49

NREL: Biomass Research - Biochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

50

NREL: Biomass Research - Thermochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

51

Advanced Reactor Research and Development Funding Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy...

52

MHD power conversion system for NERVA reactor  

Science Conference Proceedings (OSTI)

Optimized linear magnetohydrodynamic (MHD) systems to produce 200 MWe for 1000 seconds are defined. For the specific mission envisioned, a mass flow of 45.36 Kg/sec (100 lbs/sec) of hydrogen is available to the system. Westinghouse NERVA reactor technology can heat this mass flow of hydrogen to 2550 K at a pressure of 12 atm. This hydrogen flow is assumed to be seeded with cesium to obtain the required MHD generator conductivity. For each MHD system concept considered, the MHD generator design was optimized in terms of operating Mach number, load parameter, and cesium seed fraction. The simplest concept, an open-cycle MHD system, is optimized by minimizing the total magnet plus cesium seed mass. The resulting magnet and magnet plus seed mass are 44092 and 54143 Kg respectively. The second concept considered was an open-cycle MHD system with seed recovery and reuse. It is optimized by minimizing the magnet mass. The resulting magnet mass is 40110 Kg. A third concept, a closed-cycle MHD system, was also considered. If only equilibrium conductivity is considered, cesium seeded hydrogen is shown to be the more attractive than cesium seeded helium, and the optimum generator would be identical to that for the open-cycle MHD system with seed recovery.

Seikel, G.R.; Condit, W.C.

1985-01-01T23:59:59.000Z

53

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JUNE 1, 2001 THROUGH SEPTEMBER 30, 2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JUNE 1, 2001 THROUGH SEPTEMBER 30, 2001

L.C. BROWN

2001-09-30T23:59:59.000Z

54

Direct Energy Conversion Fission Reactor for the period December 1, 1999 through February 29, 2000  

DOE Green Energy (OSTI)

OAK B135 Direct Energy Conversion Fission Reactor for the period December 1, 1999 through February 29, 2000

Brown, L.C.

2000-03-20T23:59:59.000Z

55

2012 Annual Report Research Reactor Infrastructure Program  

SciTech Connect

The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

Douglas Morrell

2012-11-01T23:59:59.000Z

56

Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs  

SciTech Connect

The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab.

Harris, D.R.; Matos, J.E.; Young, H.H.

1985-01-01T23:59:59.000Z

57

Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)  

DOE Green Energy (OSTI)

The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

Pablo Rubiolo, Principal Investigator

2003-03-21T23:59:59.000Z

58

International Research Reactor Decommissioning Project  

SciTech Connect

Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

Leopando, Leonardo [Philippine Nuclear Research Institute, Quezon City (Philippines); Warnecke, Ernst [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

59

10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion  

SciTech Connect

The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

2012-05-01T23:59:59.000Z

60

Reactor sharing experience at the MIT research reactor  

SciTech Connect

This paper provides a number of examples of how educational institutions in the Boston area and elsewhere that do not possess nuclear reactors for training and research purposes have successfully enriched their programs through utilization of the Massachusetts Institute of Technology Research Reactor (MITR) with assistance from the Reactor Sharing Program of the US Department of Energy (DOE).

Clark, L. Jr.; Fecych, W.; Young, H.H.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ocean energy conversion systems annual research report  

DOE Green Energy (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

62

Research Reactor Conversion | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

63

Progress report on the conversion of the Purdue University reactor, PUR-1, from HEU to LEU  

Science Conference Proceedings (OSTI)

The effort for the conversion of the Purdue University Research Reactor, PUR-1, began in August, 2005, and will be completed in late 2007. Initial low-enriched uranium (LEU) assemblies will be inserted into the core in September, and the final core load is expected to be completed by October 2007. This paper summarizes the work performed to date, and the expectations for the work remaining to complete the project. The PUR-1 conversion has been a collaborative effort with Purdue, Idaho National Laboratory, Argonne National Laboratory participating under the auspices of the U.S. Department of Energy-Global Threat Reduction. Construction of PUR-1 began in 1961, and it was initially licensed by the U.S. Nuclear Regulatory Commission in August of 1962 for operation at 1kW. The primary missions of the reactor are training, education and research. Each graduate of the School of Nuclear Engineering at Purdue University will have operated the reactor in two or more separate experiments as part of their curriculum. Students were used extensively throughout all phases of this conversion project, providing additional learning opportunities to complete their education experience. (author)

Jenkins, J.H.; Merritt, E.C.; Revis, B. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)

2008-07-15T23:59:59.000Z

64

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network (OSTI)

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

65

Design of passive decay heat removal system for the lead cooled flexible conversion ratio fast reactor  

E-Print Network (OSTI)

The lead-cooled flexible conversion ratio fast reactor shows many benefits over other fast-reactor designs; however, the higher power rating and denser primary coolant present difficulties for the design of a passive decay ...

Whitman, Joshua (Joshua J.)

2007-01-01T23:59:59.000Z

66

Decommssioning Of Research Reactor: Problemsand Experience  

E-Print Network (OSTI)

The study of the preparation for decommissioning the Research Reactor in Salaspils (Latvia) and the experience of decommissioning the Research Reactor in Sosny (Belarus) show that the problem of decommissioning research reactors is acute for countries that have no NPPs or their own nuclear industry. It also is associated with regulatory framework, planning and design, dismantling technologies, decontamination of radioactive equipment and materials, spent fuel and radioactive waste management, etc. 1. INTRODUCTION According to the IAEA research reactor database, there are about 300 research reactors worldwide [1]. At present over 30% of them have lifetimes of more than 35 years, 60% of more than 25 years. After the Chernobyl accident, significant efforts were made by many countries to modernize old research reactors aiming, first of all, at ensuring safe operation. However, a large number of aging research reactors will be facing shutdown in the near future. The problem of decommis...

Alexander Mikhalevich

2000-01-01T23:59:59.000Z

67

RERTR 2009 (Reduced Enrichment for Research and Test Reactors)  

SciTech Connect

The U.S. Department of Energy/National Nuclear Security Administration's Office of Global Threat Reduction in cooperation with the China Atomic Energy Authority and International Atomic Energy Agency hosted the 'RERTR 2009 International Meeting on Reduced Enrichment for Research and Test Reactors.' The meeting was organized by Argonne National Laboratory, China Institute of Atomic Energy and Idaho National Laboratory and was held in Beijing, China from November 1-5, 2009. This was the 31st annual meeting in a series on the same general subject regarding the conversion of reactors within the Global Threat Reduction Initiative (GTRI). The Reduced Enrichment for Research and Test Reactors (RERTR) Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets.

Totev, T.; Stevens, J.; Kim, Y. S.; Hofman, G.; Matos, J.; Hanan, N.; Garner, P.; Dionne, B.; Olson, A.; Feldman, E.; Dunn, F.; Nuclear Engineering Division; Atomic Research Center; Inst. of Nuclear Physics; LLNL; INL; Korea Atomic Energy Research Inst.; Comisi?n Nacional de Energ?a At?mica; Nuclear Reactor Lab.; Inst. of Atomic Energy-Poland; AECL-Canada; Hungarian Academy of Sciences KFKI Atomic Energy Research Inst.; Japan Atomic Energy Agency; Nuclear Power Inst. of China; Kyoto Univ. Research Reactor Inst.

2010-03-01T23:59:59.000Z

68

BNL | Our History: Reactors as Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

> See also: Accelerators > See also: Accelerators Brookhaven History: Using Reactors as Research Tools BGRR Brookhaven Graphite Research Reactor The Brookhaven Graphite Research Reactor (BGRR) was the Laboratory's first big machine and the first peace-time reactor built in the United States following World War II. The reactor's primary mission was to produce neutrons for scientific experimentation and to refine reactor technology. At the time, the BGRR could accommodate more simultaneous experiments than any other reactor. Scientists and engineers from every corner of the U.S. came to use the reactor, which was not only a source of neutrons for experiments, but also an excellent training facility. Researchers used the BGRR's neutrons as tools for studying atomic nuclei and the structure of solids, and to investigate many physical, chemical and

69

Research Reactors Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

is responsible for operation of the High Flux Isotope Reactor. Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the United States,...

70

History of Research Reactors at Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

History of Research Reactors at Brookhaven History of Research Reactors at Brookhaven Brookhaven National Laboratory has three nuclear reactors on its site that were used for scientific research. The reactors are all shut down, and the Laboratory is addressing environmental issues associated with their operations. photo of BGRR Brookhaven Graphite Research Reactor - Beginning operations in 1950, the graphite reactor was used for research in medicine, biology, chemistry, physics and nuclear engineering. One of the most significant achievements at this facility was the development of technetium-99m, a radiopharmaceutical widely used to image almost any organ in the body. The graphite reactor was shut down in 1969. Parts of it have been decommissioned, with the remainder to be addressed by 2011. More history

71

Recovery of Carbon Dioxide in Advanced Fossil Energy Conversion Processes Using a Membrane Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide in Advanced Fossil Energy Conversion Processes Carbon Dioxide in Advanced Fossil Energy Conversion Processes Using a Membrane Reactor Ashok S. Damle * Research Triangle Institute P.O. Box 12194 Research Triangle Park, NC 27709 Phone: (919) 541-6146 Fax: (919) 541-6965 E-mail: adamle@rti.org Thomas P. Dorchak National Energy Technology Laboratory P.O. Box 880, Mail Stop C04 Morgantown, WV 26507-0880 Phone: (304) 285-4305 E-mail: tdorch@netl.doe.gov Abstract Increased awareness of the global warming trend has led to worldwide concerns regarding "greenhouse gas" emissions, with CO 2 being the single greatest contributor to global warming. Fossil fuels (i.e., coal, oil, and natural gas) currently supply over 85% of the world's energy needs, and their utilization is the major source of the anthropogenic greenhouse gas emissions of

72

Biomass thermal conversion research at SERI  

DOE Green Energy (OSTI)

SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

1980-09-01T23:59:59.000Z

73

NREL: Biomass Research - Thermochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

74

Brookhaven Graphite Research Reactor | Environmental Restoration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Graphite Research Reactor(BGRR) BGRR Overview BGRR Complex Description Decommissioning Decision BGRR Complex Cleanup Actions BGRR Documents BGRR Science &...

75

FOREIGN RESEARCH AND POWER REACTOR PRELIMINARY LIST  

SciTech Connect

Foreign research and power reactors are tabulated. Nuclear power buildup goals are given for each nation on which information is available. (J.H.D.)

Ullmann, J.W.

1959-02-26T23:59:59.000Z

76

Cleanup at the Brookhaven Graphite Research Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphite Research Reactor placeholder Remotely operated robot known as a BROKK manipulator In April 2005, the Department of Energy (DOE), the Lab, and the regulatory agencies...

77

University Research Reactor Task Force to the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Research Reactor Task Force to the Nuclear Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel," universities, and other sources pertaining to university reactors including their research and training capabilities, costs to operate, and operating data, and * Provide DOE with clear, near-term recommendations as to actions that should be taken by the Federal Government and a long-term strategy to assure the continued operation of vital university reactor facilities in

78

DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT  

DOE Green Energy (OSTI)

The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R&D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented.

D. BELLER; G. POLANSKY; ET AL

2000-11-01T23:59:59.000Z

79

A neutronic feasibility study for LEU conversion of the high flux isotope reactor (HFIR).  

SciTech Connect

A neutronic feasibility study was performed to determine the uranium densities that would be required to convert the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) from HEU (93%) to LEU (<20%)fuel. The LEU core that was studied is the same as the current HEU core, except for potential changes in the design of the fuel plates. The study concludes that conversion of HFIR from HEU to LEU fuel would require an advanced fuel with a uranium density of 6-7 gU/cm{sup 3} in the inner fuel element and 9-10 gU/cm{sup 3} in the outer fuel element to match the cycle length of the HEU core. LEU fuel with uranium density up to 4.8 gU/cm{sup 3} is currently qualified for research reactor use. Modifications in fuel grading and burnable poison distribution are needed to produce an acceptable power distribution.

Mo, S. C.

1998-01-14T23:59:59.000Z

80

United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support  

SciTech Connect

The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

Douglas Morrell

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Investigation of the low enrichment conversion of the Texas A and M Nuclear Science Center Reactor  

SciTech Connect

The use of highly enriched uranium as a fuel research reactors is of concern due to the possibility of diversion for nuclear weapons applications. The Texas A M TRIGA reactor currently uses 70% enriched uranium in a FLIP (Fuel Life Improvement Program) fuel element manufactured by General Atomics. Thus fuel also contains 1.5 weight percent of erbium as a burnable poison to prolong useful core life. US university reactors that use highly enriched uranium will be required to covert to 20% or less enrichment to satisfy Nuclear Regulatory Commission requirements for the next core loading if the fuel is available. This investigation examined the feasibility of a material alternate to uranium-zirconium hydride for LEU conversion of a TRIGA reactor. This material is a beryllium oxide uranium dioxide based fuel. The theoretical aspects of core physics analyses were examined to assess the potential advantages of the alternative fuel. A basic model was developed for the existing core configuration since it is desired to use the present fuel element grid for the replacement core. The computing approach was calibrated to the present core and then applied to a core of BeO-UO{sub 2} fuel elements. Further calculations were performed for the General Atomics TRIGA low-enriched uranium zirconium hydride fuel.

Reuscher, J.A.

1988-01-01T23:59:59.000Z

82

Commercial application of thermionic conversion using a fusion reactor energy source. A preliminary assessment  

DOE Green Energy (OSTI)

A preliminary assessment of using thermionic conversion as a topping cycle for fusion reactors is presented. Because of the absence of restrictive temperature limitations for fusion-reactor blankets, fusion reactors may offer significant advantages, compared to fission reactors and fossil-fuel energy sources, for utilizing thermionic topping cycles. A system with a thermionic topping cycle and a conventional steam-turbine generator that utilizes the heat rejected by the thermionic converters is presented for illustration. This system consists of conceptual laser-fusion reactors with high-temperature radiating reactor blankets serving as heat sources for the thermionic topping cycle. The design concept appears to be equally adaptable to magnetically confined fusion reactors. For the example analyzed, net conversion efficiencies of combined thermionic and steam-turbine cycles are high, exceeding 50 percent for some values of the operating parameters, and the cost of producing low-voltage direct current for electrochemical processing is low.

Frank, T.G.; Kern, E.A.; Booth, L.A.

1977-01-01T23:59:59.000Z

83

Design, analysis and optimization of the power conversion system for the Modular Pebble Bed Reactor System  

E-Print Network (OSTI)

The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a GenIV nuclear system. The availability of controllable ...

Wang, Chunyun, 1968-

2003-01-01T23:59:59.000Z

84

Thermal hydraulic design and analysis of a large lead-cooled reactor with flexible conversion ratio  

E-Print Network (OSTI)

This thesis contributes to the Flexible Conversion Ratio Fast Reactor Systems Evaluation Project, a part of the Nuclear Cycle Technology and Policy Program funded by the Department of Energy through the Nuclear Energy ...

Nikiforova, Anna S., S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

85

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Conference Proceedings (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

86

Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report  

SciTech Connect

This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed.

Hauptman, H.M.; Petro, J.N.; Jacobi, O. [and others

1995-04-01T23:59:59.000Z

87

Relicensing of the MIT Research Reactor  

SciTech Connect

The Massachusetts Institute of Technology (MIT) Research Reactor (MITR) is owned and operated by MIT, a nonprofit university. The current reactor, MITR-II, is a 5-MW, light water-cooled and heavy water-moderated reactor that uses materials test reactor-type fuel. Documents supporting application to the U.S. Nuclear Regulatory Commission (NRC) for relicensing of MITR were submitted in July 1999. A power upgrade from 5 to 6 MW was also requested. The relicensed reactor (MITR-III) will be the third reactor operated by MIT. This paper describes MITR-I and MITR-II, and design options considered for MITR-III. Selected problems addressed during the relicensing studies are also described, namely core tank aging evaluation, neutronic analysis, thermal-hydraulic analysis, and step reactivity insertion analysis.

Lin-Wen Hu; John A. Bernard; Susan Tucker

2000-06-04T23:59:59.000Z

88

Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor System  

E-Print Network (OSTI)

technology and complies with all current codes and standards. Using the initial reference design, limiting. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion reactor design requirements...........................................39 2.5 Overall development path

89

Direct energy conversion in fission reactors: A U.S. NERI project  

DOE Green Energy (OSTI)

In principle, the energy released by a fission can be converted directly into electricity by using the charged fission fragments. The first theoretical treatment of direct energy conversion (DEC) appeared in the literature in 1957. Experiments were conducted over the next ten years, which identified a number of problem areas. Research declined by the late 1960's due to technical challenges that limited performance. Under the Nuclear Energy Research Initiative the authors are determining if these technical challenges can be overcome with todays technology. The authors present the basic principles of DEC reactors, review previous research, discuss problem areas in detail, and identify technological developments of the last 30 years that can overcome these obstacles. As an example, the fission electric cell must be insulated to avoid electrons crossing the cell. This insulation could be provided by a magnetic field as attempted in the early experiments. However, from work on magnetically insulated ion diodes they know how to significantly improve the field geometry. Finally, a prognosis for future development of DEC reactors will be presented .

SLUTZ,STEPHEN A.; SEIDEL,DAVID B.; POLANSKY,GARY F.; ROCHAU,GARY E.; LIPINSKI,RONALD J.; BESENBRUCH,G.; BROWN,L.C.; PARISH,T.A.; ANGHAIE,S.; BELLER,D.E.

2000-05-30T23:59:59.000Z

90

Development of CFD models to support LEU Conversion of ORNL s High Flux Isotope Reactor  

SciTech Connect

The US Department of Energy s National Nuclear Security Administration (NNSA) is participating in the Global Threat Reduction Initiative to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. As an integral part of one of NNSA s subprograms, Reduced Enrichment for Research and Test Reactors, HFIR is being converted from the present HEU core to a low enriched uranium (LEU) core with less than 20% of U-235 by weight. Because of HFIR s importance for condensed matter research in the United States, its conversion to a high-density, U-Mo-based, LEU fuel should not significantly impact its existing performance. Furthermore, cost and availability considerations suggest making only minimal changes to the overall HFIR facility. Therefore, the goal of this conversion program is only to substitute LEU for the fuel type in the existing fuel plate design, retaining the same number of fuel plates, with the same physical dimensions, as in the current HFIR HEU core. Because LEU-specific testing and experiments will be limited, COMSOL Multiphysics was chosen to provide the needed simulation capability to validate against the HEU design data and previous calculations, and predict the performance of the proposed LEU fuel for design and safety analyses. To achieve it, advanced COMSOL-based multiphysics simulations, including computational fluid dynamics (CFD), are being developed to capture the turbulent flows and associated heat transfer in fine detail and to improve predictive accuracy [2].

Khane, Vaibhav B [ORNL; Jain, Prashant K [ORNL; Freels, James D [ORNL

2012-01-01T23:59:59.000Z

91

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Graphite Research Reactor Documents Brookhaven Graphite Research Reactor Documents Feasibility Study (PDF) Proposed Remedial Action Plan (PDF) Record of Decision (PDF) RD/RA Work Plan for the BGRR Pile (PDF) RD/RA Work Plan for the Bioshield (PDF) RD/RA Work Plan for the BGRR Cap (PDF) Brookhaven Graphite Research Reactor Explanation of Significant Differences (PDF) (4/12) NYSDEC Approval Letter for BGRR ESD (PDF) (5/12) USEPA Approval Letter for BGRR ESD (PDF) (6/12) DOE BGRR ESD Transmittal Letter (PDF) (7/12) Remedial Design Implementation Report (PDF) (12/11) Completion Reports Removal of the Above-Ground Ducts and Preparation of the Instrument House (708) for Removal (PDF) - April 2002 Below-Ground Duct Outlet Air Coolers, Filters and Primary Liner Removal (PDF) - April 2005 Canal and Deep Soil Pockets Excavation and Removal (PDF) - August

92

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,2000 THROUGH FEBRUARY 28,2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,2000 THROUGH FEBRUARY 28,2001

L.C. BROWN

2000-02-28T23:59:59.000Z

93

DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD OCTOBER 1, 2001 THROUGH DECEMBER 31, 2002  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD OCTOBER 1, 2001 THROUGH DECEMBER 31, 2002

L.C. BROWN

2003-04-07T23:59:59.000Z

94

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,1999 THRIUGH FEBRUARY 29,2000  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD DECEMBER 1,1999 THRIUGH FEBRUARY 29,2000

LC BROWN

2000-02-29T23:59:59.000Z

95

DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD AUGUST 15,2000 THROUGH SEPTEMBER 30,2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR ANNUAL REPORT FOR THE PERIOD AUGUST 15,2000 THROUGH SEPTEMBER 30,2001

L.C. BROWN

2002-02-01T23:59:59.000Z

96

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD OCTOBER 1,2001 THROUGH DECEMBER 31,2001  

DOE Green Energy (OSTI)

OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD OCTOBER 1,2001 THROUGH DECEMBER 31,2001

L.C. BROWN

2001-12-31T23:59:59.000Z

97

License extension for the MIT research reactor  

Science Conference Proceedings (OSTI)

On February 8, 1995, the U.S. Nuclear Regulatory Commission (NRC) amended the operating license for the Massachusetts Institute of Technology (MIT) research reactor (MITR) by extending its expiration date from May 7, 1996, to August 8, 1999. This increase of 2.25 yr in the duration of the license was for the purpose of recapturing construction time. Extensions of this type have routinely been granted to power plants. The significance of the present action is that it is the first such extension ever granted to a research reactor. This paper describes the basis for the amendment request and the supporting safety analysis.

Bernard, J.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

1995-12-31T23:59:59.000Z

98

Basic and Applied Science Research Reactors - Reactors designed...  

NLE Websites -- All DOE Office Websites (Extended Search)

BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th...

99

The triple axis spectrometer at the new research reactor OPAL ...  

Science Conference Proceedings (OSTI)

... The triple axis spectrometer at the new research reactor OPAL in Australia. ... The TAS will be based on a thermal beam at the reactor face. ...

100

Safer nuclear reactors could result from Los Alamos research  

NLE Websites -- All DOE Office Websites (Extended Search)

Calendar Video Newsroom News Releases News Releases - 2010 March Safer nuclear reactors could result from research Safer nuclear reactors could result from Los...

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD APRIL 1, 2002 THROUGH JUNE 30, 2002  

DOE Green Energy (OSTI)

Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation.

L.C. BROWN

2002-06-30T23:59:59.000Z

102

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JULY 1, 2002 THROUGH SEPTEMBER 30, 2002  

DOE Green Energy (OSTI)

Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation.

L.C. BROWN

2002-09-30T23:59:59.000Z

103

An Assessment of Biomass Feedstock and Conversion Research Opportunities  

E-Print Network (OSTI)

countries. Today, fossil fuels make up the majority of energy consumption, on a scale over an order- assemble out of water and nutrients in soil and carbon in the air with energy input only from the sun. UseAn Assessment of Biomass Feedstock and Conversion Research Opportunities GCEP Energy Assessment

Nur, Amos

104

Direct Energy Conversion Fission Reactor September through November 1999  

DOE Green Energy (OSTI)

OAK - B135 The initial kickoff meeting/brainstorming session was held as Albuquerque with the other participants in this study. The prompt critical pulse reactor was proposed at the brainstorming session. The other participants in this study, Sandia National Laboratories (lead), Los Alamos National Laboratory, University of Florida and Texas A and M University are separately funded and their work is separately reported. The combined reporting is done by Sandia.

Brown, Lloyd C.

2000-01-15T23:59:59.000Z

105

Disk magnetohydrodynamic power conversion system for NERVA reactor  

Science Conference Proceedings (OSTI)

The combination of a magnetohydrodynamic (MHD) generator of the disk type with a NERVA reactor yields an advanced power system particularly suited to space applications with the capability of producing up to gigawatt pulses and multi-megawatt continuous operation. Several unique features result from the combination of this type of reactor and a disk MHD generator in which hydrogen serves as the plasma working fluid. Cesium seedings is utilized under conditions which enable the generator to operate stably in the non-equilibrium electrical conduction mode. In common with all practical MHD generators, the disk output is DC and voltages in the range 20--100 kV are attainable. This leads to a simplification of the power conditioning system and a major reduction in specific mass. Taken together with the high performance capabilities of the NERVA reactor, the result is an attractively low overall system specific mass. Further, the use of non-equilibrium ionization enables system specific enthalpy extractions in excess of 40% to be attained. This paper reports the results of a study to establish the basis for the design of a cesium seeded hydrogen MHD disk generator. Generator performance results are presented in terms of a stability factor which is related to cesium seeded hydrogen plasma behavior. It is shown that application of the results already obtained with cesium seeded noble gases (argon and helium) to the case of hydrogen as the working fluid in a disk MHD generator enables a high performance power system to be defined.

Jackson, W.D. (HMJ Corporation. 10400 Connecticut Ave., Kensington, Maryland 20895 (United States)); Bernard, F.E. (Westinghouse Corp., P.O. Box 355, Pittsburgh, Pennsylvania 15230 (United States)); Holman, R.R. (HMJ Corporation, 10400 Connecticut Ave., Kensington, Maryland 20895 (United States)); Maxwell, C.D. (STD Research Corp., P.O. Box C, Arcadia, California 91006 (United States)); Seikel, G.R. (SeiTec, Inc., P.O. Box 81264, Cleveland, Ohio 44181 (United States))

1993-01-15T23:59:59.000Z

106

Research and Medical Isotope Reactor Supply | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Medical ... Research and Medical Isotope Reactor Supply Our goal is to fuel research and test reactors with low-enriched uranium. Y-12 tops the short list of the...

107

Advanced Test Reactor LEU Fuel Conversion Feasibility Study -- 2006 Annual Report  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the U.S. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2–s. Because of these operating parameters, and the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuel cycle burnup comparison analysis. Using the current HEU U-235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U 235 enrichment required in the fuel meat to yield an equivalent Keff between the HEU core and a LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U 235 loading in the LEU core, such that the differences in Keff and heat profile between the HEU and LEU core can be minimized for operation at 125 EFPD with a total core power of 115 MW. The Monte-Carlo coupled with ORIGEN2 (MCWO) depletion methodology was used to calculate Keff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the Keff versus EFPDs plot is similar in shape to the reference ATR HEU case. The LEU core conversion feasibility study can also be used to optimize the U-235 content of each fuel plate, so that the relative radial fission heat flux profile is bounded by the reference ATR HEU case. The detailed radial, axial, and azimuthal heat flux profiles of the HEU and optimized LEU cases have been investigated. However, to demonstrate that the LEU core fuel cycle performance can meet the UFSAR safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (OSCC, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.

G. S. Chang; R. G. Ambrosek

2006-10-01T23:59:59.000Z

108

Advanced Test Reactor LEU Fuel Conversion Feasibility Study (2006 Annual Report)  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2–s. Because of these operating parameters, and the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuel cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat profile between the HEU and LEU core can be minimized for operation at 125 EFPD with a total core power of 115 MW. The depletion methodology, Monte-Carlo coupled with ORIGEN2 (MCWO), was used to calculate K-eff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar in shape to the reference ATR HEU case. The LEU core conversion feasibility study can also be used to optimize the U-235 content of each fuel plate, so that the relative radial fission heat flux profile is bounded by the reference ATR HEU case. The detailed radial, axial, and azimuthal heat flux profiles of the HEU and optimized LEU cases have been investigated. However, to demonstrate that the LEU core fuel cycle performance can meet the UFSAR safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders (OSCCs), safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.

Gray S. Chang; Richard G. Ambrosek; Misti A. Lillo

2006-12-01T23:59:59.000Z

109

Design of a 2400MW liquid-salt cooled flexible conversion ratio reactor  

E-Print Network (OSTI)

A 2400MWth liquid-salt cooled flexible conversion ratio reactor was designed, utilizing the ternary chloride salt NaCl-KCl-MgCI2 (30%-20%-50%) as coolant. The reference design uses a wire-wrapped, hex lattice core, and is ...

Petroski, Robert C

2008-01-01T23:59:59.000Z

110

Brookhaven Lab Completes Decommissioning of Graphite Research Reactor:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Lab Completes Decommissioning of Graphite Research Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal September 1, 2012 - 12:00pm Addthis The Brookhaven Graphite Research Reactor’s bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. The Brookhaven Graphite Research Reactor's bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. Pictured here is the Brookhaven Graphite Research Reactor, where major decommissioning milestones were recently reached after the remaining radioactive materials from the facility’s bioshield were shipped to a licensed offsite disposal facility.

111

Testing of an advanced thermochemical conversion reactor system  

DOE Green Energy (OSTI)

This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

Not Available

1990-01-01T23:59:59.000Z

112

Ames Laboratory Research Reactor Facility Ames, Iowa  

Office of Legacy Management (LM)

,, *' ; . Final Radiological Condition of the Ames Laboratory Research Reactor Facility Ames, Iowa _, . AGENCY: Office of Operational Safety, Department of Energy ' ACTION: Notice of Availability of Archival Information Package SUMMARY: The'Office of Operational Safety of the Department O i Energy (DOE) has reviewed documentation relating to the decontamination and decommissioning operations conducted at the Ames Laboratory Research Reactor Facility, Ames, Iowa and has prepared an archival informati0.n package to permanently document the results of the action and the site conditions and use restriction placed on the . site at the tim e of release. This review is based on post-decontamination survey data and other pertinent documentation referenced in and included in the archival package. The material and

113

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, June 1995  

Science Conference Proceedings (OSTI)

Part one of this report gives the operating history of the Brookhaven Medical Research Reactor for the month of June. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories of the Brookhaven High Flux Beam Reactor and the Cold Neutron Facility at HFBR for June. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

NONE

1995-06-01T23:59:59.000Z

114

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, July 1995  

Science Conference Proceedings (OSTI)

Part one of this report gives the operating history for the Brookhaven Medical Research Reactor for the month of July. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories for the Brookhaven High Flux Beam Reactor and the Cold Neutron Source Facility for the month of July. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

NONE

1995-07-01T23:59:59.000Z

115

Sterile Neutrino Search Using China Advanced Research Reactor  

E-Print Network (OSTI)

We study the feasibility of a sterile neutrino search at the China Advanced Research Reactor by measuring $\\bar {\

Guo, Gang; Ji, Xiangdong; Liu, Jianglai; Xi, Zhaoxu; Zhang, Huanqiao

2013-01-01T23:59:59.000Z

116

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

117

Chicago Pile reactors create enduring research legacy - Argonne's  

NLE Websites -- All DOE Office Websites (Extended Search)

Chicago Pile reactors create enduring research Chicago Pile reactors create enduring research legacy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

118

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JANUARY 1, 2002 THROUGH MARCH 31, 2002  

DOE Green Energy (OSTI)

Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation. The highlights of this reporting period are: (1) Cooling of the vapor core reactor and the MHD generator was incorporated into the Vapor Core Reactor model using standard heat transfer calculation methods. (2) Fission product removal, previously modeled as independent systems for each class of fission product, was incorporated into the overall fuel recycle loop of the Vapor Core Reactor. The model showed that the circulating activity levels are quite low. (3) Material distribution calculations were made for the ''pom-pom'' style cathode for the Fission Electric Cell. Use of a pom-pom cathode will eliminate the problem of hoop stress in the thin spherical cathode caused by the electric field.

L.C. BROWN

2002-03-31T23:59:59.000Z

119

Foreign Research Reactor Spent Nuclear Fuel Acceptance Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Threat Reduction Initiative: Global Threat Reduction Initiative: U.S. Nuclear Remove Program Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance 2007 DOE TEC Meeting Chuck Messick DOE/NNSA/SRS 2 Contents * Program Objective and Policy * Program implementation status * Shipment Information * Operational Logistics * Lessons Learned * Conclusion 3 U.S. Nuclear Remove Program Objective * To play a key role in the Global Threat Reduction Remove Program supporting permanent threat reduction by accepting program eligible material. * Works in conjunction with the Global Threat Reduction Convert Program to accept program eligible material as an incentive to core conversion providing a disposition path for HEU and LEU during the life of the Acceptance Program. 4 Reasons for the Policy

120

Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program  

DOE Green Energy (OSTI)

Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

Not Available

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Research Reactors Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Division (RRD) is responsible for operation of the High Flux Isotope Reactor (HFIR). Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for...

122

Modular Pebble Bed Reactor Project, University Research Consortium Annual Report  

Science Conference Proceedings (OSTI)

This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning fuel performance, safety, core neutronics and proliferation resistance, economics and waste disposal. Research has been initiated in the following areas: · Improved fuel particle performance · Reactor physics · Economics · Proliferation resistance · Power conversion system modeling · Safety analysis · Regulatory and licensing strategy Recent accomplishments include: · Developed four conceptual models for fuel particle failures that are currently being evaluated by a series of ABAQUS analyses. Analytical fits to the results are being performed over a range of important parameters using statistical/factorial tools. The fits will be used in a Monte Carlo fuel performance code, which is under development. · A fracture mechanics approach has been used to develop a failure probability model for the fuel particle, which has resulted in significant improvement over earlier models. · Investigation of fuel particle physio-chemical behavior has been initiated which includes the development of a fission gas release model, particle temperature distributions, internal particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance of plant, steady-state thermal hydraulics model has been developed to represent all major components of a MPBR. Component models are being refined to accurately reflect transient performance. · A comparison between air and helium for use in the energy-conversion cycle of the MPBR has been completed and formed the basis of a master’s degree thesis. · Safety issues associated with air ingress are being evaluated. · Post shutdown, reactor heat removal characteristics are being evaluated by the Heating-7 code. · PEBBED, a fast deterministic neutronic code package suitable for numerous repetitive calculations has been developed. Use of the code has focused on scoping studies for MPBR design features and proliferation issues. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor physics calculations have also been performed with the MCNP and VSOP codes. Furthermore, studies on the proliferation resistance of the MPBR fuel cycle has been initiated using these code · Issues identified during the MPBR research has resulted in a NERI proposal dealing with turbo-machinery design being approved for funding beginning in FY01. Two other NERI proposals, dealing with the development of a burnup “meter” and modularization techniques, were also funded in which the MIT team will be a participant. · A South African MPBR fuel testing proposal is pending ($7.0M over nine years).

Petti, David Andrew

2000-07-01T23:59:59.000Z

123

Reliability analysis of a passive cooling system using a response surface with an application to the Flexible Conversion Ratio Reactor  

E-Print Network (OSTI)

A comprehensive risk-informed methodology for passive safety system design and performance assessment is presented and demonstrated on the Flexible Conversion Ratio Reactor (FCRR). First, the methodology provides a framework ...

Fong, Christopher J. (Christopher Joseph)

2008-01-01T23:59:59.000Z

124

Global estimation of potential unreported plutonium in thermal research reactors  

SciTech Connect

As of November, 1993, 303 research reactors (research, test, training, prototype, and electricity producing) were operational worldwide; 155 of these were in non-nuclear weapon states. Of these 155 research reactors, 80 are thermal reactors that have a power rating of 1 MW(th) or greater and could be utilized to produce plutonium. A previously published study on the unreported plutonium production of six research reactors indicates that a minimum reactor power of 40 MW (th) is required to make a significant quantity (SQ), 8 kg, of fissile plutonium per year by unreported irradiations. As part of the Global Nuclear Material Control Model effort, we determined an upper bound on the maximum possible quantity of plutonium that could be produced by the 80 thermal research reactors in the non-nuclear weapon states (NNWS). We estimate that in one year a maximum of roughly one quarter of a metric ton (250 kg) of plutonium could be produced in these 80 NNWS thermal research reactors based on their reported power output. We have calculated the quantity of plutonium and the number of years that would be required to produce an SQ of plutonium in the 80 thermal research reactors and aggregated by NNWS. A safeguards approach for multiple thermal research reactors that can produce less than 1 SQ per year should be conducted in association with further developing a safeguards and design information reverification approach for states that have multiple research reactors.

Dreicer, J.S.; Rutherford, D.A.

1996-09-01T23:59:59.000Z

125

Conversion and standardization of university reactor fuels using low-enrichment uranium: Plans and schedules  

SciTech Connect

The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. To minimize this risk, the US Nuclear Regulatory Commission issued its final rule on ''Limiting the Use of Highly Enriched Uranium in Domestically Licensed Research and Test Reactors,'' in February 1986. This paper describes the plans and schedules developed by the US Department of Energy to coordinate an orderly transition from HEU to LEU fuel in most of these reactors. An important element in the planning process has been the desire to standardize the LEU fuels used in US university reactors and to enhance the performance and utilization of a number of these reactors. The program is estimated to cost about $10 million and to last about five years.

Young, H.H.; Brown, K.R.; Matos, J.E.

1986-01-01T23:59:59.000Z

126

Low-temperature conversion of high-moisture biomass: Continuous reactor system results  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process for converting high-moisture biomass feedstocks and other wet organic substances to useful gaseous fuels. This system, in which thermocatalytic conversion takes place in an aqueous environment, was designed to overcome the problems usually encountered with high-water-content feedstocks. The process uses a reduced nickel catalyst at temperatures as low as 350{degree}C and pressures ranging from 2000 to 4000 psig -- conditions favoring the formation of gas consisting mostly of methane. The results of numerous batch tests showed that the system could convert feedstocks not readily converted by conventional methods. Fifteen tests were conducted in a continuous reactor system to further evaluate the effectiveness of the process for high-moisture biomass gasification and to obtain conversion rate data needed for process scaleup. During the tests, the complex gasification reactions were evaluated by several analytical methods. The results of these tests show that the heating value of the gas ranged from 400 to 500 Btu/scf, and if the carbon dioxide is removed, the product gas is pipeline quality. Conversion of the feedstocks was high. Engineering analysis indicates that, based on these results, a tubular reactor can be designed that should convert greater than 99% of the carbon fed as high-moisture biomass to a gaseous product in a reaction time of less than 11 min.

Elliott, D.C.; Sealock, L.J. Jr.; Butner, R.S.; Baker, E.G.; Neuenschwander, G.G.

1989-10-01T23:59:59.000Z

127

Brookhaven Graphite Research Reactor Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Brookhaven Graphite Research Reactor Workshop Brookhaven Graphite Research Reactor Workshop The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II. Construction began in 1947 and the reactor started operating in August 1950. In the next 18 years, an estimated 25,000 scientific experiments were carried out at the BGRR using neutrons produced in the facility's 700-ton graphite core, made up of more than 60,000 individual graphite blocks. The BGRR was placed on standby in 1968 and then permanently shut down as the next-generation reactor, the High Flux Beam Reactor (HFBR), was

128

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Was the BGRR Decommissioned? Why Was the BGRR Decommissioned? BGRR The Brookhaven Graphite Research Reactor (BGRR) at Brookhaven National Laboratory (BNL) was decommissioned to ensure the complex is in a safe and stable condition and to reduce sources of groundwater contamination. The BGRR contained over 8,000 Curies of radioactive contaminants from past operations consisting of primarily nuclear activation products such as hydrogen-3 (tritium) and carbon-14 and fission products cesium-137 and strontium-90. The nature and extent of contamination varied by location depending on historic uses of the systems and components and releases, however, the majority of the contamination (over 99 percent) was bound within the graphite pile and biological shield. Radioactive contamination was identified in the fuel handling system deep

129

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

NLE Websites -- All DOE Office Websites (Extended Search)

- Cleanup Actions - Cleanup Actions Since the Brookhaven Graphite Research Reactor (BGRR) was shut down in 1968, many actions have been taken as part of the complex decommissioning. The actions undertaken throughout the BGRR complex ensure that the structures that remain are in a safe and stable condition and prepared it for long-term surveillance and maintenance. Regulatory Requirements The decommissioning of the BGRR was conducted under the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1992, an Interagency Agreement (PDF) among the DOE, the U.S. Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC) became effective. The IAG provided the overall framework for conducting environmental restoration activities at

130

Computer-Based Model of the MIT Research Reactor  

SciTech Connect

A description is given of a model of the Massachusetts Institute of Technology Research Reactor (MITR) in which both the reactor's neutronic and thermal-hydraulic behaviors are replicated. The purpose of the model is to support control studies and the development of techniques for the automated diagnosis of reactivity transients. In particular, comparison of the model's predictions with actual measurements from the reactor will allow determination of whether the reactor is functioning as expected.

John A. Bernard; Lin-Wen Hu

2000-11-12T23:59:59.000Z

131

Opportunities for the Precision Study of Reactor Antineutrinos at Very Short Baselines at US Research Reactors  

E-Print Network (OSTI)

: pieter.mumm@nist.gov #12;2 past reactor experiments HFIR, ORNL NBSR, NIST ATR, INL available baselines at US research reactors 3 neutrino fit 3+1 neutrino fit Tuesday, August 7, 12 NIST ILL HFIR ATR SONGSNIST ILL HFIR ATR SONGS 10. 100 1000 core size reactor power reactorpower(MWth) 1meter ILL HFIR NBSR

132

Feasibility analyses for HEU to LEU fuel conversion of the LAUE Langivin Institute (ILL) High Flux Reactor (RHF).  

SciTech Connect

The High Flux Reactor (RHF) of the Laue Langevin Institute (ILL) based in Grenoble, France is a research reactor designed primarily for neutron beam experiments for fundamental science. It delivers one of the most intense neutron fluxes worldwide, with an unperturbed thermal neutron flux of 1.5 x 10{sup 15} n/cm{sup 2}/s in its reflector. The reactor has been conceived to operate at a nuclear power of 57 MW but currently operates at 52 MW. The reactor currently uses a Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most worldwide research and test reactors have already started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on a mixture of uranium and molybdenum (UMo) is expected to allow the conversion of compact high performance reactors like the RHF. This report presents the results of reactor design, performance and steady state safety analyses for conversion of the RHF from the use of HEU fuel to the use of UMo LEU fuel. The objective of this work was to show that is feasible, under a set of manufacturing assumptions, to design a new RHF fuel element that could safely replace the HEU element currently used. The new proposed design has been developed to maximize performance, minimize changes and preserve strong safety margins. Neutronics and thermal-hydraulics models of the RHF have been developed and qualified by benchmark against experiments and/or against other codes and models. The models developed were then used to evaluate the RHF performance if LEU UMo were to replace the current HEU fuel 'meat' without any geometric change to the fuel plates. Results of these direct replacement analyses have shown a significant degradation of the RHF performance, in terms of both neutron flux and cycle length. Consequently, ANL and ILL have collaborated to investigate alternative designs. A promising candidate design has been selected and studied, increasing the total amount of fuel without changing the external plate dimensions by relocating the burnable poison. In this way, changes required in the fuel element are reasonably small. With this new design, neutronics analyses have shown that performance could be maintained at a high level: 2 day decrease of cycle length (to 47.5 days at 58.3 MW) and 1-2% decrease of brightness in the cold and hot sources in comparison to the current typical operation. In addition, studies have shown that the thermal-hydraulic and shutdown margins for the proposed LEU design would satisfy technical specifications.

Stevens, J.; Tentner. A.; Bergeron, A.; Nuclear Engineering Division

2010-08-19T23:59:59.000Z

133

An Account of Oak Ridge National Laboratory's Thirteen Research Reactors  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

Rosenthal, Murray Wilford [ORNL

2009-08-01T23:59:59.000Z

134

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program The Department of Energy's (DOE's) Light Water Reactor Sustainability (LWRS) Program is a five year effort that works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operation of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging

135

Research on Very High Temperature Gas Reactors  

Science Conference Proceedings (OSTI)

Very high temperature gas reactors are helium-cooled, graphite-moderated advanced reactors that show potential for generating low-cost electricity via gas turbines or cogeneration with process-heat applications. This investigation addresses the development status of advanced coatings for nuclear-fuel particles and high-temperature structural materials and evaluates whether these developments are likely to lead to economically competitive applications of the very high temperature gas reactor concept.

1991-08-08T23:59:59.000Z

136

Brookhaven Graphite Research Reactor | Environmental Restoration...  

NLE Websites -- All DOE Office Websites (Extended Search)

of multiple structures and systems that were necessary to operate and maintain the reactor. The most recognizable features of the complex include the Building 701 officeshigh...

137

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear  

National Nuclear Security Administration (NNSA)

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Maria Research Reactor loaded with LEU - ... Maria Research Reactor loaded with LEU - Otwock, Poland Maria Research Reactor loaded with LEU - Otwock, Poland

138

RERTR program reduces use of enriched uranium in research reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

RERTR program reduces use of enriched uranium in research reactors RERTR program reduces use of enriched uranium in research reactors worldwide Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share RERTR program reduces use of enriched uranium in research reactors worldwide The High Flux Reactor in Petten, the Netherlands READY TO CONVERT - The High Flux Reactor in Petten, the Netherlands, has

139

REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS  

SciTech Connect

Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.

Nichols, T.; Beals, D.; Sternat, M.

2011-07-18T23:59:59.000Z

140

Advanced Reactor Research and Development Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Research and Development Funding Opportunity Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and industry. During FY12, DOE established a Technical Review Panel (TRP) process to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. That process involved the use of a Request for Information (RFI) to solicit concept information from industry and engage technical experts to evaluate those concepts. Having completed this process, DOE desires to

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced Reactor Research and Development Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Research and Development Funding Opportunity Advanced Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and industry. During FY12, DOE established a Technical Review Panel (TRP) process to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. That process involved the use of a Request for Information (RFI) to solicit concept information from industry and engage technical experts to evaluate those concepts. Having completed this process, DOE desires to

142

Present Status Of Research Reactor Decommissioning Program In Indonesia  

E-Print Network (OSTI)

At present, Indonesia has 3 research reactors: MTR-type multipurpose reactor of 30 MW at Serpong site, TRIGA-type research reactor of 1 MW at Bandung site, and small TRIGA - type reactor of 100 kW at Yogyakarta Research Center. The oldest one is the TRIGA reactor at Bandung site, which went critical at 250 kW in 1964, then was operated at maximum of 1000 kW by 1971. The reactor has operated for a total of 35 years. There is no decision for decommissioning this reactor; however, slowly but surely, it will be an object for a near-future decommissioning program. Anticipation of the situation is necessary. For the Indonesian case, early decommissioning strategy for a research reactor and restricted use of the site for another nuclear installation is favorable under high land pricing, availability of radwaste repository, and cost analysis. Graphite from Triga reactor reflector is recommended for direct disposal after conditioning, without volume reduction treatment. Development of human ...

Mulyanto And Gunandjar

2000-01-01T23:59:59.000Z

143

Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Pulsed Reactor Facility - Critical Experiments Sandia Pulsed Reactor Facility - Critical Experiments Sandia scientist John Ford places fuel rods in the Seven Percent Critical Experiment (7uPCX) at the Sandia Pulsed Reactor Facility Critical Experiments (SPRF/CX) test reactor - a reactor stripped down to its simplest form. The Sandia Pulsed Reactor Facility - Critical Experiments (SPRF/CX) provides a flexible, shielded location for performing critical experiments that employ different reactor core configurations and fuel types. The facility is also available for hands-on nuclear criticality safety training. Research and other activities The 7% series, an evaluation of various core characteristics for higher commercial-fuel enrichment, is currently under way at the SPRF/CX. Past critical experiments at the SPRF/CX have included the Burnup Credit

144

Sodium fast reactor safety and licensing research plan. Volume II.  

SciTech Connect

Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d'%C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

2012-05-01T23:59:59.000Z

145

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

DOE Green Energy (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were solved by finite difference method. The solution of the model equations is complicated by the coupled reactions. At the inlet, if there is no hydrogen, rate expressions become singular. To overcome this problem, the first element of the reactor was treated as a continuous stirred tank reactor (CSTR). Several alternative numerical schemes were implemented in the solution algorithm to get a converged, stable solution. The model was also capable of handling steam-methane reforming reactions under non-membrane condition and equilibrium reaction conversions. Some of the numerical results were presented in the previous report. To test the membrane reactor model, we fabricated Pd-stainless steel membranes in tubular configuration using electroless plating method coupled with osmotic pressure. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) were used to characterize the fabricated Pd-film composite membranes. Gas-permeation tests were performed to measure the permeability of hydrogen, nitrogen and helium using pure gas. The membranes showed excellent perm-selectivity for hydrogen. This makes the Pd-composite membrane attractive for selective separation and recovery of H{sub 2} from mixed gases at elevated temperature.

Shamsuddin Ilias

2005-02-03T23:59:59.000Z

146

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

DOE Green Energy (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were solved by finite difference method. The solution of the model equations is complicated by the coupled reactions. At the inlet, if there is no hydrogen, rate expressions become singular. To overcome this problem, the first element of the reactor was treated as a continuous stirred tank reactor (CSTR). Several alternative numerical schemes were implemented in the solution algorithm to get a converged, stable solution. The model was also capable of handling steam-methane reforming reactions under non-membrane condition and equilibrium reaction conversions. Some of the numerical results were presented in the previous report. To test the membrane reactor model, we fabricated Pd-stainless steel membranes in tubular configuration using electroless plating method coupled with osmotic pressure. Scanning Electron Microscopy (SEM) and Energy Dispersive Xray (EDX) were used to characterize the fabricated Pd-film composite membranes. Gas-permeation tests were performed to measure the permeability of hydrogen, nitrogen and helium using pure gas. Some of these results are discussed in this progress report.

Shamsuddin Ilias

2004-02-17T23:59:59.000Z

147

Engineering activities at the MIT research reactor in support of power reactor technology  

SciTech Connect

The Massachusetts Institute of Technology (MIT) research reactor (MITR-II) is a 5-MW(thermal) light-water-cooled and-moderated reactor (LWR) with in-core neutron and gamma dose rates that closely approximate those in current LWRs. Compact in-pile loops that simulate pressurized water reactor (PWR) and boiling water reactor (BWR) thermal hydraulics and coolant chemistry have been designed for installation in the MITR-II. A PWR loop has been completed and is currently operating in the reactor. A BWR loop is under construction, and an in-pile facility for irradiation-assisted stress corrosion crack (IASCC) testing is being designed. Another major area of research and on-line testing is the closed-loop, nonlinear, digital control of various reactor parameters, including the power level, temperature, and net energy production.

Harling, O.K.; Bernard, J.A.; Driscoll, M.J.; Kohse, G.E.; Ballinger, R.G.

1989-01-01T23:59:59.000Z

148

Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor  

Science Conference Proceedings (OSTI)

The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankie and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed.

Sager, G.T.; Wong, C.P.C.; Kapich, D.D.; McDonald, C.F.; Schleicher, R.W.

1993-11-01T23:59:59.000Z

149

Automated startup of the MIT research reactor  

SciTech Connect

This summary describes the development, implementation, and testing of a generic method for performing automated startups of nuclear reactors described by space-independent kinetics under conditions of closed-loop digital control. The technique entails first obtaining a reliable estimate of the reactor's initial degree of subcriticality and then substituting that estimate into a model-based control law so as to permit a power increase from subcritical on a demanded trajectory. The estimation of subcriticality is accomplished by application of the perturbed reactivity method. The shutdown reactor is perturbed by the insertion of reactivity at a known rate. Observation of the resulting period permits determination of the initial degree of subcriticality. A major advantage to this method is that repeated estimates are obtained of the same quantity. Hence, statistical methods can be applied to improve the quality of the calculation.

Kwok, K.S. (Massachusetts Inst. of Tech., Cambridge (United States))

1992-01-01T23:59:59.000Z

150

Conversion of methanol to light olefins on SAPO-34: kinetic modeling and reactor design  

E-Print Network (OSTI)

In this work, the reaction scheme of the MTO process was written in terms of elementary steps and generated by means of a computer algorithm characterizing the various species by vectors and Boolean relation matrices. The number of rate parameters is very large. To reduce this number the rate parameters related to the steps on the acid sites of the catalyst were modeled in terms of transition state theory and statistical thermodynamics. Use was made of the single event concept to account for the effect of structure of reactant and activated complex on the frequency factor of the rate coefficient of an elementary step. The Evans-Polanyi relation was also utilized to account for the effect of the structure on the change in enthalpy. The structure was determined by means of quantum chemical software. The number of rate parameters of the complete reaction scheme to be determined from experimental data is thus reduced from 726 to 30. Their values were obtained from the experimental data of Abraha by means of a genetic algorithm involving the Levenberg-Marquardt algorithm and combined with sequential quadratic programming. The retained model yields an excellent fit of the experimental data. All the parameters satisfy the statistical tests as well as the rules of carbenium ion chemistry. The kinetic model also reproduces the experimental data of Marchi and Froment, also obtained on SAPO-34. Another set of their data was used to introduce the deactivation of the catalyst into the kinetic equations. This detailed kinetic model was used to investigate the influence of the operating conditions on the product distribution in a multi-bed adiabatic reactor with plug flow. It was further inserted into riser and fluidized bed reactor models to study the conceptual design of an MTO reactor, accounting for the strong exothermicity of the process. Multi-bed adiabatic and fluidized bed technologies show good potential for the industrial process for the conversion of methanol into olefins.

Al Wahabi, Saeed M. H.

2003-12-01T23:59:59.000Z

151

Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania  

SciTech Connect

In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

2010-03-01T23:59:59.000Z

152

Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011  

SciTech Connect

This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

2012-03-01T23:59:59.000Z

153

Argonne's pyroprocessing and advanced reactor research featured on WGN  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's pyroprocessing and advanced reactor research featured on WGN Argonne's pyroprocessing and advanced reactor research featured on WGN radio Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Argonne's pyroprocessing and advanced reactor research featured on WGN radio Uranium dendrites These tiny branches, or "dendrites," of pure uranium form when engineers

154

Comprehensive Thermal Hydraulics Research of the Very High Temperature Gas Cooled Reactor  

SciTech Connect

The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; David Petti; Hyung Kang

2010-10-01T23:59:59.000Z

155

Nuclear reactor and materials science research: Final technical report, May 1, 1985-September 30, 1986. [Academic and research utilization of reactor  

SciTech Connect

Throughout the 17-month period of the grant, May 1, 1985 - September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The period encompassed MIT's fiscal year utilization of the reactor during that period may be classified as follows: neutron beam tube research, nuclear materials research and development, radiochemistry and trace analysis, nuclear medicine, radiation health physics, computer control of reactors, dose reduction in nuclear power reactors, reactor irradiations and services for groups outside MIT, and MIT research reactor. This paper provides detailed information on this research academic utilization.

Harling, O.K.

1987-05-11T23:59:59.000Z

156

DISMANTLING OF THE REACTOR BLOCK OF THE FRJ-1 RESEARCH REACTOR (MERLIN)  

SciTech Connect

This report describes the past procedure in dismantling the reactor block of the FRJ-1 research reactor (MERLIN). Furthermore, it gives an outlook on future activities up to the final removal of the reactor block. MERLIN is an abbreviation for Medium Energy Research Light Water Moderated Industrial Nuclear Reactor. The FRJ-1 (MERLIN) was shut down in 1985 and the fuel elements removed from the facility. After dismantling the coolant loops and removing the reactor tank internals with subsequent draining of the reactor tank water, the first activities for dismantling the reactor block were carried out in summer 2001. The relevant license was granted in late July 2001 by the licensing authority specifying 8 incidental provisions. After dismantling the reactor extension (gates of the thermal columns and steel platforms surrounding the reactor block), a heavy-load platform including a casing around the reactor block was constructed. Two ventilation systems with a volume flow of 10,000 and 2 ,000 m3/h will, moreover, serve to avoid a spread of contamination. The reactor block will be dismantled in three phases divided according to upper, central and bottom sections. Dismantling the upper section started in August 2002. This section as well as the bottom section can probably be completely measured for clearance. For this reason, the activities have so far been carried out manually using mechanical and thermal techniques. The central section will probably have to be largely disposed of as radioactive waste. This is the region of the former reactor core in which the experimental devices are also integrated. Most of this work will probably have to be carried out by remote handling. More than 80 % of the dismantled materials of the reactor block can probably be measured for clearance. For this purpose, a clearance measurement device was taken into operation in the FRJ-1. On this occasion, the limits of clearance measurement have become evident. For concrete, which constitutes the largest portion of the dismantled materials by volume, an additional conditioning step has become necessary to fulfill the clearance criteria, whereas waste packages with steel components largely have to be reconditioned once more at a later stage. Material measured for clearance will be disposed of conventionally (recycling, landfill) after inspection by the official expert and clearance by the regulatory authority. Dismantled parts that cannot be measured for clearance will be transferred to the Decontamination Department of the Research Centre. From the present perspective, the dismantling of the reactor block will be completed within the first six months of 2003.

Stahn, B.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

2003-02-27T23:59:59.000Z

157

Thermochemical Conversion Research and Development: Gasification and Pyrolysis (Fact Sheet)  

DOE Green Energy (OSTI)

Biomass gasification and pyrolysis research and development activities at the National Renewable Energy Laboratory and Pacific Northwest National Laboratory.

Not Available

2009-09-01T23:59:59.000Z

158

Reduced enrichment for research and test reactors: Proceedings  

SciTech Connect

The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

1988-05-01T23:59:59.000Z

159

Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education  

SciTech Connect

The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs.

Woodall, D.M.; Dolan, T.J.; Stephens, A.G. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

160

Reactor Safety Research: Semiannual report, July-December 1986  

DOE Green Energy (OSTI)

Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

Not Available

1987-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology.

162

Towards the reanalysis of void coefficients measurements at proteus for high conversion light water reactor lattices  

Science Conference Proceedings (OSTI)

High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivity Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)

Hursin, M.; Koeberl, O.; Perret, G. [Paul Scherrer Institut PSI, 5232 Villigen (Switzerland)

2012-07-01T23:59:59.000Z

163

Direct Energy Conversion Fission Reactor, Gaseous Core Reactor with Magnetohydrodynamic (MHD) Generator; Final Report - Part I and Part II  

SciTech Connect

This report focuses on the power conversion cycle and efficiency. The technical issues involving the ionization mechanisms, the power management and distribution and radiation shielding and safety will be discussed in future reports.

Samim Anghaie; Blair Smith; Travis Knight

2002-11-12T23:59:59.000Z

164

Reactor Safety Research Programs Quarterly Report October - December 1980  

SciTech Connect

This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S K

1981-04-01T23:59:59.000Z

165

Introduction of Thorium-Based Fuels in High Conversion Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

Regular Technical Paper / Special Issue on the Symposium on Radiation Effects in Ceramic Oxide and Novel LWR Fuels / Fission Reactors

V. Vallet; B. Gastaldi; J. Politello; A. Santamarina; L. Van Den Durpel

166

Reactor Physics Methods and Preconceptual Core Design Analyses for Conversion of the Advanced Test Reactor to Low-Enriched Uranium Fuel Annual Report for Fiscal Year 2012  

SciTech Connect

Under the current long-term DOE policy and planning scenario, both the ATR and the ATRC will be reconfigured at an appropriate time within the next several years to operate with low-enriched uranium (LEU) fuel. This will be accomplished under the auspices of the Reduced Enrichment Research and Test Reactor (RERTR) Program, administered by the DOE National Nuclear Security Administration (NNSA). At a minimum, the internal design and composition of the fuel element plates and support structure will change, to accommodate the need for low enrichment in a manner that maintains total core excess reactivity at a suitable level for anticipated operational needs throughout each cycle while respecting all control and shutdown margin requirements and power distribution limits. The complete engineering design and optimization of LEU cores for the ATR and the ATRC will require significant multi-year efforts in the areas of fuel design, development and testing, as well as a complete re-analysis of the relevant reactor physics parameters for a core composed of LEU fuel, with possible control system modifications. Ultimately, revalidation of the computational physics parameters per applicable national and international standards against data from experimental measurements for prototypes of the new ATR and ATRC core designs will also be required for Safety Analysis Report (SAR) changes to support routine operations with LEU. This report is focused on reactor physics analyses conducted during Fiscal Year (FY) 2012 to support the initial development of several potential preconceptual fuel element designs that are suitable candidates for further study and refinement during FY-2013 and beyond. In a separate, but related, effort in the general area of computational support for ATR operations, the Idaho National Laboratory (INL) is conducting a focused multiyear effort to introduce modern high-fidelity computational reactor physics software and associated validation protocols to replace several obsolete components of the current analytical tool set used for ATR neutronics support. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). It will also greatly facilitate the LEU conversion effort, since the upgraded computational capabilities are now at a stage where they can be, and in fact have been, used for the required physics analysis from the beginning. In this context, extensive scoping neutronics analyses were completed for six preconceptual candidate LEU fuel element designs for the ATR (and for its companion critical facility, ATRC). Of these, four exhibited neutronics performance in what is believed to be an acceptable range. However, there are currently some concerns with regard to fabricability and mechanical performance that have emerged for one of the four latter concepts. Thus three concepts have been selected for more comprehensive conceptual design analysis during the upcoming fiscal year.

David W. Nigg; Sean R. Morrell

2012-09-01T23:59:59.000Z

167

Development of Technical Nuclear Forensics for Spent Research Reactor Fuel  

E-Print Network (OSTI)

Pre-detonation technical nuclear forensics techniques for research reactor spent fuel were developed in a collaborative project with Savannah River National Lab ratory. An inverse analysis method was employed to reconstruct reactor parameters from a spent fuel sample using results from a radiochemical analysis. In the inverse analysis, a reactor physics code is used as a forward model. Verification and validation of different reactor physics codes was performed for usage in the inverse analysis. The verification and validation process consisted of two parts. The first is a variance analysis of Monte Carlo reactor physics burnup simulation results. The codes used in this work are MONTEBURNS and MCNPX/CINDER. Both utilize Monte Carlo transport calculations for reaction rate and flux results. Neither code has a variance analysis that will propagate through depletion steps, so a method to quantify and understand the variance propagation through these depletion calculations was developed. The second verification and validation process consisted of comparing reactor physics code output isotopic compositions to radiochemical analysis results. A sample from an Oak Ridge Research Reactor spent fuel assembly was acquired through a drilling process. This sample was then dissolved in nitric acid and diluted in three different quantities, creating three separate samples. A radiochemical analysis was completed and the results were compared to simulation outputs at different levels ofdetail. After establishing a forward model, an inverse analysis was developed to re-construct the burnup, initial uranium isotopic compositions, and cooling time of a research reactor spent fuel sample. A convergence acceleration technique was used that consisted of an analytical calculation to predict burnup, initial 235U, and 236U enrichments. The analytic calculation results may also be used stand alone or in a database search algorithm. In this work, a reactor physics code is used as a for- ward model with the analytic results as initial conditions in a numerical optimization algorithm. In the numerical analysis, the burnup and initial uranium isotopic com- positions are reconstructed until the iterative spent fuel characteristics converge with the measured data. Upon convergence of the sample’s burnup and initial uranium isotopic composition, the cooling time can be reconstructed. To reconstruct cooling time, the standard decay equation is inverted and solved for time. Two methods were developed. One method uses the converged burnup and initial uranium isotopic compositions along in a reactor depletion simulation. The second method uses an isotopic signature that does not decay out of its mass bin and has a simple production chain. An example would be 137Cs which decays into the stable 137Ba. Similar results are achieved with both methods, but extended shutdown time or time away from power results in over prediction of the cooling time. The over prediction of cooling time and comparison of different burnup reconstruction isotope results are indicator signatures of extended shutdown or time away from power. Due to dynamic operation in time and function, detailed power history reconstruction for research reactors is very challenging. Frequent variations in power, repeated variable shutdown time length, and experimentation history affect the spectrum an individual assembly is burned with such that full reactor parameter reconstruction is difficult. The results from this technical nuclear forensic analysis may be used with law enforcement, intelligence data, macroscopic and microscopic sample characteristics in a process called attribution to suggest or exclude possible sources of origin for a sample.

Sternat, Matthew 1982-

2012-12-01T23:59:59.000Z

168

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

DOE Green Energy (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application this new development. We designed and built a membrane reactor to study the reforming reaction. A two-dimensional pseudo-homogeneous reactor model was developed to study the performance of the membrane reactor parametrically. The important results are presented in this report.

Shamsuddin Illias

2002-06-10T23:59:59.000Z

169

EPRI NMAC Maintainability Review of the International Gas-Turbine Modular Helium Reactor Power Conversion Unit  

Science Conference Proceedings (OSTI)

This report provides information of interest to the designers of modular helium-reactor-driven gas turbines and persons considering the purchase of this type of plant.

2001-02-01T23:59:59.000Z

170

Turbostar: An ICF Reactor using Both Direct and Thermal Power Conversion  

Science Conference Proceedings (OSTI)

Fusion Reactor Design—I / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

John H. Pitts

171

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

172

Conversion of the University of Missouri-Rolla Reactor from high-enriched uranium to low-enriched uranium fuel  

SciTech Connect

The objectives of this project were to convert the UMR Reactor fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel and to ship the HEU fuel back to the Department of Energy Savannah River Site. The actual core conversion was completed in the summer of 1992. The HEU fuel was offloaded to an onsite storage pit where it remained until July, 1996. In July, 1996, the HEU fuel was shipped to the DOE Savannah River Site. The objectives of the project have been achieved. DOE provided the following funding for the project. Several papers were published regarding the conversion project and are listed in the Attachment. In retrospect, the conversion project required much more time and effort than originally thought. Several difficulties were encountered including the unavailability of a shipping cask for several years. The authors are grateful for the generous funding provided by DOE for this project but wish to point out that much of their efforts on the conversion project went unfunded.

Bolon, A.E.; Straka, M.; Freeman, D.W.

1997-03-28T23:59:59.000Z

173

Two U.S. University Research Reactors to be Converted From Highly...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are here Home Two U.S. University Research Reactors to be Converted From Highly Enriched Uranium to Low-Enriched Uranium Two U.S. University Research Reactors to be Converted...

174

Design and optimization of a high thermal flux research reactor via Kriging-based algorithm  

E-Print Network (OSTI)

In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

Kempf, Stephanie Anne

2011-01-01T23:59:59.000Z

175

Evaluation of ethane as a power conversion system working fluid for fast reactors  

E-Print Network (OSTI)

A supercritical ethane working fluid Brayton power conversion system is evaluated as an alternative to carbon dioxide. The HSC® chemical kinetics code was used to study thermal dissociation and chemical interactions for ...

Perez, Jeffrey A

2008-01-01T23:59:59.000Z

176

Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

2012-04-05T23:59:59.000Z

177

Research overview of biological and chemical conversion methods and identification of key research areas for SERI. Final task report  

DOE Green Energy (OSTI)

A qualitative overview of the current and future research areas of the Biological and Chemical Conversion Branch is presented. The goals of the Branch and the general areas of Branch activities are mapped out: energy and petrochemical substitutes from biomass, thermochemical conversion, and photoconversion. Each of these three areas in some detail are discussed in some detail in a general overview. Specific parts of the three major areas which have been selected are discussed in the context of present Department of Energy sponsored research including the Fuels from Biomass and Office of Basic Energy Sciences programs, for initial SERI in-house research emphasis. Finally, the Branch research efforts planned through FY 79 are outlined.

Milne, T. A.; Connolly, J. S.; Inman, R. E.; Reed, T. B.; Seibert, M.

1978-09-01T23:59:59.000Z

178

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

DOE Green Energy (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application this new development. To have better understanding of the membrane reactor, during this reporting period, we developed a two-dimensional pseudo-homogeneous reactor model for steam reforming of methane by equilibrium shift in a tubular membrane reactor. In numerical solution of the reactor model equations, numerical difficulties were encountered and we seeking alternative solution techniques to overcome the problem.

Shamsuddin Ilias

2001-06-25T23:59:59.000Z

179

Reactor fuel conversion assistance request. Technical progress report, August 15, 1992--May 14, 1993  

SciTech Connect

This report is a summary of the progress that has been made on the preparations required to convert the WSU TRIGA reactor from High Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel.

Tripard, G.E.

1993-06-01T23:59:59.000Z

180

Reactor fuel conversion assistance request: Technical progress report, August 15, 1992-December 31, 1994  

SciTech Connect

This report is a summary of the progress that has been made on the preparations required to convert the WSU TRIGA reactor from High Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel.

Tripard, G.E.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The conversion of the 2 MW reactor at the Rhode Island Nuclear Science Center  

Science Conference Proceedings (OSTI)

The 2 MW Rhode Island Atomic Energy Commission reactor is required to convert from the use of High Enriched Uranium (HEU) fuel to the use of Low Enriched Uranium (LEU) fuel using a standard LEU fuel plate which is thinner and contains more U-235 than the current HEU plate. These differences, coupled with a desire to upgrade the characteristics and capability of the reactor, have resulted in core design studies and thermal hydraulic studies not only at the current 2 MW but also at the maximum power level of the reactor, 5 MW. In addition, during 23 years of operation, it has become clear that the main uses of the reactor have been neutron scattering and neutron activation analysis. The requirement to convert to LEU presents and opportunity to optimize the core for the utilization and to restudy the thermal hydraulics using modern techniques. This paper presents the current conclusions of both aspects. 2 refs., 9 figs.

DiMeglio, A.F.; Matos, J.E.; Freese, K.E.; Spring, E.F. (Rhode Island Atomic Energy Commission, Narragansett, RI (USA). Rhode Island Nuclear Science Center; Argonne National Lab., IL (USA); Rhode Island Atomic Energy Commission, Narragansett, RI (USA). Rhode Island Nuclear Science Center)

1989-01-01T23:59:59.000Z

182

Advanced sodium fast reactor accident source terms : research needs.  

Science Conference Proceedings (OSTI)

An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

Powers, Dana Auburn; Clement, Bernard [IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France] IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France; Denning, Richard [Ohio State University, Columbus, OH] Ohio State University, Columbus, OH; Ohno, Shuji [Japan Atomic Energy Agency, Ibaraki, Japan] Japan Atomic Energy Agency, Ibaraki, Japan; Zeyen, Roland [Institute for Energy Petten, Saint-Paul-lez-Durance, France] Institute for Energy Petten, Saint-Paul-lez-Durance, France

2010-09-01T23:59:59.000Z

183

Advanced sodium fast reactor accident source terms : research needs.  

SciTech Connect

An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

Powers, Dana Auburn; Clement, Bernard [IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France] IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France; Denning, Richard [Ohio State University, Columbus, OH] Ohio State University, Columbus, OH; Ohno, Shuji [Japan Atomic Energy Agency, Ibaraki, Japan] Japan Atomic Energy Agency, Ibaraki, Japan; Zeyen, Roland [Institute for Energy Petten, Saint-Paul-lez-Durance, France] Institute for Energy Petten, Saint-Paul-lez-Durance, France

2010-09-01T23:59:59.000Z

184

SUPPLEMENT ANALYSIS OF FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL TRANSPORTATION ALONG OTHER THAN~. PRESENTATIVE ROUTE FROM CONCORD NAVAL WEAPO~~ STATION TO IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LADORA TORY Introduction The Department of Energy is planning to transport foreign research reactor spent nuclear fuel by rail from the Concord Naval Weapons Station (CNWS), Concord, California, to the Idaho National Engineering and Environmental Laboratory (INEEL). The environmental analysis supporting the decision to transport, by rail or truck, foreign research reactor spent nuclear fuel from CNWS to the INEEL is contained in +he Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliftration Policy Concerning Foreign Research Reactor

185

A neutronic feasibility study for LEU conversion of the high flux beam reactor (HFBR).  

SciTech Connect

A neutronic feasibility study for converting the High Flux Beam Reactor at Brookhaven National Laboratory from HEU to LEU fuel was performed at Argonne National Laboratory. The purpose of this study is to determine what LEU fuel density would be needed to provide fuel lifetime and neutron flux performance similar to the current HEU fuel. The results indicate that it is not possible to convert the HFBR to LEU fuel with the current reactor core configuration. To use LEU fuel, either the core needs to be reconfigured to increase the neutron thermalization or a new LEU reactor design needs to be considered. This paper presents results of reactor calculations for a reference 28-assembly HEU-fuel core configuration and for an alternative 18-assembly LEU-fuel core configuration with increased neutron thermalization. Neutronic studies show that similar in-core and ex-core neutron fluxes, and fuel cycle length can be achieved using high-density LEU fuel with about 6.1 gU/cm{sup 3} in an altered reactor core configuration. However, hydraulic and safety analyses of the altered HFBR core configuration needs to be performed in order to establish the feasibility of this concept.

Pond, R. B.

1998-01-16T23:59:59.000Z

186

PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? EXTENDING CYCLE BURNUP  

Science Conference Proceedings (OSTI)

Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting HFIR from high enriched to low enriched uranium (20 wt % 235U) fuel requires extending the end-of-life burnup value for HFIR fuel from the current nominal value of 2200 MWD to 2600 MWD. The current fuel fabrication procedure is discussed and changes that would be required to this procedure are identified. Design and safety related analyses that are required for the certification of a new fuel are identified. Qualification tests and comments regarding the regulatory approval process are provided along with a conceptual schedule.

Primm, Trent [ORNL; Chandler, David [ORNL

2009-01-01T23:59:59.000Z

187

Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges  

Science Conference Proceedings (OSTI)

The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

Snoj, L. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Sklenka, L.; Rataj, J. [Dept. of Nuclear Reactor, Czech Technical Univ. in Prague, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Boeck, H. [Vienna Univ. of Technology/Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

2012-07-01T23:59:59.000Z

188

Qualification of JEFF3.1.1 library for high conversion reactor calculations using the ERASME/R experiment  

Science Conference Proceedings (OSTI)

With its low CO{sub 2} production, Nuclear Energy appears to be an efficient solution to the global warming due to green-house effect. However, current LWR reactors are poor uranium users and, pending the development of Fast Neutron Reactors, alternative concepts of PWR with higher conversion ratio (HCPWR) are being studied again at CEA, first studies dating from the middle 80's. In these French designs, low moderation ratio has been performed by tightening the lattice pitch, achieving a conversion ratio of 0.8-0.9 with a MOX fuel coming from PWR UOX recycling. Theses HCPWRs are characterized by a harder neutron spectrum and the calculation uncertainties on the fundamental neutronics parameters are increased by a factor 3 regarding a standard PWR lattice, due to the major contribution of the Plutonium isotopes and of the epithermal energy range to the reaction rates. In order to reduce these uncertainties, a 3-year experimental validation program called ERASME has been performed by CEA from 1984 to 1986 in the EOLE reactor. Monte Carlo analysis of the ERASME/R experiments with the Monte Carlo code TRIPOLI4 allowed the qualification of the recommended JEFF.3.1.1 library for major neutronics parameters. K{sub eff} of the MOX under-moderated lattice is over-predicted by 440 {+-} 830 pcm (2{sigma}); the conversion ratio, indicator of the good use of uranium, is also slightly over-predicted: 2 % {+-} 4 % (2{sigma}) and the same for B4C absorber rods worth and soluble boron worth, over-predicted by 2 %, both in the 2 standard deviations range. The radial fission maps of heterogeneities (water-holes, B4C and fertile rods) are well reproduced: maximal (C-E)/E dispersion is 1.3 %, maximal power peak error is 2.7 %. The void reactivity worth is the only parameter poorly calculated with an overprediction of +12.4% {+-} 1.5%. ERASME/R analysis of MOX reactivity, void effect and spectral indexes will contribute to the reevaluation of {sup 241}Am and Plutonium isotopes nuclear data for the next library JEFF3.2. (authors)

Vidal, J. F.; Noguere, G.; Peneliau, Y.; Santamarina, A. [CEA, DEN, DER/SPRC/LEPh, Cadarache, F-13108 Saint-Paul-lez-Durance (France)

2012-07-01T23:59:59.000Z

189

Advanced-fueled fusion reactors suitable for direct energy conversion. Fourth quarterly progress report: October 1976--December 1976 and first quarterly progress report: January 1977--March 1977  

SciTech Connect

The direct energy conversion efficiencies calculated for Cat-D and D-/sup 3/He fueled Tokamak reactors are summarized over a range of reactor designs, collector configurations, assumed T/sub e//T/sub i/ ratios, and power densities. The performance of a system of superconducting coils that produce those fields required to guide escaping plasma along the path between the bundle divertor coils and the direct converter is also discussed.

Blum, A.S. (ed.)

1977-09-09T23:59:59.000Z

190

Technology of direct conversion for mirror reactor end-loss plasma  

DOE Green Energy (OSTI)

Design concepts are presented for plasma direct convertors (PDC) intended primarily for use on the end-loss plasma from tandem-mirror reactors. Recent experimental results confirm most of these design concepts. Both a one-stage and a two-stage PDC were tested in reactor-like conditions using a 100-kV, 6-kW ion beam. In a separate test on the end of the TMX machine, a single stage PDC recovered 79 W for a net efficiency of 50%. Tandem mirror devices are well suited to PDC. The high minimum energy of the end-loss ions, the magnetic expansion outside the mirrors, and the vacuum conditions in the end tanks required by the confined plasma, all preexist. The inclusion of a PDC is therefore a rather small addition. These facts and the scale parameters for a PDC are discussed.

Barr, W.L.; Moir, R.W.

1980-10-07T23:59:59.000Z

191

Gas-phase chemistry during the conversion of cyclohexane to carbon: Flow reactor studies at low and intermediate pressure  

DOE Green Energy (OSTI)

The gas-phase branching during the conversion of cyclohexane to solid carbon has been measured in a high-temperature-flow reactor. The experiments show that cyclohexane decomposes into a broad distribution of hydrocarbons that further decompose into the more kinetically stable products hydrogen, methane, acetylene, ethylene, benzene, and PAH. At 1363 K, the evolution to these species occurs quickly. We also observe the buildup of significant amounts of aromatic molecules at later stages in the decomposition, with as much as 15% of the total carbon in PAH and 25% in benzene. At later stages, the gas-phase molecules react slowly, even though the system is not at equilibrium, because of their kinetic stability and the smaller radical pool. The decomposition does not appear to depend sensitively on pressure in the regime of 25 to 250 torr. Thus, to a first approximation, these results can be extrapolated to atmospheric pressure.

Osterheld, T.H.; Allendorf, M.D.; Larson, R.

1995-07-01T23:59:59.000Z

192

Role of research reactors in training of NPP personnel with special focus on training reactor VR-1  

Science Conference Proceedings (OSTI)

Research reactors play an important role in providing key personnel of nuclear power plants a hands-on experience from operation and experiments at nuclear facilities. Training of NPP (Nuclear Power Plant) staff is usually deeply theoretical with an extensive utilisation of simulators and computer visualisation. But a direct sensing of the reactor response to various actions can only improve the personnel awareness of important aspects of reactor operation. Training Reactor VR-1 and its utilization for training of NPP operators and other professionals from Czech Republic and Slovakia is described. Typical experimental exercises and good practices in organization of a training program are demonstrated. (authors)

Sklenka, L.; Rataj, J.; Frybort, J.; Huml, O. [Dept. of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical Univ. in Prague, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)

2012-07-01T23:59:59.000Z

193

Lunar Nuclear Power Plant With Solid Core Reactor, Heatpipes and Thermoelectric Conversion  

Science Conference Proceedings (OSTI)

This is a lunar nuclear power plant with the advantages of minimum mass, with no moving parts, no pumped liquid coolant, a solid metal rugged core, with no single point of failure. The electrical output is 100 kilowatts with a 500 kilowatt thermal reactor. The thermoelectric converters surround the potassium heatpipes from the core and water heatpipes surround the converter and connect to the radiator. The solid core reactor is made from HT9 alloy. The fuel is uranium oxide with 90% enrichment. The thermoelectric converter is bonded to the outside of the 1.10 inch ID heat pipe and is 30 inches long. The thermoelectric couple is Si/SiGe-Si/SiC Quantum Well with over 20% efficiency with an 890 K hot side and a 490 K cold side and produces 625 Watts. 176 converters produce 110 kWe. With less than 10% loss in controls this yields 100 kWe for use. The cylindrical thermoelectric converter is designed and fabricated by HIPing to keep brittle materials in compression and to ensure conductivity. The solid core is fabricated by machining the heatpipe tubes with 6 grooves that are diffusion bonded together by HIPing to form the fuel tubes. The maximum temperature of the heat pipes is 940 K and the return flow temperature is 890 K. The reactor core is hexagonal shaped, 61 cm. wide and 76.2 cm high with 12 rotating control drums surrounding it. There is shielding to protect components and human habitation. The radiator is daisy shaped at 45 degrees with each petal 5.5 meters long. The design life is ten years.

Sayre, Edwin D. [Engineering Consultant, 218 Brooke Acres Drive, Los Gatos, CA 95032 (United States); Ring, Peter J. [Advanced Methods and Materials, 1190 Mountain View-Alviso Rd. Suite P, Sunnyvale, CA 94089 (United States); Brown, Neil [Engineering Consultant, 5134 Cordoy Lane, San Jose, CA 95124 (United States); Elsner, Norbert B.; Bass, John C. [Hi-Z Technology, Inc., 7606 Miramar Rd. Suite 7400, San Diego, CA 92126 (United States)

2008-01-21T23:59:59.000Z

194

EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Urgent-Relief Acceptance of Foreign Research Reactor Spent 2: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel SUMMARY This EA evaluates the environmental impacts of a proposal to accept 409 spent fuel elements from eight foreign research reactors in seven European countries. The spent fuel would be shipped across the ocean in spent fuel transportation casks from the country of origin to one or more United States eastern seaboard ports. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 22, 1994 EA-0912: Finding of No Significant Impact Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel April 22, 1994 EA-0912: Final Environmental Assessment Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

195

FUEL ELEMENTS FOR THE ARGONNE ADVANCED RESEARCH REACTOR  

SciTech Connect

The core design and the fuel element concept for the high-flux Argonne Advanced Research Reactor are presented. The core is cooled and moderated by light water and utilizes beryllium as a reflector. The fuel element assembly is rhomboidal in cross section and consists of 27 plates fastened together at their edges by dovetailed locking keys, and at each end by end fittings. Each fuel plate is 40 mils thick and contains a uniform dispersion of highly enriched UO/ sub 2/ particles, up to a maximum of 37 wt%, in a matrix of sintered stainless steel powder. A 5 mil thick stainless steel cladding is metallurgically bonded to each side of the fueled matrix. (N.W.R.)

Adolph, N.R.; Silberstein, M.S.; Weinstein, A.

1962-01-01T23:59:59.000Z

196

Sodium fast reactor fuels and materials : research needs.  

SciTech Connect

An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

Denman, Matthew R.; Porter, Douglas (Idaho National Laboratory, Idaho Falls, ID); Wright, Art (Argonne National Laboratory Argonne, IL); Lambert, John (Argonne National Laboratory Argonne, IL); Hayes, Steven (Idaho National Laboratory, Idaho Falls, ID); Natesan, Ken (Argonne National Laboratory Argonne, IL); Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Garner, Frank (Radiation Effects Consulting. Richland, WA); Walters, Leon (Advanced Reactor Concepts, Idaho Falls, ID); Yacout, Abdellatif (Argonne National Laboratory Argonne, IL)

2011-09-01T23:59:59.000Z

197

MCNP-model for the OAEP Thai Research Reactor  

SciTech Connect

An MCNP input was prepared for the Thai Research Reactor, making extensive use of the MCNP geometry`s lattice feature that allows a flexible and easy rearrangement of the core components and the adjustment of the control elements. The geometry was checked for overdefined or undefined zones by two-dimensional plots of cuts through the core configuration with the MCNP geometry plotting capabilities, and by a three-dimensional view of the core configuration with the SABRINA code. Cross sections were defined for a hypothetical core of 67 standard fuel elements and 38 low-enriched uranium fuel elements--all filled with fresh fuel. Three test calculations were performed with the MCNP4B-code to obtain the multiplication factor for the cases with control elements fully inserted, fully withdrawn, and at a working position.

Gallmeier, F.X.; Tang, J.S.; Primm, R.T. III

1998-06-01T23:59:59.000Z

198

The inverse kinetics method and PID compensation of the Annular Core Research Reactor.  

E-Print Network (OSTI)

??This thesis explores the development of a model describing the Annular Core Research Reactor (ACRR), the application of the inverse kinetics method to calculate the… (more)

Garnas, Benjamin

2008-01-01T23:59:59.000Z

199

High uranium density dispersion fuel for the reduced enrichment of research and test reactors program.  

E-Print Network (OSTI)

??This work describes the fabrication of a high uranium density fuel for the Reduced Enrichment of Research and Test Reactors Program. In an effort to… (more)

[No author

2006-01-01T23:59:59.000Z

200

Final Site-Specific Decommissioning Inspection Report for the University of Washington Research and Test Reactor  

SciTech Connect

Report of site-specific decommissioning in-process inspection activities at the University of Washington Research and Test Reactor Facility.

Sarah Roberts

2006-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dual bed reactor for the study of catalytic biomass tars conversion  

SciTech Connect

A dual fixed bed laboratory scale set up has been used to compare the activity of a novel Rh/LaCoO{sub 3}/Al{sub 2}O{sub 3} catalyst to that of dolomite, olivine and Ni/Al{sub 2}O{sub 3}, typical catalysts used in fluidized bed biomass gasification, to convert tars produced during biomass devolatilization stage. The experimental apparatus allows the catalyst to be operated under controlled conditions of temperature and with a real gas mixture obtained by the pyrolysis of the biomass carried out in a separate fixed bed reactor operated under a selected and controlled heating up rate. The proposed catalyst exhibits much better performances than conventional catalysts tested. It is able to completely convert tars and also to strongly decrease coke formation due to its good redox properties. (author)

Ammendola, P.; Piriou, B.; Lisi, L.; Ruoppolo, G.; Chirone, R.; Russo, G. [Istituto di Ricerche sulla Combustione - CNR, P.le V. Tecchio 80, 80125 Napoli (Italy)

2010-04-15T23:59:59.000Z

202

Sodium fast reactor safety and licensing research plan. Volume I.  

SciTech Connect

This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

Sofu, Tanju (Argonne National Laboratory, Argonne, IL); LaChance, Jeffrey L.; Bari, R. (Brokhaven National Laboratory Upton, NY); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.; Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN)

2012-05-01T23:59:59.000Z

203

The initial results of research on two-step cascades in the Dalat research reactor  

E-Print Network (OSTI)

By the financial support of Vietnam Atomic Energy Commission and kind cooperation of Frank Laboratory, in the year of 2005 a measure system based on summation of amplitude pulses was established on the tangential channel of Dalat Research Reactor. After a serial of testing, the measure system was explored. In this, we would like to show the initial results were gotten with 36-Cl isotope.

Nguyen Xuan Hai; Pham Dinh Khang; Vuong Huu Tan; Ho Huu Thang; A. M. Sukhovoj; V. A. Khitrov

2013-07-11T23:59:59.000Z

204

Biotechnological research and development for biomass conversion to chemicals and fuels  

DOE Green Energy (OSTI)

It is likely that a growing need to produce chemicals and fuels from renewable resources will stimulate the development of biotechnology as a commerical enterprise of considerable potential. The purpose of the analysis and the development structure that could lead to establishing this new technology are presented. Two general goals are recommended: (i) in the near term, to revive the older fermentation industry and, by the addition of sophisticated technology, to make it competitive; (ii) in the longer term, to develop a new biotechnology largely based on lignocellulose. Specific research projects are outlined in these two areas and also for the following: microbial formation of hydrocarbons; methane from anaerobic digestion; lignin; methanol. For cellulose conversion to ethanol the relative merits of using added cellulases or, alternatively, direct fermentation with anaerobic thermophiles, are discussed. In selecting suitable feedstocks for biotechnological processes there is a need to use a production-extraction-conversion system as a basis for evaluation. An effective research workforce for developing biotechnology must be pluridisciplinary. The strategy adopted at the Solar Energy Research Institute is to design the Biotechnology Branch as an integrated set of three Groups: Biochemistry and Molecular Genetics; Microbiology; Chemical and Biochemical Engineering.

Villet, R.

1980-08-01T23:59:59.000Z

205

Independent Verification of Research Reactor Operation (Analysis of the Georgian IRT-M Reactor by the Isotope Ratio Method)  

SciTech Connect

The U.S. Department of Energy’s Office of Nonproliferation and International Security (NA-24) develops technologies to aid in implementing international nuclear safeguards. The Isotope Ratio Method (IRM) was successfully developed in 2005 – 2007 by Pacific Northwest National Laboratory (PNNL) and the Republic of Georgia’s Andronikashvili Institute of Physics as a generic technology to verify the declared operation of water-moderated research reactors, independent of spent fuel inventory. IRM estimates the energy produced over the operating lifetime of a fission reactor by measuring the ratios of the isotopes of trace impurity elements in non-fuel reactor components.The Isotope Ratio Method is a technique for estimating the energy produced over the operating lifetime of a fission reactor by measuring the ratios of the isotopes of impurity elements in non-fuel reactor components.

Cliff, John B.; Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Little, Winston W.; Reid, Bruce D.; Tsiklauri, Georgi V.; Abramidze, Sh; Rostomashvili, Z.; Kiknadze, G.; Dzhavakhishvily, O.; Nabakhtiani, G.

2010-08-11T23:59:59.000Z

206

Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability  

SciTech Connect

Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment. • Reactor pressure vessel • Pumps and piping

Philip E. MacDonald

2003-09-01T23:59:59.000Z

207

Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels  

SciTech Connect

The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way of two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.

Thibodeaux, J.; Hensley, J.

2013-01-01T23:59:59.000Z

208

Very High Temperature Reactor (VHTR) Survey of Materials Research and Development Needs to Support Early Deployment  

DOE Green Energy (OSTI)

The VHTR reference concept is a helium-cooled, graphite moderated, thermal neutron spectrum reactor with an outlet temperature of 1000 C or higher. It is expected that the VHTR will be purchased in the future as either an electricity producing plant with a direct cycle gas turbine or a hydrogen producing (or other process heat application) plant. The process heat version of the VHTR will require that an intermediate heat exchanger (IHX) and primary gas circulator be located in an adjoining power conversion vessel. A third VHTR mission - actinide burning - can be accomplished with either the hydrogen-production or gas turbine designs. The first ''demonstration'' VHTR will produce both electricity and hydrogen using the IHX to transfer the heat to either a hydrogen production plant or the gas turbine. The plant size, reactor thermal power, and core configuration will be designed to assure passive decay heat removal without fuel damage during accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. The purpose of this report is to identify the materials research and development needs for the VHTR. To do this, we focused on the plant design described in Section 2, which is similar to the GT-MHR plant design (850 C core outlet temperature). For system or component designs that present significant material challenges (or far greater expense) there may be some viable design alternatives or options that can reduce development needs or allow use of available (cheaper) materials. Nevertheless, we were not able to assess those alternatives in the time allotted for this report and, to move forward with this material research and development assessment, the authors of this report felt that it was necessary to use a GT-MHR type design as the baseline design.

Eric Shaber; G. Baccaglini; S. Ball; T. Burchell; B. Corwin; T. Fewell; M. Labar; P. MacDonald; P. Rittenhouse; Russ Vollam; F. Southworth

2003-01-01T23:59:59.000Z

209

Development and transfer of fuel fabrication and utilization technology for research reactors  

SciTech Connect

Approximately 300 research reactors supplied with US-enriched uranium are currently in operation in about 40 countries, with a variety of types, sizes, experiment capabilities and applications. Despite the usefulness and popularity of research reactors, relatively few innovations in their core design have been made in the last fifteen years. The main reason can be better understood by reviewing briefly the history of research reactor fuel technology and enrichment levels. Stringent requirements on the enrichment of the uranium to be used in research reactors were considered and a program was launched to assist research reactors in continuing their operation with the new requirements and with minimum penalties. The goal of the new program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is to develop the technical means to utilize LEU instead of HEU in research reactors without significant penalties in experiment performance, operating costs, reactor modifications, and safety characteristics. This paper reviews briefly the RERTR Program activities with special emphasis on the technology transfer aspects of interest to this conference.

Travelli, A.; Domagala, R.F.; Matos, J.E.; Snelgrove, J.L.

1982-01-01T23:59:59.000Z

210

Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986  

Science Conference Proceedings (OSTI)

Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals.

Not Available

1987-05-11T23:59:59.000Z

211

U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

2004-10-03T23:59:59.000Z

212

Monitoring and Control Research Using a University Reactor and SBWR Test-Loop  

Science Conference Proceedings (OSTI)

The existing hybrid simulation capability of the Penn State Breazeale nuclear reactor was expanded to conduct research for monitoring, operations and control. Hybrid simulation in this context refers to the use of the physical time response of the research reactor as an input signal to a real-time simulation of power-reactor thermal-hydraulics which in-turn provides a feedback signal to the reactor through positioning of an experimental changeable reactivity device. An ECRD is an aluminum tube containing an absorber material that is positioned in the central themble of the reactor kinetics were used to expand the hybrid reactor simulation (HRS) capability to include out-of-phase stability characteristics observed in operating BWRs.

Robert M. Edwards

2003-09-28T23:59:59.000Z

213

Gas release driven dynamics in research reactors piping  

SciTech Connect

Analysis of the physical and chemical processes of radiolysis gas production, air absorption, diffusion controlled gas release and transport in the coolant cleaning system of the research reactor FRM II, which is now being in routine power operation in Munich, Germany, lead to the following conclusions: 1) The steady state pressure distribution in the siphon pipe allows that the horizontal part of the siphon pipe is filled with air. The air is isolated by about 1 m water column from the main pipe of the coolant cleaning system (CCS). This is a stable steady state. It has two positive impacts on the normal operation of the CCS: (a) there is effectively no bypass flow; (b) The air can not be transported through the pipe and therefore no deterioration of the pump performance is expected from the function of the siphon pipe. 2) Radiolysis gas production for coolant, that initially does not contain dissolved air, does not lead to any problem for the system. The gases are dissolved in the coolant at 2.2 bar and are not released for pressures reduction to about 1 bar, which is the minimum pressure in the CCS. 3) Assuming hypothetically a radiolysis gas production for coolant, which initially does contain dissolved air close to its saturation, leads to gas slug formation and its transport up to the pump. This could reduce the pump head and could lead to distortion of the normal operation. Systematic measurement of the hydrogen in the primary system at 100% power indicated, that this state is not realized in the system. The observed H{sub 2} concentration was between 0.016 e-6 and 0.380 e-6 which is of no concern at all. (authors)

Kolev, Nikolay Ivanov; Roloff-Bock, Iris; Schlicht, Gerhard [Framatome ANP, P.O. Box 3220, D-91058, Erlangen (Germany)

2006-07-01T23:59:59.000Z

214

Risk management at the Oak Ridge National Laboratory research reactors  

SciTech Connect

In November of 1986, the High Flux Isotope Reactor (HFIR) was shut down by Oak Ridge National Laboratory (ORNL) due to a concern regarding embrittlement of the reactor vessel. A massive review effort was undertaken by ORNL and the Department of Energy (DOE). This review resulted in an extensive list of analyses and design modifications to be completed before restart could take place. The review also focused on the improvement of management practices including implementation of several of the Institute of Nuclear Power Operations (INPO) requirements. One of the early items identified was the need to perform a Probabilistic Risk Assessment (PRA) on the reactor. It was decided by ORNL management that this PRA would not be just an exercise to assess the ``bottom`` line in order to restart, but would be used to improve the overall safety of the reactor, especially since resources (both manpower and dollars) were severely limited. The PRA would become a basic safety tool to be used instead of a more standard deterministic approach to safety used in commercial reactor power plants. This approach was further reinforced, because the reactor was nearly 25 years old at this time, and the design standards and regulations had changed significantly since the original design, and many of the safety issues could not be addressed by compliance to codes and standards.

Flanagan, G.F.; Linn, M.A.; Proctor, L.D.; Cook, D.H.

1994-12-31T23:59:59.000Z

215

Reactor Safety Research Programs Quarterly Report July - September 1981  

SciTech Connect

This document summarizes the work performed by Pacific Northwest laboratory (PNL) from July 1 through September 30, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR} steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1982-01-01T23:59:59.000Z

216

USA NRC/RSR Data Bank System and Reactor Safety Research Data Repository (RSRDR)  

SciTech Connect

The United States Nuclear Regulatory Commission (NRC), through its Division of Reactor Safety Research (RSR) of the Office of Nuclear Regulatory Research, has established the NRC/RSR Data Bank Program to collect, process, and make available data from the many domestic and foreign water reactor safety research programs. An increasing number of requests for data and/or calculations generated by NRC Contractors led to the initiation of the program which allows timely and direct access to water reactor safety data in a manner most useful to the user. The program consists of three main elements: data sources, service organizations, and a data repository.

Maskewitz, B.F.; Bankert, S.F.

1979-01-01T23:59:59.000Z

217

Thermal-hydraulic aspects of flow inversion in a research reactor  

SciTech Connect

PARET, a neutronics and thermal-hydraulics computer code, has been modified to account for natural convection in a reactor core. The code was then used to analyze the flow inversion that occurs in a reactor with heat removal by forced convection in the downward direction after a pump failure. Typical results are shown for a number of parameters. Research reactors normally operating much above ten MW are predicted to experience nucleate boiling in the event of a flow inversion. Comparison with experimental results from the Belgian BR2 reactor indicated general agreement although nucleate boiling that was analytically predicted was not noted in the BR2 data.

Smith, R.S.; Woodruff, W.L.

1986-11-01T23:59:59.000Z

218

Biofuel Conversion Process  

Energy.gov (U.S. Department of Energy (DOE))

The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers...

219

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program  

SciTech Connect

The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

2012-09-01T23:59:59.000Z

220

Model Energy Conversion Efficiency of Biological Systems  

Science Conference Proceedings (OSTI)

MML Researchers Model Energy Conversion Efficiency of Biological Systems. Novel, highly efficient energy conversion ...

2013-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Light Water Reactor Fuel Cladding Research and Testing | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactor Fuel Cladding Research Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The purpose of this research is to furnish U.S. industry (EPRI, Areva, Westinghouse), and regulators (NRC) with much-needed data supporting safe and economical nuclear power generation and used fuel management. LWR fuel cladding work is tightly integrated with ORNL accident tolerant fuel development and used fuel disposition programs thereby providing a powerful capability that couples basic materials science research with the nuclear applications research and development. The ORNL LWR fuel cladding program consists of five complementary areas of research: Accident tolerant fuel and cladding material testing under design

222

Two U.S. University Research Reactors to be Converted From Highly Enriched  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. University Research Reactors to be Converted From Highly U.S. University Research Reactors to be Converted From Highly Enriched Uranium to Low-Enriched Uranium Two U.S. University Research Reactors to be Converted From Highly Enriched Uranium to Low-Enriched Uranium April 11, 2005 - 11:34am Addthis WASHINGTON, D.C. - As part of the Bush administration's aggressive effort to reduce the amount of weapons-grade nuclear material worldwide, Secretary of Energy Samuel W. Bodman announced today that the Department of Energy (DOE) has begun to convert research reactors from using highly-enriched uranium (HEU) to low-enriched uranium fuel (LEU) at the University of Florida and Texas A&M University. This effort, by DOE's National Nuclear Security Administration (NNSA) and the Office of Nuclear Energy, Science and Technology, are the latest steps

223

Effect of reduced enrichment on the fuel cycle for research reactors  

SciTech Connect

The new fuels developed by the RERTR Program and by other international programs for application in research reactors with reduced uranium enrichment (<20% EU) are discussed. It is shown that these fuels, combined with proper fuel-element design and fuel-management strategies, can provide at least the same core residence time as high-enrichment fuels in current use, and can frequently significantly extend it. The effect of enrichment reduction on other components of the research reactor fuel cycle, such as uranium and enrichment requirements, fuel fabrication, fuel shipment, and reprocessing are also briefly discussed with their economic implications. From a systematic comparison of HEU and LEU cores for the same reference research reactor, it is concluded that the new fuels have a potential for reducing the research reactor fuel cycle costs while reducing, at the same time, the uranium enrichment of the fuel.

Travelli, A.

1982-01-01T23:59:59.000Z

224

A Brief History i-l Research Reactors  

E-Print Network (OSTI)

stainless steel sam- ples in the High Flux Isotope Reactor (HFIR) at tem- peratures of 380 to 680" with up/cm' to balance the gas pressure were used m their calculation. A comparison of the results with HFIR and the HFIR ex- perimental data is presented in section 5. Applications of the model to various fusion designs

225

In accounts of seminal neutron research at ORNL's Graphite Reactor,  

E-Print Network (OSTI)

requested permission to set up an X-ray diffractometer he had brought from the University of Chicago for his of the Graphite Reactor. "I was a student at the University of Chicago in 1942 when Enrico Fermi was doing his. 25 Scrooge (OR Playhouse) Nov. 27 Football: UT vs. Kentucky Dec. 4 Fiddler on the Roof Dec. 11 Best

226

Demonstration of the reactivity constraint approach on SNL's annual core research reactor  

Science Conference Proceedings (OSTI)

This paper reports on the initial demonstration of the reactivity constraint approach and its implementing algorithm, the MIT-CSDL Non-Linear Digital Controller, on the annual core research reactor (ACCR) that is operated by the Sandia National Laboratories. This demonstration constituted the first use of reactivity constraints for the closed-loop, digital control of reactor power on a facility other than the Massachusetts Institute of Technology's (MIT's) research reactor (MITR-II). Also, because the ACRR and the MITR-II are of very different design, these trials established the generic nature of the reactivity constraint approach.

Bernard, J.A.; Kwok, K.S.; Wyant, F.J.; Thome, F.V.

1989-01-01T23:59:59.000Z

227

Cross section generation and physics modeling in a feasibility study of the conversion of the high flux isotope reactor core to use low-enriched uranium fuel  

SciTech Connect

A computational study has been initiated at ORNL to examine the feasibility of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The current study is limited to steady-state, nominal operation and are focused on the determination of the fuel requirements, primarily density, that are required to maintain the performance of the reactor. Reactor physics analyses are reported for a uranium-molybdenum alloy that would be substituted for the current fuel - U{sub 3}O{sub 8} mixed with aluminum. An LEU core design has been obtained and requires an increase in {sup 235}U loading of a factor of 1.9 over the current HEU fuel. These initial results indicate that the conversion from HEU to LEU results in a reduction of the thermal fluxes in the central flux trap region of approximately 9 % and in the outer beryllium reflector region of approximately 15%. Ongoing work is being performed to improve upon this initial design to further minimize the impact of conversion to LEU fuel. (authors)

Ellis, R. J.; Gehin, J. C.; Primm Iii, R. T. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2006-07-01T23:59:59.000Z

228

Materials Research Needs for Near-Term Nuclear Reactors  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Material

John R. Weeks

229

Decommissioning Anddismantling Of The Research Reactor Salaspils. I. Conceptual Study And The First Results.  

E-Print Network (OSTI)

In May 1995, the Latvian government decided to shut down the Research Reactor Salaspils (SRR) and to dis pense with nuclear energy in future. The reactor is out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umweltlechnik GmbH at 1998-1999 years. The Latvian government decided in October 26 1999 to start the direct dismantling to "green field" at 2001 year. The first decommissioning and dismantling results from preparation measures in 1999 year are presented and discussed. The main efforts was devoted to collecting and conditioning of "historical" radioactive wastes from different storages outside and inside of reactor hall. All non-radioactive equipments and materials outside of reactor buildings were free-released and dismantled for reusing and conventional disposing. Weakly contaminated materials from reactor hall were collected and removed for free-release measurements. 1.0 INTRODUCTION The res...

Andris Abramenkovs Ministry; Andris Abramenkovs; Arnis Ezergailis; State Enterprise “vides Projekti; Dzintars Kalninš

2000-01-01T23:59:59.000Z

230

Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report  

Science Conference Proceedings (OSTI)

This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOE’s Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

2002-11-01T23:59:59.000Z

231

Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Helium Power Conversion Cycle  

E-Print Network (OSTI)

The analysis of an indirect helium power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...

Kim, D.

232

Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Steam Power Conversion Cycle  

E-Print Network (OSTI)

The analysis of an indirect steam power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...

Kim, D.

233

MITR-III: Upgrade and relicensing studies for the MIT Research Reactor. Second annual report  

SciTech Connect

The current operating license of the MIT research reactor will expire on May 7, 1996 or possibly a few years later if the US Nuclear Regulatory Commission agrees that the license period can start with the date of initial reactor operation. Driven by the imminent expiration of the operating license, a team of nuclear engineering staff and students have begun a study of the future options for the MIT Research Reactor. These options have included the range from a major rebuilding of the reactor to its decommissioning. This document reports the results of a two year intensive activity which has been supported by a $148,000 grant from the USDOE contract Number DEFG0293ER75859, approximately $100,000 of internal MIT funds and Nuclear Engineering Department graduate student fellowships as well as assistance from international visiting scientists and engineers.

Trosman, H.G. [ed.; Lanning, D.D.; Harling, O.K.

1994-08-01T23:59:59.000Z

234

Education program at the Massachusetts Institute of Technology research reactor for pre-college science teachers  

Science Conference Proceedings (OSTI)

A Pre-College Science Teacher (PCST) Seminar program has been in place at the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory for 4 yr. The purpose of the PCST program is to educate teachers in nuclear technology and to show teachers, and through them the community, the types of activities performed at research reactors. This paper describes the background, content, and results of the MIT PCST program.

Hopkins, G.R.; Fecych, W.; Harling, O.K.

1989-01-01T23:59:59.000Z

235

Fluid-Structure Interaction for Coolant Flow in Research-type Nuclear Reactors  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), is scheduled to undergo a conversion of the fuel used and this proposed change requires an extensive analysis of the flow through the reactor core. The core consists of 540 very thin and long fuel plates through which the coolant (water) flows at a very high rate. Therefore, the design and the flow conditions make the plates prone to dynamic and static deflections, which may result in flow blockage and structural failure which in turn may cause core damage. To investigate the coolant flow between fuel plates and associated structural deflections, the Fluid-Structure Interaction (FSI) module in COMSOL will be used. Flow induced flutter and static deflections will be examined. To verify the FSI module, a test case of a cylinder in crossflow, with vortex induced vibrations was performed and validated.

Curtis, Franklin G [ORNL; Ekici, Kivanc [ORNL; Freels, James D [ORNL

2011-01-01T23:59:59.000Z

236

Using low-enriched uranium in research reactors: The RERTR program  

SciTech Connect

The goal of the RERTR program is to minimize and eventually eliminate use of highway enriched uranium (HEU) in research and test reactors. The program has been very successful, and has developed low-enriched uranium (LEU) fuel materials and designs which can be used effectively in approximately 90 percent of the research and test reactors which used HEU when the program began. This progress would not have been possible without active international cooperation among fuel developers, commercial vendors, and reactor operators. The new tasks which the RERTR program is undertaking at this time include development of new and better fuels that will allow use of LEU fuels in all research and test reactors; cooperation with Russian laboratories, which will make it possible to minimize and eventually eliminate use of HEU in research reactors throughout the world, irrespective of its origin; and development of an LEU-based process for the production of {sup 99}Mo. Continuation and intensification of international cooperation are essential to the achievement of the ultimate goals of the RERTR program.

Travelli, A.

1994-05-01T23:59:59.000Z

237

Major Safety Aspects of Advanced Candu Reactor and Associated Research and Development  

Science Conference Proceedings (OSTI)

The Advanced Candu{sup R} Reactor design is built on the proven technology of existing Candu plants and on AECL's knowledge base acquired over decades of nuclear power plant design, engineering, construction and research. Two prime objectives of ACR-700TM1 are cost reduction and enhanced safety. To achieve them some new features were introduced and others were improved from the previous Candu 6 and Candu 9 designs. The ACR-700 reactor design is based on the modular concept of horizontal fuel channels surrounded by a heavy water moderator, the same as with all Candu reactors. The major novelty in the ACR-700 is the use of slightly enriched fuel and light water as coolant circulating in the fuel channels. This results in a more compact reactor design and a reduction of heavy water inventory, both contributing to a significant decrease in cost compared to Candu reactors, which employ natural uranium as fuel and heavy water as coolant. The reactor core design adopted for ACR-700 also has some features that have a bearing on inherent safety, such as negative power and coolant void reactivity coefficient. Several improvements in engineered safety have been made as well, such as enhanced separation of the safety support systems. Since the ACR-700 design is an evolutionary development of the currently operating Candu plants, limited research is required to extend the validation database for the design and the supporting safety analysis. A program of safety related research and development has been initiated to address the areas where the ACR-700 design is significantly different from the Candu designs. This paper describes the major safety aspects of the ACR-700 with a particular focus on novel features and improvements over the existing Candu reactors. It also outlines the key areas where research and development efforts are undertaken to demonstrate the effectiveness and robustness of the design. (authors)

Bonechi, M.; Wren, D.J.; Hopwood, J.M. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2002-07-01T23:59:59.000Z

238

Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors  

SciTech Connect

The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately.

1993-07-01T23:59:59.000Z

239

Evaluation of the thermal-hydraulic operating limits of the HEU-LEU transition cores for the MIT Research Reactor.  

E-Print Network (OSTI)

??The MIT Research Reactor (MITR) is in the process of conducting a design study to convert from High Enrichment Uranium (HEU) fuel to Low Enrichment… (more)

Wang, Yunzhi (Yunzhi Diana)

2009-01-01T23:59:59.000Z

240

N-Reactor Department research and development budget for FY-1967 and revision of budget for FY-1966  

SciTech Connect

This report provides the N-Reactor research and development budget for fiscal year 1967 and modifications of the budget for fiscal year 1966.

1965-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Pit disassembly and conversion demonstration environmental assessment and research and development activities  

Science Conference Proceedings (OSTI)

A significant portion of the surplus plutonium is in the form of pits, a nuclear weapons component. Pits are composed of plutonium which is sealed in a metallic shell. These pits would need to be safely disassembled and permanently converted to an unclassified form that would be suitable for long-term disposition and international inspection. To determine the feasibility of an integrated pit disassembly and conversion system, a Pit Disassembly and Conversion Demonstration is proposed to take place at the Los Alamos National Laboratory (LANL). This demonstration would be done in existing buildings and facilities, and would involve the disassembly of up to 250 pits and conversion of the recovered plutonium to plutonium metal ingots and plutonium dioxide. This demonstration also includes the conversion of up to 80 kilograms of clean plutonium metal to plutonium dioxide because, as part of the disposition process, some surplus plutonium metal may be converted to plutonium dioxide in the same facility as the surplus pits. The equipment to be used for the proposed demonstration addressed in this EA would use some parts of the Advanced Recovery and Integrated Extraction System (ARIES) capability, other existing equipment/capacities, plus new equipment that was developed at other sites. In addition, small-scale R and D activities are currently underway as part of the overall surplus plutonium disposition program. These R and D activities are related to pit disassembly and conversion, MOX fuel fabrication, and immobilization (in glass and ceramic forms). They are described in Section 7.0. On May 16, 1997, the Office of Fissile Materials Disposition (MD) notified potentially affected states and tribes that this EA would be prepared in accordance with NEPA. This EA has been prepared to provide sufficient information for DOE to determine whether a Finding of No Significant Impact (FONSI) is warranted or whether an EIS must be prepared.

NONE

1998-08-01T23:59:59.000Z

242

Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor  

SciTech Connect

A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams.

Hu Linwen; Bernard, John A.; Hejzlar, Pavel; Kohse, Gordon [Massachusetts Institute of Technology (United States)

2005-05-15T23:59:59.000Z

243

Foreign research reactor irradiated nuclear fuel inventories containing HEU and LEU of United States origin  

SciTech Connect

This report provides estimates of foreign research reactor inventories of aluminum-based and TRIGA irradiated nuclear fuel elements containing highly enriched and low enriched uranium of United States origin that are anticipated in January 1996, January 2001, and January 2006. These fuels from 104 research reactors in 41 countries are the same aluminum-based and TRIGA fuels that were eligible for receipt under the Department of Energy`s Offsite Fuels Policy that was in effect in 1988. All fuel inventory and reactor data that were available as of December 1, 1994, have been included in the estimates of approximately 14,300 irradiated fuel elements in January 1996, 18,800 in January 2001, and 22,700 in January 2006.

Matos, J.E.

1994-12-01T23:59:59.000Z

244

Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel  

SciTech Connect

A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

2006-02-01T23:59:59.000Z

245

MYRRHA a multi-purpose hybrid research reactor for high-tech applications  

SciTech Connect

MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental accelerator driven system (ADS) in development at SCK-CEN. MYRRHA is able to work both in subcritical (ADS) as in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for generation IV (GEN IV) systems, material developments for fusion reactors, radioisotope production and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. MYRRHA is based on the heavy liquid metal technology and so it will contribute to the development of lead fast reactor (LFR) technology and in critical mode, MYRRHA will play the role of European technology pilot plant in the roadmap for LFR. In this paper the historical evolution of MYRRHA and the rationale behind the design choices is presented and the latest configuration of the reactor core and primary system is described. (authors)

Abderrahim, H. A.; Baeten, P. [SCK CEN, Boeretang 200, 2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

246

Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

Not Available

1994-04-01T23:59:59.000Z

247

REACTOR  

DOE Patents (OSTI)

A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

Roman, W.G.

1961-06-27T23:59:59.000Z

248

Monte Carlo simulation of the Massachusetts Institute of Technology Research Reactor  

SciTech Connect

The three-dimensional continuous-energy MCNP Monte Carlo code is used to develop a versatile and accurate reactor physics model of the Massachusetts Institute of Technology Research Reactor 2 (MITR-2). The validation of the model against existing experimental data is presented. Core multiplication factors as well as fast neutron in-core flux measurements were used in the validation process. The agreement between the MCNP predictions and the experimentally determined values is very good, which indicates that the Monte Carlo model is correctly simulating the MITR-2.

Redmond, E.L. II; Yanch, J.C.; Harling, O.K. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Engineering Dept.)

1994-04-01T23:59:59.000Z

249

Nuclear nonproliferation: Concerns with US delays in accepting foregin research reactors` spent fuel  

SciTech Connect

One key US nonproliferation goal is to discourage use of highly enriched uranium fuel (HEU), which can be used to make nuclear bombs, in civilian nuclear programs worldwide. DOE`s Off-Site Fuels Policy for taking back spent HEU from foreign research reactors was allowed to expire due to environmental reasons. This report provides information on the effects of delays in renewing the Off-Site Fuels Policy on US nonproliferation goals and programs (specifically the reduced enrichment program), DOE`s efforts to renew the fuels policy, and the price to be charged to the operators of foreign reactors for DOE`s activities in taking back spent fuel.

1994-03-25T23:59:59.000Z

250

Strategic Plan for Light Water Reactor Research and Development  

Science Conference Proceedings (OSTI)

The purpose of this strategic plan is to establish a framework that will allow the Department of Energy (DOE) and the nuclear power industry to jointly plan the nuclear energy research and development (R&D) agenda important to achieving the Nation's energy goals. This strategic plan has been developed to focus on only those R&D areas that will benefit from a coordinated government/industry effort. Specifically, this plan focuses on safely sustaining and expanding the electricity output from currently operating nuclear power plants and expanding nuclear capacity through the deployment of new plants. By focusing on R&D that addresses the needs of both current and future nuclear plants, DOE and industry will be able to take advantage of the synergism between these two technology areas, thus improving coordination, enhancing efficiency, and further leveraging public and private sector resources. By working together under the framework of this strategic plan, DOE and the nuclear industry reinforce their joint commitment to the future use of nuclear power and the National Energy Policy's goal of expanding its use in the United States. The undersigned believe that a public-private partnership approach is the most efficient and effective way to develop and transfer new technologies to the marketplace to achieve this goal. This Strategic Plan is intended to be a living document that will be updated annually.

None

2004-02-01T23:59:59.000Z

251

Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria  

SciTech Connect

The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

K. J. Allen; T. G. Apostolov; I. S. Dimitrov

2009-03-01T23:59:59.000Z

252

Catalytic conversion of light alkanes -- research and proof-of-concept stages  

DOE Green Energy (OSTI)

Objective is to find new catalysts for direct reaction of methane, ethane, propane, butanes with O{sub 2} to form alcohols, and to develop practical processes for direct oxidative conversion of natural gas and its C{sub 1}-C{sub 4} components to produce alcohol-rich liquid oxygenates for use as alternative transportation fuels/environmentally superior reformulated gasolines. The proposed mechanism for oxidation activity of cytochrome P-450 and methane monoxygenase suggested that a catalyst able to reductively bind oxygen, not between Fe(III) center and a proton, but between two Fe(III) centers, might give the desired dioxygenase activity for alkane hydroxylation. Selective oxidation of light alkanes could be done by oxidation-active metal (Fe) centers in electron-deficient prophyrin-like macrocycles, polyoxoanions, and zeolites. In the isobutane conversion to tert-butanol proof-of-concept, it was found that nitro groups on the periphery of Fe porphyrin complexes give the greatest increase in Fe(III)/(II) reduction potential. 8 figs, 6 tabs, 40 refs.

Lyons, J.E.; Hancock, A.W. II

1993-12-31T23:59:59.000Z

253

Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa  

SciTech Connect

At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

1984-09-01T23:59:59.000Z

254

STORED ENERGY: GROWTH AND ANNEALING STATUS OF GRAPHITE MODERATOR IN THE BNL RESEARCH REACTOR. Final Report  

SciTech Connect

The present sthtus, past annealing procedures and experiences, future annealing procedures, annealing sehedule, revised annealing procedure (1958), procedure for combating a graphite fire in fuel channel, high-temperature stored energy, and graphite burning experiments are reportcd for the BNL Research Reactor. The following subjccts are discussed in the appendixes: control of radiation damage in a graphitc reactor; annealing of graphite moderator structure in the BNL; annealing operation in BNL graphite reactor; effect of pile radiation on mechanical and other properties of graphite; neutron sensing instrumentation; instrumentation for sensing fuel failures; thermocouple pattern for enriched fuel loading; environmental hazard from a molten fuel element; retention of volatile flssion products on filters; retention of volatile fission products on water tube coolers; retention of volatile fission products in molten fuel plates; and release of the lowtemperature stored energy in the BEPO Pile. (W.L.H.)

1959-10-31T23:59:59.000Z

255

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

notably energy conversion. As research continues in thisnanowires for energy conversion. Chemical Reviews, 2010.for solar energy conversion. Physical Review Letters, 2004.

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

256

Conceptual design analysis of an MHD power conversion system for droplet-vapor core reactors. Final report  

DOE Green Energy (OSTI)

A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses.

Anghaie, S.; Saraph, G.

1995-12-31T23:59:59.000Z

257

U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors  

Science Conference Proceedings (OSTI)

Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

Wood, Richard Thomas [ORNL

2012-01-01T23:59:59.000Z

258

EVALUATION OF CORE PHYSICS ANALYSIS METHODS FOR CONVERSION OF THE INL ADVANCED TEST REACTOR TO LOW-ENRICHMENT FUEL  

Science Conference Proceedings (OSTI)

Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR.

Mark DeHart; Gray S. Chang

2012-04-01T23:59:59.000Z

259

Evaluation of core physics analysis methods for conversion of the INL advanced test reactor to low-enrichment fuel  

Science Conference Proceedings (OSTI)

Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR. (authors)

DeHart, M. D.; Chang, G. S. [Idaho National Laboratory, 2525 Fremont Street, Idaho Falls, ID 83415-3870 (United States)

2012-07-01T23:59:59.000Z

260

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume III. Wind conversion systems with energy storage. Final report  

DOE Green Energy (OSTI)

The variability of energy output inherent in wind energy conversion systems (WECS) has led to the investigation of energy storage as a means of managing the available energy when immediate, direct use is not possible or desirable. This portion of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a wind energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with wind energy conversion systems.

Not Available

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

262

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

263

DEVELOPMENT OF A FAST-RELEASE ELECTRO-MAGNET FOR POOL-TYPE RESEARCH REACTORS  

SciTech Connect

Experimental data and observations of the design parameters and physical configurations which lead to faster-release cylindrical flat-faced electromagnets are given. Detailed drawings and operating characteristics are presented for an electromagnet suited to the requirements of a pool-type research reactor using either gravity drop or additional accelerating force. This electromagnet embodies the experimentally developed techniques for attaining fast release. (auth)

Michelson, C.

1958-02-14T23:59:59.000Z

264

A simple setup for neutron tomography at the Portuguese Nuclear Research Reactor  

E-Print Network (OSTI)

A simple setup for neutron radiography and tomography was recently installed at the Portuguese Research Reactor. The objective of this work was to determine the operational characteristics of the installed setup, namely the irradiation time to obtain the best dynamic range for individual images and the spatial resolution. The performance of the equipment was demonstrated by imaging a fragment of a 17th century decorative tile.

M. A. Stanojev Pereira; J. G. Marques; R. Pugliesi

2012-05-15T23:59:59.000Z

265

Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies  

SciTech Connect

This document has been prepared to assist research reactor operators possessing spent fuel containing enriched uranium of United States origin to prepare part of the documentation necessary to ship this fuel to the United States. Data are included on the nuclear mass inventory, photon dose rate, and thermal decay heat of spent research reactor fuel assemblies. Isotopic masses of U, Np, Pu and Am that are present in spent research reactor fuel are estimated for MTR, TRIGA and DIDO-type fuel assembly types. The isotopic masses of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and of initial U-235 enrichment and U-235 mass in the fuel assembly. Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities between 0.089 and 2.857 MW/kg[sup 235]U, and for fission product decay times of up to 20 years. Thermal decay heat loads are estimated for spent fuel based upon the fuel assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel cooling time.

Pond, R.B.; Matos, J.E.

1996-12-31T23:59:59.000Z

266

Planning Document for an NBSR Conversion Safety Analysis Report  

SciTech Connect

The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

2013-09-25T23:59:59.000Z

267

Reactor physics teaching and research in the Swiss nuclear engineering master  

Science Conference Proceedings (OSTI)

Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

Chawla, R. [Swiss Federal Inst. of Technology EPFL, CH-1015 Lausanne (Switzerland); Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland)

2012-07-01T23:59:59.000Z

268

IGORR-1: Proceedings of the first meeting of the international group on research reactors  

SciTech Connect

Many organizations, in several countries, are planning or implementing new or upgraded research reactor projects, but there has been no organized forum devoted entirely to discussion and exchange of information in this field. Over the past year or so, informal discussions resulted in widespread agreement that such a forum would serve a useful purpose. Accordingly, a proposal to form a group was submitted to the leading organizations known to be involved in projects to build or upgrade reactor facilities. Essentially all agreed to join in the formation of the International Group on Research Reactors (IGORR) and nominated a senior staff member to serve on its international organizing committee. The first IGORR meeting took place on February 28--March 2, 1990. It was very successful and well attended; some 52 scientists and engineers from 25 organizations in 10 countries participated in 2-1/2 days of open and informative presentations and discussions. Two workshop sessions offered opportunities for more detailed interaction among participants and resulted in identification of common R D needs, sources of data, and planned new facilities. Individual papers have been cataloged separately.

West, C.D. (comp.)

1990-05-01T23:59:59.000Z

269

NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS  

Science Conference Proceedings (OSTI)

This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

Hakan Ozaltun & Herman Shen

2011-11-01T23:59:59.000Z

270

Evaluation of the thermal-hydraulic operating limits of the HEU-LEU transition cores for the MIT Research Reactor  

E-Print Network (OSTI)

The MIT Research Reactor (MITR) is in the process of conducting a design study to convert from High Enrichment Uranium (HEU) fuel to Low Enrichment Uranium (LEU) fuel. The currently selected LEU fuel design contains 18 ...

Wang, Yunzhi (Yunzhi Diana)

2009-01-01T23:59:59.000Z

271

ORNL/TM-2012/380 Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2/380 2/380 Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program September 2012 Prepared by Cyrus Smith Randy Nanstad Robert Odette Dwight Clayton Katie Matlack Pradeep Ramuhalli Glenn Light DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900

272

Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.  

SciTech Connect

Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate generic transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.

Bretscher, M. M.; Hanan, N. A.; Matos, J. E.; Andrzejewski, K.; Kulikowska, T.

1999-09-27T23:59:59.000Z

273

RELAP5 Application to Accident Analysis of the NIST Research Reactor  

Science Conference Proceedings (OSTI)

Detailed safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The time-dependent analysis of the primary system is determined with a RELAP5 transient analysis model that includes the reactor vessel, the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. A post-processing of the simulation results has been conducted to evaluate minimum critical heat flux ratio (CHFR) using the Sudo-Kaminaga correlation. Evaluations are performed for the following accidents: (1) the control rod withdrawal startup accident and (2) the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur because of sufficient coolant flow through the fuel channels and the negative scram reactivity insertion.

Baek, J.; Cuadra Gascon, A.; Cheng, L.Y.; Diamond, D.

2012-03-18T23:59:59.000Z

274

Research Article Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study  

E-Print Network (OSTI)

Copyright © 2011 Hsiao-Ching Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1 ? C, and substrate molar ratio 1: 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07 % and 82.81 ±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis. 1.

Hsiao-ching Chen; Hen-yi Ju; Tsung-ta Wu; Yung-chuan Liu; Chih-chen Lee; Cheng Chang; Yi-lin Chung; Chwen-jen Shieh

2010-01-01T23:59:59.000Z

275

Polymeric and Conversion Coatings  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Ongoing research reveals that the search for appropriate conversion ... of the coated alloy was ~ 250 mV more noble compared to bare alloy.

276

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

J. K. Wright; R. N. Wright

2008-04-01T23:59:59.000Z

277

DOE/EIS-0218-SA-3: Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (November 2004)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUPPLEMENT ANALYSIS FOR THE FOREIGN SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM NOVEMBER 2004 DOE/EIS-0218-SA-3 U.S. Department of Energy National Nuclear Security Administration Washington, DC Final Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program Final i TABLE OF CONTENTS Page 1. Introduction.............................................................................................................................................. 1 2. Background .............................................................................................................................................. 1 3. The Proposed Action ...............................................................................................................................

278

Biological research survey for the efficient conversion of biomass to biofuels.  

DOE Green Energy (OSTI)

The purpose of this four-week late start LDRD was to assess the current status of science and technology with regard to the production of biofuels. The main focus was on production of biodiesel from nonpetroleum sources, mainly vegetable oils and algae, and production of bioethanol from lignocellulosic biomass. One goal was to assess the major technological hurdles for economic production of biofuels for these two approaches. Another goal was to compare the challenges and potential benefits of the two approaches. A third goal was to determine areas of research where Sandia's unique technical capabilities can have a particularly strong impact in these technologies.

Kent, Michael Stuart; Andrews, Katherine M. (Computational Biosciences)

2007-01-01T23:59:59.000Z

279

Biological research survey for the efficient conversion of biomass to biofuels.  

SciTech Connect

The purpose of this four-week late start LDRD was to assess the current status of science and technology with regard to the production of biofuels. The main focus was on production of biodiesel from nonpetroleum sources, mainly vegetable oils and algae, and production of bioethanol from lignocellulosic biomass. One goal was to assess the major technological hurdles for economic production of biofuels for these two approaches. Another goal was to compare the challenges and potential benefits of the two approaches. A third goal was to determine areas of research where Sandia's unique technical capabilities can have a particularly strong impact in these technologies.

Kent, Michael Stuart; Andrews, Katherine M. (Computational Biosciences)

2007-01-01T23:59:59.000Z

280

Regulatory Experiences for the Decommissioning of the Research Reactor in Korea  

Science Conference Proceedings (OSTI)

The first research reactor in Korea (KRR-1, TRIGA Mark-II) has operated since 1962, and the second one (KRR-2, TRIGA Mark-III), since 1972. Both of them were phased out in 1995 due to their lives and the operation of a new research reactor, HANARO (30 MW thermal power) operated by KAERI (Korea Atomic Energy Research Institute). After deciding the shutdown by the Nuclear Development and Utilization Committee in March 1996, KAERI began to prepare the decommissioning plan, including the environmental impact assessment, and submitted the plan to the Ministry of Science and Technology (MOST) in December 1998. Korea Institute of Nuclear Safety (KINS) reviewed document and prepared the review report in 1999. KINS is an organization of technical expertise which performs regulatory functions, entrusted by the MOST in accordance with the Atomic Energy Act and its Enforcement Decree. The review report written by KINS was consulted by the Special Committee on Nuclear Safety in January 2000. The committee submitted their consultation results to the Nuclear Safety Commission for the final approval by the Minister of MOST. The license was issued in November 2000. With the consent of the Korean government to the US Record of Decision, the spent fuel of KRR-1 and 2 was safely transported to the United States in July 1998. The decontamination and dismantling of KRR-2 was completed at the end of 2005 but the decommissioning of KRR-1 has been suspended by the problem for the memorial of the reactor. After the decommissioning of the research reactor is finished, the site will be returned to the site owner, Korea Electric Power Corporation (KEPCO). In this paper, the state-of-art and lessons learnt from recent regulatory activities for decommissioning of KRR- 2 are summarized. In conclusion: since the shutdown of KRR-1 and 2 had been decided, the safe assessment and licensing review were carried out after applying for decommissioning plan of those research reactors by operator. Through the safety assessment and license review, the plan was approved in 2000. The D and D of KRR-2 except Reactor hall of KRR-1 has been performed safely and completed in 2005. On the other hand the integrated safety for the decommissioning has been confirmed by regulatory team inspection. The radioactive waste arising from the dismantling work has been packed mainly in a 4 m{sup 3} containers and stored on site, reactor hall of KRR-2, until the LILW disposal facility is operational. For the whole dismantling work, with respect to the ALARA principle, not only worker protection from radiation and industrial hazard, but also the environment protection should be the first priority. Also much attention has been paid to the record keeping for the future decommissioning of nuclear power plants.

CHOI, Kyung-Woo [Korea Institute of Nuclear Safety, P.O Box 114, Yuseong, Daejeon (Korea, Republic of)

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

282

Initiation of a phase-I trial of neutron capture therapy at the MIT research reactor  

Science Conference Proceedings (OSTI)

The Massachusetts Institute of Technology (MIT), the New England Medical Center (NEMC), and Boston University Medical Center (BUMC) initiated a phase-1 trial of boron neutron capture therapy (BNCT) on September 6, 1994, at the 5-MW(thermal) MIT research reactor (MITR). A novel form of experimental cancer therapy, BNCT is being developed for certain types of highly malignant brain tumors such as glioblastoma and melanoma. The results of the phase-1 trials on patients with tumors in the legs or feet are described.

Harling, O.K.; Bernard, J.A.; Yam, Chun-Shan [Massachussets Institute of Technology, Cambridge, MA (United States)] [and others

1995-12-31T23:59:59.000Z

283

Evaluation of differential shim rod worth measurements in the Oak Ridge Research Reactor  

Science Conference Proceedings (OSTI)

Reasonable agreement between calculated and measured differential shim rod worths in the Oak Ridge Research Reactor (ORR) has been achieved by taking into account the combined effects of negative reactivity contributions from changing fuel-moderator temperatures and of delayed photoneutrons. A method has been developed for extracting the asymptotic period from the shape of the initial portion of the measured time-dependent neutron flux profile following a positive reactivity insertion. In this region of the curve temperature-related reactivity feedback effects are negligibly small. Results obtained by applying this technique to differential shim rod worth measurements made in a wide variety of ORR cores are presented.

Bretscher, M.M.

1987-01-01T23:59:59.000Z

284

Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310  

DOE Green Energy (OSTI)

Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

Zhang, M.

2013-04-01T23:59:59.000Z

285

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

J. K. Wright; R. N. Wright

2010-07-01T23:59:59.000Z

286

Design, construction, and performance test of a six-tesla superconducting dipole magnet system for magnetohydrodynamic energy conversion research  

DOE Green Energy (OSTI)

A six-tesla superconducting dipole magnet for use in magnetohydrodynamic (MHD) energy conversion research at either the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute (UTSI) or the Component Development and Integration Facility at the Montana Energy and MHD Research and Development Institute has been designed, fabricated, and tested by Argonne National Laboratory (ANL). The magnet, SCMS-2, provides a 6-T tapered transverse field in a 1.0-m-diameter bore 5 meters long. The overall magnet and cryostat weigh 172 metric tons, and at full excitation, the magnetic field stores 210 MJ of electromagnetic energy. The magnet constitutes a unique research tool of unprecedented size and power for the study of open-cycle MHD generator performance. This document describes the detailed design considerations and supporting calculations for the CFFF magnet system, the development of the magnet fabrication facility, the process of fabrication and assembly of the superconducting coils and the magnet cryostat, and the magnet performance tests at ANL. The 5-T US superconducting magnet system, SCMS-1, designed and fabricated at ANL for tests in the US/USSR cooperative MHD program using the U-25 MHD facility in Moscow, USSR, is the direct predecessor to the SCMS-2 magnet described in this report. This magnet, however, demonstrates the scalability of key design concepts of the two magnet systems for application to larger magnets that will be required for larger systems needed for the steps in the development of commercial scale, MHD electrical power plants.

Not Available

1984-06-01T23:59:59.000Z

287

Fischer-Tropsch Synthesis: Influence of CO Conversion on Selectivities H2/CO Usage Ratios and Catalyst Stability for a 0.27 percent Ru 25 percent Co/Al2O3 using a Slurry Phase Reactor  

SciTech Connect

The effect of CO conversion on hydrocarbon selectivities (i.e., CH{sub 4}, C{sub 5+}, olefin and paraffin), H{sub 2}/CO usage ratios, CO{sub 2} selectivity, and catalyst stability over a wide range of CO conversion (12-94%) on 0.27%Ru-25%Co/Al{sub 2}O{sub 3} catalyst was studied under the conditions of 220 C, 1.5 MPa, H{sub 2}/CO feed ratio of 2.1 and gas space velocities of 0.3-15 NL/g-cat/h in a 1-L continuously stirred tank reactor (CSTR). Catalyst samples were withdrawn from the CSTR at different CO conversion levels, and Co phases (Co, CoO) in the slurry samples were characterized by XANES, and in the case of the fresh catalysts, EXAFS as well. Ru was responsible for increasing the extent of Co reduction, thus boosting the active site density. At 1%Ru loading, EXAFS indicates that coordination of Ru at the atomic level was virtually solely with Co. It was found that the selectivities to CH{sub 4}, C{sub 5+}, and CO{sub 2} on the Co catalyst are functions of CO conversion. At high CO conversions, i.e. above 80%, CH{sub 4} selectivity experienced a change in the trend, and began to increase, and CO{sub 2} selectivity experienced a rapid increase. H{sub 2}/CO usage ratio and olefin content were found to decrease with increasing CO conversion in the range of 12-94%. The observed results are consistent with water reoxidation of Co during FTS at high conversion. XANES spectroscopy of used catalyst samples displayed spectra consistent with the presence of more CoO at higher CO conversion levels.

W Ma; G Jacobs; Y Ji; T Bhatelia; D Bukur; S Khalid; B Davis

2011-12-31T23:59:59.000Z

288

A disposition strategy for highly enriched, aluminum-based fuel from research and test reactors  

SciTech Connect

The strategy proposed in this paper offers the Department of Energy an approach for disposing of aluminum-based, highly enriched uranium (HEU) spent fuels from foreign and domestic research reactors. The proposal is technically, socially, and economically sound. If implemented, it would advance US non-proliferation goals while also disposing of the spent fuel`s waste by timely and proven methods using existing technologies and facilities at SRS without prolonged and controversial storage of the spent fuel. The fuel would be processed through 221-H. The radioactive fission products (waste) would be treated along with existing SRS high level waste by vitrifying it as borosilicate glass in the Defense Waste Processing Facility (DWPF) for disposal in the national geological repository. The HEU would be isotopically diluted, during processing, to low-enriched uranium (LEU) which can not be used to make weapons, thus eliminating proliferation concerns. The LEU can be sold to fabricators of either research reactor fuel or commercial power fuel. This proposed processing-LEU recycle approach has several important advantages over other alternatives, including: Lowest capital investment; lowest net total cost; quickest route to acceptable waste form and final geologic disposal; and likely lowest safety, health, and environmental impacts.

McKibben, J.M.; Gould, T.H.; McDonell, W.R.; Bickford, W.E.

1994-11-01T23:59:59.000Z

289

Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies  

SciTech Connect

As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

Pond, R.B.; Matos, J.E.

1996-05-01T23:59:59.000Z

290

An analysis of radionuclide behavior in water pools during accidents at the Annular Core Research Reactor  

SciTech Connect

Physical and chemical phenomena that will affect the behavior of radionuclides released from fuel in the Annular Core Research Reactor during a hypothetical, core disruptive accident are described. The phenomena include boiling of water on heated clad, metal-water reactions, vapor nucleation to form aerosol particles, coagulation of aerosol particles, aerosol deposition within bubbles rising through the shield pool, vapor dissolution in the shield pool, and revaporization of radionuclides from the shield pool. A model of these phenomena is developed and applied to predict the release of radionuclides to the confinement building of the Annular Core Research Reactor. It is found that the shield pool provides overall decontamination factors for particulate of about 2.8 {times} 10{sup 5} and decontamination factors for noble gases of about 2.5--3.7. These results are found to be sensitive to the predicted clad temperature and bubble behavior in the shield pool. Slow revalorization of krypton, xenon and iodine from the shield pool is shown to create a prolonged, low-intensity source term of radioactive material to the confinement atmosphere.

Powers, D.A.

1992-08-01T23:59:59.000Z

291

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

292

Decommissioning of the Austrian 10 MW Research Reactor, Results and Lessons learned Paper  

SciTech Connect

After the decision to shut down the 10 MW ASTRA-MTR Research Reactor was reached in May 1998, the possible options and required phases for decommissioning and removal of the radioactive components were evaluated in a decommissioning study. To support the decisions at each phase, an estimate of the activity inventory in the various parts of the reactor and the waste volume to be expected was performed. Of the possible options an immediate dismantling to phase 1 of IAEA Technical Guide Lines after the immediately following, continued dismantling to phase 2 of these guide lines was identified as the most reasonable and under the auspices optimum choice. The actual decommissioning work on the ASTRA-Reactor began in January 2000 after its final shutdown on July 31, 1999. Preliminary evaluations of the activity inventory gave an estimated amount of 320 kg of intermediate level waste, of about 60 metric tons of contaminated and another 100 metric tons of activated low level radioactive waste. The activities were roughly estimated to be at 200 TBq in the intermediate level and 6 GBq in the low level. The structure of the decommissioning process was decided against cost-, time- and risk-optimization following the basic layout of the main tasks, e.g. the removing of the fuel, the recovering and the treatment of the intermediate level activities in the vicinity of the core, the handling and conditioning of the neutron exposed graphite and the Beryllium-elements. As an example, the dismantling of approx. 1400 metric tons of the biological shield is described in more detail from the determination of the dismantling technique to the clearing procedures and the deposition. The process of dismantling of the biological shield is presented in fast motion. The dismantling of the pump-room installations of the primary loop, the processing of the contaminated or activated metals, the dismantling of the ventilation system and the radiological clearance of the reactor building was done under optimized conditions and is explained in the following. Spent fuel was generally delivered to the US Department of Energy - DOE in several shipments over the operational time of the ASTRA reactor. With the last shipment in May 2001 all the remaining spent fuel elements out of the ASTRA reactor consignment were transferred to DOE. To reduce waste from concrete shielding, German regulations Dt.StrSchV, annex IV, table 1, two clearance values referring to 'clearance restricted for permanent deposit' and to a clearance for unrestricted re-use were used. In order to reduce the amount of an estimated 60 tons of slightly contaminated metals, it was determined that introducing re-melting procedures were the most economical way. To obtain radiological clearance of the reactor building, compliance with the release limits according to Austrian Radiation Protection Ordinance had to be proved to the regulatory body. There, in general, the limits for unrestricted release were defined as a maximum dose rate of 10 {mu}Sv effective for an individual person per year. The results of the regular yearly medical examinations of the staff indicated no influence of the work related to decommissioning. The readings of the personal dosimeters over the entire project amounted to a total of 85.6 mSv, averaging to 1.07 mSv per year and person. After finishing the decommissioning process, the material balance showed 89.6 % for unrestricted reuse, 6.6 % for conventional mass-dumping and 3.8 % of ILW and LLW. The project was covered by an extensive documentation. All operations within NES followed ISO 9000 quality insurance standards. Experiences and knowledge were presented to and shared with the community, e.g. AFR and IAEA throughout the project. (authors)

Hillebrand, G.; Meyer, F. [Nuclear Engineering Seibersdorf GmbH (NES), Seibersdorf, Austria, Europe (Austria)

2008-07-01T23:59:59.000Z

293

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

A continuous stirred tank reactor with and without sulfur recovery has been operated using Chlorobium thiosulfatophilum for the conversion of H[sub 2]S to elemental sulfur. In operating the reactor system with sulfur recovery, a gas retention time of 40 min was required to obtain a 100 percent conversion of H[sub 2]S to elemental sulfur. Essentially no SO[sub 4][sup 2[minus

Clausen, E.C.

1993-04-10T23:59:59.000Z

294

Estimate of radiation release from MIT reactor with low enriched uranium (LEU) core during maximum hypothetical accident  

E-Print Network (OSTI)

In accordance with a 1986 NRC ruling, the MIT Research Reactor (MITR) is planning on converting from the use of highly enriched uranium (HEU) to low enriched uranium (LEU) for fuel. A component of the conversion analysis ...

Plumer, Kevin E. (Kevin Edward)

2011-01-01T23:59:59.000Z

295

Feedstock handling and processing effects on biochemical conversion to biofuels  

Science Conference Proceedings (OSTI)

Abating the dependence of the United States on foreign oil by reducing oil consumption and increasing biofuels usage will have far-reaching global effects. These include reduced greenhouse gas emissions and an increased demand for biofuel feedstocks. To support this increased demand, cellulosic feedstock production and conversion to biofuels (e.g. ethanol, butanol) is being aggressively researched. Thus far, research has primarily focused on optimizing feedstock production and ethanol conversion, with less attention given to the feedstock supply chain required to meet cost, quality, and quantity goals. This supply chain comprises a series of unit operations from feedstock harvest to feeding the conversion process. Our objectives in this review are (i) to summarize the peer-reviewed literature on harvest-to-reactor throat variables affecting feedstock composition and conversion to ethanol; (ii) to identify knowledge gaps; and (iii) to recommend future steps.

Daniel Inman; Nick Nagle; Jacob Jacobson; Erin Searcy; Allison Ray

2001-10-01T23:59:59.000Z

296

Record of Decision for the Final EIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5091 5091 Friday May 17, 1996 Part IV Department of Energy Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel; Notice 25092 Federal Register / Vol. 61, No. 97 / Friday, May 17, 1996 / Notices DEPARTMENT OF ENERGY Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: DOE, in consultation with the Department of State, has decided to implement a new foreign research reactor spent fuel acceptance policy as specified in the Preferred Alternative contained in the Final Environmental Impact Statement on a Proposed

297

N-Reactor Department Research and Development budget for FY 1966 and revision of budget for FY 1965  

SciTech Connect

The N-Reactor Department Research and Development Program for FY 1965, 1966, and later years is structured to achieve the following general goals. (1) Assurance of a high level of nuclear safety; (2) Assurance of achieving full plant life; (3) Reduction in operating costs for a given production rate; (4) Increase in production rate without proportionate increase in operating costs; (5) Savings in capital outlays necessary to achieve stated reductions in operating cost or increases in production; (6) Production of new products of value; (7) Savings in capital outlays or operating costs to achieve a given level of plant safety. The program is divided into three general categories; Reactor, Metallurgy, and Co-Product. The Reactor category is further divided into physics studies, thermal hydraulics studies, zircaloy process tube development, control, instrument and system analyses, chemistry, engineering research and development, gas, atmosphere studies, graphite studies, and nuclear safety research.

1964-03-25T23:59:59.000Z

298

Progressive Application Decommissioning Models for U.S. Power and Research Reactors  

SciTech Connect

This paper presents progressive engineering techniques and experiences in decommissioning projects performed by Bums and Roe Enterprises within the last fifteen years. Specifically, engineering decommissioning technical methods and lessons learned are discussed related to the Trojan Large Component Removal Project, San Onofre Nuclear Generating Station (SONGS) Decommissioning Project and the Brookhaven Graphite Research Reactor (BGRR) Decommissioning Project Study. The 25 years since the 1979 TMI accident and the events following 9/11 have driven the nuclear industry away from excessive, closed/elitist conservative methods towards more pragmatic results-oriented and open processes. This includes the essential recognition that codes, standards and regulatory procedures must be efficient, effective and fit for purpose. Financial and open-interactive stakeholder pressures also force adherence to aggressive risk reduction posture in the area of a safety, security and operations. The engineering methods and techniques applied to each project presented unique technical solutions. The decommissioning design for each project had to adopt existing design rules applicable to construction of new nuclear power plants and systems. It was found that the existing ASME, NRC, and DOE codes and regulations for deconstruction were, at best, limited or extremely conservative in their applicability to decommissioning. This paper also suggests some practical modification to design code rules in application for decommissioning and deconstruction. The representative decommissioning projects, Trojan, SONGS and Brookhaven, are discussed separately and the uniqueness of each project, in terms of engineering processes and individual deconstruction steps, is discussed. Trojan Decommissioning. The project included removal of entire NSSS system. The engineering complexity was mainly related to the 1200 MW Reactor. The approach, process of removal, engineering method related to protect the worker against excessive radiation exposure, transportation, and satisfying applicable rules and regulations, were the major problems to overcome. The project's successful completed earned a patent award. SONGS Decommissioning. The reactor's spherical containment and weakened integrity was the scope of this decommissioning effort. The aspects of structure stability and method of deconstruction is the major part of the presentation. The economical process of deconstruction, aspects of structural stability, worker safety, and the protection of the surrounding environment from contamination is highlighted in this section. BGRR Decommissioning Study. BREI was commissioned by Brookhaven National Laboratory (BNL) to evaluate and analyze the stability, and progressive decommissioning, and removal of BGRR components. This analysis took the form of several detailed decommissioning studies that range from disassembly and removal of the unit's graphite pile to the complete environmental restoration of the reactor site. While most of the facility's decommissioning effort is conventional, the graphite pile and its biological shield present the greatest challenge. The studies develop a unique method of removing high-activity waste trapped in the graphite joints. (authors)

Studnicka, Z.; Lacy, N.H.; Nicholas, R.G.; Campagna, M.; Morgan, R.D. [Bums and Roe Enterprises, Inc., 800 Kinderkamack Road, Oradell, NJ 07649 (United States); Sawruk, W. [ABS Consulting, Inc., 5 Birdsong Court, Shillington, PA 19607 (United States)

2006-07-01T23:59:59.000Z

299

C-1 coproduct development for N Reactor: Excerpts from N-Reactor Department research and development budget for FY-1967 and revision of budget for FY-1966  

SciTech Connect

This report discusses the production of weapon grade plutonium and tritium as an economically attractive mode of operation for N-Reactor. With the successful completion of the proposed research and development program coproduct production in N-Reactor could begin in January 1967. Approximately 5 kg of tritium could be produced at a reduction in unit total cost of up to $7 per gram equivalent when compared to other modes of operation of N-Reactor that yield only-weapon grade plutonium. Achieving this production level and unit cost requires a fuel and target design that will subject the materials to more severe temperature and exposure conditions than for the tube-in-tube design. Analyses of existing knowledge and experimental results obtained to date are very encouraging. However, there is a continuing need for additional experimental verification of the limiting conditions for both fuel and target to permit the specification of a production fuel and target design. The incremental cost of this program is estimated to be $1,055 million in FY-1965, $0.796 million in FY-1966 and $0.450 million in FY-1967 for a total of $2.3 million. The principal benefits to be derived from this expenditure of research and development funds are lower unit grade plutonium. When the reactor reaches equilibrium operation as a costs for both tritium and weapon dual-purpose reactor producing process steam for credit, it will be a highly competitive producer of plutonium and tritium in the AEC complex.

1965-04-19T23:59:59.000Z

300

Fuel development activities of the US RERTR Program. [Reduced Enrichment Research and Test Reactor  

SciTech Connect

Progress in the development and irradiation testing of high-density fuels for use with low-enriched uranium in research and test reactors is reported. Swelling and blister-threshold temperature data obtained from the examination of miniature fuel plates containing UAl/sub x/, U/sub 3/O/sub 8/, U/sub 3/Si/sub 2/, or U/sub 3/Si dispersed in an aluminum matrix are presented. Combined with the results of metallurgical examinations, these data show that these four fuel types will perform adequately to full burnup of the /sup 235/U contained in the low-enriched fuel. The exothermic reaction of the uranium-silicide fuels with aluminum has been found to occur at about the same temperature as the melting of the aluminum matrix and cladding and to be essentially quenched by the melting endotherm. A new series of miniature fuel plate irradiations is also discussed.

Snelgrove, J.L.; Domagala, R.F.; Wiencek, T.C.; Copeland, G.L.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Transient analyses and thermal-hydraulic safety margins for the Greek Research Reactor (GRRI)  

Science Conference Proceedings (OSTI)

Various core configurations for the Greek research reactor (GRR1) have been considered in assessing the safety issues of adding a beryllium reflector to the existing water reflected HEU core and the transition from HEU to an all LEU core. The assessment has included both steady-state and transient analyses of safety margins and limits. A small all fresh Be reflected HEU core with a rather large nuclear peaking factor can still be operated safely, and thus adding a Be reflector to the larger depleted HEU core should not pose a problem. The transition mixed core with 50% LEU elements has larger void and Doppler coefficients than the HEU reference core and gives a lower peak clad temperature under transient conditions. The transition cores should give ever increasing margins to plate melting and fission product release as LEU elements are added to the core.

Woodruff, W.L.; Deen, J.R. [Argonne National Lab., IL (United States); Papastergiou, C. [National Centre for Scientific Research Demokritos, Athens (Greece)

1995-02-01T23:59:59.000Z

302

Reactor pressure vessel integrity research at the Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the integrity inherent in the RPV. For this reason, the U.S. Nuclear Regulatory Commission has established the related research programs at ORNL described herein to provide for the development and confirmation of the methods used for: (1) establishing the irradiation exposure conditions within the RPV in the Embrittlement Data Base and Dosimetry Evaluation Program, (2) assessing the effects of irradiation on the RPV materials in the Heavy-Section Steel Irradiation Program, and (3) developing overall structural and fracture analyses of RPVs in the Heavy-Section Steel Technology Program.

Corwin, W.R.; Pennell, W.E.; Pace, J.V.

1995-12-31T23:59:59.000Z

303

Research on the external fluid mechanics of ocean thermal energy conversion plants : report covering experiments in a current  

E-Print Network (OSTI)

This report describes a set of experiments in a physical model study to explore plume transport and recirculation potential for a range of generic Ocean Thermal Energy Conversion (OTEC) plant designs and ambient conditions. ...

Fry, David J.

1981-01-01T23:59:59.000Z

304

Characterization of wastes in and around early reactors at the Hanford Site: The use of historical research  

SciTech Connect

This paper will present the waste characterization knowledge that has been gained in the first, ``Large-Scale Remediation Study`` to be performed on the reactor areas (100 Areas) of the Hanford Site. Undertaken throughout the past year, this research project has identified thousands of pieces of buried hardware, as well as the volumes of liquid wastes in burial sites in the reactor areas. The author of this landmark study, Dr. Michele Gerber, will discuss historical research as a safe and cost-effective characterization tool.

Gerber, M.S.

1993-10-01T23:59:59.000Z

305

Biomass Thermochemical Conversion Program. 1983 Annual report  

DOE Green Energy (OSTI)

Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1984-08-01T23:59:59.000Z

306

The Conversion and operation of the Cornell electron storage ring as a test accelerator (cesrta) for damping rings research and development  

E-Print Network (OSTI)

THE CONVERSION AND OPERATION OF THE CORNELL ELECTRON STORAGEon progress with the CESR conversion activities, the statusProc. CONCLUSION The CesrTA conversion is now approaching

Palmer, M.A.

2010-01-01T23:59:59.000Z

307

OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORT FROM 0. S. S. RESEARCHER IN GULF OF MEXICO, JULY 12-23, 1977.  

E-Print Network (OSTI)

01 OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORTOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,Ocean Thermal Energy Conversion plant were in- itiated in

Quinby-Hunt, M.S.

2008-01-01T23:59:59.000Z

308

Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.  

SciTech Connect

This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics computer codes and methodologies applied to SSTAR. Another section of the report details the SSTAR safety design approach which is based upon defense-in-depth providing multiple levels of protection against the release of radioactive materials and how the inherent safety features of the lead coolant, nitride fuel, fast neutron spectrum core, pool vessel configuration, natural circulation, and containment meet or exceed the requirements for each level of protection. The report also includes recent results of a systematic analysis by LANL of data on corrosion of candidate cladding and structural material alloys of interest to SSTAR by LBE and Pb coolants; the data were taken from a new database on corrosion by liquid metal coolants created at LANL. The analysis methodology that considers penetration of an oxidation front into the alloy and dissolution of the trailing edge of the oxide into the coolant enables the long-term corrosion rate to be extracted from shorter-term corrosion data thereby enabling an evaluation of alloy performance over long core lifetimes (e.g., 30 years) that has heretofore not been possible. A number of candidate alloy specimens with special treatments or coatings which might enhance corrosion resistance at the temperatures at which SSTAR would operate were analyzed following testing in the DELTA loop at LANL including steels that were treated by laser peening at LLNL; laser peening is an approach that alters the oxide-metal bonds which could potentially improve corrosion resistance. LLNL is also carrying out Multi-Scale Modeling of the Fe-Cr system with the goal of assisting in the development of cladding and structural materials having greater resistance to irradiation.

Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P.; Ryu, H. J.; Kulesza, K. P.; Kim, S. J.; Halsey, W. G.; Smith, C. F.; Brown, N. W.; Greenspan, E.; de Caro, M.; Li, N.; Hosemann, P.; Zhang, J.; Yu, H.; Nuclear Engineering Division; LLNL; LANL; Massachusetts Inst. of Tech.; Ecole des Mines de Paris; Oregon State Univ.; Univ.of California at Berkley

2008-06-23T23:59:59.000Z

309

Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews and traditional and online focus groups with scientists. The latter include SNS, HFIR, and APS users as well as scientists at ORNL, some of whom had not yet used HFIR and/or SNS. These approaches informed development of the second phase, a quantitative online survey. The survey consisted of 16 questions and 7 demographic categorizations, 9 open-ended queries, and 153 pre-coded variables and took an average time of 18 minutes to complete. The survey was sent to 589 SNS/HFIR users, 1,819 NSLS users, and 2,587 APS users. A total of 899 individuals provided responses for this study: 240 from NSLS; 136 from SNS/HFIR; and 523 from APS. The overall response rate was 18%.

Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

2011-03-01T23:59:59.000Z

310

Optimization of irradiation conditions for {sup 177}Lu production at the LVR-15 research reactor  

Science Conference Proceedings (OSTI)

The use of lutetium in medicine has been increasing over the last few years. The {sup 177}Lu radionuclide is commercially available for research and test purposes as a diagnostic and radiotherapy agent in the treatment of several malignant tumours. The yield of {sup 177}Lu from the {sup 176}Lu(n,{gamma}){sup 177}Lu nuclear reaction depends significantly on the thermal neutron fluence rate. The capture cross-sections of both reaction {sup 176}Lu(n,{gamma}){sup 177}Lu and reaction {sup 177}Lu(n,{gamma}){sup 178}Lu are very high. Therefore a burn-up of target and product nuclides should be taken into account when calculating {sup 177}Lu activity. The maximum irradiation time, when the activity of the {sup 177}Lu radionuclide begins to decline, was found for different fluence rates. Two vertical irradiation channels at the LVR-15 nuclear research reactor were compared in order to choose the channel with better irradiation conditions, such as a higher thermal neutron fluence rate in the irradiation volume. In this experiment, lutetium was irradiated in a titanium capsule. The influence of the Ti capsule on the neutron spectrum was monitored using activation detectors. The choice of detectors was based on requirements for irradiation time and accurate determination of thermal neutrons. The following activation detectors were selected for measurement of the neutron spectrum: Ti, Fe, Ni, Co, Ag and W. (authors)

Lahodova, Z.; Viererbl, L.; Klupak, V. [Research Centre Rez Ltd., Husinec-130, Rez 250 67 (Czech Republic); Srank, J. [Nuclear Physics Inst. of the Academy of Sciences, Husinec-130, Rez 250 67 (Czech Republic)

2012-07-01T23:59:59.000Z

311

Comparison of shell-and-tube with frame-and-plate-type heat exchangers for the MIT research reactor upgrade  

SciTech Connect

This paper discusses a comparison of shell-and-tube with frame-and-plate-type heat exchangers for the proposed upgrade of the Massachusetts Institute of Technology research reactor (MITR). The comparison is based on the following considerations: thermal-hydraulic performance, maintenance, personnel dose rate, and pricing.

Ser, Yorick, Hu, Lin-Wen [Massachusetts Institute of Technology, Cambridge, MA (United States)

1997-12-01T23:59:59.000Z

312

Final Site Specific Decommissioning Inspection Report #2 for the University of Washington Research and Test Reactor, Seattle, Washington  

SciTech Connect

During the period of August through November 2006, ORISE performed a comprehensive IV at the University of Washington Research and Test Reactor Facility. The objective of the ORISE IV was to validate the licensee’s final status survey processes and data, and to assure the requirements of the DP and FSSP were met.

S.J. Roberts

2007-03-20T23:59:59.000Z

313

Analysis of in-core experiment activities for the MIT Research Reactor using the ORIGEN computer code  

E-Print Network (OSTI)

The objective of this study is to devise a method for utilizing the ORIGEN-S computer code to calculate the activation products generated in in-core experimental assemblies at the MIT Research Reactor (MITR-II). ORIGEN-S ...

Helvenston, Edward M. (Edward March)

2006-01-01T23:59:59.000Z

314

Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994  

DOE Green Energy (OSTI)

This project was initiated because the supply of isobutylene had been identified as a limitation on the production of methyl-t-butyl ether, a gasoline additive. Prior research on isobutylene synthesis had been at low conversion (less than 5%) or extremely high pressures (greater than 300 bars). The purpose of this research was to optimize the synthesis of a zirconia based catalyst, determine process conditions for producing isobutylene at pressures less than 100 bars, develop kinetic and reactor models, and simulate the performance of fixed bed, trickle bed and slurry flow reactors. A catalyst, reactor models and optimum operating conditions have been developed for producing isobutylene from coal derived synthesis gas. The operating conditions are much less severe than the reaction conditions developed by the Germans during and prior to WWII. The low conversion, i.e. CO conversion less than 15%, have been perceived to be undesirable for a commercial process. However, the exothermic nature of the reaction and the ability to remove heat from the reactor could limit the extent of conversion for a fixed bed reactor. Long residence times for trickle or slurry (bubble column) reactors could result in high CO conversion at the expense of reduced selectivities to iso C{sub 4} compounds. Economic studies based on a preliminary design, and a specific location will be required to determine the commercial feasibility of the process.

Anthony, R.G.; Akgerman, A.; Philip, C.V.; Erkey, C.; Feng, Z.; Postula, W.S.; Wang, J.

1995-03-01T23:59:59.000Z

315

DISPERSIONS OF URANIUM CARBIDES IN ALUMINUM PLATE-TYPE RESEARCH REACTOR FUEL ELEMENTS  

DOE Green Energy (OSTI)

The technical feasibility of employing uranium carbide aluminun dispersions in aluminum-base research reactor fuel elements was investigated This study was motivated by the need to obtain higher uranium loadings in these fuel elements. Although toe MTR-type unit, containing a 13 18 wt% U-Al alloy is a proven reactor component, fabrication problems of considerable magnitude arise when attempts are made to increase the uranium investment in the alloy to more than 25 wt.%. Au approach to these fabrication difficulties is to select a compound with significantly higher density tban UAl/sub 4/ or UAl/sub 3/ compounds of the alloy system which when dispersed in aluminum powder, will reduce the volume occupied by the brittle, fissile phase. The uranium carbides, with densities ranging from 11.68 to 13.63 g/cm/sup 3/), appear to be suited for this application and were selected for development as a fuel material for aluminum-base dispersions. Studies were conducted at 580 to 620 deg C to determine the chemical compatibility of carbides with aluminum in sub-size cold- pressed comparts as well as in full-size fabricated fuel plates. Procedures were also developed to prepare uranium carbides, homogernously disperse the compounds in aluminum, roll clad the dispersions to form composite plates, and braze the plates into fuel assemblies. Corrosion tests of the fuel material were conducted in 20 and 60 deg C water to determine the integrity of the fuel material in the event of sin inadventent cladding failure. In addition, specimens were prepared to evaluate penformance under extensive irradiation Prior to studying the uranium carbide-aluminum system, methods for preparing the carbides were investigated. Are melting uranium and carnon was satisfactory for obtaining small quantities of various carbides. Later, reaction of graphite with UO/sub 2/ was successfully employed in the preparation of large quantities of UC/sub 2/, Studies of the chemical compatibility of cold-pressed compacts containing 50 wt% uranium carbide dispersed in aluminum revealed a marked trend toward stebifity as the carbon content of the uranium carbide increased from 446 to 9.20% C. Severe volume increases occurred in monocarbide dispersions with attendant formation of large quantities of the uranium-allumnim inter-metallic compounds. Dicarbide dispersions, on the other band, exhibited negligible reaction with aluminum after extended periods at 580 and 620 deg C. However, it was demonstrated that hydrogen can promote a reaction in UC/sub 2/-Al compacts. The hydrogen appears to reduce the UC/sub 2/ to UC which can subsequently react with aluminum producing the previously noted deleterious effects. A growth study at 605 deg C of composite fuel plates containing 59 wt.% UC/sub 2/ revealed insignificant changes within processing periods envisioned for fuel element processing. However, plate elongations as high as 2.5% were observed after 100 hr at this temperature. Severe blistering which occurred on fuel plates fabricated in the initial stages of the investigation was attributed to gaseous hydrocarbons, and the condition was ellminated by vacuum degasification of cold-pressed compacts. With the exception of the degasification requirement, procedures for manufacturing UC- bearing fuel elements were identical to those specified for the Geneva Conference Reactor fuel elements. Dispersions of uranium dicarbide corroded catastrophically in 20 and 60 deg C water, thus limiting the application of this material However, spocimens were prepared and insented in the MTR to evaluate the irradiation behavior of this fuel because of its potential application in onganic- cooled reactors. (auth)

Thurber, W.C.; Beaver, R.J.

1959-11-19T23:59:59.000Z

316

Technical-economic assessment of the production of methanol from biomass. Conversion process analysis. Final research report  

DOE Green Energy (OSTI)

A comprehensive engineering system study was conducted to assess various thermochemical processes suitable for converting biomass to methanol. A summary of the conversion process study results is presented here, delineating the technical and economic feasibilities of producing methanol fuel from biomass utilizing the currently available technologies. (MHR)

Wan, E.I.; Simmons, J.A.; Price, J.D.; Nguyen, T.D.

1979-07-12T23:59:59.000Z

317

License amendment for neutron capture therapy at the MIT research reactor  

SciTech Connect

This paper reports the issuance by the U.S. Nuclear Regulatory Commission (NRC) of a license amendment to the Massachusetts Institute of Technology (MIT) for the use of the MIT Research Reactor's (MITR-II) medical therapy facility beam for the treatment of humans using neutron capture therapy (NCT). This amendment is one of 11 required approvals. The others are those of internal MIT committees, review panels of the Tufts-New England Medical Center (NEMC), which is directing the program jointly with MIT, that of the U.S. Food and Drug Administration, and an NRC amendment to the NEMC hospital license. This amendment is the first of its type to be issued by NRC, and as such it establishes a precedent for the conduct of human therapy using neutron beams. Neutron capture therapy is a bimodal method for treating cancer that entails the administration of a tumor-seeking boronated drug followed by the irradiation of the target organ with neutrons. The latter cause boron nuclei to fission and thereby release densely ionizing helium and lithium nuclei, which destroy cancerous cells while leaving adjacent healthy cells undamaged. Neutron capture therapy is applicable to glioblastoma multiforme (brain tumors) and metastasized melanoma (skin cancer). Both Brookhaven National Laboratory and MIT conducted trials of NCT more than 30 yr ago. These were unsuccessful because the available boron drugs did not concentrate sufficiently in tumor and because the thermal neutron beams that were used did not enable neutrons to travel deep enough into the brain.

Bernard, J.A. (Massachusetts Institute of Technology, Cambride, MA (United States))

1993-01-01T23:59:59.000Z

318

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

319

Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013  

SciTech Connect

Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement and leadership on nuclear safety and security issues.

Idaho National Laboratory

2009-12-01T23:59:59.000Z

320

Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–201/span>3  

Science Conference Proceedings (OSTI)

Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement and leadership on nuclear safety and security issues.

Idaho National Laboratory

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solid State Reactor Final Report  

DOE Green Energy (OSTI)

The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas of research were undertaken: (1) establishing the design and safety-related basis via neutronic and reactor control assessments with the graphite foam as heat transfer medium; (2) evaluating the thermal performance of the graphite foam for heat removal, reactor stability, reactor operations, and overall core thermal characteristics; (3) characterizing the physical properties of the graphite foam under normal and irradiated conditions to determine any effects on structure, dimensional stability, thermal conductivity, and thermal expansion; and (4) developing a power conversion system design to match the reactor operating parameters.

Mays, G.T.

2004-03-10T23:59:59.000Z

322

Conversion Factor  

Gasoline and Diesel Fuel Update (EIA)

Conversion Factor (Btu per cubic foot) Production Marketed... 1,110 1,106 1,105 1,106 1,109 Extraction Loss ......

323

Inspection methods for physical protection. Task II. Review of research reactor licensees' physical security practices  

SciTech Connect

Security systems and security procedures for the AFRRI reactor, the University of Maryland TRIGA reactor, and the University of Virginia CAVALIER and UVAR reactors are described.

1980-07-03T23:59:59.000Z

324

Wideband Wavelength Conversion Using Cavity ...  

Science Conference Proceedings (OSTI)

... The researchers use the interaction of two ... bands that are frequently used in telecommunications. ... conversion should be possible using the same ...

2013-08-27T23:59:59.000Z

325

Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335  

DOE Green Energy (OSTI)

The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

Netter, J.

2013-08-01T23:59:59.000Z

326

Epithermal beam development at the BMRR (Brookhaven Medical Research Reactor): Dosimetric evaluation  

SciTech Connect

The utilization of an epithermal neutron beam for neutron capture therapy (NCT) is desirable because of the increased tissue penetration relative to a thermal neutron beam. Over the past few years, modifications have been and continue to be made at the Brookhaven Medical Research Reactor (BMRR) by changing its filter components to produce an optimal epithermal beam. An optimal epithermal beam should contain a low fast neutron contamination and no thermal neutrons in the incident beam. Recently a new moderator for the epithermal beam has been installed at the epithermal port of the BMRR and has accomplished this task. This new moderator is a combination of alumina (Al{sub 2}O{sub 3}) bricks and aluminum (Al) plates. A 0.51 mm thick cadmium (Cd) sheet has reduced the thermal neutron intensity drastically. Furthermore, an 11.5 cm thick bismuth (Bi) plate installed at the port surface has reduced the gamma dose component to negligible levels. Foil activation techniques have been employed by using bare gold and cadmium-covered gold foil to determine thermal as well as epithermal neutron fluence. Fast neutron fluence has been determined by indium foil counting. Fast neutron and gamma dose in soft tissue, free in air, is being determined by the paired ionization chamber technique, using tissue equivalent (TE) and graphite chambers. Thermoluminescent dosimeters (TLD-700) have also been used to determine the gamma dose independently. This paper describes the methods involved in the measurements of the above mentioned parameters. Formulations have been developed and the various corrections involved have been detailed. 12 refs.

Saraf, S.K.; Fairchild, R.G.; Kalef-Ezra, J.; Laster, B.H.; Fiarman, S.; Ramsey, E. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center)

1989-08-24T23:59:59.000Z

327

Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel, Magnetically Fluidized-Bed Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is committed to improving methods for co-producing power and chemicals, fuels, and hydrogen (H2). Gasification is a process by which fuels such as coal can be used to produce synthesis gas (syngas), a mixture of H2, carbon monoxide (CO), and carbon

328

Conceptual Design of Molten Salt Loop Experiment for MIT Research Reactor  

E-Print Network (OSTI)

Molten salt is a promising coolant candidate for Advanced High Temperature Reactor (AHTR) Gen-IV designs. The low neutron absorption, high thermal capacity, chemical inertness, and high boiling point at low pressure of ...

Bean, Malcolm K.

2011-08-01T23:59:59.000Z

329

Development of refined MCNPX-PARET multi-channel model for transient analysis in research reactors  

SciTech Connect

Reactivity insertion transients are often analyzed (RELAP, PARET) using a two-channel model, representing the hot assembly with specified power distribution and an average assembly representing the remainder of the core. For the analysis of protected by the reactor safety system transients and zero reactivity feedback coefficients this approximation proves to give adequate results. However, a more refined multi-channel model representing the various assemblies, coupled through the reactivity feedback effects to the whole reactor core is needed for the analysis of unprotected transients with excluded over power and period trips. In the present paper a detailed multi-channel PARET model has been developed which describes the reactor core in different clusters representing typical BR2 fuel assemblies. The distribution of power and reactivity feedback in each cluster of the reactor core is obtained from a best-estimate MCNPX calculation using the whole core geometry model of the BR2 reactor. The sensitivity of the reactor response to power, temperature and energy distributions is studied for protected and unprotected reactivity insertion transients, with zero and non-zero reactivity feedback coefficients. The detailed multi-channel model is compared vs. simplified fewer-channel models. The sensitivities of transient characteristics derived from the different models are tested on a few reactivity insertion transients with reactivity feedback from coolant temperature and density change. (authors)

Kalcheva, S.; Koonen, E. [SCK-CEN, BR2 Reactor Dept., Boeretang 200, 2400 Mol (Belgium); Olson, A. P. [RERTR Program, Nuclear Engineering Div., Argonne National Laboratory, Cass Avenue, Argonne, IL 60439 (United States)

2012-07-01T23:59:59.000Z

330

Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior  

SciTech Connect

This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

Monteleone, S. [comp.

1995-04-01T23:59:59.000Z

331

Analysis of Accidents at the Pakistan Research Reactor-1 Using Proposed Mixed-Fuel (HEU and LEU) Core  

Science Conference Proceedings (OSTI)

The Pakistan Research Reactor-1 (PARR-1) was converted from highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel in 1991. The reactor is running successfully, with an upgraded power level of 10 MW. To save money on the purchase of costly fresh LEU fuel elements, the use of less burnt HEU spent fuel elements along with the present LEU fuel elements is being considered. The proposal calls for the HEU fuel elements to be placed near the thermal column to gain the required excess reactivity. In the present study the safety analysis of a proposed mixed-fuel core has been carried out at a calculated steady-state power level of 9.8 MW. Standard computer codes and correlations were employed to compute various parameters. Initiating events in reactivity-induced accidents involve various modes of reactivity insertion, namely, start-up accident, accidental drop of a fuel element on the core, flooding of a beam tube with water, and removal of an in-pile experiment during reactor operation. For each of these transients, time histories of reactor power, energy released, temperature, and reactivity were determined.

Bokhari, Ishtiaq H. [Pakistan Institute of Nuclear Science and Technology (Pakistan)

2004-12-15T23:59:59.000Z

332

J. Plasma Fusion Res. SERIES, Vol. 10 (2013) Flibe-Tritium Research for Fission or Fusion Reactors at Kyushu University  

E-Print Network (OSTI)

There is increasing interest in using ionic molten-salt Flibe not only as self-cooled tritium(T)-breeding material in a fusion reactor blanket but also as fuel solvent of molten-salt fission reactors. Application of Flibe to T-breeding fluid for a stellarator-type fusion reactor operated at a high magnetic field brings large simplification of its blanket structure, allowing continuous operation under high-beta plasma conditions. Using mixed Flibe-ThF 4+UF 4 fuel in molten salt fission reactors permits stable long-term operation without fuel exchange. When Flibe or Flinak is irradiated by neutrons, however, acid and corrosive TF is generated, and some T permeates through structural walls. In order to solve these problems, chemical conditions of Flibe are changed using the redox-control reaction, Be+2TF=BeF 2+T 2. In addition, permeation of hydrogen isotopes is lowered by enhancing T recovery rates. Part of Flibe-tritium researches are performed at Idaho National Laboratory (INL) under the Japan-US collaboration work of JUPITER-II. Our own contributions to the topics are shortly introduced in this paper.

Satoshi Fukada

2012-01-01T23:59:59.000Z

333

Conversion of Levulinic Acid to Methyl Tetrahydrofuran ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Conversion of Levulinic Acid to Methyl Tetrahydrofuran. Battelle ...

334

Basic research needs in seven energy-related technologies, conservation, conversion, transmission and storage, environmental fission, fossil, geothermal, and solar  

DOE Green Energy (OSTI)

This volume comprises seven studies performed by seven groups at seven national laboratories. The laboratories were selected because of their assigned lead roles in research pertaining to the respective technologies. Researches were requested to solicit views of other workers in the fields.

Not Available

1980-07-01T23:59:59.000Z

335

Development of the Process for the Recovery and Conversion of {sup 233}UF{sub 6} Chemisorbed in NaF Traps from the Molten Salt Reactor Remediation Project  

SciTech Connect

The Molten Salt Reactor Experiment (MSRE) site at Oak Ridge National Laboratory is being cleaned up and remediated. The removal of {approx}37 kg of fissile {sup 233}U is the main activity. Of that inventory, {approx}23 kg has already been removed as UF{sub 6} from the piping system and chemisorbed in 25 NaF traps. This material is in temporary storage while it awaits conversion to a stable oxide. The planned recovery of {approx}11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a uranium oxide (U{sub 3}O{sub 8}), which is suitable for long-term storage.The conversion of the MSRE material into an oxide presents unique problems, such as criticality concerns, a large radiation field caused by the daughters of {sup 232}U (an impurity isotope in the {sup 233}U), and the possible spread of the high-radiation field from the release of {sup 220}Rn gas. To overcome these problems, a novel process was conceived and developed. This process was specially tailored for providing remote operations inside a hot cell while maintaining full containment at all times to avoid the spread of contamination. This process satisfies criticality concerns, maximizes the recovery of uranium, minimizes any radiation exposure to operators, and keeps waste disposal to a minimum.

Cul, Guillermo D. del; Icenhour, Alan S.; Simmons, Darrell W. [Oak Ridge National Laboratory (United States)

2001-10-15T23:59:59.000Z

336

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

337

PROCEEDINGS OF THE AEC SYMPOSIUM FOR CHEMICAL PROCESSING OF IRRADIATED FUELS FROM POWER, TEST, AND RESEARCH REACTORS, RICHLAND, WASHINGTON, OCTOBER 20 AND 21, 1959  

SciTech Connect

A review is presented in this symposium of the technology currently available for processing spent fuels from research, test, and power reactors. Twenty-one papers are included. Separate abstracts have been prepared for each paper. (W.L.H.)

1960-01-01T23:59:59.000Z

338

PRELIMINARY HAZARDS SUMMARY REPORT ON THE BROOKHAVEN HIGH FLUX BEAM RESEARCH REACTOR  

SciTech Connect

The High Flux Beam Reactor, HFBR, is cooled, moderated, and reflected by heavy water and designed to produce 40 Mw with a total epithermal flux of ~1.6 X 10/sup 15/cm/sup -2/ sec/sup -1/ and a flector thermal maximum flux of 7 X 10/sup 14/ cm/sup -2/ sec/sup -1/, using a core formed by ETR plate-type fuel elements in a close-packed array. The hazards summary is given in terms of site description, reactor design, building design, plant operation, disposal of radioactive wastes and effluents, and safety analysis. (B.O.G.)

Hendrie, J.M.; Kouts, H.J.C.

1961-05-01T23:59:59.000Z

339

EXPERIMENT OPERATIONS PLAN FOR A LOSS-OF-COOLANT ACCIDENT SIMULATION IN THE NATIONAL RESEARCH UNIVERSAL REACTOR  

SciTech Connect

Pressurized water reactor loss-of-coolant accident phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship between the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. This document contains both experiment proposal and assembly proposal information. The intent of this document is to supply information required by the Chalk River Nuclear Laboratories (CRNL), and to identify the planned procedures and data that will be used both to establish readiness to proceed from one test phase to the next and to operate the experiment. Operating control settings and limits are provided for both experimenter systems and CRNL systems. A hazards review summarizes safety issues that have been addressed during the development of the experiment plan.

Russcher, G. E.; Cannon, L. W.; Goodman, R. L.; Hesson, G. M.; King, L. L.; McDuffie, P. N.; Marshall, R. K.; Nealley, C.; Pilger, J. P.; Mohr, C. L.

1981-04-01T23:59:59.000Z

340

MIT Modular Pebble Bed Reactor (MPBR) A Summary of Research Activities and Accomplishments  

E-Print Network (OSTI)

operation #12;MIT MPBR Specifications Thermal Power 250 MW - 120 Mwe Target Thermal Efficiency 45 % Core for a pebble bed reactor power plant system with high efficiency and minimum capital cost ­ Net efficiency > 45;Plant With Space Frames #12;#12;For 1150 MW Electric Power Station Turbine Hall Boundary Admin Training

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Methane conversion to methanol  

DOE Green Energy (OSTI)

The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

Noble, R.D.; Falconer, J.L.

1992-06-01T23:59:59.000Z

342

Assumptions and criteria for performing a feasibility study of the conversion of the high flux isotope reactor core to use low-enriched uranium fuel  

SciTech Connect

This paper provides a preliminary estimate of the operating power for the High Flux Isotope Reactor when fuelled with low enriched uranium (LEU). Uncertainties in the fuel fabrication and inspection processes are reviewed for the current fuel cycle [highly enriched uranium (HEU)] and the impact of these uncertainties on the proposed LEU fuel cycle operating power is discussed. These studies indicate that for the power distribution presented in a companion paper in these proceedings, the operating power for an LEU cycle would be close to the current operating power. (authors)

Primm Iii, R. T. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6399 (United States); Ellis, R. J.; Gehin, J. C. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6172 (United States); Moses, D. L. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6050 (United States); Binder, J. L. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6162 (United States); Xoubi, N. [Univ. of Cincinnati, Rhodes Hall, ML 72, PO Box 210072, Cincinnati, OH 45221-0072 (United States)

2006-07-01T23:59:59.000Z

343

Direct Conversion Technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

344

Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.  

Science Conference Proceedings (OSTI)

This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

2007-06-30T23:59:59.000Z

345

Apparatus and method for improving electrostatic precipitator performance by plasma reactor conversion of SO.sub.2 to SO.sub.3  

DOE Patents (OSTI)

An apparatus and process that utilize a low temperature nonequilibrium plasma reactor, for improving the particulate removal efficiency of an electrostatic precipitator (ESP) are disclosed. A portion of the flue gas, that contains a low level of SO.sub.2 O.sub.2 H.sub.2 O, and particulate matter, is passed through a low temperature plasma reactor, which defines a plasma volume, thereby oxidizing a portion of the SO.sub.2 present in the flue gas into SO.sub.3. An SO.sub.2 rich flue gas is thereby generated. The SO.sub.3 rich flue gas is then returned to the primary flow of the flue gas in the exhaust treatment system prior to the ESP. This allows the SO.sub.3 to react with water to form H.sub.2 SO.sub.4 that is in turn is absorbed by fly ash in the gas stream in order to improve the removal efficiency of the EPS.

Huang, Hann-Sheng (Darien, IL); Gorski, Anthony J. (Woodridge, IL)

1999-01-01T23:59:59.000Z

346

Prototype Tests for the Recovery and Conversion of UF6 Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project  

SciTech Connect

The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of -11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

Del Cul, G.D.; Icenhour, A.S.; Simmons, D.W.

2000-04-01T23:59:59.000Z

347

Prototype Tests for the Recovery and Conversion of UF6Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project  

SciTech Connect

The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of {approx}11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide (U{sub 3}O{sub 8})], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

Del Cul, G.D.

2000-06-07T23:59:59.000Z

348

Examples of the use of PSA in the design process and to support modifications at two research reactors  

Science Conference Proceedings (OSTI)

Many, if not most, of the world`s commercial nuclear power plants have been the subject of plant-specific probabilistic safety assessments (PSA). A growing number of other nuclear facilities as well as other types of industrial installations have been the focus of plant-specific PSAs. Such studies have provided valuable information concerning the nature of the risk of the individual facility and have been used to identify opportunities to manage that risk. This paper explores the risk management activities associated with two research reactors in the United States as a demonstration of the versatility of the use of PSA to support risk-related decision making.

Johnson, D.H.; Bley, D.C.; Lin, J.C. [PLG, Inc., Newport Beach, CA (United States); Ramsey, C.T.; Linn, M.A. [Oak Ridge National Lab., TN (United States)

1994-03-01T23:59:59.000Z

349

Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics  

SciTech Connect

This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

1993-03-01T23:59:59.000Z

350

Neutronic Analyses for HEU to LEU fuel conversion of the Massachusetts Institute of Technology.  

SciTech Connect

The Massachusetts Institute of Technology (MIT) reactor (MITR-II), based in Cambridge, Massachusetts, is a research reactor designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on a mixture of uranium and molybdenum (UMo) is expected to allow the conversion of compact high performance reactors like the MITR-II. This report presents the results of steady state neutronic safety analyses for conversion of MITR-II from the use of HEU fuel to the use of U-Mo LEU fuel. The objective of this work was to demonstrate that the safety analyses meet current requirements for an LEU core replacement of MITR-II.

Wilson, E. H.; Newton, T. H.; Bergeron, A.; Horelik, N.; Stevens, J. G (Nuclear Engineering Division); ( NS)

2011-03-02T23:59:59.000Z

351

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

352

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

353

Direct conversion technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

354

Precious Metals Conversion Information  

Science Conference Proceedings (OSTI)

Precious Metals Conversion Information. The Office of Weights and Measures (OWM) has prepared a Conversion Factors ...

2012-11-21T23:59:59.000Z

355

Theoretical analysis of the subcritical experiments performed in the IPEN/MB-01 research reactor facility  

SciTech Connect

The theoretical analysis of the subcritical experiments performed at the IPEN/MB-01 reactor employing the coupled NJOY/AMPX-II/TORT systems was successfully accomplished. All the analysis was performed employing ENDF/B-VII.0. The theoretical approach follows all the steps of the subcritical model of Gandini and Salvatores. The theory/experiment comparison reveals that the calculated subcritical reactivity is in a very good agreement to the experimental values. The subcritical index ({xi}) shows some discrepancies although in this particular case some work still have to be made to model in a better way the neutron source present in the experiments. (authors)

Lee, S. M.; Dos Santos, A. [Inst. de Pesquisas Energeticas e Nucleares, Cidade Universitaria, Av. Lineu Prestes, 2242, 05508-000 Sao Paulo - SP (Brazil)

2012-07-01T23:59:59.000Z

356

Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters  

Science Conference Proceedings (OSTI)

Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

Konzek, G.J.

1983-07-01T23:59:59.000Z

357

Focus Area 2 - Biomass Deconstruction and Conversion : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deconstruction and Conversion BESC research in biomass deconstruction and conversion targets CBP by studying model organisms and thermophilic anaerobes to understand novel...

358

Method for the Photocatalytic Conversion of Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

the Photocatalytic Conversion of Gas Hydrates Opportunity Research is currently active on the patented technology "Method for the Photocatalytic Conversion of Gas Hydrates." The...

359

Preliminary Investigation of Zircaloy-4 as a Research Reactor Cladding Material  

Science Conference Proceedings (OSTI)

As part of a scoping study for the ATR fuel conversion project, an initial comparison of the material properties of Zircaloy-4 and Aluminum-6061 (T6 and O-temper) is performed to provide a preliminary evaluation of Zircaloy-4 for possible inclusion as a candidate cladding material for ATR fuel elements. The current fuel design for the ATR uses Aluminum 6061 (T6 and O temper) as a cladding and structural material in the fuel element and to date, no fuel failures have been reported. Based on this successful and longstanding operating history, Zircaloy-4 properties will be evaluated against the material properties for aluminum-6061. The preliminary investigation will focus on a comparison of density, oxidation rates, water chemistry requirements, mechanical properties, thermal properties, and neutronic properties.

Brian K Castle

2012-05-01T23:59:59.000Z

360

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

362

Greek research reactor performance characteristics after addition of beryllium reflector and LEU fuel  

SciTech Connect

The GRR-1 is a 5-MW pool-type, light-water-moderated and-cooled reactor fueled with MTR-type fuel elements. Recently received Be reflector blocks will soon be added to the core to add additional reactivity until fresh LEU fuel arrives. REBUS-3 xy fuel cycle analyses, using burnup dependent cross sections, were performed to assist in fuel management decisions for the water- and Be-reflected HEU nonequilibrium cores. Cross sections generated by EPRI-CELL have been benchmarked to identical VIM Monte Carlo models. The size of the Be-reflected LEU core has been reduced to 30 elements compared to 35 for the HEU water-reflected core, and an equilibrium cycle calculation has been performed.

Deen, J.R.; Snelgrove, J.L. (Argonne National Lab., IL (United States)); Papastergiou, C. (National Center for Scientific Research, Athens (Greece))

1992-01-01T23:59:59.000Z

363

Greek research reactor performance characteristics after addition of beryllium reflector and LEU fuel  

SciTech Connect

The GRR-1 is a 5-MW pool-type, light-water-moderated and-cooled reactor fueled with MTR-type fuel elements. Recently received Be reflector blocks will soon be added to the core to add additional reactivity until fresh LEU fuel arrives. REBUS-3 xy fuel cycle analyses, using burnup dependent cross sections, were performed to assist in fuel management decisions for the water- and Be-reflected HEU nonequilibrium cores. Cross sections generated by EPRI-CELL have been benchmarked to identical VIM Monte Carlo models. The size of the Be-reflected LEU core has been reduced to 30 elements compared to 35 for the HEU water-reflected core, and an equilibrium cycle calculation has been performed.

Deen, J.R.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Papastergiou, C. [National Center for Scientific Research, Athens (Greece)

1992-12-31T23:59:59.000Z

364

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research...

365

A New Class of Risk-Importance Measures to Support Reactor Aging Management and the Prioritization of Materials Degradation Research  

Science Conference Proceedings (OSTI)

As the US fleet of light water reactors ages, the risks of operation might be expected to increase. Although probabilistic risk assessment has proven a critical resource in risk-informed regulatory decision-making, limitations in current methods and models have constrained their prospective value in reactor aging management. These limitations stem principally from the use of static component failure rate models (which do not allow the impact of component aging on failure rates to be represented) and a very limited treatment of passive components (which would be expected to have an increasingly significant risk contribution in an aging system). Yet, a PRA captures a substantial knowledge base that could be of significant value in addressing plant aging. In this paper we will describe a methodology and a new class of risk importance measures that allow the use of an existing PRA model to support the management of plant aging, the prioritization of improvements to non-destructive examination and monitoring techniques, and the establishment of research emphases in materials science. This methodology makes use of data resources generated under the USNRC Proactive Management of Materials Degradation program which addresses the anticipated effects of numerous aging degradation mechanisms on a wide variety of component types.

Unwin, Stephen D.; Lowry, Peter P.; Toyooka, Michael Y.

2010-06-07T23:59:59.000Z

366

Design of a low enrichment, enhanced fast flux core for the Massachusetts Institute of Technology Research Reactor  

E-Print Network (OSTI)

Worldwide, there is limited test reactor capacity to perform the required irradiation experiments on advanced fast reactor materials and fuel designs. This is particularly true in the U.S., which no longer has an operating ...

Ellis, Tyler Shawn

2009-01-01T23:59:59.000Z

367

The Argonaut Reactor - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

368

Alternative Fuels Data Center: Alternative Fuel School Bus Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Conversion Research to someone by E-mail School Bus Conversion Research to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Google Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Delicious Rank Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel School Bus Conversion Research

369

Ocean thermal energy conversion ecological data report from OSS Researcher in Gulf of Mexico, (GOTEC-01), July 12-23, 1977  

DOE Green Energy (OSTI)

Ecological measurements important for environmental assessment of the effect of an operating Ocean Thermal Energy Conversion plant were initiated in July 1977 at the proposed Gulf of Mexico site off the coasts of Louisiana, Mississippi, Alabama and Florida. The initial cruise of the OSS Researcher, in a joint effort with the Atlantic Oceanic and Meteorological Laboratories (AOML) of the National Oceanic and Atmospheric Administration (NOAA), and Lawrence Berkeley Laboratory (LBL) took place from 12 to 23 July 1977. The measurements were taken at 15 oceanographic stations to a maximum depth of 1000 m. Water was analyzed for trace metals, nutrients and chlorophyll a and ATP. Physical data, salinity and dissolved oxygen measurements were supplied by NOAA-AOML. Two bioassays were carried out using indigenous phytoplankton to estimate the effect of deep water on the rates of /sup 14/CO/sub 2/ uptake of photic zone algae. The Deep Scattering Layer (DSL) was monitored at the site by a continuously recording 12 kHz depth sounder at the Mobile site. This report presents data collected during the cruise.

Quinby-Hunt, M.S. (comp.)

1979-06-01T23:59:59.000Z

370

Quarterly technical report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, April--June 1975  

SciTech Connect

The current water reactor safety activities of ANC are accomplished in four programs. The Semiscale Program consists of small-scale nonnuclear thermal- hydraulic experiments for the generation of experimental data that can be applied to analytical models describing loss-of-coolant accident (LOCA) phenomena in water-cooled nuclear power plants. Emphasis is placed on acquiring system effects data from integral tests that characterize the most significant thermal- hydraulic phenomena during the depressurization (blowdown) and emergency cooling phase of a LOCA. The LOFT Program provides test data to support: (a) assessment and improvement of the analytical methods utilized for predicting the behavior of pressurized water reactors (PWR) under LOCA conditions; (b) evaluation of the performance of PWR engineered safety features (ESF), particularly the emergency core cooling system (ECCS); and (c) assessment of the quantitative margins of safety inherent in the performance of these safety features. The Thermal Fuels Behavior Program is a program designed to provide information on the behavior of reactor fuels under normal, off-normal, and accident conditions. The experimental portion is concentrated on testing of single fuel rods and fuel rod clusters under power-cooling-mismatch (PCM), loss-of-coolant, and reactivity initiated accident conditions. The Reactor Behavior Program encompasses the analytical aspects of predicting the response of nuclear power reactors under normal, abnormal, and accident conditions. The status of each program is reported. (auth)

1975-11-01T23:59:59.000Z

371

Context: Destruction/Conversion  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Context: Destruction/Conversion. ... Process for Conversion of Halon 1211.. Tran, R.; Kennedy, EM; Dlugogorski, BZ; 2000. ...

2011-11-17T23:59:59.000Z

372

Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs  

SciTech Connect

This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

1994-04-01T23:59:59.000Z

373

M-1 N-Reactor fuel development. Excerpts from N-Reactor Department Research and Development Budget for FY-1967 and Revision of Budget for FY-1966  

SciTech Connect

The use of metallic uranium fuel elements on a large scale in a pressurized water cooled graphite moderated power reactor environment in N-Reactor not only represents an extrapolation from previous Hanford fuel technology but it represents the only production-scale application of this concept in this country or abroad. Provision of a supporting technology is and will continue to be a major activity at Hanford as only a limited amount of directly applicable R&D will be available from other sites. The major benefit to be achieved through an extensive and continuing fuel program is attainment of the full capabilities of the N-Reactor at much reduced fuel cycle costs. The current N-Reactor fuel design represents the best engineering judgment of what is required for adequate performance. While the design is intentionally conservative, some features may not fully provide the level of performance required to sustain efficient reactor operation. Results of production-scale irradiation experience and special test irradiations will provide direction to a continuing program to correct any excesses or deficiencies in the initial fuel design. Reduction of unwarranted conservatism in the design will lower fuel fabrication costs, and correction of deficiencies will lower irradiation costs through increased time operated efficiency. Costs of this program are summarized for 1965, 66, and 67. The paper describes the scope of the program, its relationship to other programs, and technical progress in FY-1965 which included improved performance of the fuel elements even with the large number of rapid shutdowns of the reactor.

1965-04-19T23:59:59.000Z

374

AN EVALUATION OF THE URANIUM CONTAMINATION ON THE SURFACES OF ALCLAD URANIUM-ALUMINUM ALLOY RESEARCH REACTOR FUEL PLATES  

SciTech Connect

Reported radioactivity in the Low-Intensity Test Reactor (LITR) water coolant traceable to uranium contamination on the surfaces of the alclad uranium-- aluminum plate-tyne fuel element led to an investigation to determine the sources of uranium contamination on the fuel plate surfaces. Two possible contributors to surface contamination are external sources such as rolling-mill equipment, the most obvious, and diffusion of uranium from the uranium-aluminum alloy fuel into the aluminum cladding. This diffusion is likely because of the 600 deg C heat treatments used in the conventional fabrication process. Uranium determinations based on neutron activation analysis of machined layers from fuel plate surfaces showed that rolling-mill equipment, contaminated with highly enriched uranium, was responsible for transferring as much as 180 ppm U to plate surfaces. By careful practice where cleanliness is emphasized, surface contamination can be reduced to 0.6 ppm U/sup 235/. The residue remaining on the plate surface may be accounted for by diffusion of uranium from the fuel alloy into and through the cladding of the fuel plate. Data obtained from preliminary diffusion studies permitted a good estimate to be made of the diffusion coefficient of uranium into aluminum at 600 deg C: 2.5 x 10/sup -8/ cm//sec. To minimize diffusion while the plate-type aluminum-base research reactor fuel element is being processed, heat treatments at 600 deg C should be limited to 2.5 hr. The uranium contamination on the surfaces of the finished fuel plates should then be less than 0.6 ppm U / sup 235/ . This investigation also revealed that the solubility limit of uranium in aluminum at 600 deg C is approx 60 ppm. (auth)

Beaver, R.J.; Erwin, J.H.; Mateer, R.S.

1962-03-19T23:59:59.000Z

375

Biomass thermochemical conversion program: 1987 annual report  

DOE Green Energy (OSTI)

The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1988-01-01T23:59:59.000Z

376

Applications of Nd:YAG laser micromanufacturing in High Temperature Gas Reactor research  

SciTech Connect

Two innovative applications of Nd:YAG laser micromachining techniques are demonstrated in this publication. Research projects to determine the fission product transport mechanisms in TRISO coated particles necessitate heat treatment studies as well as the manufacturing of a unique sealed system for experimentation at very high temperatures. This article describes firstly the design and creation of an alumina jig designed to contain 500 {mu}m diameter ZrO2 spheres intended for annealing experiments at temperatures up to 1600 C. Functional requirements of this jig are the precision positioning of spheres for laser ablation, welding and post weld heat treatment in order to ensure process repeatability and accurate indexing of individual spheres. The design challenges and the performance of the holding device are reported. Secondly the manufacture of a sealing system using laser micromachining is reported. ZrO2 micro plugs isolate the openings of micro-machined cavities to produce a gas-tight seal fit for application in a high temperature environment. The technique is described along with a discussion of the problems experienced during the sealing process. Typical problems experienced were seating dimensions and the relative small size ({approx} 200 {mu}m) of these plugs that posed handling challenges. Manufacturing processes for both the tapered seating cavity and the plug are demonstrated. In conclusion, this article demonstrates the application of Nd-YAG micromachining in an innovative way to solve practical research problems.

I. J. van Rooyen; C. A. Smal; J. Steyn; H. Greyling

2012-08-01T23:59:59.000Z

377

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT  

SciTech Connect

Progress on reactor programs and in general engineering research and development programs is summarized. Research and development are reported on water-cooled reactors including EBWR and Borax-V, sodium-cooled reactors including ZPR-III, IV, and IX, Juggernaut, and EBR-I and II. Other work included a review of fast reactor technology, and studies on nuclear superheat, thermal and fast reactor safety, and reactor physics. Effort was also devoted to reactor materials and fuels development, heat engineering, separation processes and advanced reactor concepts. (J.R.D.)

1961-04-01T23:59:59.000Z

378

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, MAY 1962  

SciTech Connect

Research progress is reported on water-cooled reactors, liquid-metal- cooled reactors, general reactor technology, plutonium recycle, advanced systems research and development, and nuclear safety. (M.C.G.)

1962-06-15T23:59:59.000Z

379

Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation  

SciTech Connect

On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

2008-07-01T23:59:59.000Z

380

Seismic Safety Margins Research Programs. Assessment of potential increases in risk due to degradation of steam generator and reactor coolant pump supports. [PWR  

Science Conference Proceedings (OSTI)

During the NRC licensing review for the North Anna Units 1 and 2 pressurized-water reactors (PWRs), questions were raised regarding the potential for low-fracture toughness of steam-generator and reactor-coolant-pump supports. Because other PWRs may face similar problems, this issue was incorporated into the NRC Program for Resolution of Generic Issues. The work described in this report was performed to provide the NRC with a quantitative evaluation of the value/impact implications of the various options of resolving the fracture-toughness question. This report presents an assessment of the probabilistic risk associated with nil-ductility failures of steam-generator and reactor-coolant-pump structural-support systems during seismic events, performed using the Seismic Safety Margins Research Program codes and data bases.

Bohn, M. P.; Wells, J. E.; Shieh, L. C.; Cover, L. E.; Streit, R. L.

1983-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Optimized Integration of the Decontamination Plan and the Radwaste Management Plan into Decommissioning Plan to the VVR-S Research Reactor from Romania  

SciTech Connect

The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of materials to be managed in the near future raise some issues that need to be solved swiftly, such as treatment of aluminum and lead and graphite management. It is envisaged that these materials to be treated to Subsidiary for Nuclear Research (SCN) Pitesti. (authors)

Barariu, G. [National Authority for Nuclear Activity-Subsidiary of Technology and Engineering for Nuclear Projects (Romania)

2008-07-01T23:59:59.000Z

382

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

383

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

W _7405-eng- 4B QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvint r UCRL-9 533 QUANrUM CONVERSION IN PHWOSYNTHESIS * Melvinitself. The primary quantum conversion act is an ionization

Calvin, Melvin

2008-01-01T23:59:59.000Z

384

Methods for natural gas and heavy hydrocarbon co-conversion  

DOE Patents (OSTI)

A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

Kong, Peter C. (Idaho Falls, ID); Nelson, Lee O. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

2009-02-24T23:59:59.000Z

385

Biomass thermochemical conversion program. 1985 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1986-01-01T23:59:59.000Z

386

Produced Conversion Coatings  

Science Conference Proceedings (OSTI)

Chemical conversion coatings are commonly applied to Mg alloys as paint bases and in some cases as stand-alone protection. Traditional conversion coatings ...

387

Library Conversion Tool  

Science Conference Proceedings (OSTI)

Library Conversion Tool. ... The LIB2NIST mass spectral data conversion program consists of the following files (which are contained in a ZIP archive): ...

2013-06-24T23:59:59.000Z

388

Conversion of Legacy Data  

Science Conference Proceedings (OSTI)

... Conversion of Legacy Data. Conversion of legacy data can be one of the most difficult and challenging components in an SGML environment. ...

389

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

390

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Plan Conversion Plan This template is used to document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation...

391

Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II)  

Science Conference Proceedings (OSTI)

Monte Carlo methods of coupled neutron/photon transport are being used in the design of filtered beams for Neutron Capture Therapy (NCT). This method of beam analysis provides segregation of each individual dose component, and thereby facilitates beam optimization. The Monte Carlo method is discussed in some detail in relation to NCT epithermal beam design. Ideal neutron beams (i.e., plane-wave monoenergetic neutron beams with no primary gamma-ray contamination) have been modeled both for comparison and to establish target conditions for a practical NCT epithermal beam design. Detailed models of the 5 MWt Massachusetts Institute of Technology Research Reactor (MITR-II) together with a polyethylene head phantom have been used to characterize approximately 100 beam filter and moderator configurations. Using the Monte Carlo methodology of beam design and benchmarking/calibrating our computations with measurements, has resulted in an epithermal beam design which is useful for therapy of deep-seated brain tumors. This beam is predicted to be capable of delivering a dose of 2000 RBE-cGy (cJ/kg) to a therapeutic advantage depth of 5.7 cm in polyethylene assuming 30 micrograms/g 10B in tumor with a ten-to-one tumor-to-blood ratio, and a beam diameter of 18.4 cm. The advantage ratio (AR) is predicted to be 2.2 with a total irradiation time of approximately 80 minutes. Further optimization work on the MITR-II epithermal beams is expected to improve the available beams. 20 references.

Clement, S.D.; Choi, J.R.; Zamenhof, R.G.; Yanch, J.C.; Harling, O.K. (Massachusetts Institute of Technology, Cambridge (USA))

1990-01-01T23:59:59.000Z

392

Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994  

DOE Green Energy (OSTI)

Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

Anthony, R.G.; Akgerman, A.

1994-05-06T23:59:59.000Z

393

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network (OSTI)

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

394

Prompt Neutron Lifetime for the NBSR Reactor  

SciTech Connect

In preparation for the proposed conversion of the National Institute of Standards and Technology (NIST) research reactor (NBSR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, certain point kinetics parameters must be calculated. We report here values of the prompt neutron lifetime that have been calculated using three independent methods. All three sets of calculations demonstrate that the prompt neutron lifetime is shorter for the LEU fuel when compared to the HEU fuel and longer for the equilibrium end-of-cycle (EOC) condition when compared to the equilibrium startup (SU) condition for both the HEU and LEU fuels.

Hanson, A.L.; Diamond, D.

2012-06-24T23:59:59.000Z

395

Thermochemical Conversion Pilot Plant (Fact Sheet)  

DOE Green Energy (OSTI)

The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

Not Available

2013-06-01T23:59:59.000Z

396

Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, November 1, 1979-January 31, 1980  

DOE Green Energy (OSTI)

The biomass allocation model has been developed and is undergoing testing. Data bases for biomass feedstock and thermochemical products are complete. Simulated data on process efficiency and product costs are being used while more accurate data are being developed. Market analyses data are stored for the biomass allocation model. The modeling activity will assist in providing process efficiency information required for the allocation model. Process models for entrained bed and fixed bed gasifiers based on coal have been adapted to biomass. Fuel product manufacturing costs will be used as inputs for the data banks of the biomass allocations model. Conceptual economics have been generated for seven of the fourteen process configurations via a biomass economic computer program. The PDU studies are designed to demonstrate steady state thermochemical conversions of biomass to fuels in fluidized, moving and entrained bed reactor configurations. Pulse tests in a fluidized bed to determine the effect of particle size on reaction rates and product gas composition have been completed. Two hour shakedown tests using peanut hulls and wood as the biomass feedstock and the fluidized bed reactor mode have been carried out. A comparison was made of the gas composition using air and steam - O/sub 2/. Biomass thermal profiles and biomass composition information shall be provided. To date approximately 70 biomass types have been collected. Chemical characterization of this material has begun. Thermal gravimetric, pyrogaschromatographic and effluent gas analysis has begun on pelletized samples of these biomass species.

Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.; Stringer, R.P.; Bailie, R.C.

1980-01-01T23:59:59.000Z

397

Biomass Thermochemical Conversion Program: 1986 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1987-01-01T23:59:59.000Z

398

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report  

DOE Green Energy (OSTI)

This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

Not Available

1978-01-01T23:59:59.000Z

399

Biosciences Division: Endurance Bioenergy Reactor(tm)  

NLE Websites -- All DOE Office Websites (Extended Search)

Endurance Bioenergy Reactor(tm) DOE Logo Search BIO ... Search Argonne Home > BIO home > Endurance Bioenergy Reactor(tm) BIO Home Page About BIO News Releases Research Publications...

400

RERTR program activities related to the development and application of new LEU fuels. [Reduced Enrichment Research and Test Reactor; low-enriched uranium  

SciTech Connect

The statue of the U.S. Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of RERTR Program objectives and goals, program accomplishments are discussed with emphasis on the development, demonstration and application of new LEU fuels. Most program activities have proceeded as planned, and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) holds excellent promise for achieving the long-term program goals. Current plans and schedules project the uranium density of qualified RERTR fuels for plate-type reactors to grow by approximately 1 g U/cm/sup 3/ each year, from the current 1.7 g U/cm/sup 3/ to the 7.0 g U/cm/sup 3/ which will be reached in late 1988. The technical needs of research and test reactors for HEU exports are also forecasted to undergo a gradual but dramatic decline in the coming years.

Travelli, A.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Conversion and Storage Program  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

402

Fuel Reformation: Microchannel Reactor Design  

DOE Green Energy (OSTI)

Fuel processing is used to extract hydrogen from conventional vehicle fuel and allow fuel cell powered vehicles to use the existing petroleum fuel infrastructure. Kilowatt scale micro-channel steam reforming, water-gas shift and preferential oxida-tion reactors have been developed capable of achieving DOE required system performance metrics. Use of a microchannel design effectively supplies heat to the highly endothermic steam reforming reactor to maintain high conversions, controls the temperature profile for the exothermic water gas shift reactor, which optimizes the overall reaction conversion, and removes heat to prevent the unwanted hydrogen oxidation in the prefer-ential oxidation reactor. The reactors combined with micro-channel heat exchangers, when scaled to a full sized 50 kWe automotive system, will be less than 21 L in volume and 52 kg in weight.

Brooks, Kriston P.; Davis, James M.; Fischer, Christopher M.; King, David L.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

2005-09-01T23:59:59.000Z

403

Utilization of MIT research reactor by Boston-area universities. Final report, July 1, 1978-June 30, 1980  

SciTech Connect

The guest institutions which used the MITR reactor during 1978-1979 are listed. The participation during previous years since the program began at MIT is also indicated. A summary of the type and amount of participation by local institutions is given.

Clark, L. Jr.; Janghorbani, M.

1981-07-01T23:59:59.000Z

404

Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.  

Science Conference Proceedings (OSTI)

The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G. (Nuclear Engineering Division); (2MIT Nuclear Reactor Laboratory and Nuclear Science and Engineering Department)

2012-04-04T23:59:59.000Z

405

Reactor operations informal report, October 1994  

Science Conference Proceedings (OSTI)

This monthly progress report is divided into two parts. Part one covers the Brookhaven Medical Research Reactor and part two covers the Brookhaven High Flux Beam Reactor. Information is given for each reactor covering the following areas: reactor operation; instrumentation; mechanical maintenance; occurrence reports; and reactor safety.

Hauptman, H.M.; Petro, J.N.; Jacobi, O.; Lettieri, V.; Holden, N.; Ports, D.; Petricek, R.

1994-10-01T23:59:59.000Z

406

Summary report on the HFED (High-Uranium-Loaded Fuel Element Development) miniplate irradiations for the RERTR (Reduced Enrichment Research and Test Reactor) Program  

SciTech Connect

An experiment to evaluate the irradiation characteristics of various candidate low-enriched, high-uranium content fuels for research and test reactors was performed for the US Department of Energy Reduced Enrichment Research and Test Reactor Program. The experiment included the irradiation of 244 miniature fuel plates (miniplates) in a core position in the Oak Ridge Research Reactor. The miniplates were aluminum-based, dispersion-type plates 114.3 mm long by 50.8 mm wide with overall plate thicknesses of 1.27 or 1.52 mm. Fuel core dimensions varied according to the overall plate thicknesses with a minimum clad thickness of 0.20 mm. Tested fuels included UAl/sub x/, UAl/sub 2/, U/sub 3/O/sub 8/, U/sub 3/SiAl, U/sub 3/Si, U/sub 3/Si/sub 1.5/, U/sub 3/Si/sub 2/, U/sub 3/SiCu, USi, U/sub 6/Fe, and U/sub 6/Mn/sub 1.3/ materials. Although most miniplates were made with low-enriched uranium (19.9%), some with medium-enriched uranium (40 to 45%), a few with high-enriched uranium (93%), and a few with depleted uranium (0.2 to 0.4%) were tested for comparison. These fuel materials were irradiated to burnups ranging from /approximately/27 to 98 at. % /sup 235/U depletion. Operation of the experiment, measurement of miniplate thickness as the irradiation progressed, ultimate shipment of the irradiated miniplates to various hot cells, and preliminary results are reported here. 18 refs., 12 figs., 7 tabs.

Senn, R.L.

1989-04-01T23:59:59.000Z

407

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

Newton, M. A.

1997-02-01T23:59:59.000Z

408

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

409

The Innovations, Technology and Waste Management Approaches to Safely Package and Transport the World's First Radioactive Fusion Research Reactor for Burial  

SciTech Connect

Original estimates stated that the amount of radioactive waste that will be generated during the dismantling of the Tokamak Fusion Test Reactor will approach two million kilograms with an associated volume of 2,500 cubic meters. The materials were activated by 14 MeV neutrons and were highly contaminated with tritium, which present unique challenges to maintain integrity during packaging and transportation. In addition, the majority of this material is stainless steel and copper structural metal that were specifically designed and manufactured for this one-of-a-kind fusion research reactor. This provided further complexity in planning and managing the waste. We will discuss the engineering concepts, innovative practices, and technologies that were utilized to size reduce, stabilize, and package the many unique and complex components of this reactor. This waste was packaged and shipped in many different configurations and methods according to the transportation regulations and disposal facility requirements. For this particular project, we were able to utilize two separate disposal facilities for burial. This paper will conclude with a complete summary of the actual results of the waste management costs, volumes, and best practices that were developed from this groundbreaking and successful project.

Keith Rule; Erik Perry; Jim Chrzanowski; Mike Viola; Ron Strykowsky

2003-09-15T23:59:59.000Z

410

Conversion Between Implicit - CECM  

E-Print Network (OSTI)

Conversion Between Implicit and Parametric Representation of Differential Varieties. Xiao-Shan Gao, Institute of Systems Science, Chinese Academy of ...

411

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

412

NREL: Biomass Research - Josh Schaidle  

NLE Websites -- All DOE Office Websites (Extended Search)

Josh Schaidle Josh Schaidle Photo of Josh Schaidle Josh Schaidle works in the Thermochemical Catalysis Research and Development group, headed by Jesse Hensley. He manages a $500,000 per year task focused on developing catalysts, processes, and reactor systems for the catalytic upgrading of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices Photochemical and electrochemical routes for fuel production Rational design of catalysts through the combination of experiment and theory Early transition metal carbide and nitride catalysts Process design and optimization Life-cycle Assessment (LCA) Catalysts for automotive exhaust treatment Education Ph.D., Chemical Engineering; Concentration in Environmental

413

Effect of changes in DOE pricing policies for enrichment and reprocessing on research reactor fuel cycle costs  

SciTech Connect

Fuel cycle costs with HEU and LEU fuels for the IAEA generic 10 MW reactor are updated to reflect the change in DOE pricing policy for enrichment services as of October 1985 and the published charges for LEU reprocessing services as of February 1986. The net effects are essentially no change in HEU fuel cycle costs and a reduction of about 8 to 10% in the fuel cycle costs for LEU silicide fuel.

Matos, J.E.; Freese, K.E.

1986-11-03T23:59:59.000Z

414

Research into the pyrolysis of pure cellulose, lignin, and birch wood flour in the China Lake entrained-flow reactor  

DOE Green Energy (OSTI)

This experimental program used the China Lake entrained-flow pyrolysis reactor to briefly investigate the pyrolysis of pure cellulose, pure lignin, and birch wood flour. The study determined that the cellulose and wood flour do pyrolyze to produce primarily gaseous products containing significant amounts of ethylene and other useful hydrocarbons. During attempts to pyrolyze powdered lignin, the material melted and bubbled to block the reactor entrance. The pure cellulose and wood flour produced C/sub 2/ + yields of 12% to 14% by weight, which were less than yields from an organic feedstock derived from processed municipal trash. The char yields were 0.1% by weight from cellulose and 1.5% from birch wood flour - one to two orders of magnitude less than were produced from the trash-derived feedstock. In scanning electron microscope photographs, most of the wood flour char had a sintered and agglomerated appearance, although some particles retained the gross cell characteristics of the wood flour. The appearance of the char particles indicated that the material had once been molten and possibly vapor before it formed spheroidal particles about 1 ..mu..m diameter which agglomerated to form larger char particles. The ability to completely melt or vaporize lignocellulosic materials under conditions of high heating rates has now been demonstrated in a continuous flow reactor and promises new techniques for fast pyrolysis. This char was unexpectedly attracted by a magnet, presumably because of iron contamination from the pyrolysis reactor tube wall. The production of water-insoluble tars was negligible compared to the tars produced from trash-derived feedstock. The production of water-soluble organic materials was fairly low and qualitatively appeared to vary inversely with temperature. This study was of a preliminary nature and additional studies are necessary to optimize ethylene production from these feedstocks.

Diebold, J.

1980-06-01T23:59:59.000Z

415

Beneficial Conversion Features or Contingently Adjustable Conversion  

E-Print Network (OSTI)

1. An entity may issue convertible debt with an embedded conversion option that is required to be bifurcated under Statement 133 if all of the conditions in paragraph 12 of that Statement are met. An embedded conversion option that initially requires separate Copyright © 2008, Financial Accounting Standards Board Not for redistribution Page 1accounting as a derivative under Statement 133 may subsequently no longer meet the conditions that would require separate accounting as a derivative. A reassessment of whether an embedded conversion option must be bifurcated under Statement 133 is required each reporting period. When an entity is no longer required to bifurcate a conversion option pursuant to Statement 133, there are differing views on how an entity should recognize that change.

Bifurcation Criteria; Fasb Statement No; Stock Purchase Warrants

2006-01-01T23:59:59.000Z

416

Membrane reactor advantages for methanol reforming and similar reactions  

Science Conference Proceedings (OSTI)

Membrane reactors achieve efficiencies by combining in one unit a reactor that generates a product with a semipermeable membrane that extracts it. One well-known benefit of this is greater conversion, as removal of a product drives reactions toward completion, but there are several potentially larger advantages that have been largely ignored. Because a membrane reactor tends to limit the partial pressure of the extracted product, it fundamentally changes the way that total pressure in the reactor affects equilibrium conversion. Thus, many gas-phase reactions that are preferentially performed at low pressures in a conventional reactor are found to have maximum conversion at high pressures in a membrane reactor. These higher pressures and reaction conversions allow greatly enhanced product extraction as well. Further, membrane reactors provide unique opportunities for temperature management which have not been discussed previously. These benefits are illustrated for methanol reforming to hydrogen for use with PEM (polymer electrolyte membrane) fuel cells.

Buxbaum, R.E. [REB Research and Consulting Co., Ferndale, MI (United States)

1999-07-01T23:59:59.000Z

417

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biofuel Conversion Processes The conversion of...

418

Iterated multidimensional wave conversion  

Science Conference Proceedings (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

419

EA-1207: Pit Disassembly and Conversion Demonstration Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

207: Pit Disassembly and Conversion Demonstration Environmental 207: Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities EA-1207: Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities SUMMARY This EA evaluates the potential environmental impacts associated with a proposal to test an integrated pit disassembly and conversion process on a relatively small sample of pits and plutonium metal at the Los Alamos National Laboratory in New Mexico. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 14, 1998 EA-1207: Finding of No Significant Impact Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities August 14, 1998

420

Hydrothermal Energy Conversion Technology  

SciTech Connect

The goal of the Hydrothermal Program is to develop concepts which allow better utilization of geothermal energy to reduce the life-cycle cost of producing electricity from liquid-dominated, hydrothermal resources. Research in the program is currently ongoing in three areas: (1) Heat Cycle Research, which is looking at methods to increase binary plant efficiencies; (2) Materials Development, which is developing materials for use in geothermal associated environments; and (3) Advanced Brine Chemistry, with work taking place in both the brine chemistry modeling area and waste disposal area. The presentations during this session reviewed the accomplishments and activities taking place in the hydrothermal energy conversion program. Lawrence Kukacka, Brookhaven National Laboratory, discussed advancements being made to develop materials for use in geothermal applications. This research has identified a large number of potential materials for use in applications from pipe liners that inhibit scale buildup and reduce corrosion to elastomers for downhole use. Carl J. Bliem, Idaho National Engineering Laboratory, discussed preparations currently underway to conduct field investigations of the condensation behavior of supersaturated turbine expansions. The research will evaluate whether the projected 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Eugene T. Premuzic, Brookhaven National Laboratory, discussed advancements being made using biotechnology for treatment of geothermal residual waste; the various process options were discussed in terms of biotreatment variables. A treatment scenario and potential disposal costs were presented. John H. Weare, University of California, San Diego, discussed the present capabilities of the brine chemistry model he has developed for geothermal applications and the information it can provide a user. This model is available to industry. The accomplishments from the research projects presented in this session have been many. It is hoped that these accomplishments can be integrated into industrial geothermal power plant sites to assist in realizing the goal of reducing the cost of energy produced from the geothermal resource.

Robertson, David W.; LaSala, Raymond J.

1992-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "research reactor conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421