National Library of Energy BETA

Sample records for research program design

  1. Team Based Program Design Management and Research Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team Based Program Design Management and Research Operations Involvement in Nanoscale Materials ES&H August 2009 Presenter: Kevin Sheffield, Pacific Northwest National Laboratory ...

  2. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect (OSTI)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  3. Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan

    SciTech Connect (OSTI)

    Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

    1988-12-01

    This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

  4. Sandia Combustion Research Program

    SciTech Connect (OSTI)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A.

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  5. Hydro Research Program Seeking Graduate Student Applicants

    Broader source: Energy.gov [DOE]

    The Hydro Research Foundation is now accepting graduate student applications for its DOE-funded graduate student research program. The Hydro Research Awards Program is designed to spur innovation...

  6. Research Affiliate Program | Photosynthetic Antenna Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Affiliate Program Research Affiliate Program Research Affiliates are collaborators who are not current PARC principal investigators andor who are from academic or...

  7. MST Research Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MST » MST Research Programs MST Research Programs Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. Contact Us Division Leader David Teter Email Emphasizing the synergy among materials synthesis, processing, properties, and performance, the Materials Science and Technology Division applies fundamental materials science and technology expertise to a broad range of programs in support of national security needs,

  8. Residential Retrofit Program Design Guide

    Broader source: Energy.gov [DOE]

    This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

  9. Design studies and commissioning plans for plasma acceleration research station experimental program

    SciTech Connect (OSTI)

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-15

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  10. Agricultural Research Service (ARS) Research Participation Program -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Managed by ORAU Agricultural Research Service (ARS) Research Participation Program Home About USDA ARS About ORISE Current Research Opportunities Site Map Contact ORISE Facebook Twitter Applicants Welcome to the Agricultural Research Service (ARS) Research Participation Program The Agricultural Research Service (ARS) Research Participation Program will serve as the next step in the educational and professional development of scientists and engineers interested in agricultural related

  11. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  12. Base Research Program

    SciTech Connect (OSTI)

    Everett Sondreal; John Hendrikson

    2009-03-31

    In June 2009, the Energy & Environmental Research Center (EERC) completed 11 years of research under the U.S. Department of Energy (DOE) Base Cooperative Agreement No. DE-FC26-98FT40320 funded through the Office of Fossil Energy (OFE) and administered at the National Energy Technology Laboratory (NETL). A wide range of diverse research activities were performed under annual program plans approved by NETL in seven major task areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, (6) advanced materials, and (7) strategic studies. This report summarizes results of the 67 research subtasks and an additional 50 strategic studies. Selected highlights in the executive summary illustrate the contribution of the research to the energy industry in areas not adequately addressed by the private sector alone. During the period of performance of the agreement, concerns have mounted over the impact of carbon emissions on climate change, and new programs have been initiated by DOE to ensure that fossil fuel resources along with renewable resources can continue to supply the nation's transportation fuel and electric power. The agreement has addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration while expanding the supply and use of domestic energy resources for energy security. It has further contributed to goals for near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources (e.g., wind-, biomass-, and coal-based electrical generation).

  13. Enlighten Your Research Global Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enlighten Your Research Global Program Science Engagement Move your data Programs & Workshops CrossConnects Workshop Series Operating Innovative Networks Workshop Series Enlighten...

  14. Design Assistance Program

    Broader source: Energy.gov [DOE]

    Efficiency measures that are not eligible under this program may be eligible for other Focus on Energy Business Programs. Eligible buildings include free-standing buildings, adaptive reuse, subst...

  15. Jointly Sponsored Research Program

    SciTech Connect (OSTI)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  16. Graduate Research Assistant Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Living in Los Alamos Ombuds Program Scholarships Student Association Autobiographies Student Programs Advisory Committee (internal) 2015 Student Liaison Contact List (pdf)

  17. Tools for Designing & Implementing Better Finance Programs |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools for Designing & Implementing Better Finance Programs Tools for Designing & Implementing Better Finance Programs Clean energy finance programs PDF icon Presentation Microsoft ...

  18. Enlighten Your Research Global Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enlighten Your Research Global Program Science Engagement Move your data Programs & Workshops CrossConnects Workshop Series Operating Innovative Networks Workshop Series Enlighten Your Research Global Program Science Requirements Reviews Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Enlighten Your Research

  19. NETL: Aligned Gasification Research Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to coal use. For this purpose, NETL's Clean Coal Research Program (CCRP) is developing a portfolio of innovative technologies, including those for carbon capture and storage (CCS). ...

  20. Exemplary Student Research Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exemplary Student Research Program 2013 Exemplary Student Research Program - Student Poster Presentations 1 of 6 2013 Exemplary Student Research Program - Student Poster...

  1. Ecological Research Division, Marine Research Program

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  2. Tansmutation Research program

    SciTech Connect (OSTI)

    Seidler, Paul

    2011-07-31

    Six years of research was conducted for the United States Department of Energy, Office of Nuclear Energy between the years of 2006 through 2011 at the University of Nevada, Las Vegas (UNLV). The results of this research are detailed in the narratives for tasks 1-45. The work performed spanned the range of experimental and modeling efforts. Radiochemistry (separations, waste separation, nuclear fuel, remote sensing, and waste forms) , material fabrication, material characterization, corrosion studies, nuclear criticality, sensors, and modeling comprise the major topics of study during these six years.

  3. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2013-05-28

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  4. Argonne's Exemplary Student Research Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exemplary Student Research Program Share

  5. Integrating Experimental Design Into Your Program

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assistance Program (TAP), explain how you can integrate experimental design into your program.

  6. Integrating Experimental Design Into Your Program

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), exaplin how you can integrate experimental design into your program.

  7. Small Business Independent Market Research Program | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Independent Market Research Program Researching, identifying, and evaluating, ... Once a program requirement is identified, an independent research task is activated to ...

  8. Commerce RISE Program Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commerce RISE Program Design Commerce RISE Program Design Community Power Works program design, a document posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website. Commerce RISE Program Design (201.71 KB) More Documents & Publications Quality Control, Standardization of Upgrades, and Workforce Expectations Keys to Successful Quality Assurance and Quality Control Programs (101) Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program

  9. Jointly Sponsored Research Program Energy Related Research

    SciTech Connect (OSTI)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts

  10. Good, Better, Best: Designing a Designation Program for Solar | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Good, Better, Best: Designing a Designation Program for Solar Good, Better, Best: Designing a Designation Program for Solar December 4, 2012 - 4:00pm Addthis The Energy Department is gathering input on solar designation programs that could one day help consumers recognize the best products and services that the solar industry has to offer. | Photo by Dennis Schroeder/NREL. The Energy Department is gathering input on solar designation programs that could one day help consumers

  11. SWiFT Research Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  12. Structure and Design a Finance Program with Loan Loss Reserve Funds

    Broader source: Energy.gov [DOE]

    The process for structuring and designing a finance program with a loan loss reserve (LLR) fund typically includes research and preparing a finance program design document.

  13. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. PDF icon Residential Retrofit Program Design Guide...

  14. Graduate Student Research Program Application Information | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate Student Research Program Application Information DOE Office of Science Graduate Student Research Program Application Information; Submission Deadline is May 11 Dear ...

  15. Nuclear Explosion Monitoring Research and Engineering Program...

    Office of Scientific and Technical Information (OSTI)

    Program Document: Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan Citation Details In-Document Search Title: Nuclear Explosion Monitoring Research ...

  16. Integrating Experimental Design into Your Program

    Broader source: Energy.gov [DOE]

    How you can use experimental design in energy efficiency programs in order to make them the most successful and cost-effective programs that they can be.

  17. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  18. Advanced Materials by Design: Programable Transient Electronics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials by Design: Programable Transient Electronics Transient materials is an emerging area of materials design with the key attribute being the ability to physically...

  19. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  20. Designing Effective Renewables Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Effective Renewables Programs Designing Effective Renewables Programs This webinar covers designing effective renewable programs. Transcript Presentation (1.05 MB) More Documents & Publications Effective O&M Policy in Public Buildings Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Preparing for the Arrival of Electric Vehicle

  1. Postdoctoral Program Program Description The Postdoctoral (Postdoc) Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Program Program Description The Postdoctoral (Postdoc) Research program offers the opportunity for appointees to perform research in a robust scientific R&D environment, present and publish research, advance knowledge in basic and applied science, and strengthen national scientific and technical capabilities. Program Mission The Postdoctoral Program provides the opportunity for appointees to perform scientifically rich research, showcase their work through publishing and

  2. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide This Residential Retrofit Program Design Guide focuses on the key elements and design...

  3. Graduate Research Fellowship Program deadlines begin November 13

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate Research Fellowship Program Deadlines Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Graduate Research Fellowship Program deadlines begin November 13 The program is designed to recognize and support outstanding students pursuing research-based masters and doctoral degrees in its mission areas. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email

  4. Overview of the NMSEA applied research program

    SciTech Connect (OSTI)

    Stickney, B.; Wilson, A.

    1980-01-01

    Recently the NMSEA has seen the need to augment its other informational programs with a program of in-house applied research. The reasoning behind this move is presented here along with and accounting of past research activities.

  5. Exemplary Student Research Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQ Video Argonne's Exemplary Student Research Program Featured Story 'The possibilities of science are limitless,' said high school senior Avinash Prakash. 'Science is continually growing. Through research we are part of a continuing process.' New program puts high school students in role of scientists Contact education@anl.gov Exemplary Student Research Program "Research is creating new knowledge." - Neil Armstrong, Astronaut About the Program Using the world-class facilities at

  6. Financing Program Design and Implementation Considerations

    Broader source: Energy.gov [DOE]

    Designing and implementing clean energy financing programs takes more than simply identifying applicable financing structures and implementing them. State and local governments should also take...

  7. Designing the Microbial Research Commons

    SciTech Connect (OSTI)

    Uhlir, Paul F

    2011-10-01

    Recent decades have witnessed an ever-increasing range and volume of digital data. All elements of the pillars of science--whether observation, experiment, or theory and modeling--are being transformed by the continuous cycle of generation, dissemination, and use of factual information. This is even more so in terms of the re-using and re-purposing of digital scientific data beyond the original intent of the data collectors, often with dramatic results. We all know about the potential benefits and impacts of digital data, but we are also aware of the barriers, the challenges in maximizing the access, and use of such data. There is thus a need to think about how a data infrastructure can enhance capabilities for finding, using, and integrating information to accelerate discovery and innovation. How can we best implement an accessible, interoperable digital environment so that the data can be repeatedly used by a wide variety of users in different settings and with different applications? With this objective: to use the microbial communities and microbial data, literature, and the research materials themselves as a test case, the Board on Research Data and Information held an International Symposium on Designing the Microbial Research Commons at the National Academy of Sciences in Washington, DC on 8-9 October 2009. The symposium addressed topics such as models to lower the transaction costs and support access to and use of microbiological materials and digital resources from the perspective of publicly funded research, public-private interactions, and developing country concerns. The overall goal of the symposium was to stimulate more research and implementation of improved legal and institutional models for publicly funded research in microbiology.

  8. Sandia combustion research program: Annual report, 1987

    SciTech Connect (OSTI)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A.

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  9. ORISE: Research Participation Programs by Sponsor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Science Education Programs by Sponsor ORISE research participation programs provide students and faculty with experience at top government laboratories Through its contract to operate the Oak Ridge Institute for Science and Education for the U.S. Department of Energy, ORAU partners with some of the most respected federally-funded research laboratories and programs. Below are links to websites created specifically to provide information about these ORISE programs both for prospective

  10. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program Scientific Exchange Program The Scientific Exchange Program was established as part of Washington University's Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center (EFRC) funded by the Department of Energy in 2009. This program will permit individuals from PARC teams, with a strong emphasis on graduate students and postdocs, to make extended visits to other laboratories within PARC. In addition to exchanges of team members, funds are also

  11. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research, ...

  12. LANL, LLNL researchers among Early Career Research Program award...

    National Nuclear Security Administration (NNSA)

    Program awards for 2013. LLNL physicist Yuan Ping's project, selected by the Office of Fusion Research, aims to provide high quality data on critical energy transport properties of...

  13. Atmospheric Radiation Measurement Program Climate Research Facility...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Program Climate Research Facility Operations ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  14. Research Local Incentive Programs | Open Energy Information

    Open Energy Info (EERE)

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Research Local Incentive Programs Costs associated with small community wind...

  15. CLEAN C O A L RESEARCH PROGRAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... By reducing the risk profle associated with new and often ... and investment for subsequent plants is greatly improved. ... READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM Via the ...

  16. The Research Program | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Research Program What is the chemical and physical form of uranium in reduced aquifers? Uranium behavior in the Rifle, CO, aquifer. In order to directly interrogate the ...

  17. University Coal Research Program 2013 Selections

    Office of Energy Efficiency and Renewable Energy (EERE)

    Since the University Coal Research Program's inception in 1979, more than 728 research projects have been funded. With a combined value in excess of $132 million, these projects have provided new...

  18. Lighting program design: New opportunities for profits

    SciTech Connect (OSTI)

    Johnson, J.A.; Jones, C.C.

    1995-03-01

    The increased activity by State`s to adopt codes and standards is creating new challenges for the design and implementation of lighting programs for commercial new construction. The regulatory environment is also requiring that transaction costs are minimized for these programs. Recent work done by the Illuminating Engineers Society for the new ASHRA-E/IES Standard 90.1-1989R provides a new technical basis for the development of component based lighting programs. Component based programs offer advantages over design assistance programs. They include the ease of marketing, higher market penetration rate, and the promotion of specific cost-effective technologies. The proposed approach also overcomes problems with current component based programs including defining the baseline, free ridership, and difficulties in performing impact evaluations. By addressing these problems, lighting programs for new buildings will continue to be one of the most cost-effective new construction programs for most utilities. The basic concept is to combine two activities that are shaping the national energy picture into a program design strategy. The national activities are the Energy Policy Act of 1992 and the development of the next generation of ASHRAE/IES Standard 90.1. The approach uses the prescriptive criteria in Standard 90.1 to develop savings thresholds for program participation. The savings thresholds are then associated with lighting component technologies to determine eligibility criteria for each component. Combining the prescriptive criteria with component savings is the key to the approach.

  19. NETL: University Turbine Systems Research Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Turbine Systems Research The University Turbine Systems Research (UTSR) Program addresses scientific research to develop and transition advanced turbines and turbine-based systems that will operate cleanly and efficiently when fueled with coal-derived synthesis gas (syngas) and hydrogen fuels. This research focuses on the areas of combustion, aerodynamics/heat transfer, and materials, in support of the Department of Energy (DOE) Office of Fossil Energy's Advanced Turbine Program

  20. Analyzing Outreach Effectiveness to Improve Program Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analyzing Outreach Effectiveness to Improve Program Design What's Working in Residential Energy Efficiency Upgrade Programs, Panel on Collecting and Using Data to Improve the Program May 20, 2011 © Copyright Earth Markets, LLC 2011 Bethany Cheshire East Haddam Glastonbury Mansfield Ridgefield Portland Weston Westport Wethersfield Wilton Windham Lebanon East Hampton Who's participating? © Copyright Earth Markets, LLC 2011 Road from Start to Finish Sign-Up for the Reduce 4 tons CO 2 Earn Town

  1. NETL: Onsite Research & Development Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion | Advanced Gasification | Carbon Capture | Carbon Storage | Carbon ... Oil & Gas Research Efficient recovery of our nation's fossil fuel resources in an ...

  2. Geothermal Research and Development Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

  3. University Turbine Systems Research Program

    SciTech Connect (OSTI)

    Leitner, Robert; Wenglarz, Richard

    2010-12-31

    The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

  4. Theoretical Particle Physics Research Program

    SciTech Connect (OSTI)

    Paz, Gil

    2015-06-23

    This is the final technical report for DOE grant DE-FG02-13ER41997. It contains a brief description of accomplishments: research project that were completed during the period of the grant, research project that were started during the period of the grant, and service to the scientific community. It also lists the publications in the funded period, travel related to the grant, and information about the personal supported by the grant.

  5. CLEAN C O A L RESEARCH PROGRAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) CLEAN C O A L RESEARCH PROGRAM 2012 TECHNOLOGY READINESS ASSESSMENT DECEMBER 2012 United States Department of Energy | Office of Fossil Energy -ANALYSIS OF ACTIVE RESEARCH PORTFOLIO ii 2012 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM iii DISCLAIMER DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States

  6. Environmental research program: FY 1987, annual report

    SciTech Connect (OSTI)

    Not Available

    1988-03-01

    This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

  7. Summer Undergraduate Research Program: Environmental studies

    SciTech Connect (OSTI)

    McMillan, J.

    1994-12-31

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United States were accepted into the program.

  8. University Research Consortium annual review meeting program

    SciTech Connect (OSTI)

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  9. Environmental research program. 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The objective of the Environmental Research Program is to contribute to the understanding of the formation, mitigation, transport, transformation, and ecological effects of energy-related pollutants on the environment. The program is multidisciplinary and includes fundamental and applied research in chemistry, physics, biology, engineering, and ecology. The program undertakes research and development in efficient and environmentally benign combustion, pollution abatement and destruction, and novel methods of detection and analysis of criteria and non-criteria pollutants. This diverse group investigates combustion, atmospheric processes, flue-gas chemistry, and ecological systems.

  10. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management The Geothermal Technologies Program Multi-Year Research, Development and ...

  11. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits The Geothermal Technologies Program Multi-Year Research, ...

  12. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research, ...

  13. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges The Geothermal Technologies Program Multi-Year Research, ...

  14. Market Segmentation and Energy Efficiency Program Design (2008...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Market Segmentation and Energy Efficiency Program Design Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs ...

  15. INEL BNCT Research Program annual report, 1992

    SciTech Connect (OSTI)

    Venhuizen, J.R.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.

  16. Design and Implement Clean Energy Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Implement Clean Energy Programs Design and Implement Clean Energy Programs DICEPedit.png State and local governments are uniquely positioned to advance clean energy...

  17. How to Design and Market Energy Efficiency Programs to Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Market Energy Efficiency Programs to Specific Neighborhoods How to Design and Market Energy Efficiency Programs to Specific Neighborhoods This presentation, given ...

  18. BASE PROGRAM ON ENERGY RELATED RESEARCH

    SciTech Connect (OSTI)

    Unknown

    1998-08-01

    The Base Research Program at Western Research Institute (WRI) is planned to develop technologies to a level that will attract industrial sponsors for continued development under the Jointly Sponsored Research (JSR) Program. In many instances, a potential JSR cosponsor has been identified but additional laboratory or bench-scale data are necessary to assess the utility of the technology prior to cosponsor investment. Both peer and management review are employed prior to proposing Base projects to the U.S. Department of Energy (DOE).

  19. Research identifies designs for lowering subsea production cost

    SciTech Connect (OSTI)

    Rothberg, R.H.; Hall, J.E. ); Douglas, L.D. ); Manuel, W.S. ); Kirkland, K.G.

    1993-03-08

    To reduce costs and simplify installation operations for subsea hardware, Amoco Production Co. in 1986 began the development of a diverless subsea production system (DSPS). At present, Amoco has completed the testing phase for selected prototype components and has completed a deepwater system design that incorporates many of these ideas. This program has yielded several configurations suitable for full-field development; however, the emphasis of the research and development program has been to identify, design, and test components of key subsystems. This first of a three-part series describes the design considerations, equipment configuration, and subsea trees.

  20. Natural and accelerated bioremediation research program plan

    SciTech Connect (OSTI)

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  1. Base Program on Energy Related Research

    SciTech Connect (OSTI)

    Western Research Institute

    2008-06-30

    The main objective of the Base Research Program was to conduct both fundamental and applied research that will assist industry in developing, deploying, and commercializing efficient, nonpolluting fossil energy technologies that can compete effectively in meeting the energy requirements of the Nation. In that regard, tasks proposed under the WRI research areas were aligned with DOE objectives of secure and reliable energy; clean power generation; development of hydrogen resources; energy efficiency and development of innovative fuels from low and no-cost sources. The goal of the Base Research Program was to develop innovative technology solutions that will: (1) Increase the production of United States energy resources--coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. This report summarizes the accomplishments of the overall Base Program. This document represents a stand-alone Final Report for the entire Program. It should be noted that an interim report describing the Program achievements was prepared in 2003 covering the progress made under various tasks completed during the first five years of this Program.

  2. Building a Bright Future. The Hydro Research Foundation's Fellowship Program

    SciTech Connect (OSTI)

    Vaughn, Brenna; Linke, Deborah M.

    2015-12-29

    The Hydro Fellowship Program (program) began as an experiment to discover whether the hydropower industry could find mechanisms to attract new entrants through conducting relevant research to benefit the industry. This nationwide, new-to-the-world program was started through funding from the Wind and Water Power Technologies Office of the Energy Efficiency and Renewable Energy (EERE) Office of the Department of Energy (DOE). Between 2010-2015, the Hydro Research Foundation (HRF) designed and implemented a program to conduct valuable research and attract new entrants to the hydro workforce. This historic grant has empowered and engaged industry members from 25 organizations by working with 91 students and advisors at 24 universities in 19 states. The work funded answered pressing research needs in the fields of civil, mechanical, environmental, and electrical engineering, as well as law, energy engineering and materials innovation. In terms of number of individuals touched through funding, 148 individuals were supported by this work through direct research, mentorship, oversight of the work, partnerships and the day-to-day program administration. Based on the program results, it is clear that the funding achieved the hoped-for outcomes and has the capacity to draw universities into the orbit of hydropower and continue the conversation about industry research and development needs. The Foundation has fostered unique partnerships at the host universities and has continued to thrive with the support of the universities, advisors, industry and the DOE. The Foundation has demonstrated industry support through mentorships, partnerships, underwriting the costs and articulating the universities’ support through in-kind cost sharing. The Foundation recommends that future work be continued to nurture these graduate level programs using the initial work and improvements in the successor program, the Research Awards Program, while stimulating engagement of academia at the

  3. INEEL BNCT Research Program Annual Report, CY-2000

    SciTech Connect (OSTI)

    Venhuizen, James Robert

    2001-03-01

    This report is a summary of the activities conducted in conjunction with the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 2000. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, neutron source design and demonstration, and support the Department of Energy’s (DOE) National BNCT Program goals are the goals of this Program. Contributions from the individual contributors about their projects are included, specifically described are the following, chemistry: analysis of biological samples and an infrared blood-boron analyzer, and physics: progress in the patient treatment planning software, measurement of neutron spectra for the Argentina RA-6 reactor, and recalculation of the Finnish research reactor FiR 1 neutron spectra, BNCT accelerator technology, and modification to the research reactor at Washington State University for an epithermal-neutron beam.

  4. Nuclear Safety Research and Development (NSR&D) Program | Department...

    Office of Environmental Management (EM)

    Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program The Nuclear Safety Research and Development (NSR&D) Program is managed by ...

  5. State Energy-Efficienct Appliance Rebate Program: Volume 1 - Program Design Lessons Leanred

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ð SEEARP: Volume 1 Ð Program Design Lessons Learned BUILDING TECHNOLOGIES OFFICE State Energy-Efficient Appliance Rebate Program: Volume 1 Ð Program Design Lessons Learned June 2015 i Ð SEEARP: Volume 1 Ð Program Design Lessons Learned SEEARP: Volume 1 Ð Program Design Lessons Learned Ð i TABLE OF CONTENTS Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  6. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    SciTech Connect (OSTI)

    Reed, M.J.

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  7. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect (OSTI)

    Venhuizen, James Robert

    2002-04-01

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  8. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect (OSTI)

    Venhuizen, James R.

    2002-04-30

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  9. Student Research Participation Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRP Fact Sheet Featured Video Student Intern: Science Communications Contact undergrad@anl.gov Student Research Participation Program "I really enjoyed the overall experience and the skills that I have been able to gain from working here." - Summer Intern Overview A student will spend the first week of his/her Argonne experience with an Argonne staff member devising a research strategy and attending mandatory safety classes. For the next few weeks, the supervisor will provide

  10. Decontamination systems information and research program -- Literature review in support of development of standard test protocols and barrier design models for in situ formed barriers project

    SciTech Connect (OSTI)

    1994-12-01

    The US Department of Energy is responsible for approximately 3,000 sites in which contaminants such as carbon tetrachloride, trichlorethylene, perchlorethylene, non-volatile and soluble organic and insoluble organics (PCBs and pesticides) are encountered. In specific areas of these sites radioactive contaminants are stored in underground storage tanks which were originally designed and constructed with a 30-year projected life. Many of these tanks are now 10 years beyond the design life and failures have occurred allowing the basic liquids (ph of 8 to 9) to leak into the unconsolidated soils below. Nearly one half of the storage tanks located at the Hanford Washington Reservation are suspected of leaking and contaminating the soils beneath them. The Hanford site is located in a semi-arid climate region with rainfall of less than 6 inches annually, and studies have indicated that very little of this water finds its way to the groundwater to move the water down gradient toward the Columbia River. This provides the government with time to develop a barrier system to prevent further contamination of the groundwater, and to develop and test remediation systems to stabilize or remove the contaminant materials. In parallel to remediation efforts, confinement and containment technologies are needed to retard or prevent the advancement of contamination plumes through the environment until the implementation of remediation technology efforts are completed. This project examines the various confinement and containment technologies and protocols for testing the materials in relation to their function in-situ.

  11. New heavy-ion-fusion accelerator research program

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B.

    1983-05-01

    This paper will briefly summarize the concepts of Heavy Ion Fusion (HIF), especially those aspects that are important to its potential for generating electrical power. It will also note highlights of the various HIF programs throughout the world. Especially significant is that the US Department of Energy (DOE) plans a program, beginning in 1984, aimed at determining the feasibility of using heavy ion accelerators as drivers for Inertial Confinement Fusion (ICF). The new program concentrates on the aspects of accelerator design that are important to ICF, and for this reason is called HIF Accelerator Research.

  12. Nuclear Safety Research and Development Program Proposal Submittal...

    Energy Savers [EERE]

    5 Nuclear Safety Research and Development Program Proposal Submittal Instructions for Fiscal Year 2016 1.0 INTRODUCTION The Nuclear Safety Research and Development (NSR&D) Program ...

  13. Test Plan for Heat Cycle Research Program, Phase I Supercritical...

    Office of Scientific and Technical Information (OSTI)

    Test Plan for Heat Cycle Research Program, Phase I Supercritical Cycle Tests Citation Details In-Document Search Title: Test Plan for Heat Cycle Research Program, Phase I ...

  14. DOE Office of Science Graduate Student Research (SCGSR) Program...

    Office of Science (SC) Website

    Home DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home ... DOE Office of Science Graduate Student Research Program Applications are now closed for ...

  15. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research, ...

  16. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan The Geothermal Technologies Program Multi-Year Research, ...

  17. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and ...

  18. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: ...

  19. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: ...

  20. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration ... Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: ...

  1. Federal Geothermal Research Program Update - Fiscal Year 2004...

    Open Energy Info (EERE)

    Geothermal Research Program Update - Fiscal Year 2004 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Federal Geothermal Research Program Update - Fiscal...

  2. South Africa-Energy and Climate Change Research Program | Open...

    Open Energy Info (EERE)

    Energy and Climate Change Research Program Jump to: navigation, search Name South Africa Energy and Climate Change Research Program AgencyCompany Organization France Agency of...

  3. Mexico-Energy and Climate Change Research Program | Open Energy...

    Open Energy Info (EERE)

    Energy and Climate Change Research Program Jump to: navigation, search Name Mexico Energy and Climate Change Research Program AgencyCompany Organization France Agency of...

  4. China-Energy and Climate Change Research Program | Open Energy...

    Open Energy Info (EERE)

    and Climate Change Research Program Jump to: navigation, search Name China-Energy and Climate Change Research Program AgencyCompany Organization France Agency of Development...

  5. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program Scientific Exchange Program Applications due February

  6. Portuguese research program on nuclear fusion

    SciTech Connect (OSTI)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-12-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described.

  7. State Energy-Efficient Appliance Rebate Program: Volume 1 - Program Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned | Department of Energy 1 - Program Design Lessons Learned State Energy-Efficient Appliance Rebate Program: Volume 1 - Program Design Lessons Learned View the report State Energy-Efficient Appliance Rebate Program: Volume 1 - Program Design Lessons Learned (2.46 MB) More Documents & Publications State Energy-Efficient Appliance Rebate Program: Volume 2 - Program Results FAQ's for: ENERGY STAR Verification Testing Pilot Program dated December 2010 EECBG Appliance Rebate

  8. Russian Health Studies Program - Relationship to Other Radiation Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs | Department of Energy Relationship to Other Radiation Research Programs Russian Health Studies Program - Relationship to Other Radiation Research Programs Relationship to Other Radiation Research Programs Russian Health Studies Program What is the relationship of the Russian Health Studies Program to other radiation health effects programs? Current radiation protection standards are derived primarily from studies of the Japanese atomic bomb survivors and patients who received

  9. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Research, Development and Demonstration Plan: Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan Geothermal Technologies ...

  10. Designing Effective Incentives to Drive Residential Retrofit Program Participation

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar covered retrofit program incentive contests, decision points to consider when designing an incentive program, and examples of incentive structures.

  11. Laboratory Directed Research and Development Program FY 2007

    SciTech Connect (OSTI)

    Hansen, Todd C; editor, Todd C Hansen,

    2008-03-12

    Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

  12. Utah DEQ Energy Pre-Design Program | Open Energy Information

    Open Energy Info (EERE)

    Pre-Design Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Energy Pre-Design Program Abstract Provides information about Utah's...

  13. Designing Effective Renewables Programs (Text Version) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Designing Effective Renewables Programs (Text Version) Designing Effective Renewables Programs (Text Version) Good afternoon, or perhaps I should say good day to those of you who are on the west coast. And welcome to today's presentation from the Department of Energy's technical assistance program on designing effective renewables programs. My name is Cheryl Jenkins. I'm with the Vermont Energy Investment Corporation. And I'm a member of DOE's technical assistance program through Team

  14. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  15. Gas Hydrates Research Programs: An International Review

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  16. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial energy efficiency (IEE) programs delivered by a ...

  17. Jointly Sponsored Research Program on Energy Related Research

    SciTech Connect (OSTI)

    No, author

    2013-12-31

    Cooperative Agreements, DE-FC26-08NT43293, DOE-WRI Cooperative Research and Development Program for Fossil Energy-Related Resources began in June 2009. The goal of the Program was to develop, commercialize, and deploy technologies of value to the nation’s fossil and renewable energy industries. To ensure relevancy and early commercialization, the involvement of an industrial partner was encouraged. In that regard, the Program stipulated that a minimum of 20% cost share be achieved in a fiscal year. This allowed WRI to carry a diverse portfolio of technologies and projects at various development technology readiness levels. Depending upon the maturity of the research concept and technology, cost share for a given task ranged from none to as high as 67% (two-thirds). Over the course of the Program, a total of twenty six tasks were proposed for DOE approval. Over the period of performance of the Cooperative agreement, WRI has put in place projects utilizing a total of $7,089,581 in USDOE funds. Against this funding, cosponsors have committed $7,398,476 in private funds to produce a program valued at $14,488,057. Tables 1 and 2 presented at the end of this section is a compilation of the funding for all the tasks conducted under the program. The goal of the Cooperative Research and Development Program for Fossil Energy-Related Resources was to through collaborative research with the industry, develop or assist in the development of innovative technology solutions that will: • Increase the production of United States energy resources – coal, natural gas, oil, and renewable energy resources; • Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; • Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and • Minimize environmental impacts of energy production and utilization. Success of the Program can be measured by several

  18. Designing Effective State Programs for the Industrial Sector- New SEE Action Publication

    Office of Energy Efficiency and Renewable Energy (EERE)

    The SEE Action report "Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector" provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs delivered by a variety of entities. The report assesses some of the key features of programs that have helped lead to success in generating increased energy savings and identifies new emerging directions in programs that might benefit from additional research and cross-discussion to promote adoption.

  19. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year ...

  20. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Program Analysis | Department of Energy Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-program_analysis.pdf (464.77 KB) More Documents & Publications

  1. 2016 US/German Workshop on Salt Repository Research, Design,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USGerman Workshop on Salt Repository Research, Design, and Operation - Sandia Energy ... Workshop on Salt Repository Research, Design, and Operation HomeStationary Power...

  2. SNERDI Shanghai Nuclear Engineering Research and Design Institute...

    Open Energy Info (EERE)

    SNERDI Shanghai Nuclear Engineering Research and Design Institute Jump to: navigation, search Name: SNERDI (Shanghai Nuclear Engineering Research and Design Institute) Place:...

  3. Research Update: Towards designed functionalities in oxide-based...

    Office of Scientific and Technical Information (OSTI)

    Research Update: Towards designed functionalities in oxide-based electronic materials Citation Details In-Document Search Title: Research Update: Towards designed functionalities...

  4. Effective Loan Program Design and Integration with Contractors | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Loan Program Design and Integration with Contractors Effective Loan Program Design and Integration with Contractors Better Buildings Residential Network Financing and Revenue Peer Exchange Call Series: Effective Loan Program Design and Integration with Contractors, July 24, 2014, Call Slides and Discussion Summary. Call Slides and Discussion Summary (1.69 MB) More Documents & Publications Opportunities through the PowerSaver Loan Program Aggressive Underwriting and Smart

  5. Industrial Energy Efficiency: Designing Effective State Programs for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Sector | Department of Energy Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial energy efficiency (IEE) programs delivered by a variety of entities including utilities and program administrators. The report also assesses some of the

  6. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  7. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  8. DOE-EERC jointly sponsored research program

    SciTech Connect (OSTI)

    Hendrikson, J.G.; Sondreal, E.A.

    1999-09-01

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC21-93MC30098 funded through the Office of Fossil Energy and administered at the Federal Energy Technology Center (FETC) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy and Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying efficient, nonpolluting energy technologies that can compete effectively in meeting market demands for clean fuels, chemical feedstocks, and electricity in the 21st century. The objective of the JSRP was to advance the deployment of advanced technologies for improving energy efficiency and environmental performance through jointly sponsored research on topics that would not be adequately addressed by the private sector alone. Examples of such topics include the barriers to hot-gas cleaning impeding the deployment of high-efficiency power systems and the search for practical means for sequestering CO{sub 2} generated by fossil fuel combustion. The selection of particular research projects was guided by a combination of DOE priorities and market needs, as provided by the requirement for joint venture funding approved both by DOE and the private sector sponsor. The research addressed many different energy resource and related environmental problems, with emphasis directed toward the EERC's historic lead mission in low-rank coals (LRCs), which represent approximately half of the U.S. coal resources in the conterminous states, much larger potential resources in Alaska, and a major part of the energy base in the former U.S.S.R., East Central Europe, and the Pacific Rim. The Base and JSRP agreements were tailored to the growing awareness of critical environmental issues, including water supply and quality, air toxics (e.g., mercury), fine respirable particulate matter (PM{sub 2.5}), and the goal of zero net CO{sub 2} emissions.

  9. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan | Department of Energy Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-complete.pdf (7.48 MB) More Documents & Publications Geothermal Technologies Program Multi-Year Research,

  10. Nuclear Safety Research and Development Program Operating Plan | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the

  11. New TCIPG Research Program Builds on Past Successes with Nearly...

    Office of Environmental Management (EM)

    TCIPG Research Program Builds on Past Successes with Nearly 18.8 Million DOE Award New TCIPG Research Program Builds on Past Successes with Nearly 18.8 Million DOE Award A new ...

  12. OE Power Systems Engineering Research & Development Program Partnerships

    Broader source: Energy.gov [DOE]

    The OE Power Systems Research and Development Program engages a broad group of stakeholders in program planning, identification of high-priority technology gap areas, and joint participation in research, development, demonstration, and deployment activities.

  13. Integrated research training program of excellence in radiochemistry

    SciTech Connect (OSTI)

    Lapi, Suzanne

    2015-09-18

    The overall goal of this “Integrated Research Training Program of Excellence in Radiochemistry” is to provide a rich and deep research experience in state-of-the-art radiochemistry and in the fundamentals of radioisotopic labeling and tracer methodology to develop researchers who are capable of meeting the challenges of designing and preparing radiotracers of broad applicability for monitoring and imaging diverse biological systems and environmental processes. This program was based in the Departments of Radiology and Radiation Oncology at Washington University Medical School and the Department of Chemistry at the University of Illinois at Urbana Champaign, and it was initially directed by Professor Michael J. Welch as Principal Investigator. After his passing in 2012, the program was led by Professor Suzanne E. Lapi. Programmatic content and participant progress was overseen by an Internal Advisory Committee of senior investigators consisting of the PIs, Professor Mach from the Department of Radiology at Washington University and Professor John A. Katzenellenbogen of the Department of Chemistry at the University of Illinois. A small External Advisory Committee to give overall program guidance was also constituted of experts in radiolabeled compounds and in their applications in environmental and plant science.

  14. Department of Energy Announces Fellows Program for Advance Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces Fellows Program for Advance Research Energy Projects December 8, 2009 - 12:00am Addthis Cambridge, MA - The Department of Energy's Advanced Research ...

  15. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Preface Multi-Year Research, Development, and Demonstration Plan Page i Preface The Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan (MYRD&D ...

  16. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Research, Development and Demonstration Plan: Table of Contents Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan ...

  17. Applied research in the solar thermal-energy-systems program

    SciTech Connect (OSTI)

    Brown, C. T.; Lefferdo, J. M.

    1981-03-01

    Within the Solar Thermal Research and Advanced Development (RAD) program a coordinated effort in materials research, fuels and chemical research and applied research is being carried out to meet the systems' needs. Each of these three program elements are described with particular attention given to the applied research activity.

  18. Tools for Designing & Implementing Better Finance Programs

    Broader source: Energy.gov [DOE]

    This webinar, held Nov. 21, 2013, covers key decisions in building clean energy finance programs, understanding how to calculate expected investment returns, and reviewing potential clean energy program funds.

  19. Japan Program: Radiation Effects Research Foundation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Japan Program: Radiation Effects Research Foundation Japan Program: Radiation Effects Research Foundation Background: The Department of Energy, Office of Environment, Health, Safety and Security, Office of Health and Safety funds studies of the Japanese atomic bomb survivors at the Radiation Effects Research Foundation (RERF) in Hiroshima and Nagasaki, Japan. The RERF program is believed to have the longest history of any ongoing international research program. DOE and its predecessor agencies

  20. Heavy liquid metals: Research programs at PSI

    SciTech Connect (OSTI)

    Takeda, Y.

    1996-06-01

    The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futher decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.

  1. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  2. Effective Loan Program Design and Integration with Contractors...

    Broader source: Energy.gov (indexed) [DOE]

    Financing and Revenue Peer Exchange Call Series: Effective Loan Program Design and Integration with Contractors, July 24, 2014, Call Slides and Discussion Summary. Call Slides and ...

  3. Table-top training program design

    SciTech Connect (OSTI)

    1995-04-01

    This handbook establishes general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at DOE nuclear facilities.

  4. FY 1995 research highlights: PNL accomplishments in OER programs

    SciTech Connect (OSTI)

    1995-10-01

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  5. Polymer Composites Research in the LM Materials Program Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Polymer Composites Research in the LM Materials Program Overview Polymer Composites Research in the LM Materials Program Overview 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm_06_warren.pdf (2.67 MB) More Documents & Publications Composite Underbody Attachment Carbon Fiber Pilot Plant and Research Facilities Low Cost Carbon Fiber Overview

  6. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Appendices | Department of Energy Multi-Year Research, Development and Demonstration Plan: Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-appendices.pdf (59.4 KB)

  7. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Cover | Department of Energy Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-cover.pdf (965.32 KB) More Documents & Publications Geothermal Technologies Program

  8. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Foreword | Department of Energy Foreword Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Foreword The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-forward.pdf (81.95 KB) More Documents & Publications Geothermal Technologies Program

  9. Labs21 sustainable design programming checklist version 1.0

    SciTech Connect (OSTI)

    Mathew, Paul; Greenberg, Steve

    2005-01-07

    This checklist of sustainable design objectives and strategies can be used in the programming and conceptual design phases of a laboratory project. It includes the following: (1) Brief descriptions of each objective and strategy. (2) Metrics for each objective. This checklist is primarily to be used by owners, architects and engineers during the programming and conceptual design phase of a project. It is especially appropriate for use in design charrettes. The strategies and metrics can be included as requirements in the programming document or can be identified for further analysis or consideration during the design development phase. This checklist is hierarchically organized into design areas, objectives for each design area, and strategies and metrics for each objective. The design areas generally correspond to the design areas of the LEED(TM) rating system from the U.S. Green Building Council.

  10. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  11. Small Business Independent Market Research Program | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Independent Market Research Program Researching, identifying, and evaluating, high-quality, top-performing, and competitively-priced small business suppliers for NNSA programs is the function of this tool. Once a program requirement is identified, an independent research task is activated to locate top-of-the-line small businesses with capabilities in the specific performance areas. Generally, four steps are taken before the final research results are

  12. Tools for Designing & Implementing Better Finance Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... C 15 What Developing a Program Structure is * A series of choices 16 The Choices ... at a facility; * Public education-teaching members of the community about the value ...

  13. Analyzing Outreach Effectiveness to Improve Program Design

    Broader source: Energy.gov [DOE]

    Slides presented in the "What’s Working in Residential Energy Efficiency Upgrade Programs Conference - Promising Approaches and Lessons Learned" on May 20, 2011 in Washington, D.C.

  14. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  15. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  16. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  17. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  18. DECONTAMINATION SYSTEMS AND INFORMATION RESEARCH PROGRAM

    SciTech Connect (OSTI)

    Echol E. Cook, Ph.D., PE.

    1998-11-01

    During the five plus years this Cooperative Agreement existed, more than 45 different projects were funded. Most projects were funded for a one year period but there were some, deemed of such quality and importance, funded for multiple years. Approximately 22 external agencies, businesses, and other entities have cooperated with or been funded through the WVU Cooperative Agreement over the five plus years. These external entities received 33% of the funding by this Agreement. The scope of this Agreement encompassed all forms of hazardous waste remediation including radioactive, organic, and inorganic contaminants. All matrices were of interest; generally soil, water, and contaminated structures. Economic, health, and regulatory aspects of technologies were also within the scope of the agreement. The highest priority was given to small businesses funded by the Federal Energy Technology Center (FETC) and Department of Energy (DOE) involved in research and development of innovative remediation processes. These projects were to assist in the removal of barriers to development and commercialization of these new technologies. Studies of existing, underdeveloped technologies, were preferred to fundamental research into remediation technologies. Sound development of completely new technologies was preferred to minor improvements in existing methods. Solid technological improvements in existing technologies or significant cost reduction through innovative redesign were the preferred projects. Development, evaluation, and bench scale testing projects were preferred for the WVU research component. In the effort to fill gaps in current remediation technologies, the worth of the WVU Cooperative Agreement was proven. Two great technologies came out of the program. The Prefabricated Vertical Drain Technology for enhancing soil flushing was developed over the 6-year period and is presently being demonstrated on a 0.10 acre Trichloroethylene contaminated site in Ohio. The Spin

  19. Center for Inverse Design: Research Thrusts and Subtasks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Thrusts and Subtasks The Center for Inverse Design creates an unprecedented coupling of theory and experiment to realize the thesis that inverse design can revolutionize ...

  20. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  1. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  2. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  3. Design and Implement Clean Energy Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Implement Clean Energy Programs Design and Implement Clean Energy Programs DICEP_edit.png State and local governments are uniquely positioned to advance clean energy goals through programs that leverage their roles as both facility/infrastructure owners and as governing authorities. Schools can enable clean energy through their role as facility owners and educators of K-12 students who represent our future. This section provides state and local governments and K-12 schools with

  4. ORISE: Research Participation Programs by Sponsor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graduates, and university faculty opportunities to participate in project-specific CDC research and current public health research initiatives at their facilities in Atlanta, Ga. ...

  5. Barnes_NP_Program_Office_Research_Directions_V2.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics (NP): Target 2017 April 29-30, 2014 Bethesda, MD Ted Barnes DOENP Program Manager, Nuclear Data & Nuclear Theory Computing NP Program Office Research Directions n.b. ...

  6. Research and Test Reactor Missions and the Conversion Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Test Reactor Missions and the Conversion Program from HEU to LEU Fuel July 5, ... Argonne leadership of the reactor conversion program has long focused on - and succeeded ...

  7. Collaborative Military Vehicle Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Military Vehicle Design Click to email this to a friend (Opens in new ... Collaborative Military Vehicle Design Charles (Burt) Theurer 2012.04.09 I wanted to ...

  8. Heavy Truck Clean Diesel Cooperative Research Program

    SciTech Connect (OSTI)

    Milam, David

    2006-12-31

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  9. Sandia National Laboratories: Research: International Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Defense Systems International, Homeland, & Nuclear Security Energy and Climate Facebook Twitter YouTube Flickr RSS Programs International Programs Sandia's international partnerships provide innovative, science-based solutions to global security problems in an array of critical areas - from enhancing the security of nuclear weapons and materials to facilitating nonproliferation and arms control activities worldwide. We also operate programs in biological, chemical and

  10. Certificate Program Application | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Certificate Program Application Certificate Program Application Students who are interested in certificate program should submit the following online application. Please note that other forms are available HERE. Last Name (as it appears in SIS) * First Name (as it appears in SIS) * Student Number * Phone Number Email Address (WUSTL account) * School/College Major(s)/Minor(s) Expected Graduation Date Leave this field blank Submit

  11. Sandia National Laboratories: Research: International Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    domestic efforts to protect our nation. And by keeping the concerns and viewpoints of the international community in our sights as we conduct our existing programs, Sandia can...

  12. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Introduction | Department of Energy Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-introduction.pdf (3.84 MB) More Documents & Publications Geothermal

  13. Director's Discretionary Research and Development Program, Annual Report FY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 | Department of Energy Director's Discretionary Research and Development Program, Annual Report FY 2007 Director's Discretionary Research and Development Program, Annual Report FY 2007 Draft Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site. Director's Discretionary Research and Development Program, Annual Report FY 2007 (4.46 MB) More Documents & Publications EA-1573: Final Environmental Assessment

  14. SEAB Letter on DOE Graduate Research and Trainee Fellowship Programs |

    Energy Savers [EERE]

    Department of Energy SEAB Letter on DOE Graduate Research and Trainee Fellowship Programs SEAB Letter on DOE Graduate Research and Trainee Fellowship Programs The Secretary of Energy Advisory Board (SEAB) transmitted a letter to the Office of Management and Budget (OMB), reviewing the modest but effective graduate research and trainee fellowship programs sponsored by the Department of Energy. SEAB urged OMB to continue support for these few, tailored graduate student initiatives that are

  15. Federal Geothermal Research Program Update - Fiscal Year 2001

    SciTech Connect (OSTI)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  16. Research Experience in Carbon Sequestration Training Program Now Accepting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications | Department of Energy Research Experience in Carbon Sequestration Training Program Now Accepting Applications Research Experience in Carbon Sequestration Training Program Now Accepting Applications March 26, 2012 - 1:00pm Addthis Washington, D.C. - A Department of Energy (DOE) program that helps graduate students and early career professionals gain hands-on field research experience in areas related to carbon capture, utilization and storage (CCUS) is accepting applications

  17. Department of Energy Announces Fellows Program for Advance Research Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Fellows Program for Advance Research Energy Projects Department of Energy Announces Fellows Program for Advance Research Energy Projects December 8, 2009 - 12:00am Addthis Cambridge, MA - The Department of Energy's Advanced Research Projects Agency - Energy (ARPA-E) announced today the creation of the ARPA-E Fellows Program at an event with Massachusetts Institute of Technology's students. ARPA-E Director, Dr. Arun Majumdar, made the announcement during a

  18. Hanford Site waste tank farm facilities design reconstitution program plan

    SciTech Connect (OSTI)

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  19. aligned-research-programs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to coal use. For this purpose, NETL's Clean Coal Research Program (CCRP) is developing a portfolio of innovative technologies, including those for carbon capture and storage (CCS). ...

  20. Laboratory Directed Research and Development Program: FY 2015...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Directed Research and Development Program: FY 2015 Annual Report Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  1. Federal Geothermal Research Program Update Fiscal Year 1996

    SciTech Connect (OSTI)

    1997-03-01

    The DOE Geothermal Research Program Update reports contain a fair amount of technical detail and management information at the individual project level. (DJE 2005)

  2. Federal Geothermal Research Program Update Fiscal Year 1995

    SciTech Connect (OSTI)

    1996-03-01

    The DOE Geothermal Research Program Update reports contain a fair amount of technical detail and management information at the individual project level. DJE 2005

  3. Federal Geothermal Research Program Update Fiscal Year 1997

    SciTech Connect (OSTI)

    1998-03-01

    The DOE Geothermal Research Program Update reports contain a fair amount of technical detail and management information at the individual project level. (DJE 2005)

  4. Advanced Research Projects Agency - Energy Program Specific Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Research Projects Agency - Energy Program Specific Recovery Plan PDF icon Microsoft Word - 44F1801D.doc More Documents & Publications Microsoft Word - PSRP Updates ...

  5. Wind Program Manufacturing Research Advances Processes and Reduces...

    Office of Environmental Management (EM)

    cost of wind energy begins on the factory floor, the Department of Energy's (DOE's) Wind Program supports research ... source of renewable energy for communities nationwide. ...

  6. Federal Geothermal Research Program Update Fiscal Year 1994

    SciTech Connect (OSTI)

    1995-03-01

    The DOE Geothermal Research Program Update reports contain a fair amount of technical detail and management information at the individual project level. (DJE 2005)

  7. U.S. Global Change Research Program publishes "National Climate...

    Open Energy Info (EERE)

    U.S. Global Change Research Program publishes "National Climate Assessment" report for United States Home > Groups > OpenEI Community Central Graham7781's picture Submitted by...

  8. Cooperative research program in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  9. IARC - Illinois Accelerator Research Center | Pilot Program ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Stewardship Test Facility Pilot Program begins at 8:30 on Tuesday April 28th in One West of Wilson Hall. One West is on the west side of the first floor of Wilson hall. ...

  10. Geothermal Energy Research Development and Demonstration Program

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

  11. Geological hazards programs and research in the U. S. A

    SciTech Connect (OSTI)

    Filson, J.R. )

    1988-01-01

    Geological hazards have been studied for centuries, but government support of research to lessen their effects is relatively new. This article briefly describes government programs and research underway in the U.S.A. that are directed towards reducing losses of life and property from earthquakes, volcanic eruptions and landslides. The National Earthquake program is described, including four basic research areas: plate tectonics; estimation of the earthquakes; and effects and hazards assessment. The Volcano Studies Program has three areas of research: fundamentals of volcanoes; hazards assessments; and volcano monitoring. Three research areas are included in landslide studies: land slide processes; prediction; inventory and susceptibility studies.

  12. IARC - Illinois Accelerator Research Center | Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi National Accelerator Laboratory and Argonne National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology development and testing facilities. Speak with experts in the field. photo collage Accelerator technologies are vital to broad sectors of the U.S. economy, including medicine, industry, defense and security, energy and environment. With this pilot program, the DOE Office of Science National Laboratories are opening their doors to potential

  13. Energy Department Launches New Research Program to Advance Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Launches New Research Program to Advance Solar Technologies Energy Department Launches New Research Program to Advance Solar Technologies February 23, 2012 - 3:51pm Addthis As part of the Obama Administration's blueprint for an American economy built to last, Energy Secretary Steven Chu today announced $3 million available this year to support research to significantly lower the cost of solar energy. The funding will enable collaborative research teams

  14. 17.5 - Program Research and Development Accouncement

    Energy Savers [EERE]

    5 (June 2004) 1 PROGRAM RESEARCH AND DEVELOPMENT ANNOUNCEMENTS Overview This section discusses procedures for the submission, evaluation, and selection for award of proposals offered in response to Program Research and Development Announcements (PRDAs). PRDAs are issued by DOE to conduct research, development, and related activities in the energy field. Background PRDAs are competitive solicitations for research, development, and related projects in specified areas of interest. They differ from

  15. Alberi to Participate in DOE's Early Career Research Program - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Alberi to Participate in DOE's Early Career Research Program Project will research new semiconductors to advance photovoltaic and other technologies. July 3, 2012 Kirstin Alberi Kirstin Alberi A researcher at the U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) has been selected by DOE's Office of Basic Energy Sciences as one of 68 scientists to participate in DOE's Early Career Research Program. Kirstin Alberi is eligible to receive up to $2.5

  16. Best Practices in the Design of Utility Solar Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices in the Design of Utility Solar Programs Webinar audio call in number: Toll: +1 (314) 627-1519 Access Code: 519-655-755 September 27, 2012 2 Webinar Presenters * ...

  17. Graduate Research Fellowship Program deadlines begin November...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer and Information Sciences and Engineering, Materials Research November 14, 2012 Mathematical Sciences, Chemistry, Physics and Astronomy November 16, 2012 Social Sciences,...

  18. Research Call Issued for Design Support Tool for Remote Microgrids |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Research Call Issued for Design Support Tool for Remote Microgrids Research Call Issued for Design Support Tool for Remote Microgrids May 18, 2015 - 1:54pm Addthis DOE's National Energy Technology Laboratory (NETL), on behalf of the Office of Electricity Delivery and Energy Reliability, has issued a research call for proposals for a "Design Support Tool for Remote Off-grid Microgrids" which facilitates the design of microgrids that encompass mixes of generation

  19. The ENERGY-10 design-tool computer program

    SciTech Connect (OSTI)

    Balcomb, J.D.; Crowder, R.S. III.

    1995-11-01

    ENERGY-10 is a PC-based building energy simulation program for smaller commercial and institutional buildings that is specifically designed to evaluate energy-efficient features in the very early stages of the architectural design process. Developed specifically as a design tool, the program makes it easy to evaluate the integration of daylighting, passive solar design, low-energy cooling, and energy-efficient equipment into high-performance buildings. The simulation engines perform whole-building energy analysis for 8760 hours per year including both daylighting and dynamic thermal calculations. The primary target audience for the program is building designers, especially architects, but also includes HVAC engineers, utility officials, and architecture and engineering students and professors.

  20. Pre-College Research Participation Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergrad@anl.gov Pre-College Participation Program "The mind is not a vessel to be filled, but a fire to be kindled."-Plutarch, Biographer About the Program Argonne offers a research participation program for local Illinois high school seniors during the summer between high school graduation and the college fall term. In this immersion experience, participating students work in a laboratory or office environment, performing research and rubbing elbows with scientists and engineers, in

  1. DOE-NREL Minority University Research Associates Program

    SciTech Connect (OSTI)

    Posey Eddy, F.

    2005-01-01

    The DOE-NREL Minority University Research Associates Program (MURA) encourages minority students to pursue careers in science and technology. In this program, undergraduate students work with principal investigators at their universities to perform research projects on solar technology. Then, students are awarded summer internships in industry or at national laboratories, such as NREL, during the summer. Because of its success, the program has been expanded to include additional minority-serving colleges and universities and all solar energy technologies.

  2. Young Investigator Program > Research > The Energy Materials Center at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cornell Young Investigator Program In This Section YIA1 - Chen YIA2 - Rodríguez-Calero YIA3 - Rodriguez-López YIA4 - Hernández-Burgos YIA5 - Khurana YIA6 - Potash Young Investigator Program This program is designed to encourage Center postdocs and students to submit collaborative proposals for new research projects that advance the Center's overall programmatic goal of advancing the science of energy conversion and storage by understanding and exploiting fundamental properties of active

  3. A research Program in Elementary Particle Physics

    SciTech Connect (OSTI)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  4. Fuel Cycle Research and Development Program

    Office of Environmental Management (EM)

    James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission ...

  5. FORMERLY USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY

    Office of Legacy Management (LM)

    USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY FOR ALBA CRAFT LABORATORY OXFORD, OHIO October 1, 1992 U.S. DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL RESTORATION Designation Summary Alba Craft Laboratory. Oxford CONTENTS INTRODUCTION .......... . . ..................... 1 BACKGROUND Site Function ......................... Site Description ..................... 1 Owner History ................. .. 2 Radiological History and Status............ 2 Authority Review .................... .. 3

  6. Power Electronics Research and Development Program Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Electronics Research and Development Program Plan Power Electronics Research and Development Program Plan As the United States transitions to a digital economy, the need to upgrade the nation's aging electric grid is becoming increasingly evident. Electricity demand is projected to increase by 30% between 2008 and 2035,1 and the U.S. electricity delivery system must be able to meet this demand and ensure the continued supply of reliable, secure electricity. Power Electronics Research

  7. DOE Continues Long-Running Minority Educational Research Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Continues Long-Running Minority Educational Research Program DOE Continues Long-Running Minority Educational Research Program April 19, 2012 - 1:00pm Addthis Washington, DC - Four projects that will strengthen and promote U.S. energy security, scientific discovery and economic competitiveness while producing a diverse next generation of scientists and engineers have been selected as part of the U.S. Department of Energy's (DOE) long running minority educational research

  8. Magnet R&D for the US LHC Accelerator Research Program (LARP)

    SciTech Connect (OSTI)

    Gourlay, S.A.; Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gupta, R.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Harrison, M.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmazle, J.; Stanek, R.; Turrioni, D.; Wanderer, P.; Yamada, R.; Zlobin, A.V.

    2006-06-01

    In 2004, the US DOE established the LHC Accelerator Research Program (LARP) with the goal of developing a technology base for future upgrades of the LHC. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb{sub 3}Sn superconductor. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R&D. This paper presents an overall view of the program with emphasis on the current quadrupole project and outlines the long-term goals of the program.

  9. Laboratory Directed Research and Development Program FY 2006 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  10. Resilient Control Systems: Next Generation Design Research

    SciTech Connect (OSTI)

    Craig Rieger

    2009-05-01

    Since digital control systems were introduced to the market more than 30 years ago, the operational efficiency and stability gained through their use have fueled our migration and ultimate dependence on them for the monitoring and control of critical infrastructure. While these systems have been designed for functionality and reliability, a hostile cyber environment and uncertainties in complex networks and human interactions have placed additional parameters on the design expectations for control systems.

  11. Human genome program report. Part 2, 1996 research abstracts

    SciTech Connect (OSTI)

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  12. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix materials

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    The pages that follow contain summaries of the nine R&TD Program Element Plans for Fiscal Year 1993 that were completed in the Spring of 1993. The nine program elements are aggregated into three program clusters as follows: Design Sciences and Advanced Computation; Advanced Manufacturing Technologies and Capabilities; and Advanced Materials Sciences and Technology.

  13. Safeguards by Design (SBD): Safeguards Guidance for Research...

    Office of Scientific and Technical Information (OSTI)

    Safeguards by Design (SBD): Safeguards Guidance for Research Reactors and Critical ... Language: English Subject: Energy Planning, Policy, & Economy(29); Nuclear Disarmament, ...

  14. Wind Turbine Blade Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment and Characterization Wind Resource Assessment and Characterization A crucial factor in the development, siting, and operation of a wind farm is the ability to assess and characterize available wind resources. The Wind Program supports efforts to accurately define, measure, and forecast the nation's land-based and offshore wind resources. More accurate prediction and measurement of wind speed and direction allow wind farms to supply clean, renewable power to businesses and

  15. Fuel Cell Technologies Program Multi-Year Research, Development...

    Energy Savers [EERE]

    Program Management and Operations are covered in Chapter 6. Page 3 - 2 Multi-Year Research, Development and Demonstration Plan 2012 Technical Plan Figure 3.0.1. Fuel Cell ...

  16. Building America Program Research-to-Market Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report presents the Building America Research-to-Market Plan (Plan), including the integrated Building America Technology-to-Market Roadmaps (Roadmaps) that will guide Building America’s research, development, and deployment (RD&D) activities over the coming years. The Plan and Roadmaps will be updated as necessary to adapt to research findings and evolving stakeholder needs, and they will reflect input from DOE and stakeholders. Read more in this Building America Program Research-to-Market Plan.

  17. LDRD Program Gives NREL Researchers Path Toward Innovation - News Feature |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL LDRD Program Gives NREL Researchers Path Toward Innovation March 21, 2016 Two people stand in front of a screen displaying reports about NREL's LDRD program. Eric Manuel, director of NREL's Planning and Performance Management Office, and Sheila Terry, LDRD program administrator, stand in front of a display of reports about NREL's LDRD-funded projects over the years. Photo by Dennis Schroeder The Energy Department's National Renewable Energy Laboratory (NREL) is preparing to foster the

  18. LDRD Program Gives NREL Researchers Path Toward Innovation | Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modernization | NREL LDRD Program Gives NREL Researchers Path Toward Innovation March 21, 2016 Two people stand in front of a screen displaying reports about NREL's LDRD program. Eric Manuel, director of NREL's Planning and Performance Management Office, and Sheila Terry, LDRD program administrator, stand in front of a display of reports about NREL's LDRD-funded projects over the years. Photo by Dennis Schroeder The Energy Department's National Renewable Energy Laboratory (NREL) is preparing

  19. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  20. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    SciTech Connect (OSTI)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  1. Small Business Innovation Research and Small Business Technology Transfer Programs

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy’s (EERE’s) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE) SBIR/STTR programs that provide grants to small businesses or individuals who can form a small business within the required application timeline.

  2. Laboratory Directed Research and Development Program Assessment for FY 2014

    SciTech Connect (OSTI)

    Hatton, D.

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  3. Dynamic and Adaptive Parallel Programming for Exascale Research | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility calculation using a Skyrme functional for the Hartree-Fock-Bogoliubov equation in nuclear physics is solved using an extension of MADNESS, MADNESS-HFB, in coordinate space. George Fann, Oak Ridge National Laboratory Dynamic and Adaptive Parallel Programming for Exascale Research PI Name: Robert Harrison PI Email: rjharrison@gmail.com Institution: Stony Brook University Allocation Program: INCITE Allocation Hours at ALCF: 20 Million Year: 2016 Research Domain:

  4. Advanced Modeling Grid Research Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development » Advanced Modeling Grid Research Program Advanced Modeling Grid Research Program The electric power industry has undergone extensive changes over the past several decades and become substantially more complex, dynamic, and uncertain, as new market rules, regulatory policies, and technologies have been adopted. The availability of more detailed data about system conditions from devices, such as phasor measurement units (PMUs) for wide area visibility and advanced meter

  5. DOE's Advanced Coal Research, Development, and Demonstration Program to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop Low-carbon Emission Coal Technologies | Department of Energy Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and

  6. Sandia Combustion Research Program: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  7. (Coordinated research programs in nuclear medicine)

    SciTech Connect (OSTI)

    Knapp, F.F. Jr.

    1990-10-03

    The traveler visited the Clinic for Nuclear Medicine at the University of Bonn, West Germany, to review, organize, and plan collaborative studies. He also met with the editorial board of the journal NucCompact -- European/American Communications in Nuclear Medicine, on which he serves as US editor. He also visited colleagues at the Cyclotron Research Center (CRC) at the University of Liege, Belgium, to coordinate clinical applications of the ultrashort-lived iridium-191m radionuclide obtained from the osmium-190/iridium-191m generator system. The traveler planned and coordinated continuing collaboration with colleagues at the CRC for further applications of this generator system. He also visited the University of Metz, Metz, France, to organize a three-center project for the synthesis and evaluation of various receptor-specific cerebral imaging agents, involving the Oak Ridge National Laboratory (ORNL), CRC, and the University of Metz.

  8. Applying User Centered Design to Research Work

    SciTech Connect (OSTI)

    Scholtz, Jean; Love, Oriana J.; Pike, William A.; Bruce, Joseph R.; Kim, Dee DH; McBain, Arthur S.

    2014-07-01

    The SuperIdentity (SID) research project is a collaboration between six universities in the UK (Bath, Dundee, Kent, Leicester, Oxford, and Southampton) and the Pacific Northwest National Laboratory (PNNL). SID offers an innovative and exciting new approach to the concept of identity. The assumption underlying our hypothesis is that while there may be many dimensions to an identity - some more stable than others - all should ultimately reference back to a single core identity or a 'SuperIdentity.' The obvious consequence is that identification is improved by the combination of measures. Our work at PNNL has focused on the developing use cases to use in developing a model of identity and in developing visualizations for both researchers to explore the model and in the future for end users to use in determining various paths that may be possible to obtain various identity attributes from a set that is already known.

  9. Decontamination systems information and research program

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    It is estimated that over 3700 hazardous waste sites are under the jurisdiction of the Department of Energy (DOE). These sites were primarily generated from 45 years worth of environmental pollution from the design and manufacture of nuclear materials and weapons, and contain numerous types of wastes including: (1) volatile, low-volatile and nonvolatile organics, (2) radionuclides (e.g., uranium, plutonium and cesium), (3) nonradioactive heavy metals (e.g., chromium, nickel, and lead), and (4) toxic chemicals. These contaminants affect several media including soils (saturated and unsaturated), groundwater, vegetation, and air. Numerous and diverse DOE hazardous waste sites can be enumerated from soils contaminated by organics such as trichloroethylene (TCE) and perchloroethylene (PCE) at the Savannah River site to biota and vegetation contaminated by radionuclides such as radiocesium and radiostrontium at the Oak Ridge site. Over the next 30 years, the Department of Energy (DOE) is committed to bringing all its facilities into compliance with applicable Federal, State, and local environmental laws and regulations. This clean-up task is quite complex involving numerous sites containing various radioactive, organic and inorganic contaminants. To perform this clean-up effort in the most efficient manner at each site will require that DOE managers have access to all available information on pertinent technologies; i.e., to aid in maximum technology transfer. The purpose of this effort is to systematically develop a databast of those currently available and emerging clean-up technologies.

  10. Targeted Marketing and Program Design for Low- and Moderate-Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeted Marketing and Program Design for Low- and Moderate-Income Households Targeted Marketing and Program Design for Low- and Moderate-Income Households Better Buildings ...

  11. Carbon dioxide effects research and assessment program

    SciTech Connect (OSTI)

    Jacoby, G.

    1980-12-01

    Information about the past and present concentrations of CO/sub 2/ in the atmosphere and variations in climate can be obtained from measurements of stable isotopes in tree rings; specifically carbon-13, oxygen-18 and deuterium. The analysis of these stable isotopes in tree rings is a relatively new and rapidly developing field. This proceedings volume contains most of the papers presented at the meeting. The first paper gives an overview of the status of carbon-13 research. Papers relating to carbon-13 are in section I and grouped separately from the contributions on carbon-14. Although the meeting was primarily concerned with stable isotopes, all carbon isotopic analysis may be helpful in understanding the carbon-13 record in tree rings. The papers on hydrogen and oxygen isotope studies are in sections II and III respectively. The remaining sections contain papers that consider more than one isotope at a time, general topics related to isotopes, atmospheric changes and tree growth, and methods of isotopic analysis.

  12. NREL: Water Power Research - Design Review and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Review and Analysis NREL is leveraging its 35 years of experience in renewable energy technologies to accelerate the development of robust and efficient water power devices and components. As part of this effort, NREL researchers provide industry partners with design reviews and analyses. In addition to design reviews, NREL offers technical assistance to solve specific technical problems and conducts parallel research to provide a foundation for the increasingly complex engineering

  13. 1993 application preparation URI Guide: University Research Instrumentation Program

    SciTech Connect (OSTI)

    Not Available

    1992-10-05

    The primary objective of the URI Program is to assist university and college scientists in strengthening their capabilities to conduct long-range experimental scientific research (both basic and applied) in specific energy areas of direct interest to DOE through the acquisition of specialized research instrumentation costing $100,000 or more.

  14. Laboratory Directed Research and Development Program Assessment for FY 2008

    SciTech Connect (OSTI)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within

  15. Research, Monitoring, and Evaluation for the Federal Columbia River Estuary Program

    SciTech Connect (OSTI)

    Johnson, Gary E.; Diefenderfer, Heida L.; Ebberts, Blaine D.; Tortorici, Cathy; Yerxa, Tracey; Leary, J.; Skalski, John R.

    2008-02-05

    The purpose ofthis document is to describe research, monitoring, and evaluation (RME) for the Federal Columbia River Estuary Program. The intent of this RME effort is to provide data and information to evaluate progress toward meeting program goals and objectives and support decision-making in the Estuary Program. The goal of the Estuary Program is to understand, conserve, and restore the estuary ecosystem to improve the performance of listed salmonid populations. The Estuary Program has five general objectives, designed to fulfill the program goal, as follows. 1. Understand the primary stressors affecting ecosystem controlling factors, such as ocean conditions and invasive species. 2. Conserve and restore factors controlling ecosystem structures and processes, such as hydrodynamics and water quality. 3. Increase the quantity and quality of ecosystem structures, i.e., habitats, juvenile salmonids use during migration through the estuary. 4. Maintain the food web to benefit salmonid performance. 5. Improve salmonid performance in terms of life history diversity, foraging success, growth, and survival. The goal of estuary RME is to provide pertinent and timely research and monitoring information to planners, implementers, and managers of the Estuary Program. In conclusion, the estuary RME effort is designed to meet the research and monitoring needs of the estuary Program using an adaptive management process. Estuary RME's success and usefulness will depend on the actual conduct of adaptive management, as embodied in the objectives, implrementation, data, reporting, and synthesis, evaluation, and decision-making described herein.

  16. Federal Geothermal Research Program Update Fiscal Year 1999

    SciTech Connect (OSTI)

    Not Available

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  17. Overview of the Defense Programs Research and Technology Development Program for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    This documents presents a programmatic overview and program element plan summaries for conceptual design and assessment; physics; computation and modeling; system engineering science and technology; electronics, photonics, sensors, and mechanical components; chemistry and materials; special nuclear materials, tritium, and explosives.

  18. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    SciTech Connect (OSTI)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  19. Laboratory Directed Research and Development Program FY2004

    SciTech Connect (OSTI)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions

  20. Laboratory Directed Research and Development Program FY2011

    SciTech Connect (OSTI)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  1. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  2. Applied Science Division annual report, Environmental Research Program FY 1983

    SciTech Connect (OSTI)

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  3. Research and Development Program for transportation packagings at Sandia National Laboratories

    SciTech Connect (OSTI)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-02-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support.

  4. Designing Effective Incentives to Drive Residential Retrofit Program Participation (Text Version)

    Broader source: Energy.gov [DOE]

    Transcript of the webinar, "Designing Effective Incentives to Drive Residential Retrofit Program Participation."

  5. Dynamic and Adaptive Parallel Programming for Exascale Research | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility calculation A neutron wave-function for a benchmark calculation using a Skyrme functional for the Hartree-Fock-Bogoliubov equation in nuclear physics is solved using an extension of MADNESS, MADNESS-HFB, in coordinate space. Credit: George Fann, Oak Ridge National Laboratory Dynamic and Adaptive Parallel Programming for Exascale Research PI Name: Robert Harrison PI Email: rjharrison@gmail.com Institution: Brookhaven National Laboratory Allocation Program: INCITE

  6. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect (OSTI)

    Hansen , Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  7. Laboratory directed research and development program, FY 1996

    SciTech Connect (OSTI)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  8. UAVs in climate research: The ARM Unmanned Aerospace Vehicle Program

    SciTech Connect (OSTI)

    Bolton, W.R.

    1994-05-01

    In the last year, a Department of Energy/Strategic Environmental Research and Development Program project known as ``ARM-UAV`` has made important progress in developing and demonstrating the utility of unmanned aerospace vehicles as platforms for scientific measurements. Recent accomplishments include a series of flights using an atmospheric research payload carried by a General Atomics Gnat UAV at Edwards AFB, California, and over ground instruments located in north-central Oklahoma. The reminder of this discussion will provide background on the program and describe the recent flights.

  9. Ahmed Diallo wins DOE Early Career Research Program funding | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Ahmed Diallo wins DOE Early Career Research Program funding By John Greenwald May 16, 2013 Tweet Widget Google Plus One Share on Facebook Ahmed Diallo (Photo by Elle Starkman/ PPPL Office of Communications) Ahmed Diallo Physicist Ahmed Diallo of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has won a highly competitive Early Career Research Program grant sponsored by the DOE's Office of Science. His $500,000 per year award, which can be

  10. Ahmed Diallo wins DOE Early Career Research Program funding | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Ahmed Diallo wins DOE Early Career Research Program funding By Kitta MacPherson May 16, 2013 Tweet Widget Google Plus One Share on Facebook Ahmed Diallo (Photo by Elle Starkman/ PPPL Office of Communications) Ahmed Diallo Physicist Ahmed Diallo of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has won a highly competitive Early Career Research Program grant sponsored by the DOE's Office of Science. His $500,000 per year award, which can be

  11. Wind Program Manufacturing Research Advances Processes and Reduces Costs

    Broader source: Energy.gov [DOE]

    Knowing that reducing the overall cost of wind energy begins on the factory floor, the Wind Program supports R&D efforts and funding opportunities that integrate new designs, materials, and advanced techniques into the manufacturing process, making wind a more affordable source of renewable energy for communities nationwide.

  12. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  13. Ontario hydro integrated programs for plant design and construction

    SciTech Connect (OSTI)

    Oreskovich, J.P.; Somerville, R.L.

    1987-01-01

    Integrated programs for plant design and construction (IPPDC) is a 5-yr program at Ontario Hydro to optimize engineering and construction productivity through better use of computer technology. The proportion of computer programs operating with data derived from an integrated common data base is very low. IPPDC, on the other hand, is greatly concerned with this common data base. The goals of the IPPDC include improvement of the information flow for a project, minimization of site-discovered interferences, and compression of the entire project life cycle through the intelligent use of computer technology. This program focuses on the development of an integrated data base for plant design software systems to service a multi discipline engineering environment as required by a large-scale megaproject. To achieve the goals of IPPDC, there are three basic elements of computer technology that must be in place before a totally integrated data base system can be achieved: (1) data management; (2) networking; and (3) three-dimensional modeling.

  14. Laboratory Directed Research and Development Program Assessment for FY 2007

    SciTech Connect (OSTI)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining

  15. Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Directed Research and Development Program OAS-L-15-04 November 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 November 24, 2014 MEMORANDUM FOR THE MANAGER, LIVERMORE FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Lawrence Livermore National Laboratory's Laboratory Directed Research and Development

  16. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect (OSTI)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of

  17. Laboratory Directed Research and Development Program FY98

    SciTech Connect (OSTI)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  18. Center for Inverse Design: EFRC Researchers in Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC Researchers in Focus Tom Mason In this video, Dr. Thomas O. Mason, a principal investigator in the Center for Inverse Design, explains the approach and benefits of this Energy Frontier Research Center (EFRC) for materials science research and for students and postdocs. Mason is a professor in Materials Science and Engineering at Northwestern University. Get the Adobe Flash Player to see this video. Text Version Alex Zunger In this video, Dr. Alex Zunger, Chief Scientist for Theory in the

  19. DOE Fundamental and Exploratory Research Program in Photovoltaics: Preprint

    SciTech Connect (OSTI)

    Matson, R.; McConnell, R.; Eddy, F. P.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Overview of the Fundamental and Exploratory Research project with the DOE Basic Sciences program and the National Center for Photovoltaics. This paper presents an overview of the Fundamental and Exploratory Research project within the U.S. Department of Energy's National Center for Photovoltaics (NCPV). The idea behind the project is to identify, support, evaluate and coordinate an optimal spectrum of complementary projects that either contribute to the fundamental understanding of existing PV technologies or to explore the less conventional, or far out, technological possibilities. Two other programs, one for close collaborative university/industry partnerships in crystalline silicon and an educational/research program involving undergraduates at eight historically black colleges and universities, are also managed under this same task. In sum, this effort represents directed high-risk, long-term basic research targeting possibilities for optimal configurations of low cost, high efficiency, and reliability in PV related devices whatever form they may ultimately take.

  20. Laboratory Directed Research and Development Program FY 2001

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  1. INEEL Advanced Radiotherapy Research Program Annual Report for 2002

    SciTech Connect (OSTI)

    J. R. Venhuizen

    2003-05-01

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  2. INEEL Advanced Radiotherapy Research Program Annual Report 2002

    SciTech Connect (OSTI)

    Venhuizen, J.R.

    2003-05-23

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  3. Federal Geothermal Research Program Update Fiscal Year 2002

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  4. Federal Geothermal Research Program Update Fiscal Year 2003

    SciTech Connect (OSTI)

    Not Available

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  5. INL Advanced Radiotherapy Research Program Annual Report 2004

    SciTech Connect (OSTI)

    James Venhuizen

    2005-06-01

    This report summarizes the activities and major accomplishments for the Idaho National Laboratory Advanced Radiotherapy Research Program for calendar year 2004. Topics covered include boron analysis in biological samples, computational dosimetry and treatment planning software development, medical neutron source development and characterization, and collaborative dosimetry studies at the RA-1 facility in Buenos Aires, Argentina.

  6. Laboratory directed research and development program FY 1999

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  7. [Environmental Hazards Assessment Program annual report, June 1992--June 1993]. Summer undergraduate research program: Environmental studies

    SciTech Connect (OSTI)

    McMillan, J.

    1993-12-01

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. Ten students from throughout the midwestern and eastern areas of the country were accepted into the program. These students selected projects in the areas of marine sciences, biostatistics and epidemiology, and toxicology. The research experience for all these students and their mentors was very positive. The seminars were well attended and the students showed their interest in the presentations and environmental sciences as a whole by presenting the speakers with thoughtful and intuitive questions. This report contains the research project written presentations prepared by the student interns.

  8. Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Atmospheric System Research (ASR) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  9. Atmospheric Science Program. Summaries of research in FY 1994

    SciTech Connect (OSTI)

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  10. Federal Geothermal Research Program Update Fiscal Year 2000

    SciTech Connect (OSTI)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  11. Federal Geothermal Research Program Update Fiscal Year 1998

    SciTech Connect (OSTI)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  12. EMF RAPID Program research agenda and communication plan

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The driving force behind the Electric and Magnetic Fields (EMF) Research and Public Information Dissemination (RAPID) Program, established by Section 2118 of the Energy Policy Act of 1992, is the ``sense of the Congress that remedial action taken by the Government on electric and magnetic fields, if and as necessary, should be based on, and consistent with, scientifically valid research...`` Specifically, the legislation requires the development of a comprehensive program to: determine whether or not exposure to electric and magnetic fields produced by the generation, transmission, and use of electric energy affects human health; carry out research, development, and demonstration with respect to technologies to mitigate any adverse human health effects; and provide for the collection, compilation, publication, and dissemination of scientifically valid information to the public on the following subjects: (a) possible human health effects of electric and magnetic fields; (b) the types and extent of human exposure to electric and magnetic fields in various occupational and residential settings; (c) technologies to measure and characterize electric and magnetic fields; and (d) methods to assess and manage exposure to electric and magnetic fields. The Department of Energy (DOE) is responsible for the overall administration of the 5-year, and $65 million EMF RAPID Program. The program will be jointly funded by both Federal non-Federal sources with non-Federal contributions accounting for at least 50% of the total funding.

  13. Barnes_NP_Program_Office_Research_Directions_V2.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Timothy J. Hallman Associate Director for Nuclear Physics DOE Office of Science NP-NERSC Meeting on: Large Scale Computing and Storage Requirements for Nuclear Physics (NP): Target 2017 April 29-30, 2014 Bethesda, MD Ted Barnes DOE/NP Program Manager, Nuclear Data & Nuclear Theory Computing NP Program Office Research Directions n.b. Many slides c/o T. Hallman, "NP Overview" presentation to NSAC, 4/24/2014. NSAC Meeting December 119 2013 DOE Nuclear Physics Mission Statement 2

  14. Bibliography of the Maryland Power Plant Research Program, fifteenth edition

    SciTech Connect (OSTI)

    McLean, R.I.

    1994-02-01

    The Power Plant Siting Act of 1971 established the Power Plant Research Program to insure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed tranmission line routes, assessing the impact of existing generation facilities, and investigating generic issues related to power plant site evaluation and associated environmental and land use considerations. The bibliography is a compilation of all the studies performed for and or by the Power Plant and Environmental Review Division since its inception.

  15. Best Practices in the Design of Utility Solar Programs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Best Practices in the Design of Utility Solar Programs Best Practices in the Design of Utility Solar Programs This presentation summarizes the introductory information provided by NREL during the Best Practices in the Design of Utility Solar Programs Webinar on September 27, 2012. utility_design_intro_nrel.pdf (254.42 KB) More Documents & Publications Residential Solar Valuation Rates text_alternative_stat_webinar_2012_7_18.docx Designing Effective Renewables Programs

  16. DOE-NE Light Water Reactor Sustainability Program and EPRI Long Term Operations Program Joint Research and Development

    Broader source: Energy.gov [DOE]

    Description of Joint DOE and EPRI research and development programs related to reactor sustainability INL/EXT-12-24562

  17. How to Design and Market Energy Efficiency Programs to Specific Neighborhoods

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assistance Program (TAP), identifies how to design and market energy efficiency programs to specific neighborhoods.

  18. How to Design and Market Energy Efficiency Programs to Specific Neighborhoods

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), identifies how to design and market energy efficiency programs to specific neighborhoods.

  19. International Piping Integrity Research Group (IPIRG) Program. Final report

    SciTech Connect (OSTI)

    Wilkowski, G.; Schmidt, R.; Scott, P.

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

  20. Reactor Safety Research Programs Quarterly Report April -June 1980

    SciTech Connect (OSTI)

    Edler, S. K.

    1980-11-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  1. Reactor Safety Research Programs Quarterly Report October - December 1980

    SciTech Connect (OSTI)

    Edler, S K

    1981-04-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  2. Reactor Safety Research Programs Quarterly Report April- June 1981

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-09-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL} from April1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory {INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  3. Reactor Safety Research Programs Quarterly Report July- September 1980

    SciTech Connect (OSTI)

    Edler, S. K.

    1980-12-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  4. Applicability of 10 CFR 851 to Savannah River Archaeological Research Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Letter: Requesting a 10 CFR 851 Interpretative Ruling for the Archaeologial Research Program at Savannah River

  5. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    SciTech Connect (OSTI)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  6. Upper atmospheric effects of the hf active auroral research program ionospheric research instrument (HAARP IRI)

    SciTech Connect (OSTI)

    Eccles, V.; Armstrong, R.

    1993-05-01

    The earth's ozone layer occurs in the stratosphere, primarily between 10 and 30 miles altitude. The amount of ozone, O3, present is the result of a balance between production and destruction processes. Experiments have shown that natural processes such as auroras create molecules that destroy O. One family of such molecules is called odd nitrogen of which nitric oxide (NO) is an example. Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible effects of HAARP on the ozone layer was conducted. The study used a detailed model of the thermal and chemical effects of the high power HF beam, which interacts with free electrons in the upper atmosphere above 50 miles altitude. It was found only a small fraction of the beam energy goes into the production of odd nitrogen molecules, whereas odd nitrogen is efficiently produced by auroras. Since the total energy emitted by HAARP in the year is some 200,000 times less than the energy deposited in the upper atmosphere by auroras, the study demonstrates that HAARP HF beam experiments will cause no measurable depletion of the earth's ozone layer.... Ozone, Ozone depletion, Ozone layer, Odd nitrogen, Nitric oxide, HAARP Emitter characteristics.

  7. Laboratory Directed Research and Development Program, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  8. Environmental Systems Research Candidates Program--FY2000 Annual report

    SciTech Connect (OSTI)

    Piet, Steven James

    2001-01-01

    The Environmental Systems Research Candidates (ESRC) Program, which is scheduled to end September 2001, was established in April 2000 as part of the Environmental Systems Research and Analysis Program at the Idaho National Engineering and Environmental Laboratory (INEEL) to provide key science and technology to meet the clean-up mission of the U.S. Department of Energy Office of Environmental Management, and perform research and development that will help solve current legacy problems and enhance the INEEL’s scientific and technical capability for solving longer-term challenges. This report documents the progress and accomplishments of the ESRC Program from April through September 2000. The ESRC Program consists of 24 tasks subdivided within four research areas: A. Environmental Characterization Science and Technology. This research explores new data acquisition, processing, and interpretation methods that support cleanup and long-term stewardship decisions. B. Subsurface Understanding. This research expands understanding of the biology, chemistry, physics, hydrology, and geology needed to improve models of contamination problems in the earth’s subsurface. C. Environmental Computational Modeling. This research develops INEEL computing capability for modeling subsurface contaminants and contaminated facilities. D. Environmental Systems Science and Technology. This research explores novel processes to treat waste and decontaminate facilities. Our accomplishments during FY 2000 include the following: • We determined, through analysis of samples taken in and around the INEEL site, that mercury emissions from the INEEL calciner have not raised regional off-INEEL mercury contamination levels above normal background. • We have initially demonstrated the use of x-ray fluorescence to image uranium and heavy metal concentrations in soil samples. • We increased our understanding of the subsurface environment; applying mathematical complexity theory to the problem of

  9. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1-September 30, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1-December 31, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1-June 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  14. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 6.0 Program Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Multi-Year Research, Development and Demonstration Plan Page 6 - 1 6.0 Program Management and Operations The U.S. Department of Energy's (DOE's) Hydrogen and Fuel Cells Program (the Program) is composed of activities within the Offices of Energy Efficiency and Renewable Energy (EERE); Fossil Energy (FE); Nuclear Energy (NE); and Science (SC). EERE's Fuel Cell Technologies Program (FCT Program) represents the major component of this effort. The FCT Program Manager manages the

  15. Laboratory Directed Research and Development Program FY 2005 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing

  16. Laboratory Directed Research and Development Program FY 2007 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  17. Laboratory Directed Research and Development Program FY 2004 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing

  18. Advanced component research in the solar thermal program

    SciTech Connect (OSTI)

    Brown, C.T.

    1982-08-01

    The Advanced Components Test Facility (ACTF) is a 325 kW /SUB th/ central receiver solar thermal test facility that has as its primary purpose the encouragement of research and development in the area of high temperature solar technology. Five major test programs were undertaken and completed at the ACTF in the 1980-1981 time frame. The objective of each program was to evaluate the technical viability of the concept of converting concentrated solar energy into some other useful form such as high pressure steam, hot compressed air, chemical feedstock, grid connected electrical power, etc. Each program involved the operation of a high temperature central receiver heat exchanger device at or near the facility focus. Specific test programs were undertaken to evaluate a directly heated fluidized bed solar receiver; a high pressure, single-pass-to superheat steam generator; a liquid sodium heat pipe receiver; a flash pyrolysis biomass gasifier; and a Stirling engine/electrical generator. This paper provides a description of the test facility, its capabilities, and the results of the 1980-1981 solar receiver test program.

  19. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect (OSTI)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  20. Laboratory directed research and development program FY 2003

    SciTech Connect (OSTI)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  1. Federal Geothermal Research Program Update - Fiscal Year 2004

    SciTech Connect (OSTI)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  2. Federal Geothermal Research Program Update Fiscal Year 2004

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  3. An overview of the NASA Rotary Engine Research Program

    SciTech Connect (OSTI)

    Meng, P.R.; Hady, W.F.

    1984-01-01

    This paper presents a brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center. The review covers the test results obtained from turbocharged rotary engines and preliminary results from a high performance single-rotor engine. Combustion modeling studies of the rotary engine and the use of a laser doppler velocimeter to confirm the studies are discussed. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies is also covered. Details are presented on single-rotor stratified-charge rotary engine research efforts, both in-house and on contract.

  4. Overview of the NASA Rotary Engine Research Program

    SciTech Connect (OSTI)

    Meng, P.R.; Hady, W.F.; Barrows, R.F.

    1984-01-01

    This paper presents a brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center. The review covers the test results obtained from turbocharged rotary engines and preliminary results from a high performance single-rotor engine. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies are discussed. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies is also covered. Details are presented on single-rotor stratified-charge rotary engine research efforts, both in-house and on contract.

  5. Geothermal Program Review XV: proceedings. Role of Research in the Changing World of Energy Supply

    SciTech Connect (OSTI)

    1997-01-01

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XV in Berkeley, March 24-26, 1997. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focussed on {open_quotes}The Role of Research in the Changing World of Energy Supply.{close_quotes} This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Separate abstracts have been indexed to the database for contributions to this conference.

  6. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  7. The Eleventh Design Research Institute of IT Co Ltd EDRI | Open...

    Open Energy Info (EERE)

    Eleventh Design Research Institute of IT Co Ltd EDRI Jump to: navigation, search Name: The Eleventh Design & Research Institute of IT Co Ltd (EDRI) Place: Chengdu, Sichuan...

  8. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan

    SciTech Connect (OSTI)

    none,

    2009-02-01

    This 2008 Multi-Year Research, Development, and Demonstration Program Plan covers the 2009-2015 period with program activities to 2025.

  9. Laboratory Directed Research and Development Program. FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  10. Director's Discretionary Research and Development Program: Annual Report, Fiscal Year 2005

    SciTech Connect (OSTI)

    Not Available

    2005-12-01

    The Director's Discretionary Research and Development (DDRD) program is designed to encourage technical innovation and build new research and development capabilities at the National Renewable Energy Laboratory (NREL). Technical innovation is critical to the long-term viability of NREL (also referred to as the Laboratory) and to the success of the U.S. Department of Energy (DOE). The strategic value of DDRD is being continuously enhanced by expanding the opportunities to propose and pursue innovative ideas for building new and enhanced capabilities.

  11. Decontamination systems information and research program. Quarterly report, April--June 1995

    SciTech Connect (OSTI)

    1995-07-01

    West Virginia University (WVU) and the US Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled `Decontamination Systems Information and Research Programs`. Requirements stipulated by the Agreement require WVU to submit Technical Progress reports on a quarterly basis. This report contains the efforts of the fourteen research projects comprising the Agreement for the period April 1 to June 30, 1995. During this period three new projects have been funded by the Agreement. These projects are: (1) WERC National Design Contest, (2) Graduate Interns to the Interagency Environmental Technology Office under the National Science and Technology Council, and (3) WV High Tech Consortium.

  12. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    SciTech Connect (OSTI)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  13. Targeted Marketing and Program Design for Low- and Moderate-Income

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Households | Department of Energy Targeted Marketing and Program Design for Low- and Moderate-Income Households Targeted Marketing and Program Design for Low- and Moderate-Income Households Better Buildings Neighborhood Program Low- / Moderate-Income Peer Exchange Call: Targeted Marketing and Program Design for Low- and Moderate-Income Households, Call Slides and Discussion Summary, October 11, 2011. Call Slides and Discussion Summary (615.55 KB) More Documents & Publications Loan

  14. Microbial enhanced oil recovery and wettability research program

    SciTech Connect (OSTI)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  15. Polymer matrix composites research: A survey of federally sponsored programs

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report identifies research conducted by agencies of the federal government other than the Department of Energy (DOE) in the area of advanced polymer matrix composites (PMCs). DOE commissioned the report to avoid duplicating other agencies' efforts in planning its own research program for PMCs. PMC materials consist of high-strength, short or continuous fibers fused together by an organic matrix. Compared to traditional structural metals, PMCs provide greater strength and stiffness, reduced weight and increased heat resistance. The key contributors to PMC research identified by the survey are the Department of Defense (DOD), the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Department of Transportation (DOT). The survey identified a total of 778 projects. More than half of the total projects identified emphasize materials research with a goal toward developing materials with improved performance. Although an almost equal number of identified materials projects focus on thermosets and thermoplastics receive more attention because of their increased impact resistance and their easy formability and re-formability. Slightly more than one third of projects identified target structures research. Only 15 percent of the projects identified focus on manufacturing techniques, despite the need for efficient, economical methods manufacturing products constructed of PMCs--techniques required for PMCs to gain widespread acceptance. Three issues to be addressed concerning PMCs research are economy of use, improvements in processing, and education and training. Five target technologies have been identified that could benefit greatly from increased use of PMCs: aircraft fuselages, automobile frames, high-speed machinery, electronic packaging, and construction.

  16. A design guide for energy-efficient research laboratories

    SciTech Connect (OSTI)

    Wishner, N.; Chen, A.; Cook, L.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  17. Commercial Building Energy Asset Rating Program -- Market Research

    SciTech Connect (OSTI)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  18. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  19. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  20. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  1. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  2. Geothermal energy program summary: Volume 2, Research summaries, fiscal year 1988

    SciTech Connect (OSTI)

    Not Available

    1989-03-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R&D) of technologies that will assist industry in economically exploiting the nation`s vast geothermal resources. The GTD R&D program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation`s energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. The Geothermal Energy Program Summary for Fiscal Year 1988 is a two-volume set designed to be an easily accessible reference to inform the US geothermal industry and other interested parties of the technological advances and progress achieved in the DOE geothermal program as well as to describe the thrust of the current R&D effort and future R&D directions. This volume, Volume II, contains a detailed compilation of each GTD-funded R&D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions. The Program Summary is intended as an important technology transfer vehicle to assure the wide and timely dissemination of information concerning the department`s geothermal research.

  3. Low Cost Carbon Fiber Research in the LM Materials Program Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in the LM Materials Program Overview Low Cost Carbon Fiber Research in the LM ... More Documents & Publications Lower Cost Carbon Fiber Precursors FY 2009 Progress Report ...

  4. Romania program targets methanol and Fischer-Tropsch research

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    Currently, the chemical organic industry, the petrochemical and engine fuels industry in Romania are entirely based on hydrocarbons from oil. To reduce the oil dependence of this sector and to ensure the stipulated growth rate of 8-9%, research and development programs have been set up with a view to the diversification of raw materials. In research on hydrocarbons from alcohol conversion, three process variants are known, i.e. olefins from methanol, gasolines from methanol and a combined gasolines and aromatic hydrocarbons from methanol. The Romanian process of methanol conversion to hydrocarbons is very flexible, with all the variants mentioned being carried out in the same plant by modifying the catalysts. In research on hydrocarbons from synthesis gas a modern process is being developed for gasification of brown coal in a fluidized bed, under pressure, in the presence of oxygen and water vapors. In the field of carbon oxide hydrogenation, studies have been carried out on selective Fischer-Tropsch processes in which the reaction products are high value hydrocarbon fractions.

  5. ILC Polarized Electron Source Design and R&D Program

    SciTech Connect (OSTI)

    Brachmann, A.; Sheppard, J.; Zhou, F.; Poelker, M.; /SLAC

    2012-04-06

    The R and D program for the ILC electron focuses on three areas. These are the source drive laser system, the electron gun and photo cathodes necessary to produce a highly polarized electron beam. Currently, the laser system and photo cathode development take place at SLAC's 'ILC Injector Test facility', which is an integrated lab (laser and gun) that allows the production of the electron beam and is equipped with a set of diagnostics, necessary to characterize the source performance. Development of the ILC electron gun takes place at Jefferson Lab, where advanced concepts and technologies for HV DC electron guns for polarized beams are being developed. The goal is to combine both efforts at one facility to demonstrate an electron beam with ILC specifications, which are electron beam charge and polarization as well as the cathode's lifetime. The source parameters are summarized in Table 1. The current schematic design of the ILC central complex is depicted in Figure 1. The electron and positron sources are located and laid out approximately symmetric on either side of the damping rings.

  6. Radwaste assessment program for nuclear station modifications by design engineering

    SciTech Connect (OSTI)

    Eble, R.G.

    1988-01-01

    Radwaste burial for Duke Power Company's (DPC's) seven nuclear units has become a complicated and costly process. Burial costs are based on overall volume, surcharges for radioactivity content and weight of containers, truck and cask rental, driver fees, and state fees and taxes. Frequently, radwaste costs can be as high as $500 per drum. Additionally, DPC is limited on the total burial space allocated for each plant each year. The thrust of this program is to reduce radwaste volumes needing burial at either Barnwell, South Carolina, or Richland, Washington. A limited number of options are available at our sites: (a) minimization of radwaste volume production, (b) segregation of contamination and noncontaminated trash, (c) decontamination of small hardware, (d) volume reduction of compatible trash, (e) incineration of combustible trash (available at Oconee in near future), and (f) burial of below-regulatory-concern very low level waste on site. Frequently, costs can be reduced by contracting services outside the company, i.e., supercompaction, decontamination, etc. Information about radwaste volumes, activities, and weight, however, must be provided to the nuclear production department (NPD) radwaste group early in the nuclear station modification (NSM) process to determine the most cost-effective method of processing radwaste. In addition, NSM radwaste costs are needed for the NPD NSM project budget. Due to the advanced planning scope of this budget, NSM construction costs must be estimated during the design-phase proposal.

  7. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Geophysical Experience, is a unique educational program designed to introduce students in geophysics and related fields to "hands on" geophysical exploration and research....

  8. Financing Energy Improvements on Utility Bills: Market Updates and Key Program Design Considerations for Policymakers and Administrators

    SciTech Connect (OSTI)

    2014-05-22

    Provides an overview of the current state of on-bill programs and provides actionable insights on key program design considerations for on-bill lending programs.

  9. INEL BNCT Research Program, January/February 1993

    SciTech Connect (OSTI)

    Venhuizen, J.R.

    1993-04-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  10. EEDP and Other Leadership Programs | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ready to dive in? Apply for the program. GE Software Leadership Program The rise of the Industrial Internet requires a new breed of talent and organizational capability. New...

  11. NREL: State and Local Governments - Value of Solar: Program Design and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation Considerations Value of Solar: Program Design and Implementation Considerations In the report, Value of Solar: Program Design and Implementation Considerations, policy analysts from NREL and the Solar Electric Power Association (SEPA) present the variety of value of solar (VOS) program design options and their implications within different solar market types. The study assesses the current cost competitiveness of residential solar projects in each U.S. state, under several

  12. Value of Solar. Program Design and Implementation Considerations...

    Office of Scientific and Technical Information (OSTI)

    Comparing the solar costs with the hypothetical VOS rates illustrates the various market types that may form under a VOS program, in different locations. Authors: Taylor, Mike 1 ...

  13. A Principled Kernel Testbed for Hardware/Software Co-Design Research

    SciTech Connect (OSTI)

    Kaiser, Alex; Williams, Samuel; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David; Demmel, James; Strohmaier, Erich

    2010-04-01

    Recently, advances in processor architecture have become the driving force for new programming models in the computing industry, as ever newer multicore processor designs with increasing number of cores are introduced on schedules regimented by marketing demands. As a result, collaborative parallel (rather than simply concurrent) implementations of important applications, programming languages, models, and even algorithms have been forced to adapt to these architectures to exploit the available raw performance. We believe that this optimization regime is flawed. In this paper, we present an alternate approach that, rather than starting with an existing hardware/software solution laced with hidden assumptions, defines the computational problems of interest and invites architects, researchers and programmers to implement novel hardware/software co-designed solutions. Our work builds on the previous ideas of computational dwarfs, motifs, and parallel patterns by selecting a representative set of essential problems for which we provide: An algorithmic description; scalable problem definition; illustrative reference implementations; verification schemes. This testbed will enable comparative research in areas such as parallel programming models, languages, auto-tuning, and hardware/software codesign. For simplicity, we focus initially on the computational problems of interest to the scientific computing community but proclaim the methodology (and perhaps a subset of the problems) as applicable to other communities. We intend to broaden the coverage of this problem space through stronger community involvement.

  14. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Multi-Year Research, Development and Demonstration Plan Page B - 1 Multi-Year Research, Development and Demonstration Plan Page B - 2 Multi-Year Research, Development and ...

  15. Research and Development Activities in Support of Hanford Privatization - SRTC Program

    SciTech Connect (OSTI)

    Calloway, T.B. Jr.

    1999-01-19

    As part of the overall Hanford Tank Waste Remediation System (TWRS) Part B Project, BNFL, Inc. has contracted DOE-Westinghouse Savannah River Company's Savannah River Technology Center (SRTC) to provide research and development services in characterization, pretreatment, and immobilization of actual Hanford tank wastes. Additionally, SRTC is developing design basis data using simulants of Handord tank wastes in areas of ion exchange, filtration, precipitation, glass former blending, evaporation, and slurry mixing. This paper will provide an overview of the SRTC TWRS development program.

  16. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    SciTech Connect (OSTI)

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  17. Innovative Medium-Speed Drivetrain Design Program and Dynamometer Testing; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Keller, Jonathan; Halse, Christopher

    2015-05-19

    Presented at the American Wind Energy Association WINDPOWER 2015 conference. This presentation covers the concept of the next-generation drivetrain, including its impacts, innovations, design and design benefits, instrumentation, assembly, and testing programs.

  18. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  19. Research, Monitoring, and Evaluation for the Federal Columbia River Estuary Program.

    SciTech Connect (OSTI)

    Johnson, Gary E.; Diefenderfer, Heida L.

    2008-02-20

    The purpose of this document is to describe research, monitoring, and evaluation (RME) for the Federal Columbia River Estuary Program, hereafter called 'the Estuary Program'. The intent of this RME effort is to provide data and information to evaluate progress toward meeting program goals and objectives and support decision making in the Estuary Program. The goal of the Estuary Program is to understand, conserve, and restore the estuary ecosystem to improve the performance of listed salmonid populations. The Estuary Program has five general objectives, designed to fulfill the program goal, as follows: (1) Understand the primary stressors affecting ecosystem controlling factors, such as ocean conditions and invasive species. (2) Conserve and restore factors controlling ecosystem structures and processes, such as hydrodynamics and water quality. (3) Increase the quantity and quality of ecosystem structures, i.e., habitats, juvenile salmonids use during migration through the estuary. (4) Maintain the food web to benefit salmonid performance. (5) Improve salmonid performance in terms of life history diversity, foraging success, growth, and survival. The goal of estuary RME is to provide pertinent and timely research and monitoring information to planners, implementers, and managers of the Estuary Program. The goal leads to three primary management questions pertaining to the main focus of the Estuary Program: estuary habitat conservation and restoration. (1) Are the estuary habitat actions achieving the expected biological and environmental performance targets? (2) Are the offsite habitat actions in the estuary improving juvenile salmonid performance and which actions are most effective at addressing the limiting factors preventing achievement of habitat, fish, or wildlife performance objectives? (3) What are the limiting factors or threats in the estuary/ocean preventing the achievement of desired habitat or fish performance objectives? Performance measures for the

  20. ORNL Nuclear Safety Research and Development Program Bimonthly Report for July-August 1968

    SciTech Connect (OSTI)

    Cottrell, W.B.

    2001-08-17

    The accomplishments during the months of July and August in the research and development program under way at ORNL as part of the U.S. Atomic Energy Commission's Nuclear Safety Program are summarized, Included in this report are work on various chemical reactions, as well as the release, characterization, and transport of fission products in containment systems under various accident conditions and on problems associated with the removal of these fission products from gas streams. Although most of this work is in general support of water-cooled power reactor technology, including LOFT and CSE programs, the work reflects the current safety problems, such as measurements of the prompt fuel element failure phenomena and the efficacy of containment spray and pool-suppression systems for fission-product removal. Several projects are also conducted in support of the high-temperature gas-cooled reactor (HTGR). Other major projects include fuel-transport safety investigations, a series of discussion papers on various aspects of water-reactor technology, antiseismic design of nuclear facilities, and studies of primary piping and steel, pressure-vessel technology. Experimental work relative to pressure-vessel technology includes investigations of the attachment of nozzles to shells and the implementation of joint AEX-PVFX programs on heavy-section steel technology and nuclear piping, pumps, and valves. Several of the projects are directly related to another major undertaking; namely, the AEC's standards program, which entails development of engineering safeguards and the establishment of codes and standards for government-owned or -sponsored reactor facilities. Another task, CHORD-S, is concerned with the establishment of computer programs for the evaluation of reactor design data, The recent activities of the NSIC and the Nuclear Safety journal in behalf of the nuclear community are also discussed.

  1. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  2. New DOE Program Funds $20 Million for Mathematics Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Program Funds $20 Million for Mathematics Research New DOE Program Funds $20 Million for Mathematics Research August 4, 2005 - 2:37pm Addthis WASHINGTON, DC - Under a new program funded by the Department of Energy's Office of Science, researchers will use mathematics to help solve problems such as the production of clean energy, pollution cleanup, manufacturing ever smaller computer chips, and making new "nanomaterials." Thirteen major research awards totaling $20 million

  3. Office of Science Priority Research Areas for SCGSR Program | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Office of Science Priority Research Areas for SCGSR Program DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program About the Office of Science Office of Science User Facilities Priority Areas For Past SCGSR Solicitations Letters of Support Graduate

  4. Building system integration research: recommendations for a US Department of Energy multiyear program plan

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This plan describes the scope, technical content, and resources required to conduct the Building System Integration (BSI) research program during FY 1987 through 1991. System integration research is defined, the need for the research is discussed, its benefits are outlined, and the history of building system integration research is summarized. The program scope, the general approach taken in developing this program plan, and the plan's contents are also described.

  5. FINAL Technical Agenda 7th US/German Workshop on Salt Repository Research, Design, and Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Agenda 7th US/German Workshop on Salt Repository Research, Design, and Operation Final, August 22, 2016 SAND2016-5324 O September 6 - Tuesday, NEA Salt Club Meeting same venue September 7 - Wednesday Day 1 8:00-8:45 Registration 8:45-9:00 Welcome organizers F. Hansen, SNL W. Steininger, PTKA W. Bollingerfehr, DBE TEC 9:00-9:20 Welcome DOE-EM B. Forinash, Director National TRU Program 9:20-9:40 Welcome BMWi H.-C. Pape/H. Wirth, BMWi 9:40-10:00 Welcome DOE-NE J. Kotek, Assistant

  6. US/German Collaboration in Salt Repository Research, Design and Operation - 13243

    SciTech Connect (OSTI)

    Steininger, Walter; Hansen, Frank; Biurrun, Enrique; Bollingerfehr, Wilhelm

    2013-07-01

    Recent developments in the US and Germany [1-3] have precipitated renewed efforts in salt repository investigations and related studies. Both the German rock salt repository activities and the US waste management programs currently face challenges that may adversely affect their respective current and future state-of-the-art core capabilities in rock salt repository science and technology. The research agenda being pursued by our respective countries leverages collective efforts for the benefit of both programs. The topics addressed by the US/German salt repository collaborations align well with the findings and recommendations summarized in the January 2012 US Blue Ribbon Commission on America's Nuclear Future (BRC) report [4] and are consistent with the aspirations of the key topics of the Strategic Research Agenda of the Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) [5]. Against this background, a revival of joint efforts in salt repository investigations after some years of hibernation has been undertaken to leverage collective efforts in salt repository research, design, operations, and related issues for the benefit of respective programs and to form a basis for providing an attractive, cost-effective insurance against the premature loss of virtually irreplaceable scientific expertise and institutional memory. (authors)

  7. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-11-30

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  8. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-05-15

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  9. Efficiency First- Contractor Outreach: Design & Implementation for Residential Retrofit Programs

    Broader source: Energy.gov [DOE]

    Slides presented in the "What’s Working in Residential Energy Efficiency Upgrade Programs Conference - Promising Approaches and Lessons Learned" on May 20, 2011 in Washington, D.C.

  10. Biosystems Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2: Frontiers and Horizons Session 2-A: Synthetic Biology and the Promise of Biofuels Pablo Rabinowicz, Program Manager, Biosystems Design Program, Biological and Environmental Research (BER), U.S. Department of Energy

  11. program design. Final report Brown, W.H.; Gopalakrishnan, S....

    Office of Scientific and Technical Information (OSTI)

    an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions....

  12. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    SciTech Connect (OSTI)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W.; Tesche, F.M.; Vance, E.F.

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  13. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    SciTech Connect (OSTI)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  14. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    SciTech Connect (OSTI)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  15. ARM Climate Research Facility Radar Operations Plan (Program...

    Office of Scientific and Technical Information (OSTI)

    Climate Research Facility Radar Operations Plan Citation Details In-Document Search Title: ARM Climate Research Facility Radar Operations Plan Roles, responsibilities, and ...

  16. Fuel Cell Technologies Program Multi-Year Research, Development...

    Energy Savers [EERE]

    Appendix D - Project Evaluation Form Multi-Year Research, Development and Demonstration ... Page D - 2 Multi-Year Research, Development and Demonstration Plan 2012 Appendix D - ...

  17. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Research, Development and Demonstration Plan Page 137 2008 Appendices This page was intentionally left blank. Page 138 Multi-Year Research, Development and Demonstration ...

  18. ORISE Research Participation Programs at the Centers for Disease...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Feng Liu Research Profile - Dr. Feng Liu Dr. Feng Liu performed research on influenza vaccines with the Pandemic Preparedness Team in the National Center for Immunization...

  19. Other Federal Agency Small Business Innovation Research and Small Business Technology Transfer Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the U.S. Department of Energy and the Office of Energy Efficiency and Renewable Energy Small Business and Innovation Research/Small Business Technology Transfer programs, other federal agencies also provide funding through their own programs.

  20. Small Business Innovation Research Program Topics- October 28, 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document outlines the topics covered by the 2013-14 SBIR funding opportunity announcement and show the details of how to apply for the program.

  1. DOE Research Set-Aside Program | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Overview Set-Asides provide baseline information on ecological processes in SRS natural communities, ... to 1951, when the Atomic Energy Commission invited the ...

  2. Russian surety research projects in the Sandia National Laboratories Cooperative Measures Program

    SciTech Connect (OSTI)

    Smith, R.E.

    1996-07-01

    Over forty safety and security related research and development projects have been initiated between Sandia National Laboratories and the Russian nuclear weapons laboratories VNIIEF and VNIITF. About half of these projects have been completed. All relate to either safety or security methodology development, processes, accident environment analysis and testing, accident databases, assessments or product design of devices. All projects have a potential benefit to various safety or security programs and some may directly have commercial applications. In general, these projects could benefit risk assessments associated with systems that could result in accidents or incidents having high public consequences. These systems typically have already been engineered to have very low assessed probabilities of occurrence of such accidents or incidents. This paper gives an overview of the Sandia surety program with a focus on the potential for future collaboration between Sandia, three Russian Institutes; VNIIEF, VNIITF and VNIIA, and other industry and government organizations. The intent is to serve as an introduction to a roundtable session on Russian Safety Collaboration at the 14th International System Safety Conference. The current Sandia collaboration program scope and rationale is presented along with the evolved program focus. An overview of the projects is given and a few specific projects are briefly highlighted with tangible results to date.

  3. Feasibility of developing a portable driver performance data acquisition system for human factors research: Design specifications. Volume 3

    SciTech Connect (OSTI)

    Carter, R.J.; Barickman, F.S.

    1998-01-01

    A two-phase, multi-year research program entitled ``development of a portable driver performance data acquisition system for human factors research was recently completed. The primary objective of the project was to develop a portable data acquisition system for crash avoidance research (DASCAR) that will allow driver performance data to be collected using a large variety of vehicle types and that would be capable of being installed on a given vehicle type within a relatively short-time frame. During Phase 1 a feasibility study for designing and fabricating DASCAR was conducted. In phase 2 of the research DASCAR was actually developed and validated. This technical memorandum documents the results from the feasibility study. It is subdivided into three volumes. Volume one addresses the last five items in the phase 1 research and the first issue in the second phase of the project. Volume 2 presents the related appendices. Volume three (this report) displays the design specifications developed for DASCAR during the ``develop design requirements and specifications for a portable driver performance data acquisition system`` task. Design specifications were assembled for each DASCAR element. The specifications were prepared in sufficient detail to allow a third party to use them to design, develop, procure, and subsequently construct the data acquisition system. This report also covers the background to the program.

  4. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    SciTech Connect (OSTI)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    development. To address these challenges, NREL has embarked on an initiative to evaluate how methods of systems engineering can be applied to the research, design and development of wind energy systems. Systems engineering is a field within engineering with a long history of research and application to complex technical systems in domains such as aerospace, automotive, and naval architecture. As such, the field holds potential for addressing critical issues that face the wind industry today. This paper represents a first step for understanding this potential through a review of systems engineering methods as applied to related technical systems. It illustrates how this might inform a Wind Energy Systems Engineering (WESE) approach to the research, design, and development needs for the future of the industry. Section 1 provides a brief overview of systems engineering and wind as a complex system. Section 2 describes these system engineering methods in detail. Section 3 provides an overview of different types of design tools for wind energy with emphasis on NREL tools. Finally, Section 4 provides an overview of the role and importance of software architecture and computing to the use of systems engineering methods and the future development of any WESE programs. Section 5 provides a roadmap of potential research integrating systems engineering research methodologies and wind energy design tools for a WESE framework.

  5. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    SciTech Connect (OSTI)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  6. ORISE: U.S. Department of Homeland Security Summer Research Team Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    now accepting applications for 2015 now accepting applications for 2015 Summer Research Team Program with U.S. Department of Homeland Security Opportunities are open to research teams of faculty and students from Minority-Serving Institutions FOR IMMEDIATE RELEASE Nov. 25, 2014 FY15-03 OAK RIDGE, Tenn.-ORISE is currently accepting applications for the 2015 U.S. Department of Homeland Security Summer Research Team Program for Minority Serving Institutions (MSI). The program engages faculty

  7. Overview and Progress of the Advanced Battery Materials Research (BMR) Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram Department of Energy This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ES 108 June 9, 2016 2 Outline  Advanced Battery Materials Research (BMR) - Role - Program update  Current research emphasis - Lithium metal anode and solid electrolytes - Sulfur

  8. Metrics Evolution in an Energy Research & Development Program

    SciTech Connect (OSTI)

    Brent Dixon

    2011-08-01

    All technology programs progress through three phases: Discovery, Definition, and Deployment. The form and application of program metrics needs to evolve with each phase. During the discovery phase, the program determines what is achievable. A set of tools is needed to define program goals, to analyze credible technical options, and to ensure that the options are compatible and meet the program objectives. A metrics system that scores the potential performance of technical options is part of this system of tools, supporting screening of concepts and aiding in the overall definition of objectives. During the definition phase, the program defines what specifically is wanted. What is achievable is translated into specific systems and specific technical options are selected and optimized. A metrics system can help with the identification of options for optimization and the selection of the option for deployment. During the deployment phase, the program shows that the selected system works. Demonstration projects are established and classical systems engineering is employed. During this phase, the metrics communicate system performance. This paper discusses an approach to metrics evolution within the Department of Energy's Nuclear Fuel Cycle R&D Program, which is working to improve the sustainability of nuclear energy.

  9. Cooperative Research Program in Coal-Waste Liquefaction

    SciTech Connect (OSTI)

    Gerald Huffman

    2000-03-31

    The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns and Roe, Inc. The study included: (1) An assessment of current recycling practices, particularly feedstock recycling in Germany; (2) A review of pertinent research, and a survey of feedstock availability for various types of waste polymers; and (3) A conceptual design for a demonstration plant was developed and an economic analysis for various feedstock mixes. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case with oil priced at $20 per barrel, the return on investment (ROI) was found to range from 9% to 20%, using tipping fees for waste plastic and tires typical of those existing in the U.S. The most profitable feedstock appeared to waste plastic alone, with a plant processing 300 t/d of plastic yielding ROI's from 13 to 27 %, depending on the tipping fees for waste plastic. Feedstock recycling of tires was highly dependent on the price that could be obtained for recovered carbon. Addition of even relatively small amounts (20 t/d) of coal to waste plastic and/or coal feeds lowered the ROI's substantially. It should also be noted that increasing the size of the plant significantly improved all ROI's. For example, increasing plant size from 300 t/d to1200 t/d approximately doubles the estimated ROI's for a waste plastic feedstock.

  10. Excellence in Radiation Research for the 21st Century (EIRR21): Description of an Innovative Research Training Program

    SciTech Connect (OSTI)

    P'ng, Christine; Ito, Emma; Ontario Cancer Institute, Toronto, Ontario ; How, Christine; Department of Medical Biophysics, University of Toronto, Toronto, Ontario ; Bezjak, Andrea; Department of Radiation Oncology, University of Toronto, Toronto, Ontario ; Bristow, Rob; Ontario Cancer Institute, Toronto, Ontario; Department of Medical Biophysics, University of Toronto, Toronto, Ontario; Department of Radiation Oncology, University of Toronto, Toronto, Ontario ; Catton, Pam; Fyles, Anthony; Gospodarowicz, Mary; Department of Radiation Oncology, University of Toronto, Toronto, Ontario ; Jaffray, David; Department of Medical Biophysics, University of Toronto, Toronto, Ontario; Department of Radiation Oncology, University of Toronto, Toronto, Ontario ; Kelley, Shana; Wong Shun; Odette Cancer Center, Toronto, Ontario ; Liu Feifei

    2012-08-01

    Purpose: To describe and assess an interdisciplinary research training program for graduate students, postdoctoral fellows, and clinical fellows focused on radiation medicine; funded by the Canadian Institutes for Health Research since 2003, the program entitled 'Excellence in Radiation Research for the 21st Century' (EIRR21) aims to train the next generation of interdisciplinary radiation medicine researchers. Methods and Materials: Online surveys evaluating EIRR21 were sent to trainees (n=56), mentors (n=36), and seminar speakers (n=72). Face-to-face interviews were also conducted for trainee liaisons (n=4) and participants in the international exchange program (n=2). Results: Overall response rates ranged from 53% (mentors) to 91% (trainees). EIRR21 was well received by trainees, with the acquisition of several important skills related to their research endeavors. An innovative seminar series, entitled Brainstorm sessions, imparting 'extracurricular' knowledge in intellectual property protection, commercialization strategies, and effective communication, was considered to be the most valuable component of the program. Networking with researchers in other disciplines was also facilitated owing to program participation. Conclusions: EIRR21 is an innovative training program that positively impacts the biomedical community and imparts valuable skill sets to foster success for the future generation of radiation medicine researchers.

  11. 2014 US/German Workshop on Salt Repository Research, Design,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ... SubTER Carbon Sequestration Program Leadership EnergyWater Nexus EnergyWater History ...

  12. 2015 US/German Workshop on Salt Repository Research, Design,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ... SubTER Carbon Sequestration Program Leadership EnergyWater Nexus EnergyWater History ...

  13. TFE design package final report, TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The program objective is to demonstrate the technology readiness of a TFE suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. A TFE for a megawatt class system is described. Only six cells are considered for simplicity; a megawatt class TFE would have many more cells, the exact number dependent on optimization trade studies.

  14. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    SciTech Connect (OSTI)

    Kinoshita, K.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  15. Energy Department Announces 61 Scientists to Receive Early Career Research Program Funding

    Broader source: Energy.gov [DOE]

    Acting Secretary of Energy Daniel Poneman today announced that 61 scientists from across the nation will receive up to $15.3 million in funding for research as part of the Energy Department’s Early Career Research Program

  16. Secretary Chu Announces 68 Scientists to Receive Early Career Research Program Funding

    Broader source: Energy.gov [DOE]

    Energy Secretary Steven Chu today announced that 68 scientists from across the nation will receive up to $18.9 million in funding for research grants as part of DOE’s Early Career Research Program.

  17. Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program

    Broader source: Energy.gov [DOE]

    DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

  18. Center for Inverse Design: EFRC Researchers in Focus (Text Version...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    involved with the Center for Inverse Design-as are the students and postdocs-is the ... But these may or may not be the optimal materials. In the Center for Inverse Design, we ...

  19. Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995

    SciTech Connect (OSTI)

    1995-06-01

    Research continued on the design of advanced turbine systems. This report describes the design and test of critical components such as blades, materials, cooling, combustion, and optical diagnostics probes.

  20. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect (OSTI)

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  1. Women of Wind Energy Honor Wind Program Researchers | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. Chicago, Illinois-The Women of Wind Energy (WoWE) honored Ian Baring-Gould, Wind ...

  2. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  3. Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide Play Book_TEAM 4 FINAL.docx | Department of Energy Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program Design Guide Play Book_TEAM 4 FINAL.docx Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program Design Guide Play Book_TEAM 4 FINAL.docx residential_retrofit_program_design_guide.pdf (657.97 KB) More Documents & Publications Microsoft Word - Horizon Wind Energy Comments.docx Reporting Pre-guidance Announcement 06-02-2011 Letter to SEP Recipients on Changes to

  4. Researchers Funded by the DOE "Genomes to Life" Program Achieve...

    Broader source: Energy.gov (indexed) [DOE]

    of specially designed microbes living within the emission-control system of a coal-fired plant, consuming its pollution and its carbon dioxide, or employing microbes to ...

  5. Reactor Safety Research Programs Quarterly Report October - December 1981

    SciTech Connect (OSTI)

    Edler, S. K.

    1982-03-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  6. Using Cost-Effectiveness Tests to Design CHP Incentive Programs

    SciTech Connect (OSTI)

    Tidball, Rick

    2014-11-01

    This paper examines the structure of cost-effectiveness tests to illustrate how they can accurately reflect the costs and benefits of CHP systems. This paper begins with a general background discussion on cost-effectiveness analysis of DER and then describes how cost-effectiveness tests can be applied to CHP. Cost-effectiveness results are then calculated and analyzed for CHP projects in five states: Arkansas, Colorado, Iowa, Maryland, and North Carolina. Based on the results obtained for these five states, this paper offers four considerations to inform regulators in the application of cost-effectiveness tests in developing CHP programs.

  7. Audit of Program Administration by the Office of Energy Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of decision making at an individual task level as it requires the proposing, funding, and accounting for ... Of importance, however, was that Energy Research could not ...

  8. TRB-Transit Cooperative Research Program (TCRP): Case Studies...

    Open Energy Info (EERE)

    Transportation Research Board Focus Area: Transportation Resource Type: Publications, Lessons learnedbest practices, Case studiesexamples Website: www.trb.orgMainPublic...

  9. Fuel Cell Technologies Program Multi-Year Research, Development...

    Energy Savers [EERE]

    A - Budgetary Information Multi-Year Research, Development and Demonstration Plan Page A - 1 Appendix A -Budgetary Information The schedule for completing the milestones and ...

  10. Gas Hydrates Research Programs: An International Review (Technical...

    Office of Scientific and Technical Information (OSTI)

    An evaluation section discussing present and future research activities has also been included. Authors: Jorge Gabitto ; Maria Barrufet Publication Date: 2009-12-09 OSTI ...

  11. New River Geothermal Research Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. ...

  12. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    SciTech Connect (OSTI)

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  13. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  14. Small Business Innovation Research and Small Business Technology Transfer Programs: Hydropower

    Broader source: Energy.gov [DOE]

    Small Business Innovation Research and Small Business Technology Transfer are U.S. Government programs in which federal agencies with large research and development budgets set aside a small fraction of their funding for competitions among small businesses only. Small businesses that win awards in these programs keep the rights to any technology developed and are encouraged to commercialize the technology.

  15. Guidance for Fast-Track Cooperative Research And Development Agreement (CRADA) Programs at DOE Facilities.

    Broader source: Energy.gov [DOE]

    This AL provides guidance for implementing a new Fast Track CRADA Program (Fast Track or Fast Track Program) at DOE Facilities (i.e., National Laboratories, single-purpose research facilities, and other Department facilities) (Facilities) that streamlines the execution of Cooperative Research and Development Agreements (CRADAs) across the DOE complex.

  16. Value of Solar. Program Design and Implementation Considerations

    SciTech Connect (OSTI)

    Taylor, Mike; McLaren, Joyce; Cory, Karlynn; Davidovich, Ted; Sterling, John; Makhyoun, Miriam

    2015-03-01

    Here, we present an analysis that assesses the potential market type that might form in the United States under a VOS rate, given current national average solar costs and various incentive scenarios, for the most populous city in each state. Three hypothetical VOS tariffs were developed, based on assumptions of avoided fuel costs, avoided capacity, environmental benefits, and line losses, to represent a of range of possible VOS rates. The levelized cost of solar in 50 locations is calculated using NREL’s System Advisor Model (SAM) using input assumptions regarding system size, resource quality, avoided capacity (aka capacity factor) and a variety of incentives. Comparing the solar costs with the hypothetical VOS rates illustrates the various market types that may form under a VOS program, in different locations.

  17. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  18. Overview and Progress of the Advanced Battery Materials Research (BMR) Program

    Broader source: Energy.gov (indexed) [DOE]

    Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram Department of Energy This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ES 108 Energy Efficiency & Renewable Energy Advanced Battery Materials Research (BMR) Program  Previously known as: - Batteries for Advanced Transportation Technologies (BATT) -

  19. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We investigate the molecular and structural origins of energy conversion (absorption, carrier generation and recombination processes, transport) phenomena in organic and hybrid material systems with the goal of producing highly efficient materials and morphological structures for OPVs. Our efforts to develop and to maximize the performance/efficiency of OPVs include: (1) a combined experimental/ computational approach to the molecular design and synthesis of new materials; (2) design and develop

  20. DOE Leads National Research Program in Gas Hydrates

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies.

  1. Reactor safety research programs. Quarterly report, July-September 1983

    SciTech Connect (OSTI)

    Edler, S.K.

    1984-04-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, and examining NDE reliability and probabilistic fracture mechanics. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; and an instrumented fuel assembly irradiation program is being performed at Halden, Norway. Fuel assemblies and analytical support are being provided for experimental programs at other facilities, including the Super Sara Test Program, Ispra, Italy, and experimental programs at the Power Burst Facility.

  2. Environmental Guidance Program Reference Book: Marine Protection, Research, and Sanctuaries Act and Marine Mammal Protection Act. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1988-01-31

    Two laws governing activities in the marine environment are considered in this Reference Book. The Marine Protection, Research, and Sanctuaries Act (MPRSA, P.L. 92-532) regulates ocean dumping of waste, provides for a research program on ocean dumping, and provides for the designation and regulation of marine sanctuaries. The Marine Mammal Protection Act (MMPA, P.L. 92-522) establishes a federal program to protect and manage marine mammals. The Fishery Conservation and Management Act (FCMA, P.L. 94-265) establishes a program to regulate marine fisheries resources and commercial marine fishermen. Because the Department of Energy (DOE) is not engaged in any activities that could be classified as fishing under FCMA, this Act and its regulations have no implications for the DOE; therefore, no further consideration of this Act is given within this Reference Book. The requirements of the MPRSA and the MMPA are discussed in terms of their implications for the DOE.

  3. Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995

    SciTech Connect (OSTI)

    1994-10-01

    Objective of the ATS program is to develop ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load application in utility, independent power producer, and industrial markets. This report discusses the major accomplishments achieved during the second year of the ATS Phase 2 program, particularly the design and test of critical components.

  4. LSU EFRC - Center for Atomic Level Catalyst Design - Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research >> space control Wet Chemical Synthesis of Atomically Precise Nanocatalysts space control Control of Structures on Complex Catalyst Supports space control Electrocatalytic Reduction of CO2 space control Activation of CO on Metal Clusters space control Nano-structured Catalysts for CO Activation space control Modeling and Synthesis of Rare Earth Oxides space control space control Research space control space control The Six Projects that comprise our Center's research efforts have

  5. Panel results of the solar thermal program research requirement assessment review. Final report

    SciTech Connect (OSTI)

    1983-11-01

    The objectives of the assessment were to identify: research needs by topic and activity, relative priority of research needs, options for performing needed research, potential performers, costs and duration of R and D activities, gaps and duplications within the R and D program, and activities underway that appear to be of low priority. To achieve these objectives, research programs of the Division of Solar Thermal Technologies within the Office of Renewable Energy and Conservation and the Materials and Advanced Energy Programs of the Office of Basic Energy Sciences were reviewed. Several recent assessments of solar thermal research needs made within the past two years by various groups were also reviewed, and the key research issues and needs were extracted. The primary results from the assessment are a set of prioritized activities to meet the most important research needs for solar thermal technologies. These activities belong to four disciplines: materials science, thermal science, thermochemistry, and engineering. Further, priorities associated with the needs for research result from the various activities allow the recommended activities to be grouped into two categories; a core group which should be at the heart of any future program developed by the department, and a set of important needs that should, at least, find their way into a program at some time during its existence. The recommended research program is outlined, and the complete set of ranked research needs is listed.

  6. District cooling engineering & design program. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Phoenix, Arizona is located in the Sonoran desert. Daytime temperatures typically rise to over 100 F during the three summer months. Average and peak temperatures have tended to rise over recent decades. This is generally attributed to what is known as the heat island effect, due to an increase in heat absorbing concrete and a decrease in irrigated farmland in the area. Phoenix is the eighth largest city in the US with a population of just over one million (1,000,000). The metropolitan area is one of the fastest growing in the nation. Over the last ten years its population has increased by over 40%. It is not an exaggeration to say the general availability of refrigerated air conditioning, both for buildings and automobiles has been an important factor enabling growth. The cost of operating public buildings has risen significantly in the last decade. In fiscal year 92/93 the City of Phoenix had energy expenses of over thirty four million dollars ($34,000,000). Because the City was planning a major new construction project, a new high-rise City Hall, it was decided to study and then optimize the design and selection of building systems to minimize long term owning and operating costs. The City Hall was to be constructed in downtown Phoenix. Phoenix presently owns other buildings in the area. A number of large cooling systems serving groups of buildings are currently operating in the Phoenix area. The City requested that the design consultants analyze the available options and present recommendations to the City`s engineering staff.

  7. Energy from Biomass Research and Technology Transfer Program

    SciTech Connect (OSTI)

    None

    2006-09-01

    This project seeks to foster and facilitate promising basic research investigations that will lead to commercial applications of higher-value plants, new and improved plant products, and a safer environment.

  8. Applications for Fraunhofer CSE Research Program due August 22

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Energy Efficiency and Renewable Energy (EERE) is sponsoring a 1-year postdoctoral research position with the Fraunhofer Center for Sustainable Energy Systems (CSE) in Boston, MA.

  9. Pre-College Research Participation Program | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or office environment, performing research and rubbing elbows with scientists and engineers, in order to get a feel for what it means to work in a national laboratory and...

  10. PPPL physicist wins Early Career Research Program grant to develop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The five-year grant of some 2.6 million will fund Delgado-Aparicio's research aimed at eliminating a key barrier to developing fusion power as a safe, clean and abundant source of ...

  11. NREL Researcher Discusses Revitalized Algae Program - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presentation on July 7 at University of Minnesota Available Online July 1, 2010 Dr. Philip ... research on July 7, from 3-5 p.m., at the University of Minnesota Twin Cities Campus. ...

  12. Research Program - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross-Cutting Collaborations and Research The synergistic interactions between the three thrust areas have been responsible for the development of hybrid organic/inorganic materials for TE and PV devices. In addition, research in thrust areas 1 and 2 has led to the development of inorganic materials that serve a dual purpose, for both TE and PV applications. A number of these cross-cutting projects are highlighted below. Organic and Hybrid Systems for TE Improving Thermoelectric Efficiency via

  13. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-02-27

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy

  14. Fuel Cells for Transportation- Research and Development: Program Abstracts

    Broader source: Energy.gov [DOE]

    Remarkable progress has been achieved in the development of proton-exchange-membrane(PEM) fuel cell technology since the U.S. Department of Energy (DOE) initiated a significant developmental program in the early 1990s. This progress has stimulated enormous interest worldwide in developing fuel cell products for transportation as well as for stationary and portable power applications. The potential markets are huge, but so are the R&D risks. Given the potential for PEM fuel cells to deliver large economic and environmental benefits to the Nation, DOE continues to take a leadership role in developing and validating this technology. DOE’s strategy to implement its Fuel Cells for Transportation program has three components: an R&D strategy, a fuels strategy, and a management strategy.

  15. Test Plan for Heat Cycle Research Program, Phase I Supercritical Cycle

    Office of Scientific and Technical Information (OSTI)

    Tests (Technical Report) | SciTech Connect Test Plan for Heat Cycle Research Program, Phase I Supercritical Cycle Tests Citation Details In-Document Search Title: Test Plan for Heat Cycle Research Program, Phase I Supercritical Cycle Tests The 60 kW Heat Cycle Research Facility (HCRF) provides a means of examining different concepts and components associated with the generation of electrical power from a geothermal resource using a binary power cycle. In this power cycle the heat or energy

  16. DOE Commercial Building Energy Asset Rating: Market Research and Program Direction

    SciTech Connect (OSTI)

    Wang, Na; Taylor, Cody; McCabe, Molly J.

    2012-08-12

    This paper presents the development of a voluntary energy asset rating system, to evaluate the physical characteristics and as-built energy efficiency of new and existing commercial buildings. The energy asset rating system is intended to enable commercial building stakeholders to directly compare expected as-built energy performance among similar buildings and to analyze the potential for capital improvements to increase energy efficiency cost-effectively. Market research has been performed to understand the market demand and how to communicate energy and cost savings to owners, investors, financiers, and others to overcome market barriers and motivate capital investment in building energy efficiency. The paper discusses the findings of the market research. Building owners are concerned about redundancy, conflicting requirements, and cost. They also pointed out a data gap and desire a rating program that identifies improvement opportunities. A meaningful linkage between the energy asset rating and other rating systems is essential. Based on the findings, criteria for a successful energy asset rating program have been developed to direct the program design, including validity of ratings, actionable, cost effective recommendations, effective quality control, integration with other rating systems, and necessary training and education. In addition to the rating system, an asset rating tool is being developed to reduce cost and increase standardization, allowing for consistent and reliable comparisons among and between buildings. The asset rating tool is the first step in the process by which owners can enter information about their building structure and receive information on the buildings modeled performance and recommended efficiency measures.

  17. Dynamic and Adaptive Parallel Programming for Exascale Research | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Sample multi-resolution adaptive decomposition of a function and flow of data associated with compression of the representation. Sample multi-resolution adaptive decomposition of a function and flow of data associated with compression of the representation. The example is in one dimension but practical applications are typically in three, four, five and even six dimensions. Robert Harrison, Stony Brook University Dynamic and Adaptive Parallel Programming for

  18. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect (OSTI)

    Calderon, A.; Madison, E.; Probert, P.

    1992-01-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H[sub 2] mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO[sub x] (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  19. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect (OSTI)

    Calderon, A.; Madison, E.; Probert, P.

    1992-11-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H{sub 2} mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO{sub x} (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  20. Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2007-06-01

    Increasing levels of financial support for customer-sited photovoltaic (PV) systems, provided through publicly-funded incentive programs, has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in ensuring that PV systems receiving incentives perform well. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address performance issues, and highlight important differences in the implementation of these strategies among programs.

  1. Advanced turbine systems program -- Conceptual design and product development. Final report

    SciTech Connect (OSTI)

    1996-07-26

    This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

  2. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    SciTech Connect (OSTI)

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05

    The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

  3. Summary results of an assessment of research projects in the National Photovoltaics Program

    SciTech Connect (OSTI)

    1995-07-01

    The Office of Energy Research (OER) undertook an assessment of 115 research projects (listed in Appendix A) sponsored by the National Photovoltaics Program. The Program is located within the Office of Energy Efficiency and Renewable Energy (EE). This report summarizes the results of that review. The Office of Solar Energy Conversion is responsible for the management of the National Photovoltaics Program. This program focuses on assisting US industry in development of fundamental technology to bring advanced photovoltaic energy systems to commercial use. The purpose of the assessment was to determine the following: (1) the quality of research of individual projects; (2) the impact of these individual projects on the mission of the program; and (3) the priority of future research opportunities.

  4. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect (OSTI)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  5. Fish Protection: Cooperative research advances fish-friendly turbine design

    SciTech Connect (OSTI)

    Brown, Richard S.; Ahmann, Martin L.; Trumbo, Bradly A.; Foust, Jason

    2012-12-01

    Renewable hydropower is a tremendous resource within the Pacific Northwest that is managed with considerable cost and consideration for the safe migration of salmon. Recent research conducted in this region has provided results that could lower the impacts of hydro power production and make the technology more fish-friendly. This research is now being applied during a period when a huge emphasis is being made to develop clean, renewable energy sources.

  6. Respiratory diseases research at NIOSH: reviews of research programs of the National Institute for Occupational Safety and Health

    SciTech Connect (OSTI)

    2008-07-01

    Respiratory diseases caused by exposures to dangerous materials in the workplace have tremendous implications for worker health and, by extension, the national economy. The National Institute for Occupational Safety and Health (NIOSH) estimates that deaths from work-related respiratory diseases and cancers account for about 70% of all occupational disease deaths. NIOSH conducts research in order to detect and reduce work-related hazardous exposures, injuries, and diseases; its Respiratory Disease Research Program (RDRP) focuses on respiratory diseases. This National Research Council book reviews the RDRP to evaluate the 1) relevance of its work to improvements in occupational safety and health and 2) the impact of research in reducing workplace respiratory illnesses. The assessment reveals that the program has made essential contributions to preventing occupational respiratory disease. The National Research Council has rated the Program a 5 out of 5 for relevance, and a 4 out of 5 for impact. To further increase its effectiveness, the Respiratory Disease Research Program should continue and expand its current efforts, provide resources for occupational disease surveillance, and include exposure assessment scientists in its activities. There are numerous references to respiratory systems diseases caused by coal mining. 4 apps.

  7. Design of a basinwide monitoring program for the Tampa Bay estuary. Final technical pub

    SciTech Connect (OSTI)

    Hochberg, R.J.; Weisberg, S.B.; Frithsen, J.B.

    1992-10-30

    The Tampa Bay National Estuary Program (TBNEP) is developing a Comprehensive Conservation and Management Plan (CCMP) to recommend management actions for protecting the Tampa Bay estuary. The purpose of the document is to facilitate development of the monitoring program by assisting the TBNEP to define the objectives of a monitoring program for Tampa Bay identifying indicators and a sampling design that are appropriate to those objectives, and identifying how existing Tampa Bay monitoring programs can be incorporated and modified (if necessary) to meet the monitoring objectives.

  8. US/German Workshop on Salt Repository Research, Design and Operation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    following information: We have obtained the necessary DOE and Sandia approvals to start planning the 7 th USGerman Workshop on Salt Repository Research, Design, and Operation to...

  9. Advanced Envelope Research for Factory Built Housing, Phase 3—Design Development and Prototyping

    Broader source: Energy.gov [DOE]

    This Building America report describes the Advanced Envelope Research project, which will provide factory home builders with high-performance, cost-effective alternative envelope designs.

  10. Proceedings of 3rd US/German Workshop on Salt Repository Research, Design, and Operation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The report provides summary and materials from the third U.S./German Workshop on Salt Repository Research, Design and Operation (held in New Mexico, October 2012).

  11. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    SciTech Connect (OSTI)

    N /A

    2000-04-18

    The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediation under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or

  12. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program. Fiscal year 1994

    SciTech Connect (OSTI)

    1994-10-01

    The Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, manages archaeological resources on the Savannah River Site (SRS). An ongoing research program provides the theoretical, methodological, and empirical basis for assessing site significance within the compliance process specified by law. The SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research, and public education activities of the SRARP during Fiscal Year 1994.

  13. IARC - Illinois Accelerator Research Center | Pilot Program | Who Attends

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Who should attend? Are you interested in developing, testing or applying accelerator technologies? Do you want to network and explore opportunities for partnerships? Do you want to benefit from the expertise and world-class equipment available at two famous national research laboratories, Argonne and Fermilab? Do you want to take behind-the-scenes tours of the world-class accelerator technology facilities that have been built at Argonne and Fermilab in recent years to collaborate with industry?

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  15. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  17. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  18. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  19. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  20. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  1. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  2. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  3. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    SciTech Connect (OSTI)

    Eisenberg, David S.

    2008-07-15

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  4. NREL: Wind Research - Offshore Design Tools and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Tools and Methods Graphic of a modular depiction of the FAST tool, which includes aerodynamics, hydrodynamics, control and electrical system dynamics, and structural dynamics modules. NREL's CAE Tool, FAST, and its Sub-Modules Illustration of wind turbines in various environments including land-based, shallow water (0-30m), transitional depth (30-60m), and deep water floating (greater than 60m). FAST has the capability of modeling a wide range of offshore wind system configurations

  5. Research program to investigate the fundamental chemistry of technetium

    SciTech Connect (OSTI)

    McKeown, David A.; Buechele, Andrew C.; Lukens, Wayne W.; Muller, Isabelle S.; Shuh, David K.; Pegg, Ian L.

    2007-10-12

    The objective of this research is to increase the knowledge of the fundamental technetium chemistry necessary to address challenges to the safe, long-term disposal of high-level nuclear waste posed by this element. The primary issues examined during the course of this project were the behavior of technetium and its surrogate rhenium during waste vitrification and glass corrosion. Since the redox behavior of technetium can play a large role in determining its volatility, one goal of this research was to better understand the behavior of technetium in glass as a function of the redox potential of the glass melt. In addition, the behavior of rhenium was examined, since rhenium is commonly used as a surrogate for technetium in waste vitrification studies. A number of glasses similar to Hanford Low Activity Waste (LAW) glasses were prepared under controlled atmospheres. The redox state of the glass was determined from the Fe(II)/Fe(III) ratio in the cooled glass, and the speciation of technetium and rhenium was determined by x-ray absorption fine structure (XAFS) spectroscopy. The behavior of rhenium and technetium during glass alteration was also examined using the vapor hydration test (VHT).

  6. ORISE Research Participation Programs at the U.S. Food and Drug...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with ORISE search Search Welcome to the ORISE Research Participation Programs at the U.S. Food and Drug Administration (FDA). On this site you will find information about these...

  7. ORISE Internship/Research Participation Programs at the U.S....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to collect data for the long-term monitoring program aboard the Research Vessel Lake Guardian, and participating in habitat projects. She enjoyed being part of a team environment,...

  8. The Future of University Nuclear Engineering Programs and University Research and Training Reactors

    Broader source: Energy.gov [DOE]

    Nuclear engineering programs and departments with an initial emphasis in fission were formed in the late 1950’s and 1960’s from interdisciplinary efforts in many of the top research universities,...

  9. Exploratory technology research program for electrochemical energy storage. Annual report for 1996

    SciTech Connect (OSTI)

    Kinoshita, K. [ed.

    1997-06-01

    The U.S. Department of Energy`s Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the United States Advanced Battery Consortium (USABC) and Advanced Battery R&D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The USABC, a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for EVs. In addition, DOE is actively involved in the Partnership for a New Generation of Vehicles (PNGV) Program which seeks to develop passenger vehicles with a range equivalent to 80 mpg of gasoline. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and the PNGV Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1996. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary.

  10. Reactor safety research programs. Quarterly report, April-June 1982

    SciTech Connect (OSTI)

    Edler, S.K.

    1982-11-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  11. Air Force pollution prevention research and development program

    SciTech Connect (OSTI)

    Montoya, G.

    1995-12-01

    The prevention surveys pollution prevention R&D in selected technology areas to meet high priority customer needs. Projects are categorized into four areas: Ozone Deleting Compound (ODC) Elimination, HAZMAT Materials and Substitution, HAZMAT Waste Reduction, and Volatile Organic Compound (VOC) Elimination. Each category has specific goals. The ODC Elimination goal was to eliminate the purchases of ODCs by 1 Apr 94. The HAZMAT Materials and Process Replacement goal is to reduce the purchase of EPA 17 materials from 1992 baseline 50% by the end of 1996. The HAZMAT Waste Reduction goal is 25% by the end of 1996, and 50% by the end of 1999. VOC elimination goals are included in the HAZMaT Materials and Substitution and HAZMAT Waste Reduction areas. Each category consists of a portfolio of projects which meet high priority customer technology needs (TNs) and contributes to meeting specific goals. The presentation provides more detailed information for the On-Board Halon Replacement Program, Atomic Oxygen Cleaning process for Oxygen Systems, Non-Chemical Metal Surface Preparation, and LARPS.

  12. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  13. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  14. Exploratory Technology Research Program for Electrochemical Energy Storage - Annual Report for 1998

    SciTech Connect (OSTI)

    Kinoshita, K.

    1999-06-01

    The US Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid systems. Efforts are focused on advanced batteries that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. DOE battery R and D supports two major programs: the US Advanced Battery Consortium (USABC), which develops advanced batteries for EVS, and the Partnership for a New Generation of Vehicles (PNGV), which seeks to develop passenger vehicles with a fuel economy equivalent to 80 mpg of gasoline. This report describes the activities of the Exploratory Technology Research (ETR) Program, managed by the Lawrence Berkeley National Laboratory (LBNL). The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and PNGV Programs, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1998. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Program Summary.

  15. Environment Health & Safety Research Program. Organization and 1979-1980 Publications

    SciTech Connect (OSTI)

    1981-01-01

    This document was prepared to assist readers in understanding the organization of Pacific Northwest Laboratory, and the organization and functions of the Environment, Health and Safety Research Program Office. Telephone numbers of the principal management staff are provided. Also included is a list of 1979 and 1980 publications reporting on work performed in the Environment, Health and Safety Research Program, as well as a list of papers submitted for publication.

  16. PPPL physicist Brian Grierson wins DOE Early Career Research Program grant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab physicist Brian Grierson wins DOE Early Career Research Program grant By John Greenwald May 13, 2014 Tweet Widget Google Plus One Share on Facebook Brian Grierson at the DIII-D tokamak. (Photo by Lisa Petrillo, General Atomics) Brian Grierson at the DIII-D tokamak. Physicist Brian Grierson of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has won a highly competitive Early Career Research Program award sponsored by the DOE's

  17. The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs, IG-0876

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research and Small Business Technology Transfer Programs DOE/IG-0876 November 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 November 6, 2012 MEMORANDUM FOR SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs" INTRODUCTION AND

  18. Design of Benign Matrix Drums for the Non-Destructive Assay Performance Demonstration Program for the National TRU Program

    SciTech Connect (OSTI)

    G. K. Becker

    2000-09-01

    Regulatory compliance programs associated with the Department of Energy Waste Isolation Pilot Plant Transuranic Waste characterization Program require the collection of waste characterization data of known quality to support repository performance assessment, permitting, and associated activities. Each facility is required to participate in performance demonstration programs (PDPs) designed to produce objective method performance data used to support compliance assessment activities. The PDP program is comprised of a series of tests conducted semi-annually at participating waste characterization facilities. Each semi-annual test if referred to as a cycle. Blind audit samples, referred to as PDP samples, are devices used in the NDA PDP program to acquire waste NDA system performance data per defined measurement routines. As defined under the current NDA PDP Program Plan, a PDP sample consists of a DOT 17C 55-gallon PDP matrix drum configured with insertable radioactive standards. The particular manner in which the matrix drum and PDP standards(s) are combined is a function of the waste NDA system performance test objectives of a given cycle. The purpose of this document is to define, per the PDP Program Plan, initial cycle benign matrix drum requirements, enumerate the associated specifications, and document the final as-built design. The intent of the initial cycle PDP is to establish and document the waste NDA baseline capability presently implemented at participating waste characterization facilities. The baseline can be interpreted as that fundamental waste NDA capability necessary to perform accurate source mass calibrations and demonstrate the ability to assay radioactive material of a pre-specified nominal isotopic/chemical composition in waste forms characterized as non-interfering to benign. A benign simulated waste matrix refers to a material that inherently does not possess or has minimal properties with attributes known to interfere with or complicate

  19. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program. Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    A cooperative agreement with the United States Department of Energy provides the necessary funding for the Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, to render services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of archaeological resources is usually determined by research potential, the SRARP is guided by research objectives. An ongoing research program provides the theoretical, methodological, and empirical basis for assessing site significance within the compliance process specified by law. In accordance with the spirit of the law, the SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research, and public education activities of the SRARP during Fiscal Year 1993.

  20. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program: Fiscal year 1991

    SciTech Connect (OSTI)

    Brooks, Mark J.; Brooks, Richard D.; Sassaman, Kenneth E.; Crass, David C.; Stephenson, D. Keith; Green, William; Rinehart, Charles J.; Lewis, George S.; Fuglseth, Ty; Krawczynski, Keith; Warnock, D. Mark

    1991-10-01

    A cooperative agreement with the United States Department of Energy provides the necessary funding for the Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, to render services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of archaeological resources is usually determined by research potential, the SRARP is guided by research objectives. An ongoing research program provides the theoretical, methodological and empirical basis for assessing site significance within the compliance process specified by law. In accordance with the spirit of the law, the SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research and public education activities of the SRARP during Fiscal Year 1991.

  1. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program, fiscal year 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    The Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, is funded through a direct contract with the United States Department of Energy to provide services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of most archaeological resources is dependent upon research potential, the SRARP is guided by research objectives. An on-going research program provides the problems, methods and means of assessing site significance within the compliance process specified by law. In addition, the SRARP maintains an active program of public education to disseminate knowledge about prehistory and history, and to enhance public awareness about historic preservation. The following report summarizes the management, research and public education activities of the SRARP during Fiscal Year 1990.

  2. Overview of the Alcator C-MOD Research Program

    SciTech Connect (OSTI)

    S. Scott, A. Bader, M. Bakhtiari, N. Basse, W. Beck, T. Biewer, S. Bernabei, P. Bonoli, et al.

    2007-11-13

    Recent research on the high-field, high-density diverted Alcator C-MOD tokamak has focussed on the plasma physics and plasma engineering required for ITER and for attractive fusion reactors. Experimental campaigns over the past two years have focused on understanding the physical mechanisms that affect the plasma performance realized with all-molybdenum walls versus walls with low-Z coatings. RF sheath rectification along flux tubes that intersect the RF antenna is found to be a major cause of localized boron erosion and impurity generation. Initial lower-hybrid current drive (LHCD) experiments (PLH < 900 kW) have demonstrated fully noninductive current drive at ?? ~ 1.0 MA with good efficiency, ?drive = 0.4PLH/neoR (MA,MW,1020m?3,m). Disruption mitigation via massive gas-jet impurity puffing has proven successful at high plasma pressure, indicating this technique has promise for implementation on ITER. Pressure gradients in the near SOL of Ohmic L-mode plasmas are observed to scale consistently as ? 2(over)?, and show a significant dependence on X-point topology. Modeling of H-mode edge fueling indicates high self-screening to neutrals in the pedestal and scrape-off layer (SOL), and reproduces experimental density pedestal response to changes in neutral source. Detailed measurements of the temperature and density profiles in the near sol and fast framing movies of the turbulent structures provide improved understanding of the mechanisms that control transport in the edge region.

  3. Exploratory technology research program for electrochemical energy storage. Annual report for 1995

    SciTech Connect (OSTI)

    Kinoshita, Kim

    1996-06-01

    The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

  4. Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice in the U.S.

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-10-06

    In the U.S., the increasing financial support for customer-sited photovoltaic (PV) systems provided through publicly-funded incentive programs has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in addressing PV system performance. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address factors that affect performance, and describe key implementation details. Based on this review, we then offer recommendations for how PV incentive programs can be effectively designed to mitigate potential performance issues.

  5. Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1994

    SciTech Connect (OSTI)

    1994-12-01

    This is a quarterly report on the Westinghouse Electric Corporation Advanced Turbine Systems Program--conceptual design and product development. The topics of the report include the management plan, National Energy Policy Act, selection of natural gas-fired advanced turbine systems, selection of coal-fired advanced turbine systems, market study, systems definition and analysis, design and test of critical components, and plans for the next reporting period.

  6. SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

  7. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  8. Uncovering Coal’s Secrets Through the University Coal Research Program

    Broader source: Energy.gov [DOE]

    The challenges confronting the environmentally sound use of our country’s fossil energy resources are best addressed through collaborative research and development. That’s why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy’s University Coal Research Program.

  9. Brookhaven Lab Named an NVIDIA GPU Research Center: Designation recognizes research utilizing GPU-accelerated computing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Brookhaven National Laboratory has been named a 2016 GPU Research Center by NVIDIA, the world leader in visual computing.

  10. Program director`s overview report for the Office of Health & Environmental Research

    SciTech Connect (OSTI)

    Gilbert, D.

    1994-02-01

    LBL performs basic and applied research and develops technologies in support of the Office of Health and Environmental Research`s mission to explore and mitigate the long-term health and environmental consequences of energy use and to advance solutions to major medical challenges. The ability of the Laboratory to engage in this mission depends upon the strength of its core competencies. In addition, there are several key capabilities that are cross-cutting, or underlie, many of the core competencies. Attention is focused on the following: Facilities and resources; research management practices; research in progress; program accomplishments and research highlights; program orientation; work for non-OHER organizations DOE; critical issues; and resource orientation.

  11. DIII-D Research Operations annual report to the US Department of Energy, October 1, 1990--September 30, 1991. Magnetic Fusion Research Program

    SciTech Connect (OSTI)

    Simonen, T.C.; Evans, T.E.

    1992-03-01

    This report discusses the following topics on Doublet-3 research operations: DIII-D Program Overview; Boundary Plasma Research Program/Scientific Progress; Radio Frequency Heating and Current Drive; Core Physics; DIII-D Operations; Program Development; Support Services; ITER Contributions; Burning Plasma Experiment Contributions; and Collaborative Efforts.

  12. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  13. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  14. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 2.0: Program Benefits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits Multi-Year Research, Development and Demonstration Plan Page 2 - 1 2.0 Program Benefits Fuel cells provide power and heat cleanly and efficiently, using diverse domestic fuels, including hydrogen produced from renewable resources and biomass-based fuels. Fuel cells can be used in a wide range of stationary, transportation, and portable-power applications. Hydrogen can also function as an energy storage medium for renewable electricity. Hydrogen and fuel cell technologies are being

  15. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Description SAGE, the Summer of Applied Geophysical Experience, is a unique educational program designed to introduce students in geophysics and related fields to "hands on" geophysical exploration and research. The program emphasizes both teaching of field methods and research related to basic science and a variety of applied problems. SAGE is hosted by the National Security Education Center and the Earth and Environmental Sciences Division of the Los Alamos National

  16. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    SciTech Connect (OSTI)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  17. Independent Oversight Review of the Uranium Processing Facilkity Design Requirements and Configuration Management Program, March 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oversight Review of the Uranium Processing Facility Design Requirements and Configuration Management Program March 2014 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................ 1 2.0 Background ...

  18. Programs director`s report for the Office of Health and Environmental Research

    SciTech Connect (OSTI)

    1996-08-01

    Since its establishment, the Department of Energy`s Office of Health and Environmental Research (OHER) has had responsibility for conducting biological research to develop the knowledge needed to identify, understand, and anticipate the long-term health consequences of energy use and development, including the potential health impacts of radiation. The Health Effects Research Program has established the basis for understanding the health consequences of radiation for humans, developed radiation dosimetry methodology, characterized and evaluated the health impacts of fossil fuels, and developed and conducted research to determine the health impacts of inhaled toxicants. The results of this research have provided input for setting genetic standards for radiation and chemical exposure.

  19. FY 1990 environmental research programs for the Nevada Operations Office. Work plan and quarterly reports, first through fourth quarter reports

    SciTech Connect (OSTI)

    1990-11-01

    This work includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies and site mitigation plans; offsite community radiation monitoring support; environmental compliance activities related to state and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design activities. In addition to these, archaeological and other activities will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which require DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, derivative classification of DRI documents, and preparation of any special reports not included in the requirements of the individual projects.

  20. Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-11-12

    the rated capacity of the modules or system, are often suggested as one possible strategy. Somewhat less recognized are the many other program design options also available, each with its particular advantages and disadvantages. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance - including, but not limited to, PBIs - used by 32 prominent PV incentive programs in the U.S. (see Table 1).1 We focus specifically on programs that offer an explicit subsidy payment for customer-sited PV installations. PV support programs that offer other forms of financial support or that function primarily as a mechanism for purchasing renewable energy credits (RECs) through energy production-based payments are outside the scope of our review.2 The information presented herein is derived primarily from publicly available sources, including program websites and guidebooks, programs evaluations, and conference papers, as well as from a limited number of personal communications with program staff. The remainder of this report is organized as follows. The next section presents a simple conceptual framework for understanding the issues that affect PV system performance and provides an overview of the eight general strategies to encourage performance used among the programs reviewed in this report. The subsequent eight sections discuss in greater detail each of these program design strategies and describe how they have been implemented among the programs surveyed. Based on this review, we then offer a series of recommendations for how PV incentive programs can effectively promote PV system performance.

  1. Distributed Solar Incentive Programs: Recent Experience and Best Practices for Design and Implementation

    SciTech Connect (OSTI)

    Bird, L.; Reger, A.; Heeter, J.

    2012-12-01

    Based on lessons from recent program experience, this report explores best practices for designing and implementing incentives for small and mid-sized residential and commercial distributed solar energy projects. The findings of this paper are relevant to both new incentive programs as well as those undergoing modifications. The report covers factors to consider in setting and modifying incentive levels over time, differentiating incentives to encourage various market segments, administrative issues such as providing equitable access to incentives and customer protection. It also explores how incentive programs can be designed to respond to changing market conditions while attempting to provide a longer-term and stable environment for the solar industry. The findings are based on interviews with program administrators, regulators, and industry representatives as well as data from numerous incentive programs nationally, particularly the largest and longest-running programs. These best practices consider the perspectives of various stakeholders and the broad objectives of reducing solar costs, encouraging long-term market viability, minimizing ratepayer costs, and protecting consumers.

  2. Pittsburgh research center program of research. A summary of research in progress during fiscal years 1995-1996

    SciTech Connect (OSTI)

    Murphy, J.N.; Sacks, H.K.

    1996-12-31

    Contents: Advanced Mining Systems; Control of Mine Drainage and Liquid Wastes; Solid Waste Management and Subsidence; Abandoned Mined Land Reclamation Research; and Publications.

  3. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    SciTech Connect (OSTI)

    Kinoshita, K.

    1998-06-01

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

  4. Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation. FY 1993 Program Summary

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    DOE has set a goal to clean up its complex and to bring all sites into compliance with applicable environmental regulations. This initiative is slated for completion by the year 2019. Four years ago there was no coordinated plan for identifying or cleaning these contaminated sites. Since 1989, DOE`s Office of Environmental Restoration and Waste Management has invested time, money, and manpower to establish a wide range of programs to meet this immense challenge. DOE is responsible for waste management and clean up of more than 100 contaminated installations in 36 states and territories. This includes 3,700 sites: over 26,000 acres, with hazardous or radioactive contaminated surface or groundwater, soil, or structures; over 26,000 acres requiring remediation, with the number growing as new sites are defined; 500 surplus facilities awaiting decontamination and decommissioning and approximately 5,000 peripheral properties (residences, businesses) that have soil contaminated with uranium tailings.

  5. Electric and Magnetic Fields Research and Public Information Dissemination Program annual report for fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1997-06-01

    The Electric and Magnetic Fields (EMF) Research and Public Information Dissemination (RAPID) Program was authorized by the Energy Policy Act of 1992 as a near-term effort to expand and accelerate the research needed to address the EMF issue. As required by this legislation, the EMF Interagency Committee, the National EMF Advisory Committee (NEMFAC), and the National Academy of Sciences (NAS) are providing valued input and advice for the direction of this program. With this input and advice, the Department of Energy (DOE) and the National Institute of Environmental Health Sciences (NIEHS) have developed and are implementing five-year program plans. Multi-year health effects research projects and related EMF measurement and exposure assessment projects are underway using funds appropriated in fiscal years 1994, 1995, and 1996 together with voluntary non-Federal contributions. The results of these research projects, along with the results of other EMF research, will be used as input to the hazard evaluation effort, which is the focus of the EMF RAPID Program. A coordinated interagency program is underway to communicate needed information on the EMF issue in a clear manner to the public and other decision makers.

  6. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  7. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report is the 1992--1994 Program Director`s Overview Report for Oak Ridge National Laboratory`s (ORNL`s) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  8. The current state of the Russian reduced enrichment research reactors program

    SciTech Connect (OSTI)

    Aden, V.G.; Kartashov, E.F.; Lukichev, V.A.

    1997-08-01

    During the last year after the 16-th International Conference on Reducing Fuel Enrichment in Research Reactors held in October, 1993 in Oarai, Japan, the conclusive stage of the Program on reducing fuel enrichment (to 20% in U-235) in research reactors was finally made up in Russia. The Program was started late in 70th and the first stage of the Program was completed by 1986 which allowed to reduce fuel enrichment from 80-90% to 36%. The completion of the Program current stage, which is counted for 5-6 years, will exclude the use of the fuel enriched by more than 20% from RF to other countries such as: Poland, Czeck Republick, Hungary, Roumania, Bulgaria, Libya, Viet-Nam, North Korea, Egypt, Latvia, Ukraine, Uzbekistan and Kazakhstan. In 1994 the Program, approved by RF Minatom authorities, has received the status of an inter-branch program since it was admitted by the RF Ministry for Science and Technical Policy. The Head of RF Minatom central administrative division N.I.Ermakov was nominated as the Head of the Russian Program, V.G.Aden, RDIPE Deputy Director, was nominated as the scientific leader. The Program was submitted to the Commission for Scientific, Technical and Economical Cooperation between USA and Russia headed by Vice-President A. Gore and Prime Minister V. Chemomyrdin and was given support also.

  9. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    SciTech Connect (OSTI)

    Not Available

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

  10. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The LANL Isotope Program's R&D strategy is focused on four main areas (see article list below for recent efforts in these areas): Medical Applications are a key focus for research ...

  11. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  12. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    SciTech Connect (OSTI)

    MacKinnon, Robert J.

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  13. Advances in the Ion Source Research and Development Program at ISIS

    SciTech Connect (OSTI)

    Faircloth, D.C.; Thomason, J.W.G.; Sidlow, R.; Whitehead, M.O.

    2005-04-06

    This paper covers the advances in the ion source research and development Program at ISIS over the last 2 years. The work is a combination of theoretical finite element analysis calculations and experiments conducted on a purpose built development rig. The broad development goals are higher beam current with longer pulse length. A Finite Element Analysis (FEA) model is used here to understand the steady state and dynamic thermal behavior of the source, and to investigate the design changes necessary to offset the extra heating. Electromagnetic FEA modeling of the extraction region of the ISIS H- ion source has suggested that the present set up of extraction electrode and 90 deg. sector magnet is sub-optimal, with the result that the beam profile is asymmetric, the beam is strongly divergent in the horizontal plane and there is severe aberration in the focusing in the vertical plane. The FEA model of the beam optics has demonstrated that relatively simple changes to the system should produce a dramatic improvement in performance. The theoretical and experimental results are compared here.

  14. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program. Joint Research and Development Plan

    SciTech Connect (OSTI)

    Williams, Don

    2014-04-01

    Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation’s electrical generation capability. By the end of 2014, about one-third of the existing domestic fleet will have passed their 40th anniversary of power operations, and about one-half of the fleet will reach the same 40-year mark within this decade. Recognizing the challenges associated with pursuing extended service life of commercial nuclear power plants, the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs (DOE-NE’s Light Water Reactor Sustainability [LWRS] Program and EPRI’s Long-Term Operations [LTO] Program) to address these challenges. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a memorandum of understanding in late 2010 to “establish guiding principles under which research activities (between LWRS and LTO) could be coordinated to the benefit of both parties.” This document represents the third annual revision to the initial version (March 2011) of the plan as called for in the memorandum of understanding.

  15. Open-cycle ocean thermal energy conversion surface-condenser design analysis and computer program

    SciTech Connect (OSTI)

    Panchal, C.B.; Rabas, T.J.

    1991-05-01

    This report documents a computer program for designing a surface condenser that condenses low-pressure steam in an ocean thermal energy conversion (OTEC) power plant. The primary emphasis is on the open-cycle (OC) OTEC power system, although the same condenser design can be used for conventional and hybrid cycles because of their highly similar operating conditions. In an OC-OTEC system, the pressure level is very low (deep vacuums), temperature differences are small, and the inlet noncondensable gas concentrations are high. Because current condenser designs, such as the shell-and-tube, are not adequate for such conditions, a plate-fin configuration is selected. This design can be implemented in aluminum, which makes it very cost-effective when compared with other state-of-the-art vacuum steam condenser designs. Support for selecting a plate-fin heat exchanger for OC-OTEC steam condensation can be found in the sizing (geometric details) and rating (heat transfer and pressure drop) calculations presented. These calculations are then used in a computer program to obtain all the necessary thermal performance details for developing design specifications for a plate-fin steam condenser. 20 refs., 5 figs., 5 tabs.

  16. Next generation safeguards initiative (NGSI) program plan for safeguards by design

    SciTech Connect (OSTI)

    Demuth, Scott F; Budlong - Sylvester, Kory; Lockwood, Dunbar

    2010-01-01

    Safeguards by Design (SBD) is defined as the incorporation of safeguards features early in the design phase of a new nuclear facility in order to avoid the need to redesign the facility at a later date, or retrofit the completed facility. Not only can SBD avoid the need for redesign or retrofit, but consideration of safeguards features early in the facility design effort can provide for a more efficient and effective safeguards design. A program has been initiated by the United States Department of Energy during the past several years to develop, demonstrate and institutionalization SBD. This plan has been developed in parallel with a similar effort at the IAEA while taking into account their achievements and future plans. The United States SBD program is focused on (1) identification of best practices that satisfy existing safeguards requirements, (2) identification of advanced concepts where best practices can be improved, and (3) institutionalizing SBD by gaining its acceptance as a global norm for the design of new nuclear facilities. SBD guidance documents are being prepared as an aid to industry for their design activities, to describe the relationship between requirements, best practices, and advanced concepts. SBD 'lessons learned' studies have been conducted to help identify the existing best practices and potential areas for improvement. Finally, acceptance as a global norm is being pursued by way of international workshops, engagement with industry and the IAEA, and setting an example by way of its use in new nuclear facilities in the United States.

  17. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review May 31-June 2, 2005 Berkeley, CA August 2005 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies August 8, 2005 Dear Colleague: This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review. The review was held at the

  18. Storm and combined sewer overflow: An overview of EPA's Research Program. Book chapter

    SciTech Connect (OSTI)

    Field, R.

    1993-01-01

    The report represents an overview of the EPA's Storm and Combined Sewer Pollution Control Research Program performed over a 20-year period beginning with the mid-1960s. It covers Program involvements in the development of a diverse technology including pollution-problem assessment/solution methodology and associated instrumentation and stormwater management models, best management practices, erosion control, infiltration/inflow, control, control-treatment technology and the associated sludge and solids residuals handling and many others.

  19. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program 2009-2015 with program activities to 2025 Multi-Year Research, Development and Demonstration Plan Draft Clean, domestic, ubiquitous, renewable, baseload energy Cover Photo is Calpine's Sonoma Geothermal Plant at The Geysers feld in Northern California NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

  20. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect (OSTI)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.