Powered by Deep Web Technologies
Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network (OSTI)

Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst. Wind monitoring equipment, and wind roses are included in APPENDIX B. July 24, 2009 Renewable Energy Research Laboratory Page 9, if the wind speed July 24, 2009 Renewable Energy Research Laboratory Page 13 University of Massachusetts

Massachusetts at Amherst, University of

2

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network (OSTI)

by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst. Wind monitoring/RERL_Fact_Sheet_6_Wind_resource_interpretation.pdf * 1 m/s = 2.237 mph. November 16, 2009 Renewable Energy Research Energy Research Laboratory Page 12 University of Massachusetts, Amherst Amherst, MA 01003 #12;Wind Roses

Massachusetts at Amherst, University of

3

Stirling engine research at national and university laboratories in Japan  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

Hane, G.J.; Hutchinson, R.A.

1987-09-01T23:59:59.000Z

4

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network (OSTI)

by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst. Wind monitoring-month period. This graph shows the trends in the wind speed over the year. June 9, 2009 Renewable Energy Renewable Energy Research Laboratory Page 9 University of Massachusetts, Amherst Amherst, MA 01003 #12;Wind

Massachusetts at Amherst, University of

5

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network (OSTI)

by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst. Wind monitoring Energy Research Laboratory Page 9 University of Massachusetts, Amherst Amherst, MA 01003 #12;Wind Speed deviation, wind direction, temperature, and solar insolation. F1 > TF1 > F2 June 12, 2009 Renewable Energy

Massachusetts at Amherst, University of

6

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network (OSTI)

by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst. Wind monitoring. This graph shows the trends in the wind speed over the year. March 18, 2008 Renewable Energy Research and diurnal average plots, and wind roses are included in APPENDIX B. March 18, 2008 Renewable Energy Research

Massachusetts at Amherst, University of

7

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network (OSTI)

by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst. Wind monitoring/RERL_Fact_Sheet_6_Wind_resource_interpretation.pdf * 1 m/s = 2.237 mph. July 17, 2009 Renewable Energy Research 5 0 Figure 2 ­ Wind Speed Time Series, March 1, 2009 ­ May 31, 2009 July 17, 2009 Renewable Energy

Massachusetts at Amherst, University of

8

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network (OSTI)

Distributions Figure 3­ Wind Speed Distribution, March 1, 2008 ­ May 31, 2008. August 21, 2008 Renewable Energy Average Wind Speeds, 30 m, March 1, 2008 ­ May 31, 2008. August 21, 2008 Renewable Energy Research Energy Research Laboratory Page 20 University of Massachusetts, Amherst Amherst, MA 01003 Wind Rose Data

Massachusetts at Amherst, University of

9

Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education  

SciTech Connect

The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs.

Woodall, D.M.; Dolan, T.J.; Stephens, A.G. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

10

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network (OSTI)

/RERL_Fact_Sheet_6_Wind_resource_interpretation.pdf * 1 m/s = 2.237 mph. April 10, 2008 Renewable Energy Research Average Wind Speeds, Dec 1, 2007 ­ February 9, 2008. April 10, 2008 Renewable Energy Research Laboratory­ Turbulence Intensity vs. Wind Speed, Dec 1, 2007 ­ February 9, 2008. April 10, 2008 Renewable Energy Research

Massachusetts at Amherst, University of

11

Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute  

DOE Green Energy (OSTI)

The Earth Science Laboratory of the University of Utah Research Institute has been involved in research in geothermal exploration and development for the past eleven years. Our work has resulted in the publication of nearly 500 reports, which are listed in this document. Over the years, we have collected drill chip and core samples from more than 180 drill holes in geothermal areas, and most of these samples are available to others for research, exploration and similar purposes. We hope that scientists and engineers involved in industrial geothermal development will find our technology transfer and service efforts helpful.

Wright, Phillip M.; Ruth, Kathryn A.; Langton, David R.; Bullett, Michael J.

1990-03-30T23:59:59.000Z

12

University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992  

SciTech Connect

This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

Not Available

1992-07-01T23:59:59.000Z

13

Sandia National Laboratories: Research: Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging creative research to innovate solutions for our nation's greatest challenges. National laboratories have been entrusted with the role of serving as incubators for...

14

M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo  

NLE Websites -- All DOE Office Websites (Extended Search)

width measurement and control width measurement and control M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo H. Tomizawa, N. Kumagai SPring-8, Japan Synchrotron Radiation Institute June 26, 2004 International Symposium on Ultrafast Accelerators for Pulse Radiolysis Femtosecond Electron Bunch Diagnostics Incoherent Radiation Coherent Radiation Streak Camera or Single-shot Acquisition of Spectrum Bunch Form Factor Bunch Shape Fluctuation Method 2nd Order Correlation Bunch Form Factor

15

NETL: Onsite Research - University Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Onsite Research University Projects The National Energy Technology Laboratory (NETL) is helping to overcome a growing national problem of a diminishing number of new energy...

16

Education Office / Fermi National Accelerator Laboratory U. S. Department of Energy's Office of Science / Managed by Universities Research Association, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Office / Fermi National Accelerator Laboratory Education Office / Fermi National Accelerator Laboratory U. S. Department of Energy's Office of Science / Managed by Universities Research Association, Inc. Kirk Road and Pine Street / M.S. 226 / P.O. Box 500 / Batavia, IL 60510 / 630.840.3092 / www-ed.fnal.gov Physics Workshop and Field Trip for Grades 6-9 Sampler Introduction "Beauty" and "Charm" are the fanciful names of two of six fundamental particles called quarks. Part of the experimental verification for the existence of quarks was carried out at Fermilab. However, this unit was titled Beauty and Charm at Fermilab with a second meaning in mind. Fermilab, as any visitor will attest, is a place of beauty-a high-rise main building with architec- ture inspired by a French cathedral and set on a prairie-like plain reminiscent of early Illinois. In

17

2009 University Coal Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 University Coal Research Program 2009 University Coal Research Program Description The University Coal Research (UCR) Program provides grants to U.S. colleges and universities to support fundamental research and to develop efficient and environmentally responsible fossil energy technologies. Funded by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE), the program is carried out by DOE's National Energy Technology Laboratory (NETL).

18

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

19

Mitsuru Uesaka Nuclear Engineering Research Laboratory ,  

NLE Websites -- All DOE Office Websites (Extended Search)

plasma cathode by 12 TW, 50 fs laser and its application to radiation chemistry Mitsuru Uesaka Nuclear Engineering Research Laboratory , University of Tokyo June 26, 2004...

20

Tom Lograsso, Ames Laboratory (Iowa State University), Future...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research: Critical Materials for 21st Century Industry Tom Lograsso, Ames Laboratory (Iowa...

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo  

NLE Websites -- All DOE Office Websites (Extended Search)

status of status of photocathodes in Japan M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo H. Tomizawa, N. Kumagai SPring-8, Japan Synchrotron Radiation Institute June 26, 2004 International Symposium on Ultrafast Accelerators for Pulse Radiolysis Network and Collaboration under National Project on Advanced Compact Accelerator for Medical Use hosted by National Institute for Radiological Science 1. Mg (QE~10 -3 ) photoinjector : U.Tokyo/SPring8 2. Cs 2 Te(QE~10 -2 ) load-lock-type photoinjector : KEK/Nagoya Univ.. 3. Cs2Te/Diamond (QE~10 -1 ) cartridge-type photoinjector : SPring8/U.Tokyo/Hamamatsu Photonics Cathode Surface CCD Image of the cathode surface 8 mm 6 mm Apr. 2003 2cm Aug. 2002 Craters due to the RF discharge on the cathode surface

22

M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature control for systems Temperature control for systems M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo H. Tomizawa, N. Kumagai SPring-8, Japan Synchrotron Radiation Institute June 26, 2004 International Symposium on Ultrafast Accelerators for Pulse Radiolysis Requirement of stable synchronization 0.4 psec (FWHM) 0.8 psec (FWHM) Profile of electron Profile of laser Time Difference "Synchronization" Typical Femtosecond Streak Camera Image of Synchronization * The S-band linac with Mg photocathode RF injector has been developed for radiation chemistry. * The radiation chemistry experiment requires a time resolution in a range of sub-picosecond. * The time resolution is defined by... pulse duration of pump-beam, and probe-laser, synchronization between

23

Direct-Drive Inertial Fusion Research at the University of Rochester's Laboratory for Laser Energetics: A Review  

SciTech Connect

This paper reviews the status of direct-drive inertial confinement fusion (ICF) research at the University of Rochester's Laboratory for Laser Energetics (LLE). LLE's goal is to demonstrate direct-drive ignition on the National Ignition Facility (NIF) by 2014. Baseline "all-DT" NIF direct-drive ignition target designs have been developed that have a predicted gain of 45 (1-D) at a NIF drive energy of ~1.6 MJ. Significantly higher gains are calculated for targets that include a DT-wicked foam ablator. This paper also reviews the results of both warm fuel and initial cryogenic-fuel spherical target implosion experiments carried out on the OMEGA UV laser. The results of these experiments and design calculations increase confidence that the NIF direct-drive ICF ignition goal will be achieved.

McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Bahr, R.E.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Donaldson, W.R.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Jaanimagi, P.A.; Keck, R.L.; Kelly, J.H.; Kessler, T.J.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Lund, L.D.; Marozas, J.A.; McKenty, P.W.; Marshall, F.J.; Morse, S.F.B.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Roberts, S.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Thorp, K.A.; Yaakobi, B.; Zuegel, J.D.

2010-04-16T23:59:59.000Z

24

Research Specialist/Laboratory Manager Stable Isotope Laboratory for Earth and Environmental Science Research  

E-Print Network (OSTI)

Research Specialist/Laboratory Manager Stable Isotope Laboratory for Earth and Environmental Science Research Department of Geology & Planetary Science, University of Pittsburgh We invite applications for a full-time Research Specialist/Laboratory Manager position for the Stable Isotope Laboratory

Sibille, Etienne

25

Nevis Cyclotron Laboratories Columbia University  

NLE Websites -- All DOE Office Websites (Extended Search)

'i 'i ~ . 0 p 4 Nevis Cyclotron Laboratories Columbia University Department of Physics New York, New York THEORY OF MULTIPLE COULOMB SCATTERING FROM EXTENDED NUCLEI Leon N. Cooper and James Rainwater z , I i -- Joint ONR-AEC Program Office of Naval Research Contract Contract N6-ori-110-Task No. 1 Nevis - 4 - cu - 7 0 P-" This report has been photostated to fill your request as our sup- ply of copies w a s exhausted. If you should find that you do not need to retain this copy permanently in your files, we would greatly appreciate your returning it to TIS so that i t may be used to fill future requests from other AEC installations. t ? DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

26

Research Laboratory Experiments with Energy Efficiency Upgrades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Julie McAlpin Communications Liaison, State Energy Program

27

Research Laboratory Experiments with Energy Efficiency Upgrades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Julie McAlpin Communications Liaison, State Energy Program

28

Building and Fire Research Laboratory  

Science Conference Proceedings (OSTI)

Page 1. NISTIR 4827 Building and Fire Research Laboratory Publications, 1991 Nora H. Jason N lsr United States Department ...

2004-05-25T23:59:59.000Z

29

National Fire Research Laboratory Group  

Science Conference Proceedings (OSTI)

... scale fire experiments is essential to understanding ... there is no research facility in the ... Facilities. National Fire Research Laboratory. staff_directory. ...

2013-05-06T23:59:59.000Z

30

University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1993 and research proposal for FY 1994  

SciTech Connect

The materials research laboratory program is about 30% of total Materials Science and Engineering effort on the Univ. of Illinois campus. Coordinated efforts are being carried out in areas of structural ceramics, grain boundaries, field responsive polymeric and organic materials, molecular structure of solid-liquid interfaces and its relation to corrosion, and x-ray scattering science.

Birnbaum, H.K.

1993-03-01T23:59:59.000Z

31

NREL: Research Facilities - Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

used to research and develop advanced heat-transfer fluids for the next generation of parabolic trough solar systems. Learn more about the Advanced Thermal Storage Materials...

32

Sandia National Laboratories: Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Bioscience Investigating cellular and biomolecular processes for bioenergy and biodefense. Computing and information science Developing essential tools for solving the...

33

Research | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Division focus on research that addresses grand challenges in nanoscience and nanotechnology and advances the division's user mission. Further, we are exploring ways to tailor...

34

Solar Radiation Research Laboratory (SRRL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Laboratory Renewable Energy Laboratory Solar Radiation Research Laboratory (SRRL) Instrument Calibrations Weather Observations Measurement Research Support Measurements & Instrumentation Team Center for Electric & Hydrogen Technologies & Systems http://www.nrel.gov/srrl NREL * * * * 1617 Cole Boulevard * * * * Golden, Colorado 80401-3393 * * * * (303) 275-3000 Operated for the U.S. Department of Energy by Midwest Research Institute * * * * Battelle * * * * Bechtel Mission Provide a unique outdoor research facility for supporting renewable energy conversion technologies and climate change studies for the U.S. Department of Energy (DoE). Objectives * Provide Improved Methods for Radiometer Calibrations * Develop a Solar Resource Climate Database for Golden, Colorado

35

Environmental assessment for the decommissioning and decontamination of contaminated facilities at the Laboratory for Energy-Related Health Research University of California, Davis  

SciTech Connect

The Laboratory for Energy-Related Health Research (LEHR) was established in 1958 at its present location by the Atomic Energy Commission. Research at LEHR originally focused on the health effects from chronic exposures to radionuclides, primarily strontium 90 and radium 226, using beagles to simulate radiation effects on humans. In 1988, pursuant to a memorandum of agreement between the US Department of Energy (DOE) and the University of California, DOE`s Office of Energy Research decided to close out the research program, shut down LEHR, and turn the facilities and site over to the University of California, Davis (UCD) after remediation. The decontamination and decommissioning (D&D) of LEHR will be managed by the San Francisco Operations Office (SF) under DOE`s Environmental Restoration Program. This environmental assessment (EA) addresses the D&D of four site buildings and a tank trailer, and the removal of the on-site cobalt 60 (Co-60) source. Future activities at the site will include D&D of the Imhoff building and the outdoor dog pens, and may include remediation of underground tanks, and the landfill and radioactive disposal trenches. The remaining buildings on the LEHR site are not contaminated. The environmental impacts of the future activities cannot be determined at this time because the extent of contamination has not yet been ascertained. The impacts of these future activities (including the cumulative impacts of the future activities and those addressed in this EA) will be addressed in future National Environmental Policy Act (NEPA) documentation.

1992-09-01T23:59:59.000Z

36

NREL: Solar Radiation Research - Metrology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Metrology Laboratory Photo of Solar Radiation Research Laboratory researchers inspecting radiometers mounted to calibration tables at the outside test site. Researchers at the...

37

Nevis Cyclotron Laboratories Columbia University Physics Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevis Cyclotron Laboratories Nevis Cyclotron Laboratories Columbia University Physics Department Irvington-on-Hudson, New York WEAK INTERACTIONS T. D. Lee CU-144-57-ONR-110-l-Physics Reproduction in whole or in part is permitted for any purpose of the United States Government June, 1957 Joint ONR-AEC Program Office of Naval Research Contract Contract N6-ori-110-Task No. 1 Contract AT(30-1)-1932 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

38

INDEPENDENT CONFIRMATORY SURVEY OF THE NUCLEAR RESEARCH LABORATORY AT THE UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN, ILLINOIS  

SciTech Connect

ORAU conducted confirmatory survey activities within the NRL at the University during the week of May 7, 2012. The survey activities included visual inspections/ assessments, surface activity measurements, and volumetric concrete sampling activities. During the course of the confirmatory activities, ORAU noted several issues with the survey-for-release activities performed at the University. Issues included inconsistencies with: survey unit classifications were not designated according to Multi-Agency Radiation Survey and Site Investigation Manual guidance; survey instrument calibrations were not representative of the radionuclides of concern; calculations for instrumentation detection capabilities did not align with the release criteria discussed in the licensees survey guidance documents; total surface activity measurements were in excess of the release criteria; and Co-60 and Eu-152 concentrations in the confirmatory concrete samples were above their respective guidelines. Based on the significant programmatic issues identified, ORAU cannot independently conclude that the NRL satisfied the requirements and limits for release of materials without radiological restrictions.

EVAN M. HARPENAU

2012-06-28T23:59:59.000Z

39

SOLERAS - Saudi University Solar Cooling Laboratories Project: University of Riyadh. Solar air conditioning. Final report  

Science Conference Proceedings (OSTI)

Research on solar air conditioning at the University of Riyadh in Riyhadh, Saudi Arabia is presented. Topics relevant to the university's proposed solar cooling laboratory are discussed: absorption systems and various contingencies, photovoltaic solar collectors and thermoelectric elements, measuring instruments, solar radiation measurement and analysis, laboratory specifications, and decision theories. Dual cycle computations and equipment specifications are included among the appendices.

Not Available

1986-01-01T23:59:59.000Z

40

Chemical research at Argonne National Laboratory  

Science Conference Proceedings (OSTI)

Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

NONE

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Researcher, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Paul Dodd Researcher, Sandia National Laboratories Paul Dodd Paul Dodd Role: Researcher, Sandia National Laboratories Award: Fellow of the Institute of Electrical & Electronics...

42

Commissioning a materials research laboratory  

DOE Green Energy (OSTI)

This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented in a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.

SAVAGE,GERALD A.

2000-03-28T23:59:59.000Z

43

Oak Ridge National Laboratory - Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seed Money Fund Overview The Seed Money Fund of the ORNL LDRD program supports innovative ideas that have the potential of enhancing the Laboratory's core scientific and technical...

44

NEVIS CYCLOTRON LABORATORY COLUMBIA UNIVERSITY PHYSICS DEPARTMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

u u NEVIS- 97 'FASTER NEVIS CYCLOTRON LABORATORY COLUMBIA UNIVERSITY PHYSICS DEPARTMENT I rvington-on-Hudson, New York The Parity of the Neutral Pion and the Decay Tr° - 2e + 2e~ N. P. SAMIOS, R. PLANO, A. PRODELL, M. SCHWARTZ and J. STEINBERGER Office of Naval Research Contract Nonr-265(7 2) Atomic Energy Commission Contract AT( 30-l)-1932 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

45

Laboratory Directed Research & Development | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development > Laboratory Directed Research &...

46

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research...

47

University Research Consortium annual review meeting program  

Science Conference Proceedings (OSTI)

This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

NONE

1996-07-01T23:59:59.000Z

48

Laboratory Directed Research and Development FY 2000  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

Hansen, Todd; Levy, Karin

2001-02-27T23:59:59.000Z

49

Laboratory Directed Research and Development FY 2000  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

Hansen, Todd; Levy, Karin

2001-02-27T23:59:59.000Z

50

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact For more information about Sandia technology deployment centers or for help in selecting a center to meet your needs, contact Mary Monson at mamonso@sandia.gov, (505) 844-3289. Advanced Power Sources Laboratory Combustion Research Facility Design, Evaluation, and Test Technology Facility

51

Reclassification of the Tritium Research Laboratory  

SciTech Connect

This document is a collection of the required actions that were taken to reclassify Building 968, the Tritium Research Laboratory, at Sandia National Laboratories/California.

Johnson, A.J.

1997-01-01T23:59:59.000Z

52

Collaborative University Research Education | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborative University Research Collaborative University Research SHARE Collaborative University Research ORNL scientist Jonathan Mielenz works in an anaerobic chamber used to handle biomass-degrading microbes at the Joint Institute for Biological Sciences.Source: ORNL Flickr site With a strong commitment to education, ORNL maintains relationships with many educational institutions and organizations. Many student and faculty programs are administered through Oak Ridge Associated Universities (ORAU) and include opportunities for undergraduates, graduates, postgraduates, faculty, and some pre-college students. The lab also partners with the University of Tennessee in several joint research efforts and though programs aimed at training the next generation of interdisciplinary scientists. These collaborations include:

53

Material Measurement Laboratory Professional Research ...  

Science Conference Proceedings (OSTI)

... at the NIST, Gaithersburg Laboratories in Gaithersburg ... NIST Hollings Marine Laboratory (HML) in ... sponsoring institution of higher education and be ...

2013-05-26T23:59:59.000Z

54

SLAC National Accelerator Laboratory - Breakthrough Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Society in Germany; Stockholm University in Sweden; and the Technical University of Denmark. This work was supported by DOE's Office of Science, the Swedish National Research...

55

PNNL Laboratory Research Homes Pacific Northwest National Laboratory's Lab Homes  

E-Print Network (OSTI)

PNNL Laboratory Research Homes Pacific Northwest National Laboratory's Lab Homes Residential, or PNNL, has purchased two custom, factory-built, double-wide homes to conduct energy research. These "Lab Homes" are a project test-bed for PNNL and its research partners who aim to achieve highly energy

56

University Turbine Systems Research Program  

SciTech Connect

The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

Leitner, Robert; Wenglarz, Richard

2010-12-31T23:59:59.000Z

57

Sandia National Laboratories: Advanced Simulation Computing: Research &  

NLE Websites -- All DOE Office Websites (Extended Search)

Research & Collaboration Research & Collaboration Partnerships among the national laboratories, industry, and academia leverage a broad spectrum of talent and multiply the effectiveness of our research efforts. These collaborations help solve the challenges of developing computing platforms and simulation tools across a number of disciplines. Computer Science Research Institute The Computer Science Research Institute brings university faculty and students to Sandia for focused collaborative research on DOE computer and computational science problems. Organized under the DOE Stockpile Computing Program, participants conduct leading-edge research, interact with scientists and engineers at the Laboratories, and help transfer the results of their research to programs at the Labs.

58

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center...

59

Algal Biofuels Research Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-08-01T23:59:59.000Z

60

NAVAL RESEARCH LABORATORY Information Technology Solutions  

power (CHP) or emergency backup power Small, High Efficiency, Recuperated Ceramic Turboshaft Engine NAVAL RESEARCH LABORATORY TECHNOLOGY T RANSFER ...

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Review of OLED Research at Naval Research Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Division at Naval Research Laboratory. Her research is focused on organic light emitting diode (OLED) material and devices. She will discuss the research activities at Naval...

62

Photobiology Research Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

2012-06-01T23:59:59.000Z

63

Photobiology Research Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

Not Available

2012-06-01T23:59:59.000Z

64

Sponsored Research - Oak Ridge National Laboratory | ORNL  

Sponsored Research SBIR/STTR Support. The Oak Ridge National Laboratory is happy to support companies participating in Small Business Innovation Research (SBIR) and ...

65

NIST: Physical Measurement Laboratory - Research ...  

Science Conference Proceedings (OSTI)

... Fellowships: SURFing the Physical Measurement Laboratory ... Optical, Radiation, and Chemical Physics. ... involves PML's Quantum Physics Division. ...

2010-10-05T23:59:59.000Z

66

University Advanced Coal Generation Research  

Science Conference Proceedings (OSTI)

In 2012, the Electric Power Research Institute (EPRI) was a sponsor of projects conducted under the auspices of two consortia that support university research for coal-based power generation: the Biomass and Fossil Fuel Research Alliance (BF2RA) in the United Kingdom and the University Turbine System Research (UTSR) program of the United States Department of Energy (DOE). This technical update report describes the progress made in both of those ...

2012-12-12T23:59:59.000Z

67

NREL: Wind Research - Structural Testing Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Testing Laboratory Structural Testing Laboratory Photo of NREL's Wind Research User Facility. Shown in front are several test bays that protect proprietary information while companies disassemble turbines to analyze, test, and modify individual components. NREL's Structural Testing Laboratory includes office space for industry researchers, houses experimental laboratories, computer facilities, space for assembling turbines, components, and blades for testing. Credit: Patrick Corkery. NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components and turbines for atmospheric testing. The facility also houses two blade stands equipped with overhead cranes and

68

Sandia National Laboratories: Research: Research Foundations...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Geoscience Geoscience photo The Geoscience Research...

69

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Clean Coal Crosscutting Research University Coal Research University Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal...

70

SLAC National Accelerator Laboratory - Researchers Demonstrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Nature by a team including scientists from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University. "We still have a number of...

71

SOLERAS - Saudi University Solar Cooling Laboratories Project: King Abdulaziz University. Solar cooling systems design report. Phase 1 report  

SciTech Connect

An assessment of the performance and adaptability of solar cooling systems to the Saudi Arabian environment was studied at King Abdulaziz University. Development of a solar research laboratory and the hardware and software available for installation are considered. The university's facilities for solar energy research are briefly described. A budget for the research project is proposed. (BCS)

Not Available

1986-01-01T23:59:59.000Z

72

Researcher, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Laboratories Award: Fellows of the American Association for the Advancement of Science Profile: Sandia researchers David Haaland and David Myers have been elected Fellows...

73

Laboratory Directed Research and Development Program  

Submit completed application (Word doc) to innovation@lbl.gov by October 15, 2013. August 20, 2013. Title: Laboratory Directed Research and Development Program Author:

74

Maximum Building Energy Efficiency Research Laboratory secures...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Network - Maximum Building Energy Efficiency Research Laboratory secures LEED Gold July 01, 2013 The recently completed 14.3m Maximum Building Energy Efficiency...

75

The University of Maryland Energy Research Center  

E-Print Network (OSTI)

.S. ranking in the 2007 DOE Solar Decathlon. The university's campus is a living laboratory of "smartgrid

Gruner, Daniel S.

76

Laboratory E133 - Material Science and Hydrogen Research ...  

Science Conference Proceedings (OSTI)

... E137 | E138. Laboratory E133 - Material Science and Hydrogen Research Laboratory. Laboratory Contacts. Name: Kimberly ...

2013-09-05T23:59:59.000Z

77

Transport Research Laboratory | Open Energy Information  

Open Energy Info (EERE)

Transport Research Laboratory Transport Research Laboratory Jump to: navigation, search Tool Summary Name: Transport Research Laboratory Agency/Company /Organization: Transport Research Laboratory Focus Area: Governance - Planning - Decision-Making Structure Topics: Potentials & Scenarios Resource Type: Website Website: www.trl.co.uk/ The UK's Transport Research Laboratory is an internationally recognised centre of excellence providing world-class research, consultancy, testing and certification for all aspects of transport. The website provides publications, news, software and many other products and services related to transport How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

78

LBL-15480 Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA  

NLE Websites -- All DOE Office Websites (Extended Search)

5480 5480 Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Materials & Molecular Research Division Presented at the International Conference on Photochemistry and Photobiology, Alexandria, Egypt, January 5-10, 1983 MOLECULAR BEAM STUDIES OF PRIMARY PHOTOCHEMICAL PROCESSES Yuan T. Lee December 1982 Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 DISTRIBUTION OF THIS DOCUMENT 16 miMVrf} LEGAL NOTICE This book was prepared as an account of work

79

Laboratory Directed Research and Development Program FY 2007  

Science Conference Proceedings (OSTI)

Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

Hansen, Todd C; editor, Todd C Hansen,

2008-03-12T23:59:59.000Z

80

Photobiology Research Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Photobiology Research Photobiology Research Laboratory Understanding fundamental biological processes for the production of fuels and chemicals, and understanding electron transport for hybrid generation of solar fuels NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The photobiology group's research is in four main areas: * Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms * Characterization and engineering of redox enzymes and proteins for fuel production * Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels * Studies of nanosystems using biological and non-

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sandia National Laboratories: Research: Research Foundations...  

NLE Websites -- All DOE Office Websites (Extended Search)

Starodub and Kevin McCarty around the Low Energy Electron Microscope used to study graphene growth. Sandia's Materials Science Research Foundation works to understand materials...

82

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Coal Research University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research proposals. Today approximately 16 percent of the Office of Fossil Energy's annual R&D funding goes to academic institutions. The University Coal Research Program Universities have traditionally fared well in the Energy Department's open competitions for federal research grants and contracts. In 1979, however, the Department took an additional step to encourage greater university participation in its fossil energy program. The agency set aside funding for a special university-only competition that required professors to conduct cutting-edge research alongside students who were pursuing advanced

83

Laboratory Directed Research & Development (LDRD) Day  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs » Programs » Laboratory Directed Research & Development » Laboratory Directed R&D Day Laboratory Directed Research and Development Day National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact Andrea Maestas LDRD Program (505) 667-1230 Email LDRD Day 2012 Learn how LDRD innovations benefit our nation Los Alamos National Laboratory hosted its fourth annual Laboratory Directed Research and Development (LDRD) Day on October 23, 2012, at Buffalo Thunder in Pojoaque, New Mexico. More than 30 scientists and engineers from the Lab presented posters about their LDRD projects, answering questions and

84

LWA-0003 - In the Matter of Universities Research Association, Inc. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Matter of Universities Research Association, Inc. In the Matter of Universities Research Association, Inc. LWA-0003 - In the Matter of Universities Research Association, Inc. Universities Research Association, Inc. (URA) manages and operates the Department of Energy's Superconducting Super Collider Laboratory (the Laboratory) in Waxahachie, Texas. On October 27, 1992, URA notified Dr. Naresh Mehta, a physicist at the Laboratory, that it was dismissing him from his employment. Mehta subsequently filed a complaint of reprisal under the provisions of the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708 (the Whistleblower Regulations). In his complaint, Mehta alleged that URA had dismissed him because he had charged URA with mismanaging the Laboratory's hypercube computer.

85

LWZ-0023 - In the Matter of Universities Research Association, Inc. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWZ-0023 - In the Matter of Universities Research Association, Inc. LWZ-0023 - In the Matter of Universities Research Association, Inc. LWZ-0023 - In the Matter of Universities Research Association, Inc. Universities Research Association, Inc. (URA) is the management and operating contractor for the Department of Energy's (the DOE) Superconducting Super Collider Laboratory (the Laboratory) in Waxahachie, Texas. On February 4, 1993, Dr. Naresh C. Mehta, a former physicist at the Laboratory, filed complaint SSC-93-0001 against URA under 10 C.F.R. Part 708 (the "Whistleblower Regulations"). In his complaint, Mehta alleged that URA had terminated his employment because he had charged URA officials with mismanaging the Laboratory's hypercube computer. 1/ The DOE referred Mehta's complaint to its Office of Contractor Employee

86

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Sciences Experimental Facilities (ESEF) Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Ion Beam Laboratory Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test Technology Facility Research Engineering Sciences Experimental Facilities (ESEF) The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer,

87

Risk assessment technique for evaluating research laboratories  

SciTech Connect

A technique has been developed to evaluate research laboratories according to risk, where risk is defined as the product of frequency and consequence. This technique was used to evaluate several laboratories at the Idaho National Engineering Laboratory under the direction of the Department of Energy, Idaho Field Office to assist in the risk management of the Science and Technology Department laboratories. With this technique, laboratories can be compared according to risk, and management can use the results to make cost effective decisions associated with the operation of the facility.

Bolander, T.W.; Meale, B.M.; Eide, S.A.

1992-01-01T23:59:59.000Z

88

Risk assessment technique for evaluating research laboratories  

SciTech Connect

A technique has been developed to evaluate research laboratories according to risk, where risk is defined as the product of frequency and consequence. This technique was used to evaluate several laboratories at the Idaho National Engineering Laboratory under the direction of the Department of Energy, Idaho Field Office to assist in the risk management of the Science and Technology Department laboratories. With this technique, laboratories can be compared according to risk, and management can use the results to make cost effective decisions associated with the operation of the facility.

Bolander, T.W.; Meale, B.M.; Eide, S.A.

1992-09-01T23:59:59.000Z

89

Ground-water characterization field activities for 1995--1996 Laboratory for Energy-Related Health Research, University of California, Davis  

SciTech Connect

This report documents ground-water characterization field activities completed from August to December 1995 and in January 1996 at the Laboratory for Energy-Related Health Research (LEHR) in Davis, California. The ground water at LEHR is one of several operable units under investigation by Pacific Northwest National Laboratory for the US Department of Energy. The purpose of this work was to further characterize the hydrogeology beneath the LEHR site, with the primary focus on ground water. The objectives were to estimate hydraulic properties for the two uppermost saturated hydrogeologic units (i.e., HSU-1 and HSU-2), and to determine distributions of contaminants of concern in these units. Activities undertaken to accomplish these objectives include well installation, geophysical logging, well development, ground-water sampling, slug testing, Westbay ground-water monitoring system installation, continuous water-level monitoring, Hydropunch installation, and surveying. Ground-water samples were collected from 61 Hydropunch locations. Analytical results from these locations and the wells indicate high chloroform concentrations trending from west/southwest to east/northeast in the lower portion of HSU-1 and in the upper and middle portions of HSU-2. The chloroform appears to originate near Landfill 2. Tritium was not found above the MCL in any of the well or Hydropunch samples. Hexavalent chromium was found at four locations with concentrations above the MCL in HSU-1 and at one location in HSU-2. One well in HSU-1 had a total chromium concentration above the MCL. Nitrate-nitrogen above the MCL was found at several Hydropunch locations in both HSU-1 and HSU-2.

Liikala, T.L.; Lanigan, D.C.; Last, G.V. [and others

1996-05-01T23:59:59.000Z

90

BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

6328 6328 CRISP 71-57 BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc. Upton, New York ACCELERATOR DEPARTMENT Informal Report Mi m HIGH ENERGY ELECTROMAGNETIC AND WEAK INTERACTION PROCESSES T.D. Lee January 11, 1972 N O T I C E This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employeear,^\,nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, complete- ness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

91

NREL: Concentrating Solar Power Research - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: High-Flux Solar Furnace (HFSF) Large Payload Solar Tracker Advanced Optical Materials Laboratory Advanced Thermal Storage Materials Laboratory Optical Testing Laboratory and Beam Characterization System Receiver Test Laboratory Heat Collection Element (HCE) Temperature Survey Photo of NREL's High-Flux Solar Furnace. NREL's High-Flux Solar Furnace. High-Flux Solar Furnace (HFSF) The power generated at NREL's High-Flux Solar Furnace (HFSF) can be used to expose, test, and evaluate many components-such as receivers, collectors, and reflector materials-used in concentrating solar power systems. The 10-kilowatt HFSF consists of a tracking heliostat and 25 hexagonal

92

Sandia National Laboratories: Research: Research Foundations: Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Science Engineering Science The Engineering Science Research Foundation is leading engineering transitions in advanced, highly critical systems by integrating theory development, experimental discovery and diagnostics, modeling, and computational approaches to refine our understanding of complex behavior in engineered systems. Why our work matters Revolutionizing the fundamental understanding of complex engineered systems can lead to enhancements that will bolster our national security stance for decades to come. Our unique value Leading-edge work on physical phenomena at the continuum and near-continuum scale Engineering expertise in national security systems that is second to none Foundational knowledge across multiple disciplines, including solid mechanics, fluid mechanics of reacting and nonreacting systems, structural

93

Sandia National Laboratories: Research: Research Foundations: Nanodevices  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanodevices and Microsystems Nanodevices and Microsystems Microsystems-enabled photovoltaics, also known as solar glitter To enable new and increasingly powerful macrosystem capabilities for critical national systems, the Nanodevices and Microsystems Research Foundation works to increase understanding of physical phenomena across the quantum- to microscale continuum, create novel nano- and microscale devices, achieve new methods of integration, and realize novel microsystems-based complex systems. Why our work matters Microelectronic circuits have a strong history of dramatically improving the performance, functionality, and reliability of national security platforms. Adding microscale sensors, photonics, and micro-electro-mechanical systems (MEMS) to such platforms enables even further improvements to ensure a more robust national security profile.

94

University Teams Lead Innovative Solar Research Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Teams Lead Innovative Solar Research Projects University Teams Lead Innovative Solar Research Projects University Teams Lead Innovative Solar Research Projects August 28, 2012 - 2:55pm Addthis A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? The Energy Department is investing in two university-led projects to improve the performance of concentrated solar power systems. Research teams at the University of California, Los Angeles and the University of Arizona are launching projects aimed at improving the performance and lowering costs of solar energy systems.

95

Sandia National Laboratories: Research: Research Foundations: Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Effects and High Energy Density Science Radiation Effects and High Energy Density Science Rings of Saturn, Sandia's workhorse pulsed-power machine. The Radiation Effects and High Energy Density Science Research Foundation seeks to advance science and engineering in the areas of radiation effects sciences, high energy density science, and pulsed-power science and technology to address critical national security issues. Why our work matters We address several issues key to nuclear security and maintaining a safe, secure, and effective nuclear stockpile. For example, radiation effects science ensures that engineered systems are able to operate as intended in the radiation environments they encounter. In addition, high energy density science validates models that are used to certify the performance of the

96

Uncovering Coal's Secrets Through the University Coal Research Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uncovering Coal's Secrets Through the University Coal Research Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program December 18, 2013 - 10:38am Addthis Uncovering Coal’s Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant

97

DOE-NREL Minority University Research Associates Program  

SciTech Connect

The DOE-NREL Minority University Research Associates Program (MURA) encourages minority students to pursue careers in science and technology. In this program, undergraduate students work with principal investigators at their universities to perform research projects on solar technology. Then, students are awarded summer internships in industry or at national laboratories, such as NREL, during the summer. Because of its success, the program has been expanded to include additional minority-serving colleges and universities and all solar energy technologies.

Posey Eddy, F.

2005-01-01T23:59:59.000Z

98

Laboratory Directed Research and Development Program  

E-Print Network (OSTI)

at the University of Wisconsin­Madison, in partnership with the Economic Research Service of the U.S. Department of Public Administration and Policy at American University. Both under- and over-nutrition are important at Kentucky Fried Chicken and/or Church's Fried Chicken); and (3) a soft drink (2-liter bottle of Coca

99

Catalog of research projects at Lawrence Berkeley Laboratory, 1985  

Science Conference Proceedings (OSTI)

This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

Not Available

1985-01-01T23:59:59.000Z

100

National Renewable Energy Laboratory 2004 Research Review  

DOE Green Energy (OSTI)

In-depth articles on several NREL technologies and advances, including: aligning quantum dots and related nanoscience and nanotechnology research; using NREL's Advanced Automotive Manikin (ADAM) to help test and design ancillary automotive systems; and harvesting ocean wind to generate electricity with deep-water wind turbines. Also covered are NREL news, research updates, and awards and honors received by the Laboratory.

Not Available

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Research universities for the 21st century  

SciTech Connect

The `public outcomes` from research universities are educated students and research that extends the frontiers of knowledge. Measures of these `public outcomes` are inadequate to permit either research or education consumers to select research universities based on quantitative performance data. Research universities annually spend over $20 billion on research; 60% of these funds are provided by Federal sources. Federal funding for university research has recently grown at an annual rate near 6% during a time period when other performers of Federal research have experienced real funding cuts. Ten universities receive about 25% of the Federal funds spent on university research. Numerous studies of US research universities are reporting storm clouds. Concerns include balancing research and teaching, the narrow focus of engineering education, college costs, continuing education, and public funding of foreign student education. The absence of research on the `public outcomes` from university research results in opinion, politics, and mythology forming the basis of too many decisions. Therefore, the authors recommend studies of other nations` research universities, studies of various economic models of university research, analysis of the peer review process and how well it identifies the most capable research practitioners and at what cost, and studies of research university ownership of intellectual property that can lead to increased `public outcomes` from publicly-funded research performed by research universities. They advocate two practices that could increase the `public outcomes` from university research. These are the development of science roadmaps that link science research to `public outcomes` and `public outcome` metrics. Changes in the university research culture and expanded use of the Internet could also lead to increased `public outcomes`. They recommend the use of tax incentives to encourage companies to develop research partnerships with research universities.

Gover, J. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Huray, P.G. [Univ. of South Carolina, Columbia, SC (United States)] [Univ. of South Carolina, Columbia, SC (United States)

1998-05-01T23:59:59.000Z

102

Laboratory Directed Research and Development Program FY 2006  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

Hansen (Ed.), Todd

2007-03-08T23:59:59.000Z

103

NETL Publications: The 2011 University Coal Research/Historically Black  

NLE Websites -- All DOE Office Websites (Extended Search)

011 University Coal Research/Historically Black Colleges and Universities and Other Minority Institutions Contractors Review Conference. 011 University Coal Research/Historically Black Colleges and Universities and Other Minority Institutions Contractors Review Conference. June 7-8, 2011 Table of Contents Disclaimer Session 1 Session 2 Session 3 Session 4 PRESENTATIONS Introduction and Opening Remarks Robert Romanosky, Technology Manager, Advanced Research Power Systems, U.S. Department of Energy, National Energy Technology Laboratory Presentation [PDF-883KB] Keynote Address Dr. Ahsan Choudhuri, Director of the University of Texas at El Paso's NASA Center for Space Exploration and Technology Research Presentation [PDF-3.18MB] Session 1 Moderator: Susan Maley, Project Manager, Gasification Division, U.S. Department of Energy, National Energy Technology Laboratory Plasmonics Based Harsh Environment Compatible Chemical Sensors

104

NETL Publications: 2013 UNIVERSITY COAL RESEARCH/HISTORICALLY BLACK  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 UNIVERSITY COAL RESEARCH/HISTORICALLY BLACK COLLEGES 2013 UNIVERSITY COAL RESEARCH/HISTORICALLY BLACK COLLEGES AND UNIVERSITIES AND OTHER MINORITY INSTITUTIONS CONTRACTORS REVIEW MEETING The Wyndham Grand, Pittsburgh Tuesday, June 11, 2013 Registration Opening Remarks Robert Romanosky, Technology Manager, Crosscutting Research SENSORS & CONTROL TECHNOLOGIES Moderator: Steven Markovich, HBCU Program Coordinator, Federal Project Manager, Fuels Division U.S. Department of Energy, National Energy Technology Laboratory High-Temperature Nano-Derived Micro-H2 and H2S Sensors [PDF-11.43MB] Edward Sabolsky, West Virginia University Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor [PDF-14.09MB]

105

The Prototype Digital Weather Laboratory at Colorado State University  

Science Conference Proceedings (OSTI)

A new weather laboratory for teaching and applied research has laboratory uses DEC workstations and also hosts various microcomputers via a local area network to interface with the Cooperative institute for Research in the Atmosphere (CIRA) ...

T. H. Vonder Haar; C. F. Shih; D. L. Randel; J. J. Toth; D. N. Allen; R. A. Pielke; R. Green

1987-03-01T23:59:59.000Z

106

Alden Research Laboratory, Inc | Open Energy Information  

Open Energy Info (EERE)

Research Laboratory, Inc Research Laboratory, Inc Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Alden Research Laboratory, Inc. Address 30 Shrewsbury Street Place Holden, Massachusetts Zip 01520 Sector Hydro Phone number (508) 829-6000 Website http://www.aldenlab.com Coordinates 42.3362629°, -71.8334569° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3362629,"lon":-71.8334569,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Low Dose Radiation Research Program: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories The Low Dose Radiation Program funding encompasses several Scientific Focus Areas (SFAs). The SFAs fund merit-reviewed research at DOE national laboratories. This management approach was created in 2008 by the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's (DOE's) Office of Science. PNNL's Low Dose Radiation Research Program Scientific Focus Area Linear and Nonlinear Tissue-Signaling Mechanisms in Response to Low Dose and Low Dose-Rate Radiation This program is funded as a U.S. Department of Energy Scientific Focus Area (SFA), and is an integrated cooperative program to understand low dose radiation effects in a complex model system. Coordinating Multidisciplinary Expertise The SFAs are designed to take advantage of the multidisciplinary,

108

Researcher, Lawrence Livermore National Laboratory | National Nuclear  

National Nuclear Security Administration (NNSA)

Bruce Macintosh Bruce Macintosh Researcher, Lawrence Livermore National Laboratory Bruce Macintosh Bruce Macintosh Role: Researcher, Lawrence Livermore National Laboratory Award: AAAS Newcomb Cleveland Prize Profile: A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Bruce Macintosh of the Physics and Life Science Directorate was one of the lead authors of the paper titled, "Direct Imaging of Multiple Planets orbiting the Star HR 8799," which appeared in the Nov. 28, 2008 edition of Science. Christian Marois, a former LLNL postdoc now at NRC Herzberg

109

NREL: Solar Radiation Research - Solar Radiation Research Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Radiation Research Laboratory Photographs Solar Radiation Research Laboratory Photographs The Solar Radiation Research Laboratory (SRRL) houses more than 70 instruments to analyze and record solar radiation and surface meteorology data. Learn more about this equipment by exploring the photographs below. Click on a thumbnail to view the full image. Photo of researcher working on an instrument platform in front of the SRRL building. The SRRL is located on South Table Mountain in Golden, Colorado, at 39.74° N, 105.18° W, and 1,829 m AMSL. Photo of four researchers working on equipment atop the SRRL instrument deck. The SRRL's instrument deck is 96 ft long and 16 feet wide. Photo of two pyrheliometers mounted to an automatic sun-tracking base. These two SRRL pyrheliometers are mounted to automatically track the sun

110

SunShot Initiative: National Laboratory Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Photovoltaics National Laboratory Photovoltaics Research to someone by E-mail Share SunShot Initiative: National Laboratory Photovoltaics Research on Facebook Tweet about SunShot Initiative: National Laboratory Photovoltaics Research on Twitter Bookmark SunShot Initiative: National Laboratory Photovoltaics Research on Google Bookmark SunShot Initiative: National Laboratory Photovoltaics Research on Delicious Rank SunShot Initiative: National Laboratory Photovoltaics Research on Digg Find More places to share SunShot Initiative: National Laboratory Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment

111

SunShot Initiative: National Laboratory Concentrating Solar Power Research  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Concentrating National Laboratory Concentrating Solar Power Research to someone by E-mail Share SunShot Initiative: National Laboratory Concentrating Solar Power Research on Facebook Tweet about SunShot Initiative: National Laboratory Concentrating Solar Power Research on Twitter Bookmark SunShot Initiative: National Laboratory Concentrating Solar Power Research on Google Bookmark SunShot Initiative: National Laboratory Concentrating Solar Power Research on Delicious Rank SunShot Initiative: National Laboratory Concentrating Solar Power Research on Digg Find More places to share SunShot Initiative: National Laboratory Concentrating Solar Power Research on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage

112

DOE - Office of Legacy Management -- Ames Laboratory Research...  

Office of Legacy Management (LM)

Ames Laboratory Research Reactor Facility - IA 03 FUSRAP Considered Sites Site: Ames Laboratory Research Reactor Facility (IA.03) Designated Name: Alternate Name: Location:...

113

NREL: Solar Radiation Research - Optical Metrology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Metrology Laboratory Optical Metrology Laboratory Photo of a laser and a spectral irradiance calibration system used to create lamp-detector alignment. Researchers use a spectral irradiance calibration alignment jig and a laser beam to align a calibration source and test unit. The NREL Optical Metrology Laboratory ensures that optical radiation resource measurement equipment is calibrated to national or international standards to ensure the quality and traceability of data. NREL considers optical radiation to range from 250 nm to 2,500 nm and to include the ultraviolet (250-400 nm), visible (400-750 nm), near infrared (750-1,100 nm), and shortwave infrared (1,100-2,500 nm) ranges. Activities The Optical Metrology Laboratory provides National Institute of Standards and Technology-traceable measurements for:

114

1999 LDRD Laboratory Directed Research and Development  

SciTech Connect

This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

Rita Spencer; Kyle Wheeler

2000-06-01T23:59:59.000Z

115

Deep Laboratory Supporting Vital National Security Research  

E-Print Network (OSTI)

, work began on the nearly 200,000-square-foot Physical Sciences Facility (PSF) complex that will house by the accelerated cleanup of the Hanford Site's 300 Area. This federally financed replacement facility is jointly - Office of Nonproliferation Research and Engineering DeeP Laboratory DesigN features April 2009 PNNL

116

Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl  

E-Print Network (OSTI)

Circuit breaker box & utility meter DC AC The "grid" Controller, inverter #12;Renewable Energy ResearchRenewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl 1 Small Wind PowerSmall Wind Sally Wright, PE Staff Engineer Renewable Energy Research Laboratory University of Massachusetts

Massachusetts at Amherst, University of

117

University Teams Lead Innovative Solar Research Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Innovative Solar Research Projects Lead Innovative Solar Research Projects University Teams Lead Innovative Solar Research Projects August 28, 2012 - 2:55pm Addthis A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? The Energy Department is investing in two university-led projects to improve the performance of concentrated solar power systems. Research teams at the University of California, Los Angeles and the University of Arizona are launching projects aimed at improving the performance and lowering costs of solar energy systems.

118

Stirling engine research at Argonne National Laboratory  

SciTech Connect

Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

Holtz, R.E.; Daley, J.G.; Roach, P.D.

1986-06-01T23:59:59.000Z

119

University Research Reactor Task Force to the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Research Reactor Task Force to the Nuclear Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel," universities, and other sources pertaining to university reactors including their research and training capabilities, costs to operate, and operating data, and * Provide DOE with clear, near-term recommendations as to actions that should be taken by the Federal Government and a long-term strategy to assure the continued operation of vital university reactor facilities in

120

Laboratory directed research and development program FY 1999  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

Hansen, Todd; Levy, Karin

2000-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Laboratory Directed Research and Development Program FY 2001  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

Hansen, Todd; Levy, Karin

2002-03-15T23:59:59.000Z

122

Energy Research at the University of Regina  

E-Print Network (OSTI)

Energy Research at the University of Regina The University of Regina has long understood, there was recognition that the availability of energy is fundamental to that growth. For these reasons, the University made energy (as a part of energy and environment) one of its thematic research areas in 2000

Argerami, Martin

123

A Radiation Laboratory Curriculum Development at Western Kentucky University  

SciTech Connect

We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C. [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd, 11077, Bowling Green KY 42101 (United States)

2009-03-10T23:59:59.000Z

124

Research collaboration opportunities at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory (LLNL) is a major research facility within the Department of Energy (DOE) complex. LLNL`s traditional mission is in Defense Programs, including a significant effort in non-proliferation and arms control. In terms of disciplinary areas, over 50% of our present research efforts are in the fields of large-scale computing, high energy-density physics, energy and environmental sciences, engineering, materials research, manufacturing, and biotechnology. The present decade presents new challenges to LLNL. Many factors have influenced us in modifying our research approach. The main driver is the realization that many scientific problems in our mission areas can best be solved by collaborative teams of experts. At LLNL we excel in physical sciences, but we need the expertise of many others, beyond our established areas of expertise. For example, to find an acceptable solution to reduce earthquake damage requires contributions from engineering, soil mechanics, hydrology, materials sciences, Geosciences, computer modeling, economics, law, and political science. In the pursuit of our mission goals, we are soliciting increased research collaborations with university faculty and students. The scientific and national security challenges facing us and our nation today are unprecedented. Pooling talents from universities, other research organizations, and the national laboratories will be an important approach to finding viable solutions.

Budwine, C.M.

1996-09-01T23:59:59.000Z

125

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

06-97 06-97 February 1997 CHANGE NOTICE NO. 1 March 2002 Reaffirmation with Errata August 2002 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Reaffirmation with Errata DOE-HDBK-1106-97 Radiological Contamination Control for Laboratory Research

126

Ames Laboratory Research Reactor Facility Ames, Iowa  

Office of Legacy Management (LM)

,, *' ; . Final Radiological Condition of the Ames Laboratory Research Reactor Facility Ames, Iowa _, . AGENCY: Office of Operational Safety, Department of Energy ' ACTION: Notice of Availability of Archival Information Package SUMMARY: The'Office of Operational Safety of the Department O i Energy (DOE) has reviewed documentation relating to the decontamination and decommissioning operations conducted at the Ames Laboratory Research Reactor Facility, Ames, Iowa and has prepared an archival informati0.n package to permanently document the results of the action and the site conditions and use restriction placed on the . site at the tim e of release. This review is based on post-decontamination survey data and other pertinent documentation referenced in and included in the archival package. The material and

127

Nanomaterial Laboratory Safety, Boise State University | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanomaterial Laboratory Safety, Boise State University Nanomaterial Laboratory Safety, Boise State University Nanomaterial Laboratory Safety, Boise State University A nanomaterial, as defined by The ASTM Committee on Nanotechnology, is a particle withlengths in 2 or 3 dimensions between 1 to 100 nm that mayor may not have a size related intensive property. Nanomaterials are of increasing interest due to their unique properties compared to the same material on the micro and macroscopic scales and their potential associated applications based upon these properties. The Boise State University Chemical Hygiene Plan (CHP) provides general guidance in regard to safely handling chemicals in a laboratory setting, but nanomaterials can come with unique and/or unknown risks and warrant being specifically addressed. Labs must adhere to the CHP and may need to

128

Nanomaterial Laboratory Safety, Boise State University | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanomaterial Laboratory Safety, Boise State University Nanomaterial Laboratory Safety, Boise State University Nanomaterial Laboratory Safety, Boise State University A nanomaterial, as defined by The ASTM Committee on Nanotechnology, is a particle withlengths in 2 or 3 dimensions between 1 to 100 nm that mayor may not have a size related intensive property. Nanomaterials are of increasing interest due to their unique properties compared to the same material on the micro and macroscopic scales and their potential associated applications based upon these properties. The Boise State University Chemical Hygiene Plan (CHP) provides general guidance in regard to safely handling chemicals in a laboratory setting, but nanomaterials can come with unique and/or unknown risks and warrant being specifically addressed. Labs must adhere to the CHP and may need to

129

A University Laboratory Course to Improve Scientific Communication Skills  

Science Conference Proceedings (OSTI)

A 14-week laboratory course at the University of Helsinki was offered to improve undergraduate and graduate students' writing and speaking skills, as well as their scientific skills. To emphasize active learning, the course avoided long lecture ...

David M. Schultz

2010-09-01T23:59:59.000Z

130

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 of 3) 2 of 3) Radiological Contamination Control Training for Laboratory Research Instructor's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page DEPARTMENT OF ENERGY - Course/Lesson Plan.............................. 1 Standardized Core Course Materials................................................... 1 Course Goal.........................................................................1 Target Audience.................................................................. 1 Course Description............................................................... 1 Prerequisites...................................................................... 1

131

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 of 3) 3 of 3) RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH Student's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page TERMINAL OBJECTIVE............................................................................1 ENABLING OBJECTIVES...........................................................................1 I. RADIOLOGICAL CONTAMINATION................................................. 2 A. Comparison of Radiation and Radioactive Contamination ..................... 2 B. Types of Contamination.............................................................. 2

132

National Renewable Energy Laboratory 2005 Research Review  

DOE Green Energy (OSTI)

Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

2006-06-01T23:59:59.000Z

133

National Renewable Energy Laboratory 2003 Research Review  

DOE Green Energy (OSTI)

In-depth articles on several NREL technologies and advances, including: production of hydrogen using renewable resources and technologies; use of carbon nanotubes for storing hydrogen; enzymatic reduction of cellulose to simple sugars as a platform for making fuel, chemicals, and materials; and the potential of electricity from wind energy to offset carbon dioxide emissions. Also covered are NREL news, awards and honors received by the Laboratory, and patents granted to NREL researchers.

Not Available

2004-04-01T23:59:59.000Z

134

Geothermal studies at the University of Utah Research Institute  

SciTech Connect

The University of Utah Research Institute (WRI) is a self-supporting corporation organized in December 1972 under the Utah Non-Profit Corporation Association Act. Under its charter, the Institute is separate in its operations and receives no direct financial support from either the University of Utah or the State of Utah. The charter includes provisions for WRI to conduct both public and proprietary scientific work for governmental agencies, academic institutions, private industry, and individuals. WRI is composed of five divisions, shown in Figure 1: the Earth Science Laboratory (ESL), the Environmental Studies Laboratory (EVSL), the Center for Remote Sensing and Cartography (CRSC), the Engineering Technology Laboratory (ETL) and the Atmospheric Physics Laboratory (APL). The Earth Science Laboratory has a staff of geologists, geochemists and geophysicists who have a broad range of experience in geothermal research and field projects as well as in mineral and petroleum exploration. The Environmental Studies Laboratory offers a variety of technical services and research capabilities in the areas of air quality and visibility, acid precipitation, surface and groundwater contamination, and environmentally caused stress in vegetation. The Center for Remote Sensing and Cartography offers applied research and services with a full range of remote sensing and mapping capability, including satellite and airborne imagery processing and interpretation. The Engineering Technology Laboratory is currently studying the interaction of the human body with electromagnetic radiation. The Atmospheric Physics Laboratory is developing hygroscopic droplet growth theory and orographic seeding models for dispersal of fog.

None

1988-07-01T23:59:59.000Z

135

Laboratory Directed Research and Development Program FY2004  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

Hansen, Todd C.

2005-03-22T23:59:59.000Z

136

Laboratory Directed Research and Development Program FY2004  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

Hansen, Todd C.

2005-03-22T23:59:59.000Z

137

Low Dose Radiation Research Program: Universities  

NLE Websites -- All DOE Office Websites (Extended Search)

Universities Universities | Duke University | Loma Linda University | Northwestern University | University of Chicago | University of California Davis | Northwestern University University of Chicago University of California Davis Effects of Low Dose Irradiation on NF-κB Signaling Networks and Mitochondria Principal Investigator: Dr. Gayle Woloschak DOE Low Dose Research Program Projects Low dose-low dose rate irradiation leads to long term changes in numbers of mitochondria and mitochondrial genomes - Principal Investigator: Gayle Woloschak, Professor, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA NF-κB-mediated pro-survival network in low dose radiation-induced adaptive protection - Principal Investigator: Jian Jian Li, Professor, Department of Radiation Oncology, University of California Davis, Davis,

138

Research - CECM - Simon Fraser University  

E-Print Network (OSTI)

Heinz Bauschke - Research. Research Interests. Optimization, Convexity, Functional Analysis, Monotone Operator Theory, Medical Imaging, Symbolic...

139

Uncovering Coal's Secrets Through the University Coal Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2013 8, 2013 Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant resources. The program has forged partnerships between academia and the private sector that have led to advances not only in how we use coal, but

140

COLUMBIA RADIATION LABORATORY RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING  

NLE Websites -- All DOE Office Websites (Extended Search)

iVP-^"^^? iVP-^"^^? COLUMBIA RADIATION LABORATORY RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING THE USEFUL RANGE OF THE ELECTROMAGNETIC SPECTRUM Special Technical Report Signal Corps Contract DA-36-039 SC-64630 DA Project No. 3-99-10-022 SC Project No. 102B U. S. Army Laboratory Procurement Office Signal Corps Supply Agency Fort Monmouth, New Jersey The Trustees of Columbia University in the City of New York Box 6, Low Memorial Library New York 27, New York March 1, 1956 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. COLUMBIA RADIATION LABORATORY Collected Papers on the AAASER (Microwave Amplification by Stimulated Emission of Radiation) Special Technical Report

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Research at the Institute for Environmental Science & Policy - University  

NLE Websites -- All DOE Office Websites (Extended Search)

Research at the Institute for Environmental Science & Policy - University Research at the Institute for Environmental Science & Policy - University of Illinois at Chicago August 8, 2013 Speakers: Thomas L. Theis Director, Institute for Environmental Science & Policy (IESP) University of Illinois at Chicago David H. Wise Associate Director, IESP University of Illinois at Chicago Date: Thursday, August 8, 2013 Time: 2:00-3:00 pm Location: Argonne National Laboratory TCS Building 240 Room 1404/1405 The Institute for Environmental Science and Policy (IESP) at the University of Illinois at Chicago was created in 1999 to catalyze interdisciplinary research addressing the increasingly complex environmental problems of the 21st century. IESP envisions an academy in which the constraints and limitations imposed by disciplinary perspectives are eased, while their

142

WEB RESOURCES: Superalloy University Research Programs  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... This directory provides links to superalloy research programs at universities around the world. Two formats of the information are presented for...

143

Nanyang Technological University's New Energy Research Institute...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanyang Technological University's New Energy Research Institute: Grids, Energy Systems and Sustainable Building Technologies Programs Speaker(s): King Jet Tseng Subodh Mhaisalkar...

144

Applications from Universities and Other Research Institutions...  

Office of Science (SC) Website

Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policies EFRCs FOA Applications from Universities and Other Research...

145

Research Call to DOE/Federal Laboratories: Technical Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to DOEFederal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOEFederal Laboratories:...

146

Short bunch research at Brookhaven National Laboratory  

SciTech Connect

Research into the production and utilization of short electron bunches at Brookhaven National Laboratory is underway at the Source Development Laboratory (SDL) and Accelerator Test Facility (ATF). Projects planned for the SDL facility include a 210 MeV electron linac with a dipole chicane that is designed to produce 100 {mu}m long bunches and a compact electron storage ring that will use superconducting RF to produce sub-millimeter bunches.The ATF has a 30-70 MeV linac that will serve as the injector for laser accelerators that will bunch the beam into to micron-length bunches. Coherent transition and synchrotron radiation from the short bunches will be used for beam diagnostics and infrared experiments.

Blum, E.B.

1995-12-31T23:59:59.000Z

147

Metallurgical Laboratory at the University of Chicago | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Management » History » Manhattan Project » Signature Operational Management » History » Manhattan Project » Signature Facilities » Metallurgical Laboratory at the University of Chicago Metallurgical Laboratory at the University of Chicago Photo of the Met Lab and the Stagg Field Bleachers Photo of the Met Lab and the Stagg Field Bleachers One of the most important branches of the Manhattan Project was the Metallurgical Laboratory (Met Lab) in Chicago. Using the name "Metallurgical Laboratory" as cover at the University of Chicago, scientists from the east and west coasts were brought together to this central location to develop chain-reacting "piles" for plutonium production, to devise methods for extracting plutonium from the irradiated uranium, and to design a weapon. In all, four methods of plutonium

148

Outputs and Outcomes of NIST Laboratory Research  

Science Conference Proceedings (OSTI)

... and fiberoptic power and energy calibration, EEEL ... models, Enable new markets Increase R&D ... Laboratory ITL: Information Technology Laboratory.

2010-10-05T23:59:59.000Z

149

Reservoir related research at Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, and Oak Ridge National Laboratory  

DOE Green Energy (OSTI)

Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), and Oak Ridge National Laboratory (ORNL) conduct research in reservoir engineering, geophysics, and geochemistry, respectively, in support of the DOE Reservoir Technology Research Program. INEL's research has centered on the development of a reservoir simulation code to predict heat and solute transfer in fractured, porous media. In support of the initiatives for research at the The Geysers, INEL will initiate in cooperation with Lawrence Berkeley Laboratory, studies of injection and related interference effects at The Geysers. Work at LLNL is centered on analysis of the seismicity associated with production and injection at geothermal systems and effects of geothermal systems on seismic signals. LLNL is continuing studies of seismic attenuation related to the presence of steam at The Geysers. ORNL conducts research to obtain the thermodynamic and kinetic data needed as input into geochemical models such as those being developed by John Weare of the University of California, San Diego that predict the phase behavior and corrosion characteristics of geothermal brines. The current program at ORNL addresses the ion interaction parameters of bisulfate ion (HSO{sup {minus}}) with H{sup +} and Na{sup +}, the dissociation constant of HSO{sub 4}{sup {minus}}, OH{sup {minus}}, and the solubility and specification of aluminum in the system H{sup +}-Na{sup +}-K{sup +}-Cl{sup {minus}}-OH{sup {minus}}. ORNL is initiating studies of the distribution of HCl in steam in support of the expanded research program at The Geysers. 3 refs.

Renner, J.L. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Kasameyer, P.W. (Lawrence Livermore National Lab., CA (USA)); Mesmer, R.E. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

150

George Mason University Laboratory Safety Manual  

E-Print Network (OSTI)

.4.3 Chemical/Biological or Chemical/Radioactive Waste Disposal .... 11-3 11.4.4 Cylinder Disposal corrective actions as necessary. · Manage radioactive waste generated in instructional and research.3.11 Director of MRI Safety and Operations...................................1-8 1.3.12 Waste Management

151

Talk explores Laboratory's 50 years of space research  

NLE Websites -- All DOE Office Websites (Extended Search)

Talk explores Laboratory's 50 years of space research Talk explores Laboratory's 50 years of space research Talk explores Laboratory's 50 years of space research The talk, titled "Los Alamos National Laboratory's 50 Years in Space," will highlight the Laboratory's significant discoveries and events in the field. October 3, 2013 Laboratory fellow and astrophysicist Ed Fenimore, and Laboratory planetary scientist and principal investigator of the ChemCam team Roger Wiens, will talk about Los Alamos National Laboratory's 50 years of space research and exploration. Laboratory fellow and astrophysicist Ed Fenimore, and Laboratory planetary scientist and principal investigator of the ChemCam team Roger Wiens, will talk about Los Alamos National Laboratory's 50 years of space research and exploration.

152

Laboratory Directed Research and Development FY 1992  

Science Conference Proceedings (OSTI)

The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

1992-12-31T23:59:59.000Z

153

UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY  

Science Conference Proceedings (OSTI)

The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

Lawrence P. Golan; Richard A. Wenglarz

2004-07-01T23:59:59.000Z

154

SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2008-02-08T23:59:59.000Z

155

Laboratory Directed Research and Development FY2008 Annual Report  

Science Conference Proceedings (OSTI)

The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

2009-03-24T23:59:59.000Z

156

NETL Publications: 2011 University Turbine Systems Research Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 University Turbine Systems Research Workshop 2011 University Turbine Systems Research Workshop October 25-27, 2011 PRESENTATIONS Tuesday, October 25, 2011 H2 Turbine Development for IGCC with CCS: Project Overviews and Technical Issues [PDF-1.12MB] Susan Scofield, Siemens Energy, Inc. GE Energy's DOE Advanced IGCC/Hydrogen Gas Turbine Program [PDF-1.16MB] Roger Schonewald, GE Energy DOE FE Hydrogen Turbine Program Overview [PDF-1.66MB] Richard Dennis, U.S. Department of Energy, National Energy Technology Laboratory Natural Gas Combined Cycle Power Generation [PDF-1.56MB] Robert Steele, Electric Power Research Institute Overview of Gas Turbine R&D at The Ohio State University [PDF-6.02MB] Meyer (Mike) Benzakein, Director of The Ohio State University's Center for Propulsion and Power An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels [PDF-1.61MB]

157

NETL Publications: 2012 University Coal Research/ Historically Black  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 University Coal Research/ Historically Black Colleges and Universities and Other Minority Institutions Contractors Review Conference 2012 University Coal Research/ Historically Black Colleges and Universities and Other Minority Institutions Contractors Review Conference May 30-31, 2012 Table of Contents Disclaimer Sensors & Controls Advanced Materials (Day 1) Advanced Materials (Day 2) Computational Energy Sciences PRESENTATIONS Introduction and Opening Remarks Robert Romanosky, Technology Manager, Crosscutting Research Robie Lewis, UCR Program Coordinator, Federal Project Manager, Fuels Division Steven Markovich, HBCU Program Coordinator, Federal Project Manager, Fuels Division Presentation [PDF-783KB] Sensor & Controls Moderator: Rick Dunst, Federal Project Manager, Gasification Division U.S. Department of Energy, National Energy Technology Laboratory Heat Activated Plasmonics Based Harsh Environment Chemical Sensors

158

NREL: Hydrogen and Fuel Cells Research - Photobiological Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

researcher examines bioreactors containing cultures of hydrogen-producing microscopic algae. Credit: Jack Dempsey. The Photobiological Laboratory enables NREL's groundbreaking...

159

NASA Glenn Research Center Acoustical Testing Laboratory: Five year retrospective  

Science Conference Proceedings (OSTI)

In the five years since the NASA Glenn Research Center Acoustical Testing Laboratory (ATL) opened its doors in September

2005-01-01T23:59:59.000Z

160

Welcome - Energy Storage Research at Oak Ridge National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Sciences Directorate ORNL Energy Storage Research at Oak Ridge National Laboratory Home Research Areas R&D Capabilities Partners & Sponsors Selected Publications & Patents...

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice 2 Change Notice 2 with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1106-97 iii Page/Section Change

162

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaffirmation Reaffirmation August 2002 Change Notice 1 December 2004 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1106-97 iii Page/Section Change

163

Battery research at Argonne National Laboratory  

SciTech Connect

Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

Thackeray, M.M.

1997-10-01T23:59:59.000Z

164

CECM: Research - Simon Fraser University  

E-Print Network (OSTI)

Research. Symbolic Computation. These projects use symbolic computation in an essential way both in the process of discovery and proof. Each aims at...

165

Clark Atlanta Universities (CAU) Energy Related Research Capabilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Atlanta Universities (CAU) Energy Related Research Capabilities Clark Atlanta Universities (CAU) Energy Related Research Capabilities How energy related research has helped...

166

Research 2006 Michigan Technological University  

E-Print Network (OSTI)

. for thesis-based students, experience in conducting original scientific research and engineering design design and structured decision-making, which is of growing importance in all technical-social- political

167

Storage research in industry and universities  

Science Conference Proceedings (OSTI)

We review activities at universities and industrial research centers in the storage area, but also briefly mention topics such as processor design, operating systems, databases, and performance analysis. Our starting point is the Berkeley RAID proposal ...

Alexander Thomasian

2010-06-01T23:59:59.000Z

168

DOE - Office of Legacy Management -- Iowa State University Ames Laboratory  

Office of Legacy Management (LM)

Iowa State University Ames Iowa State University Ames Laboratory - IA 01 FUSRAP Considered Sites Site: Iowa State University Ames Laboratory (IA.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Wallace Road , Ames , Iowa IA.01-1 IA.01-2 Evaluation Year: Circa 1985 IA.01-3 Site Operations: Produced uranium and thorium metal, recovered uranium scrap, and conducted studies and experimental investigations in connection with chemistry and metallurgy of natural uranium and its allied forms. IA.01-1 IA.01-4 IA.01-5 IA.01-6 IA.01-7 Site Disposition: Eliminated - Referred to Chicago Operations Office for appropriate action IA.01-6 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium IA.01-1

169

Argonne-University of Chicago Shuttle | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Visiting Argonne Visiting Argonne Site Access Policy Map Argonne-University of Chicago Shuttle Map of Argonne Download a map of the Argonne site. Access to the site Site Access Policy All visitors to Argonne require appropriate authorization before they are allowed on the Argonne site. Argonne-University of Chicago Shuttle The schedule below is effective August 25, 2010. A free shuttle bus makes round trips between Argonne National Laboratory and The University of Chicago. Shuttle service will be provided on Mondays, Wednesdays and Fridays only from September through April. From May through August, the shuttle will operate every weekday to accommodate the increase in student riders. The shuttle does not run on laboratory holidays. For more information, please contact Tracy Lozano (tlozano@anl.gov or 630/252-9625) at Argonne.

170

Project: National Fire Research Laboratory Infrastructure and ...  

Science Conference Proceedings (OSTI)

... mechanical loading under controlled laboratory conditions ... thermal and structural instrumentation, data acquisition ... and application and control of fire ...

2012-12-31T23:59:59.000Z

171

Idaho National Laboratory Directed Research and Development FY-2009  

SciTech Connect

The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research focus at the INL. These sections begin with the DOE-NE Nuclear Science and Technology mission support area,

Not Available

2010-03-01T23:59:59.000Z

172

Idaho National Laboratory Directed Research and Development FY-2009  

Science Conference Proceedings (OSTI)

The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research focus at the INL. These sections begin with the DOE-NE Nuclear Science and Technology mission support area,

Not Available

2010-03-01T23:59:59.000Z

173

Carnegie Mellon University Research Showcase  

E-Print Network (OSTI)

methods became a major concern of my research, and the present book began to evolve. The modern computer me that these characteristics form a sounder conceptual basis for programming than those. This implies that the programmer should master formal proof methods, not in order to give a formal proof

Reynolds, John C.

174

The Universe Adventure - Current Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Research Current Research When launched, the Supernova Acceleration Probe (SNAP) will study the effects of dark energy by surveying distant type Ia supernovae and making detailed measurements of weak gravitational lensing. With the new Large Hadron Collider (LHC) at CERN nearing full completion, experimentalists will soon be able to test certain elements of String Theory. While not definitive, these tests will cast some light upon the theory's parameters and may even provide clues into the identity of dark matter. Meanwhile, theorists continue to investigate the implications of String Theory for Big Bang cosmology, particularly the effects of strings on cosmic inflation. As particle physicists eagerly await the results from the new LHC, observational cosmologists are busy developing astronomical experiments,

175

Sandia National Laboratories: Research: Facilities: Annular Core...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annular Core Research Reactor facility Nuclear science photo At the Annular Core Research Reactor (ACRR) facility, Sandia researchers can subject various test objects to a mixed...

176

Laboratory Directed Research and Development FY 2000 Annual Report  

SciTech Connect

This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

Al-Ayat, R

2001-05-24T23:59:59.000Z

177

Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix  

Science Conference Proceedings (OSTI)

For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

NONE

1994-12-01T23:59:59.000Z

178

For Researchers: Policy - Lawrence Berkeley National Laboratory  

Policy: Conflict of Interest in Licensing. Laboratory inventors and licensing staff must not allow their personal financial interests to influence or appear to ...

179

Laboratory Directed Research and Development Program FY 2008 Annual Report  

Science Conference Proceedings (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

editor, Todd C Hansen

2009-02-23T23:59:59.000Z

180

Laboratory directed research and development program FY 2003  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

Hansen, Todd

2004-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Scintillation Materials Research Center University of Tennessee  

E-Print Network (OSTI)

Conference (NSS-MIC) in Knoxville, TN, the NNSA NA-22 Office of Nonproliferation and Verification Research Materials" the NNSA NA-22 Office of Nonproliferation and Verification Research and Development, University and priorities. 2. NNSA: The SMRC staff participated in the NNSA NA-22 Office of Nonproliferation

Tennessee, University of

182

SLAC National Accelerator Laboratory - SSRL Researchers Show...  

NLE Websites -- All DOE Office Websites (Extended Search)

used a specialized instrument at the SSRL to determine the electronic and geometric structure of each intermediate stage. Chemical tests at Ewha Womans University further...

183

Ris National Laboratory Optics and Plasma Research Department  

E-Print Network (OSTI)

Risø National Laboratory Postprint Optics and Plasma Research Department Year: 2006 Paper: www and Plasma Research, OPL-128 Risø DK-4000 Roskilde, Denmark Required publisher statement Copyright (2005 Association EURATOM-Risø National Laboratory Optics and Plasma Research, OPL-128 Risø DK-4000 Roskilde

184

Ris National Laboratory DTU Optics and Plasma Research Department  

E-Print Network (OSTI)

Risø National Laboratory DTU Postprint Optics and Plasma Research Department 2007 Paper: www (MAPLE) K Rodrigo1,2, J Schou1#, B Toftmann1 and R Pedrys2 1 Department of Optics and Plasma Research Department of Optics and Plasma Research, Risø National Laboratory, DK-4000 Roskilde, Denmark 2 Institute

185

EA-0965: Cancer Research Center Indiana University School of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Cancer Research Center Indiana University School of Medicine, Argonne, Illinois EA-0965: Cancer Research Center Indiana University School of Medicine, Argonne, Illinois SUMMARY...

186

FACT SHEET: Clean Coal University Research Awards and Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Clean Coal University Research Awards and Project Descriptions FACT SHEET: Clean Coal University Research Awards and Project Descriptions As part of President Obama's...

187

Laboratory directed research and development. Annual report, fiscal year 1995  

SciTech Connect

This document is a compilation of the several research and development programs having been performed at the Pacific Northwest National Laboratory for the fiscal year 1995.

1996-02-01T23:59:59.000Z

188

The Government-University-Industry Research Roundtable 1996 annual report  

SciTech Connect

The Government-University-Industry Research Roundtable was created just over a decade ago to provide a unique forum for dialogue among top government, university, and industry leaders in the national science and technology enterprise. The purpose is to facilitate personal working relationships and exchange of ideas about issues, problems, and promising opportunities facing those charged with developing and deploying science and technology resources. In 1996, Council meetings focused on the following: (1) the impact of information technology on the structure of research and educational organizations; (2) ways to improve communication between the science and engineering community and the public; and (3) new approaches both to measuring the results of research investments, and to communicating those metrics to non-technical decision-makers and to the public. Significant milestones were also achieved in four major projects, representing, impart, follow-up activity from previous Council Meeting discussions: (1) facilitating the Federal Demonstration Partnership, designed to maximize the efficiency of the federal research support system; (2) compiling results of a regional workshop on experiences in industry-university collaborative organization; (3) publishing the results of a study comparing the cost structures for research performed in the industrial, academic, and government laboratory sector; and (4) catalyzing, and participating in, a series of campus-based convocations on stresses being experienced in the research university environment.

1996-12-31T23:59:59.000Z

189

SLAC National Accelerator Laboratory - SLAC Researcher Lauded...  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC Researcher Lauded for Ground-breaking Graduate Work By Lori Ann White October 25, 2013 Sbastien Corde, a postdoctoral researcher with SLAC's Facility for Advanced...

190

DOE National Laboratory Research Projects Win 31 R&D Awards for 2007 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Research Projects Win 31 R&D Awards for Laboratory Research Projects Win 31 R&D Awards for 2007 DOE National Laboratory Research Projects Win 31 R&D Awards for 2007 October 19, 2007 - 3:21pm Addthis WASHINGTON, DC - The U.S. Department of Energy's Under Secretary for Science Raymond L. Orbach today lauded researchers from ten of the Department of Energy's world-class national laboratories that last night were awarded 31 of the world's top 100 scientific and technological innovations in 2007, as judged by R&D Magazine. The awards are presented annually in recognition of the most outstanding technology developments with commercial potential. 18 of the awards won by DOE lab researchers were shared with researchers from universities and businesses. R&D Magazine presented the awards last night at its 45th Annual R&D Awards

191

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

process contact the user liaison. User liaison James Aubert jhaubert@sandia.gov Sandia National Laboratories P.O. Box 5800 MS-0886 Albuquerque, New Mexico 87185-0886 phone:...

192

Sandia National Laboratories: Research: Intelligent Systems,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toolkit X-ray Toolkit (XTK) X-ray Toolkit (XTK) is a software program developed by Sandia National Laboratories for the United States Government under funding from the National...

193

Sandia National Laboratories: News: Publications: Research Magazine  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Magazine Research Magazine Annual Report Environmental Reports Fact Sheets Labs Accomplishments Lab News Partnerships Annual Report Research Magazine Search Sandia Publications News Research Magazine Sandia Research is a new quarterly magazine highlighting Sandia's cutting-edge research and technology. September 2013 Sandia Research - September 2013, Vol 1, Issue 3 "In this issue, we give readers a window into our portfolio of geoscience work that spans fundamental research to high-tech applications. The cover story shows the breadth of our research and the accompanying pieces introduce you to some of our researchers and the leading-edge projects they are working on. Geoscience expertise is essential to the safety and security of the United States and its citizens. We hope you see why in

194

Exploiting Complexity in Drug Research | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

virtually all of healthcare. For example, George Karniadakis, a professor of applied mathematics at Brown University, Providence, R.I., and Leopold Grinberg, a senior research...

195

DOE Designated User Facilities Multiple Laboratories * ARM Climate Research Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designated User Facilities Designated User Facilities Multiple Laboratories * ARM Climate Research Facility Argonne National Laboratory * Advanced Photon Source (APS) * Electron Microscopy Center for Materials Research * Argonne Tandem Linac Accelerator System (ATLAS) * Center for Nanoscale Materials (CNM) * Argonne Leadership Computing Facility (ALCF) * Brookhaven National Laboratory * National Synchrotron Light Source (NSLS) * Accelerator Test Facility (ATF) * Relativistic Heavy Ion Collider (RHIC) * Center for Functional Nanomaterials (CFN) * National Synchrotron Light Source II (NSLS-II ) (under construction) Fermi National Accelerator Laboratory * Fermilab Accelerator Complex Idaho National Laboratory * Advanced Test Reactor ** * Wireless National User Facility (WNUF)

196

ENVIRONMENTAL EVALUATION NOTIFICATION FORM Grantee/Contractor Laboratory: Princeton University/Princeton Plasma Physics Laboratory (PPPL)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EVALUATION NOTIFICATION FORM EVALUATION NOTIFICATION FORM Grantee/Contractor Laboratory: Princeton University/Princeton Plasma Physics Laboratory (PPPL) Project! Activity Title: STS-100 Test Stand Experiment NEPA Tracking No.: Type of Funding _ _ --=S=C'---_ _ _ _ _ _ _ _ _ _ _ _ B&R Code: Total Estimated Cost _ _ ---"'$=2=-OO"'-',=OO=O"--_ _ _ _ _ _ _ DOE Cognizant Secretarial Officer (CSO):--'W~il=lia=m~F'-'-.-"=B=r=in=km=a=n'__ _ _ _ _ _ _ _ _ _ _ _ Contractor Project Manager: ____ -_-_--_--_-_--_-_-_ _ _ _ _ Signature: ------------- Contractor NEPA Reviewer: Jerry D. Levine Date: ( S--Q--------f-- /:/1 Signature: "~ ~ ~ Date: I ~lJO I * I. Description of Proposed Action: The proposed action would consist of operation of a 100

197

Laboratory Directed Research and Development FY-10 Annual Report  

Science Conference Proceedings (OSTI)

The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

Dena Tomchak

2011-03-01T23:59:59.000Z

198

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and room-temperature semiconductors for detection arrays of x-rays, gamma rays and neutrons. User Support The facility's special capabilities include: low-noise environment to test solid-state detectors for x-ray, gamma-ray, and neutron response mass spectrometry to quantify contaminants in detectors and detector-grade materials photoluminescence and thermally-stimulated current to measure

199

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Explosive Components Facility Explosive Components Facility The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis capabilities for energetic materials and explosive components: advanced design of energetic devices and subsystems optical ordnance energetic materials testing of explosives and explosive components and subsystems advanced explosives diagnostics reliability analyses failure modes evaluation safety evaluation The ECF has the full-range of capabilities necessary to support the understanding of energetic materials and components: Optical and Semiconductor Bridge (SCB) Initiation Laboratories Characterization Laboratories thermal properties gas analyses powder characterization

200

Laboratory Directed Research and Development FY 2000  

E-Print Network (OSTI)

remote site to the mass storage at the National Energy Research Scientific Computing Center (NERSC), (b) handling

Hansen, Todd; Levy, Karin

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

University Coal Research/Historically Black Colleges and Universities &  

NLE Websites -- All DOE Office Websites (Extended Search)

University Coal Research/Historically Black Colleges and Universities & Other Minority Institutions Contractor Review Mtg. University Coal Research/Historically Black Colleges and Universities & Other Minority Institutions Contractor Review Mtg. June 3, 2003 Table of Contents Disclaimer Papers and Presentations Day 1 - Session A Day 1 - Session B Day 2 - Session A Day 2 - Session B Posters - Project Accomplishments 2000 Awards Abstracts of 2002 Awards Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

202

University Coal Research / Historically Black Colleges and Universities &  

NLE Websites -- All DOE Office Websites (Extended Search)

University Coal Research / Historically Black Colleges and Universities & Other Minority Institutions Contractors University Coal Research / Historically Black Colleges and Universities & Other Minority Institutions Contractors Review Meeting June 9-10, 2004 Table of Contents Disclaimer Papers and Presentations Opening Session Session A Session B Abstract Only Abstract & Poster Presentation of Project Accomplishments Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

203

LEHIGH UNIVERSITY RESEARCH AND TESTING AGREEMENT  

E-Print Network (OSTI)

, the Project. Article 4 - Costs, Billings and Other Support 4.1 It is agreed to and understood by the parties, the research and testing project contemplated by this Agreement is of mutual interest and benefit to University have the following meanings: 1.1 "Project" shall mean the project titled

Gilchrist, James F.

204

The University of Maryland Energy Research Center  

E-Print Network (OSTI)

. ElECTRoChEMiCAl ENERgy CoNvERSioN ANd SToRAgE Batteries Fluctuationsinrenewableenergy supply make new Energy Engineering works with industry to increase the efficiency of Heating, Ventilation, and AirThe University of Maryland Energy Research Center Join Us in Building a Sustainable Energy Future

Rubloff, Gary W.

205

Laboratory Technology Research: Abstracts of FY 1996 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

NONE

1996-12-31T23:59:59.000Z

206

SNL-University of Guadalajara Research and Development MOU | Open Energy  

Open Energy Info (EERE)

SNL-University of Guadalajara Research and Development MOU SNL-University of Guadalajara Research and Development MOU Jump to: navigation, search Name SNL-University of Guadalajara Research and Development MOU Agency/Company /Organization Sandia National Laboratories, University of Guadalajara Topics Background analysis Website https://share.sandia.gov/news/ Country Mexico, United States UN Region Latin America and the Caribbean, Northern America References SNL-University of Guadalajara Research and Development MOU[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "SNL-University of Guadalajara Research and Development MOU" Retrieved from "http://en.openei.org/w/index.php?title=SNL-University_of_Guadalajara_Research_and_Development_MOU&oldid=374473" Categories:

207

Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Research Groups in the Materials Science Division Condensed Matter Theory Carries out theoretical work on superconductivity, electronic structure and magnetism. Emerging Materials Emphasizes an integrated materials synthesis and science program that focuses on correlated electron transition metal oxides, chalcogenides with enhanced thermoelectric performance, and novel superconductors, including pnictides and cuprates. Energy Conversion and Storage The energy conversion and storage group focuses on charge-transfer processes, as well as the chemical environment in the vicinity of electrode surfaces. Magnetic Films Research to develop, characterize and investigate the properties of magnetic thin films and superlattices. Molecular Materials Synthesis and characterization of molecular materials that have novel

208

Researcher Bio Sketches - Oak Ridge National Laboratory  

nanoparticles, and their energy-related applications. He has published more than 300 peer-reviewed papers in these research areas and is an inventor on numerous

209

Energy Frontier Research Centers | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage. And Argonne is a key partner in two other Centers: the Argonne-Northwestern Solar Energy Research Center and the Center for Emergent Superconductivity. Argonne's...

210

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

and advanced diagnostics in the fields of thermodynamics, heat transfer, fluid mechanics, multiphase flows, aerosols, and material decomposition. Our experimental research...

211

Princeton Plasma Physics Laboratory Honors Three Researchers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kenneth Hill received the Kaul Prize for Excellence in Plasma Physics Research and Technology Development. (Photo by Elle Starkman, PPPL Office of Communications) Kenneth...

212

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major...

213

NIST Building and Fire Research Laboratory Publications ...  

Science Conference Proceedings (OSTI)

... of building materials, lighting, and indoor air quality. ... Pello, AC Fire Propagation in Concurrent Flows. ... 193844 fire spread; buoyant flow; fire research ...

1996-08-14T23:59:59.000Z

214

SLAC National Accelerator Laboratory - Researchers Freely Share...  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Freely Share LCLS Experiment Data on Public Database By Helen Shen November 22, 2011 In 2009, when biophysicist Ilme Schlichting and her colleagues applied to use the...

215

Sandia National Laboratories: Small Business Innovative Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer (STTR) Overview Each year, 11 federal agencies must set aside a percentage of their budget, in recent years averaging more than 2 billion, to fund research...

216

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

to unique equipment to support specialized research, along with the expertise to address complex problems dealing with radiation effects. User Support The knowledgeable staff...

217

NREL: Hydrogen and Fuel Cells Research - Photoelectrochemical Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Photoelectrochemical Laboratory Photoelectrochemical Laboratory Photo of researcher examining a glass-enclosed photoelectrochemical cell producing hydrogen as a beam of light is shined on it. NREL researcher demonstrating direct production of hydrogen from light energy by a photoelectrochemical cell. Credit: Warren Gretz. NREL's Photoelectrochemical Laboratory enables NREL's pioneering work in photoelectrochemical hydrogen production from solar energy. Photoelectrochemical devices combine elements of solar cells and electrolyzers to produce hydrogen directly from sunlight in a single step. Efficient photoelectrochemical hydrogen production is a holy grail of renewable hydrogen production, and NREL researchers are at the forefront of this research effort. The primary focus is to identify and develop current photovoltaic

218

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Laboratory Ion Beam Laboratory Sandia's Ion Beam Analysis (IBA) program is recognized as one of the best in the world. It has the ability to examine a wide spectrum of materials, from semiconductors to metals and ceramics. Some of the accomplishments of the program include: Invented several new ion beam analysis techniques for the quantitative analysis of light elements (H through F), and heavy elements (C through Pu). Enhanced nuclear microprobe-based Single Event Upset (SEU) imaging system to supply submicron images of charge generation and collection in CMOS ICs. This new application of SEU-imaging is important for understanding and decreasing upset susceptibility. Capabilities and Resources The IBA is available to perform the following quantitative/standardless

219

THE UNIVERSITY OF CHICAGO Operator of Argonne National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNIVERSITY OF CHICAGO UNIVERSITY OF CHICAGO Operator of Argonne National Laboratory Comments on the Department of Energy Notice of Inquiry Concerning Preparation of Report to Congress on the Price-Anderson Act January 30, 1998 Following are responses to the questions in the Notice of Inquiry published in the Federal Register on December 31, 1997: 1. Should the DOE Price-Anderson indemnification be continued without modification? The extension of Price-Anderson indemnification is critically important to the continuation of the DOE program respecting nuclear materials and facilities. We recommend several changes in the Act in answer to succeeding questions, but a continuation of the indemnity as is would be preferable to any changes that might endanger the Act's basic scheme of protection of the

220

Laboratory Directed Research and Development annual report, fiscal year 1997  

SciTech Connect

The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

NONE

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SLAC National Accelerator Laboratory - Laser Mashup: Researchers...  

NLE Websites -- All DOE Office Websites (Extended Search)

have provided a wealth of information on atoms, molecules and materials. But even when laser research was in its infancy more than 40 years ago, scientists pondered the potential...

222

Transportable Heavy Duty Emissions Testing Laboratory and Research Program  

DOE Green Energy (OSTI)

The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

David Lyons

2008-03-31T23:59:59.000Z

223

NETL: 2010 Conference Proceedings - University Turbine Systems Research  

NLE Websites -- All DOE Office Websites (Extended Search)

University Turbine Systems Research Workshop University Turbine Systems Research Workshop October 19-21, 2010 Table of Contents Disclaimer Presentations Tuesday, October 19, 2010 Keynote Presentations Combustion Aero/Heat Transfer Wednesday, October 20, 2010 Keynote Presentations Aerodynamics/Heat Transfer Materials Combustion Thursday, October 21, 2010 Keynote Presentations Combustion Materials and Aerodynamics/Heat Transfer Poster Presenters PRESENTATIONS Tuesday, October 19. 2010 Keynote Presentations GE Perspectives - Advanced IGCC/Hydrogen Gas Turbine Development [PDF-629KB] Reed Anderson, GE Energy Siemens Perspectives - Advanced IGCC/Hydrogen Gas Turbine Development [PDF-2.2MB] Joe Fadok, Siemens Energy, Inc DOE Advanced Turbines Program Overview [PDF-284KB] Richard Dennis, National Energy Technology Laboratory

224

SunShot Initiative: Multidisciplinary University Research Initiative: High  

NLE Websites -- All DOE Office Websites (Extended Search)

Multidisciplinary University Multidisciplinary University Research Initiative: High Operating Temperature Fluids to someone by E-mail Share SunShot Initiative: Multidisciplinary University Research Initiative: High Operating Temperature Fluids on Facebook Tweet about SunShot Initiative: Multidisciplinary University Research Initiative: High Operating Temperature Fluids on Twitter Bookmark SunShot Initiative: Multidisciplinary University Research Initiative: High Operating Temperature Fluids on Google Bookmark SunShot Initiative: Multidisciplinary University Research Initiative: High Operating Temperature Fluids on Delicious Rank SunShot Initiative: Multidisciplinary University Research Initiative: High Operating Temperature Fluids on Digg Find More places to share SunShot Initiative: Multidisciplinary

225

Research Universities: Core of the US Science and Technology System  

E-Print Network (OSTI)

Tuzin, Equilibrium in the Research University, Change,for Postwar Scientific Research. July 1945. Reprinted ingraduate programs. CSHE Research & Occasional Paper Series

Atkinson, Richard

2007-01-01T23:59:59.000Z

226

University Crystalline Silicon Photovoltaics Research and Development  

DOE Green Energy (OSTI)

The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

2008-08-18T23:59:59.000Z

227

Research Call to DOE/Federal Laboratories: Technical Support for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Call to DOE/Federal Laboratories: Technical Support for Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. The entities that DOE has selected under the American Recovery and Reinvestment Act to participate in the Interconnection Transmission Planning Activity will perform challenging and important analyses and collaboratively develop much-needed long-term-transmission plans. They do, however, need research support and technical assistance on a variety of key subjects. The fundamental purpose of this Research Call was to invite the National Laboratories to indicate their interest, understanding, and

228

DOE - Office of Legacy Management -- Naval Research Laboratory - DC 02  

Office of Legacy Management (LM)

Research Laboratory - DC 02 Research Laboratory - DC 02 FUSRAP Considered Sites Site: NAVAL RESEARCH LABORATORY (DC.02 ) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Washington , D.C. DC.02-4 Evaluation Year: 1987 DC.02-4 Site Operations: Research and development on thermal diffusion. DC.02-4 Site Disposition: Eliminated - No Authority - AEC licensed - Military facility DC.02-4 DC.02-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium DC.02-2 DC.02-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to DOD DC.02-4 Also see Documents Related to NAVAL RESEARCH LABORATORY DC.02-1 - AEC Memorandum and Source Material License No. C-3393;

229

Research and Services at the Alabama A&M University Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Services at the Alabama A&M University Research Institute Research and Services at the Alabama A&M University Research Institute An overview of services and research...

230

Laboratory Directed Research & Development | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Laboratory Directed Research & Development | National Nuclear Security Laboratory Directed Research & Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Laboratory Directed Research & Development Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

231

Sandia National Laboratories: Careers: Cybersecurity Research Careers  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers Careers Cybersecurity Research Careers Cybersecurity Research Addressing sophisticated cyber threats demands a multidisciplinary team with a unique mindset. Sandia provides challenging career opportunities for those with a passion to tackle the complexities of protecting critical systems Critical infrastructure, military systems, and other strategically important national security systems are becoming increasingly dependent on vulnerable networked computer systems. Protecting these systems against growing cyber threats will be one of the great challenges of the 21st century. Our country faces complex security risks and challenges. Relying on traditional firewalls, intrusion detection systems, and encryption alone are not effective against the rapidly evolving threats. The president has

232

Laboratory Directed Research and Development Program  

E-Print Network (OSTI)

and Environmental Research · Fusion Energy Sciences · High Energy Physics · Nuclear Physics ESnet Network Measurements Joe Metzger Presented at ESCC Feb 5 2008 #12;Outline · ESnet ­Goals · Provide Services to ESnet Activities · ESnet Sites ­Participation ­Deployment ­Next Steps #12;Providing Services to ESnet Users

233

YEAR IN REVIEW Los Alamos National Laboratory RESEARCH LIBRARY Research Library Year in Review 2008  

E-Print Network (OSTI)

#12;#12;YEAR IN REVIEW Los Alamos National Laboratory RESEARCH LIBRARY 2008 1 Research Library Year Message from the Library Director 2 #12;YEAR IN REVIEW Los Alamos National Laboratory RESEARCH LIBRARY early 21st century has presented research libraries with amazing challenges and opportunities. Many

234

Laboratory Directed Research and Development Program FY 2006 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

Sjoreen, Terrence P [ORNL

2007-04-01T23:59:59.000Z

235

Laboratory Directed Research and Development Program FY 2006 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

Sjoreen, Terrence P [ORNL

2007-04-01T23:59:59.000Z

236

Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory  

Science Conference Proceedings (OSTI)

The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

Not Available

1993-09-01T23:59:59.000Z

237

Industry/University Consortium for ATS research  

SciTech Connect

The Industry/University ATS research program is the result of two planning workshops. Workshop I was held April 8--10, 1991 and had the goal of identifying research needs for advanced gas turbine cycles that would permit rapid commercialization of cycles with significant improvements over the machines currently under development, in terms of the cost of electricity produced and the environmental burdens resulting from their use in power producing. Workshop II was held in January 1992 and continued the identification of the research needs to develop advanced gas turbine systems. The goals established for the ATS systems were: (1) efficiency exceeding 60% for large utility turbine system and 15% improvement in heat rate for industrial systems; (2) busbar energy costs 10% less than current state of the art and (3) fuel flexible designs. In addition Workshop II participants agreed that an industry driven research consortium was an acceptable mechanism to achieve base technology development needs.

Allen, R.P.; Golan, L.P.

1993-11-01T23:59:59.000Z

238

NETL: Events - 2011 University Turbine Systems Research Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

University Turbine Systems Research Workshop October 25 - 27 2011 The Blackwell Inn - Ohio State University 2110 Tuttle Park Place Columbus, Ohio 43210 (614)247-4000 TABLE OF...

239

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications. Material Characterization Shock wave experiments are an established technique to determine the equation of state at high pressures and temperature, which can be applied to virtually all materials. This technique allows the probing of the internal structure of the material as it undergoes deformation. This provides a better understanding of the material properties for development

240

Laboratory directed research and development program, FY 1996  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ORGANISATIONAL CHART 2009 Laboratory: Research, Development and Services  

E-Print Network (OSTI)

ORGANISATIONAL CHART 2009 Laboratory: Research, Development and Services *reports to the Director. Sampani Radiation Protection of the Center G. Pantelias* HEALTH PHYSICS & ENVIRONMENTAL HEALTH LABORATORY. Kainourgiakis RADIATION PROTECTION & HEALTH PHYSICS OF THE REACTOR F. Tzika SUPPORT TO GAEC I. A. Papazoglou

242

UMass Amherst - Renewable Energy Research Laboratory | Open Energy  

Open Energy Info (EERE)

UMass Amherst - Renewable Energy Research Laboratory UMass Amherst - Renewable Energy Research Laboratory Jump to: navigation, search Logo: UMass Amherst - Renewable Energy Research Laboratory Name UMass Amherst - Renewable Energy Research Laboratory Address 160 Governors Drive Place Amherst, Massachusetts Zip 01003 Region Greater Boston Area Coordinates 42.39421°, -72.530258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.39421,"lon":-72.530258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Department of Energy Laboratories, Researchers to Showcase High...  

Office of Science (SC) Website

Department of Energy Laboratories, Researchers to Showcase High Performance Computing Expertise at SC07 Conference News In the News 2013 2012 2011 2010 2009 2008 2007 2006 2005 In...

244

Laboratory directed research and development 2006 annual report.  

SciTech Connect

This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

Westrich, Henry Roger

2007-03-01T23:59:59.000Z

245

Laboratory Directed Research and Development Program Activities for FY 2008.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and d

Looney,J.P.; Fox, K.

2009-04-01T23:59:59.000Z

246

Reservoir technology research at Lawrence Berkeley Laboratory  

DOE Green Energy (OSTI)

The research being carried out at LBL as part of DOE/GTD's Reservoir Technology Program includes field, theoretical and modeling activities. The purpose is to develop, improve and validate methods and instrumentation to: (1) determine geothermal reservoir parameters, (2) detect and characterize reservoir fractures and boundaries, and (3) identify and evaluate the importance of reservoir processes. The ultimate objective of this work is to advance the state-of-the-art for characterizing geothermal reservoirs and evaluating their productive capacity and longevity under commercial exploitation. LBL's FY1986 accomplishments, FY1987 progress to date, and possible future activities under DOE's Reservoir Technology Program are discussed.

Lippmann, M.J.

1987-04-01T23:59:59.000Z

247

Abstracts and research accomplishments of university coal research projects  

SciTech Connect

The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

Not Available

1991-06-01T23:59:59.000Z

248

Sandia National Laboratories: Research: Facilities: Gamma Irradiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Irradiation Facility Gamma Irradiation Facility Photo of Gamma Irradiation Facility The Gamma Irradiation Facility (GIF) provides high-fidelity simulation of nuclear radiation environments for materials and component testing. The low-dose irradiation facility also offers an environment for long-duration testing of materials and electronic components. Such testing may take place over a number of months or even years. Research and other activities The single-structure GIF can house a wide variety of gamma irradiation experiments with various test configurations and at different dose and dose rate levels. Radiation fields at the GIF are produced by high-intensity gamma-ray sources. To induce ionizing radiation effects and damage in test objects, the objects are subjected to high-energy photons from gamma-source

249

UCRL-5257 Rev. UNIVERSITY OF CALIFORNIA Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

UCRL-5257 Rev. UCRL-5257 Rev. UNIVERSITY OF CALIFORNIA Radiation Laboratory Liver more : California Contract No. W- 7405 -eng -48 PEACEFUL USES OF FUSION Edward Teller July 3, 1958 Printed for the U. S. Atomic Energy Commission f . DISCLAIMER This report was prepared as an account by an agency of t h e United States United States Government nor of their employees, or assumes any legal accuracy, completeness, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and

250

MASTER UCRL-9537 UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

MASTER MASTER UCRL-9537 UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley, California Contract No.W-7405-eng-48 A NHARMONIC POTENTIAL CONSTANTS AND THEIR DEPENDENCE UPON BOND LENGTH Dudley R. Herschbach and Victor W. Laurie January 1961 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or

251

1995 Laboratory-Directed Research and Development Annual report  

SciTech Connect

The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

1995-12-31T23:59:59.000Z

252

Laboratory Directed Research and Development Program Assessment for FY 2007  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within existing mission areas, as well as to develop new research mission areas in response to DOE and National needs. As the largest expense in BNL's LDRD program is the support graduate students, post-docs, and young scientists, LDRD provides base for continually refreshing the research staff as well as the education and training of the next generation of scientists. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

Looney,J.P.; Fox, K.J.

2008-03-31T23:59:59.000Z

253

Researcher, Los Alamos National Laboratory | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Turab Lookman Turab Lookman Researcher, Los Alamos National Laboratory Turab Lookman Turab Lookman Role: Researcher, Los Alamos National Laboratory Award: 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering Profile: Turab Lookman has received the 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering, which commends individuals for exemplary research performed at the Laboratory within the past 10 years that has had a significant impact on a scientific discipline or program. The committee selected Lookman for "his wide ranging contributions to the understanding of intrinsic inhomogeneity in functional materials." Lookman's work has described for the first time the coupling of elasticity to material functionality such as magnetism and charge polarization. His

254

DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -  

Office of Legacy Management (LM)

Rocky Mountain Research Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP CO.06-2 Also see Documents Related to ROCKY MOUNTAIN RESEARCH LABORATORIES CO.06-1 - Rocky Mountain Research Letter; Burton to Smith; Subject:

255

Researcher, Los Alamos National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Turab Lookman Turab Lookman Researcher, Los Alamos National Laboratory Turab Lookman Turab Lookman Role: Researcher, Los Alamos National Laboratory Award: 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering Profile: Turab Lookman has received the 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering, which commends individuals for exemplary research performed at the Laboratory within the past 10 years that has had a significant impact on a scientific discipline or program. The committee selected Lookman for "his wide ranging contributions to the understanding of intrinsic inhomogeneity in functional materials." Lookman's work has described for the first time the coupling of elasticity to material functionality such as magnetism and charge polarization. His

256

The role of Chinese universities in enterprise---university research collaboration  

Science Conference Proceedings (OSTI)

In this paper the role of Chinese universities in enterprise---university research collaboration is investigated. This study focuses on a special aspect of the collaboration--co-authored articles. The two cases are analyzed: (1) research collaboration ... Keywords: Chinese universities, Co-authored articles, Enterprise-university research collaboration, Mathematical orientation

Liming Liang; Lixin Chen; Yishan Wu; Junpeng Yuan

2012-01-01T23:59:59.000Z

257

Laboratory Directed Research and Development annual report, Fiscal year 1993  

SciTech Connect

The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

Not Available

1994-01-01T23:59:59.000Z

258

Laboratory technology research - abstracts of FY 1997 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

NONE

1997-11-01T23:59:59.000Z

259

Laboratory Directed Research Development (LDRD) Annual Reports | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Directed Research Development (LDRD) Annual Reports Laboratory Directed Research Development (LDRD) Annual Reports Laboratory Directed Research Development (LDRD) Annual Reports Formally, these Reports respond to the Conference Report (H.R. Rep. No. 106-988 (Conf. Rep.)) accompanying the Fiscal Year (FY) 2001 Energy and Water Development Appropriations Act, which requested the DOE Chief Financial Officer "develop and execute a financial accounting report of LDRD expenditures by laboratory and weapons production plant." They also respond to the National Defense Authorization Act for Fiscal Year 1997 (Pub. L. No. 104-201), which requires submission each year of "a report on the funds expended during the preceding fiscal year on [LDRD] activities [...] to permit an assessment of the extent to which such activities

260

Laboratory Directed Research and Development Annual Reports | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Directed Research and Development Annual Laboratory Directed Research and Development Annual Reports Laboratory Directed Research and Development Annual Reports Formally, these Reports respond to the Conference Report (H.R. Rep. No. 106-988 (Conf. Rep.)) accompanying the Fiscal Year (FY) 2001 Energy and Water Development Appropriations Act, which requested the DOE Chief Financial Officer "develop and execute a financial accounting report of LDRD expenditures by laboratory and weapons production plant." They also respond to the National Defense Authorization Act for Fiscal Year 1997 (Pub. L. No. 104-201), which requires submission each year of "a report on the funds expended during the preceding fiscal year on [LDRD] activities [...] to permit an assessment of the extent to which such activities

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Laboratory directed research and development annual report: Fiscal year 1992  

Science Conference Proceedings (OSTI)

The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

Not Available

1993-01-01T23:59:59.000Z

262

Laboratory directed research and development annual report: Fiscal year 1992  

Science Conference Proceedings (OSTI)

The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

Not Available

1993-01-01T23:59:59.000Z

263

Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory  

DOE Green Energy (OSTI)

This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

Wilcox, S. M.; Myers, D. R.

2008-12-01T23:59:59.000Z

264

University of Wisconsin Madison !Solar Energy Laboratory !Slide 1! John Edlebeck  

E-Print Network (OSTI)

University of Wisconsin ­ Madison !Solar Energy Laboratory !Slide 1! John Edlebeck M@wisc.edu Hometown: Duluth, MN #12;University of Wisconsin ­ Madison !Solar Energy Laboratory !Slide 2 " · Fabricate and test optimized seal geometries " #12;University of Wisconsin ­ Madison !Solar Energy

Wisconsin at Madison, University of

265

Laboratory Directed Research and Development Program Activities for FY 2007.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

Newman,L.

2007-12-31T23:59:59.000Z

266

Laboratory technology research: Abstracts of FY 1998 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

NONE

1998-11-01T23:59:59.000Z

267

Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona  

SciTech Connect

The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

Nick A. Altic

2011-11-11T23:59:59.000Z

268

Laboratory directed research and development. FY 1995 progress report  

SciTech Connect

This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

Vigil, J.; Prono, J. [comps.

1996-03-01T23:59:59.000Z

269

Laboratory Directed Research and Development Program Assessment for FY 2007  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

Newman,L.; Fox, K.J.

2007-12-31T23:59:59.000Z

270

LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.  

Science Conference Proceedings (OSTI)

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators and Self Assessment.

FOX,K.J.

2006-01-01T23:59:59.000Z

271

Researcher, Los Alamos National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

David Moore David Moore Researcher, Los Alamos National Laboratory David Moore David Moore Role: Researcher, Los Alamos National Laboratory Award: 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering Profile: David S. Moore has received the 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering, which commends individuals who stimulate the research interests of talented younger Laboratory staff members and who encourage junior researchers to make the personal sacrifices necessary to become effective leaders. The committee selected Moore for "his inspirational technical leadership in the fields of shock physics and the science of explosives detection." Moore has worked to develop the next generation of scientists in this field by mentoring

272

Abstract and research accomplishments of University Coal Research Projects  

Science Conference Proceedings (OSTI)

The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their respective projects in time for distribution at a conference on June 13--14, 1995 at Tennessee State University in Nashville, Tennessee. This book is a compilation of the material received in response to that request. For convenience, the 70 grants reported in this book are stored into eight technical areas, Coal Science, Coal Surface Science, Reaction Chemistry, Advanced Process Concepts, Engineering Fundamentals and Thermodynamics, Environmental Science, high Temperature Phenomena, and Special topics. Indexes are provided for locating projects by subject, principal investigators, and contracting organizations. Each extended abstract describes project objectives, work accomplished, significance to the Fossil Energy Program, and plans for the next year.

NONE

1995-06-01T23:59:59.000Z

273

University of Dayton Research Institute | Open Energy Information  

Open Energy Info (EERE)

Dayton Research Institute Jump to: navigation, search Name University of Dayton Research Institute Address 300 College Park Place Dayton, Ohio Zip 45469-0101 Website http:...

274

University Launches Website for FIU Research Sponsored by EM | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Launches Website for FIU Research Sponsored by EM University Launches Website for FIU Research Sponsored by EM University Launches Website for FIU Research Sponsored by EM July 11, 2013 - 12:00pm Addthis The Applied Research Center at Florida International University covers four major environmental cleanup areas: radioactive waste processing, facility deactivation and decommissioning, soil and groundwater remediation and information technology development for environmental management. The Applied Research Center at Florida International University covers four major environmental cleanup areas: radioactive waste processing, facility deactivation and decommissioning, soil and groundwater remediation and information technology development for environmental management. MIAMI - A new website features research performed under a cooperative

275

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES PERCENT STUDENTS 1,643 4.4% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL.0% INTERNATIONAL STUDENTS 82 1.7% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL

de Lijser, Peter

276

DOE National Laboratory Research Projects Win 31 R&D 100 Awards...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

277

DOE O 413.2B Admin Chg 1, Laboratory Directed Research and Development  

Directives, Delegations, and Requirements

The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for ...

2006-04-19T23:59:59.000Z

278

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY, CENTER FOR HYDROGEN RESEARCH, AND THE HYDROGEN TECHNOLOGY RESEARCH LABORATORY  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. Many of SRNL's programs support dual-use applications. SRNL has participated in projects to convert public transit and utility vehicles for operation on hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2007-02-26T23:59:59.000Z

279

Final Closeout Report University Research Program in Robotics for Environmental Restoration and Waste Management  

Science Conference Proceedings (OSTI)

The report covers the 2003-04 contract period, with a retrospective of the 11 years for the contract, from 1993 to 2004. This includes personnel, technical publications and reports, plus research laboratories employed. Specific information is given in eight research areas, reporting on all technology developed and/or deployed by the University of Florida.

James S. Tulenko; Carl Crane

2004-08-24T23:59:59.000Z

280

Radiological Worker Training - Radiological Contamination Control for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B B December 2008 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ . Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 iii Foreword This Handbook describes a recommended implementation process for core training as outlined in

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: Vehicles and Fuels Research - ReFUEL Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass, and improving vehicle efficiency. Using biofuels and improving vehicle efficiency reduces our dependence on imported petroleum and enhances our national energy security. The ReFUEL Laboratory houses the following specialized equipment: Heavy-duty chassis dynamometer with a simulation capability of 8,000 to 80,000 lbs for vehicle performance and emissions research Heavy-duty (up to 600 hp) and light-duty (up to 75 hp) engine

282

Laboratory directed research and development annual report. Fiscal year 1994  

SciTech Connect

The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

NONE

1995-02-01T23:59:59.000Z

283

SC Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Surface Chemistry Research Overview The Surface Chemistry Group is a part of the Materials Science Division at Argonne National Laboratory. The focus of this group's work is the control surface species, composition, and structure at length scales that range from atomic level to micrometers. The group's expertise includes time-of-flight ion mass spectrometry, tunable laser spectroscopy, ion sputtering, laser-surface interactions, vapor phase deposition, electrical and electrochemical characterization, and device assembly. We have numerous collaborations within Argonne as well as with chemists, physicists, and materials scientists around the world. Research Directed Energy Interactions with Surfaces Nanostructured Thin Films Interfaces for Solar Energy Conversion

284

Laboratory Directed Research and Development LDRD-FY-2011  

Science Conference Proceedings (OSTI)

This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

Dena Tomchak

2012-03-01T23:59:59.000Z

285

Laboratory directed research development annual report. Fiscal year 1996  

SciTech Connect

This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

1997-05-01T23:59:59.000Z

286

Laboratory Directed Research and Development Program FY 2004 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2005-04-01T23:59:59.000Z

287

Laboratory Directed Research and Development Program FY 2004 Annual Report  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2005-04-01T23:59:59.000Z

288

Laboratory Directed Research and Development Program FY 2007 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2008-04-01T23:59:59.000Z

289

Laboratory Directed Research and Development Program FY 2005 Annual Report  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2006-04-01T23:59:59.000Z

290

Laboratory Directed Research and Development Program FY 2007 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2008-04-01T23:59:59.000Z

291

Laboratory Directed Research and Development Program FY 2005 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2006-04-01T23:59:59.000Z

292

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,452 4.5% #12;California State University, Fullerton Institutional Research.5% Unknown 319 9.3% Non-Resident Alien (International) 95 2.8% #12;California State University, Fullerton

de Lijser, Peter

293

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES PERCENT 1,660 4.7% MULTIPLE RACE 841 2.4% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH 125 3.2% INTERNATIONAL STUDENTS 74 1.9% MULTIPLE RACE 150 3.8% #12;CALIFORNIA STATE UNIVERSITY

de Lijser, Peter

294

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,666 4.5% #12;California State University, Fullerton Institutional Research.7% Unknown 282 6.8% Non-Resident Alien (International) 109 2.6% #12;California State University, Fullerton

de Lijser, Peter

295

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,265 4.5% #12;California State University, Fullerton Institutional Research 276 10.0% Non-Resident Alien (International) 46 1.7% #12;California State University, Fullerton

de Lijser, Peter

296

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,523 4.3% #12;California State University, Fullerton Institutional Research.3% Unknown 261 6.6% Non-Resident Alien (International) 92 2.3% #12;California State University, Fullerton

de Lijser, Peter

297

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,465 4.5% #12;California State University, Fullerton Institutional Research.4% Unknown 263 7.3% Non-Resident Alien (International) 97 2.7% #12;California State University, Fullerton

de Lijser, Peter

298

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,528 4.3% #12;California State University, Fullerton Institutional Research.7% Unknown 255 6.6% Non-Resident Alien (International) 107 2.8% #12;California State University, Fullerton

de Lijser, Peter

299

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,421 4.4% #12;California State University, Fullerton Institutional Research.3% Unknown 247 7.6% Non-Resident Alien (International) 62 1.9% #12;California State University, Fullerton

de Lijser, Peter

300

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,367 4.5% #12;California State University, Fullerton Institutional Research 335 11.6% Non-Resident Alien (International) 63 2.2% #12;California State University, Fullerton

de Lijser, Peter

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL Researcher Honored with 2013 Federal Laboratory Consortium Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Terry Jordan of the National Energy Technology Laboratory Terry Jordan of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award for Excellence in Technology Transfer for his work on the 3D Virtual Energy Plant Simulator and Immersive Training System. The 3D Virtual Energy Plant Simulator and Immersive Training System (ITS) deployed at NETL's Advanced Virtual Energy Simulation Training and Research (AVESTAR ® ) Center delivers the first virtual energy plant for training, research, and development. NETL and its training partners are using the system to deliver realistic, cost-effective, and low-risk workforce training to the energy industries. Virtual reality-based training helps operators increase their process knowledge and confidence, so they can bring plants

302

Laboratory Directed Research and Development FY 1998 Progress Report  

SciTech Connect

This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

John Vigil; Kyle Wheeler

1999-04-01T23:59:59.000Z

303

Laboratory directed research and development: FY 1997 progress report  

Science Conference Proceedings (OSTI)

This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

Vigil, J.; Prono, J. [comps.

1998-05-01T23:59:59.000Z

304

FACT SHEET: Clean Coal University Research Awards and Project Descriptions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Clean Coal University Research Awards and Project FACT SHEET: Clean Coal University Research Awards and Project Descriptions FACT SHEET: Clean Coal University Research Awards and Project Descriptions As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced on June 6, 2012, that nine universities have won awards for research projects that will continue to support innovation and development of clean coal technologies. This fact sheet includes detailed project descriptions for each university-led research award. FACT SHEET_ Clean Coal University Project Descriptions_0.pdf More Documents & Publications University Coal Research Program 2013 Selections Report on Assessment of Environmentally--Assisted Fatigue for LWR Extended Service Conditions FAQS Reference Guide - Mechanical Systems

305

SOLERAS - Saudi University Solar Cooling Laboratories Project. Final report, project summary  

Science Conference Proceedings (OSTI)

Proposals for research on solar cooling are presented for four Saudi Arabian universities. The universities are the University of Petroleum and Minerals in Dhahran, King Saud University in Riyadh, King Abdulaziz University in Jeddah, and King Faisal University in Dammam. Topics researched include the Rankine cycle, passive solar cooling systems, a solar-powered lithium bromide-water absorption machine and a photovoltaic-powered thermoelectric cooling machine. (BCS)

Not Available

1986-01-01T23:59:59.000Z

306

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994  

SciTech Connect

The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

None

1995-02-25T23:59:59.000Z

307

Laboratory Directed Research and Development Program Activities for FY 2007.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

Newman,L.

2007-12-31T23:59:59.000Z

308

DOE Announces Winners of Annual University Coal Research Grants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Winners of Annual University Coal Research Grants DOE Announces Winners of Annual University Coal Research Grants DOE Announces Winners of Annual University Coal Research Grants July 7, 2005 - 2:06pm Addthis Funding to Support Continued Research in Clean Coal Technology MORGANTOWN, WV -- Secretary of Energy Samuel Bodman today announced $3 million in funding under the University Coal Research Program (UCR), the department's longest-running student-teacher research grant initiative. Secretary Bodman made the announcement while visiting West Virginia University, a $200,000 awardee. "Coal is our most abundant source of energy and the University Coal Research Program helps us identify new ways to utilize coal in a more efficient and environmentally responsible way by tapping into the creativity and ambition of America's young scientists," Secretary Bodman

309

DOE Announces Winners of Annual University Coal Research Grants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winners of Annual University Coal Research Grants Winners of Annual University Coal Research Grants DOE Announces Winners of Annual University Coal Research Grants July 7, 2005 - 2:06pm Addthis Funding to Support Continued Research in Clean Coal Technology MORGANTOWN, WV -- Secretary of Energy Samuel Bodman today announced $3 million in funding under the University Coal Research Program (UCR), the department's longest-running student-teacher research grant initiative. Secretary Bodman made the announcement while visiting West Virginia University, a $200,000 awardee. "Coal is our most abundant source of energy and the University Coal Research Program helps us identify new ways to utilize coal in a more efficient and environmentally responsible way by tapping into the creativity and ambition of America's young scientists," Secretary Bodman

310

FY2007 Laboratory Directed Research and Development Annual Report  

SciTech Connect

The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

Craig, W W; Sketchley, J A; Kotta, P R

2008-03-20T23:59:59.000Z

311

Laboratory Directed Research and Development FY 2000 Annual Progress Report  

SciTech Connect

This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

Los Alamos National Laboratory

2001-05-01T23:59:59.000Z

312

Update on Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.

Jay Keller; Gurpreet Singh

2001-05-14T23:59:59.000Z

313

Laboratory Directed Research and Development Program. Annual report  

SciTech Connect

Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

Ogeka, G.J.

1991-12-01T23:59:59.000Z

314

Laboratory Directed Research and Development Program FY98  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

Hansen, T. [ed.; Chartock, M.

1999-02-05T23:59:59.000Z

315

LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.  

Science Conference Proceedings (OSTI)

Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2002. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All Fy 2002 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2003. The BNL LDRD budget authority by DOE in FY 2002 was $7 million. The actual allocation totaled $6.7 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

FOX,K.J.

2002-12-31T23:59:59.000Z

316

Laboratory Directed Research and Development Program. FY 1993  

Science Conference Proceedings (OSTI)

This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

Not Available

1994-02-01T23:59:59.000Z

317

University Coal Research Program 2013 Selections | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Coal Research Program 2013 Selections University Coal Research Program 2013 Selections University Coal Research Program 2013 Selections Since the University Coal Research Program's inception in 1979, more than 728 research projects have been funded. With a combined value in excess of $132 million, these projects have provided new insights into coal's future use, and have given more than 1,800 students invaluable experience in understanding the science and technology of coal. Attached is the list of 2013 project selections under this program. UCR_Project_Selections_2013.pdf More Documents & Publications FACT SHEET: Clean Coal University Research Awards and Project Descriptions International Nuclear Energy Research Initiative: 2008 Annual Report 2013 Annual DOE-NE Materials Research Coordination Meeting

318

Pharmacotherapy Outcomes Research Center University of Utah College of Pharmacy  

E-Print Network (OSTI)

with the University of Utah Distinguished Teaching Award). Her teaching and research interests include the human sidePORC Pharmacotherapy Outcomes Research Center University of Utah College of Pharmacy MISSION STATEMENT Our mission is to design and conduct outcomes research studies that assess the value of therapy

Provancher, William

319

Center for Transportation Research University of Texas at Austin  

E-Print Network (OSTI)

Center for Transportation Research University of Texas at Austin Randy B. Machemehl, Ph.D., P.E. Nasser I. Al-Rashid Centennial Professor in Transportation Engineering, Director of the Center for Transportation Research, and SWUTC Executive Committee Member Center for Transportation Research University

320

Building a research university ecosystem: the case of software engineering education at Sofia University  

Science Conference Proceedings (OSTI)

This paper analyses the specifics and the tendencies in building the knowledge society as well as the role of the universities in this process. Some European policies and programs dedicated to the new role of the universities in realizing the Lisbon ... Keywords: research university ecosystem, software engineering education, universities in knowledge society

Roumen Nikolov; Sylvia Ilieva

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Programs at the Johns Hopkins University Applied Physics Laboratory. Quarterly report, October-December 1979  

DOE Green Energy (OSTI)

The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 December 1979. The Energy Quarterly Report is divided into five sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Resource Applications (DOE/RA), contains reports on the progress of those geothermal-related tasks where effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, also supported by DOE/RA, contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Studies, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission, reports on neotectonic investigations in Connecticut. The fourth section, Energy Conversion and Storage Techniques, contains two articles, the first on OTEC core unit testing supported by the Department of Energy, Division of Central Solar Technology (DOE/CST), and the second on recovery of landfill methane, supported by the Argonne National Laboratory. The fifth section, New Energy Technologies, reports on Laboratory studies of an unconventional gas source--Eastern Devonian shales.

None

1979-12-01T23:59:59.000Z

322

Public Vs. Private Good Research at Land-Grant Universities  

E-Print Network (OSTI)

and Rausser, 1993). Public-private partner- ships cannot beinevitable outcome of public-private research collaboration.universities can use public-private partnerships to leverage

Rausser, Gordon C.; Simon, Leo K.; Stevens, Reid

2008-01-01T23:59:59.000Z

323

The Building Research Council at the University of Illinois ...  

Open Energy Info (EERE)

Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections The Building Research Council at the University of Illinois is...

324

Twenty Years of Airborne Research at the University of Washington  

Science Conference Proceedings (OSTI)

Wherein is revealed the trials, tribulations, and triumphs of operating an aircraft for atmospheric research at a university over the past 20 years.

Peter V. Hobbs

1991-11-01T23:59:59.000Z

325

List of Sponsors The Research Laboratory of Electronics would like to thank the following organizations  

E-Print Network (OSTI)

Fellowship Cold Regions Research and Engineering Laboratory Computer Microvision for Microelectromechanical

326

Laboratory Directed Research and Development FY2011 Annual Report  

Science Conference Proceedings (OSTI)

A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.

Craig, W; Sketchley, J; Kotta, P

2012-03-22T23:59:59.000Z

327

Faculty and Student Teams and National Laboratories: Expanding the Reach of Research Opportunities and Workforce Development  

Science Conference Proceedings (OSTI)

The Faculty and Student Teams (FaST) Program, a cooperative effort between the US Department of Energy (DOE) Office of Science and the National Science Foundation (NSF), brings together collaborative research teams composed of a researcher at Brookhaven National Laboratory, and a faculty member with two or three undergraduate students from a college or university. Begun by the Department of Energy in 2000 with the primary goal of building research capacity at a faculty member's home institution, the FaST Program focuses its recruiting efforts on faculty from colleges and universities with limited research facilities and those institutions that serve populations under-represented in the fields of science, engineering and technology, particularly women and minorities. Once assembled, a FaST team spends a summer engaged in hands-on research working alongside a laboratory scientist. This intensely collaborative environment fosters sustainable relationships between the faulty members and BNL that allow faculty members and their BNL colleagues to submit joint proposals to federal agencies, publish papers in peer-reviewed journals, reform local curriculum, and develop new or expand existing research labs at their home institutions.

Blackburn,N.; White, K.; Stegman, M.

2009-08-05T23:59:59.000Z

328

Researcher, Los Alamos National Laboratory - Space Science and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Applications Science and Applications Group | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Joaquin Birn Researcher, Los Alamos National Laboratory - Space Science and Applications Group Joaquin Birn Joaquin Birn Role: Researcher, Los Alamos National Laboratory - Space Science and

329

NETL Researcher Honored with 2013 Federal Laboratory Consortium Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Dr. Priyadarshi Mahapatra of the National Energy Technology Dr. Priyadarshi Mahapatra of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award for Excellence in Technology Transfer for his work on the 3D Virtual Energy Plant Simulator and Immersive Training System. The 3D Virtual Energy Plant Simulator and Immersive Training System (ITS) deployed at NETL's Advanced Virtual Energy Simulation Training and Research (AVESTAR ® ) Center delivers the first virtual energy plant for training, research, and development. NETL and its training partners are using the system to deliver realistic, cost-effective, and low-risk workforce training to the energy industries. Virtual reality-based training helps operators increase their process knowledge and confidence, so they can bring plants

330

Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group  

National Nuclear Security Administration (NNSA)

and Remote Sensing Group and Remote Sensing Group | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Patrick Colestock Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group Patrick Colestock Patrick Colestock Role: Researcher, Los Alamos National Laboratory - Space and Remote Sensing

331

Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group  

NLE Websites -- All DOE Office Websites (Extended Search)

and Remote Sensing Group and Remote Sensing Group | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Patrick Colestock Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group Patrick Colestock Patrick Colestock Role: Researcher, Los Alamos National Laboratory - Space and Remote Sensing

332

NREL: Research Participant Program - University Relations  

NLE Websites -- All DOE Office Websites (Extended Search)

University Relations program is dedicated to improving relationships with the higher education community. NREL wants to talk with talented students with areas of study in our...

333

Transmutation Research Program University of Nevada, Las Vegas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmutation Transmutation Research Program University of Nevada, Las Vegas University of Nevada, Las Vegas Transmutation Research Program Transmutation Research Program Anthony E. Hechanova Director http://aaa.nevada.edu Transmutation Research Program * Overview of UNLV Program * FY01 and FY02 in Review * Plans for FY03 * Future Outlook - Directions Outline Transmutation Research Program UNLV Transmutation Research Program Program Mission: To establish a world-class program at UNLV for transmutation research and education through faculty-supervised graduate student projects. Program Goals: * Build core competencies and facilities to promote UNLV's strategic growth * Increase UNLV's research activities * Attract students and faculty of the highest caliber Transmutation

334

Reservoir technology research at the Idaho National Engineering Laboratory  

DOE Green Energy (OSTI)

The Idaho National Engineering Laboratory (INEL) has been conducting geothermal reservoir research and testing sponsored by the US Department of Energy (DOE) since 1983. The INEL research program is primarily aimed at the development of reservoir engineering techniques for fractured geothermal reservoirs. Numerical methods have been developed which allow the simulation of fluid flow and heat transfer in complex fractured reservoirs. Sensitivity studies have illustrated the importance of incorporating the influence of fractures in reservoir simulations. Related efforts include fracture characterization, geochemical reaction kinetics and field testing.

Stiger, S.G.; Renner, J.L.

1987-01-01T23:59:59.000Z

335

Laboratory-directed research and development: FY 1996 progress report  

Science Conference Proceedings (OSTI)

This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

Vigil, J.; Prono, J. [comps.

1997-05-01T23:59:59.000Z

336

1996 Laboratory directed research and development annual report  

SciTech Connect

This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

1997-04-01T23:59:59.000Z

337

Laboratory Directed Research and Development Program, FY 1992  

SciTech Connect

This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

1993-01-01T23:59:59.000Z

338

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES PERCENT STUDENTS 1,722 4.7% MULTIPLE RACE 579 1.6% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL.6% UNKNOWN 162 4.0% INTERNATIONAL STUDENTS 84 2.1% MULTIPLE RACE 190 4.7% #12;CALIFORNIA STATE UNIVERSITY

de Lijser, Peter

339

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES PERCENT 1,611 4.5% MULTIPLE RACE 1,145 3.2% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL.9% UNKNOWN 95 2.3% INTERNATIONAL STUDENTS 101 2.4% MULTIPLE RACE 216 5.1% #12;CALIFORNIA STATE UNIVERSITY

de Lijser, Peter

340

Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.  

Science Conference Proceedings (OSTI)

I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

Office of the Director

2010-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Jun Wang1, Sundar A Christopher1, Xiong Liu2, Jeffrey S. Reid3, Elizabeth A. Reid3, Hal Maring4 1Department of Atmospheric Sciences, University of Alabama-Huntsville 3Marine Meteorology Division, Naval Research Laboratory, Monterey, CA  

E-Print Network (OSTI)

in the Puerto Rico Dust Experiment (PRIDE) PI: Philip B. Russell MS 245-5, NASA Ames Research Center Moffett new analyses of aerosol radiative forcing sensitivity, single scattering albedo, and the solar spectral radiative energy budget. (h) Derive aerosol size distributions from optical depth and extinction

Wang, Jun

342

Nine Universities Begin Critical Turbine Systems Research | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research July 20, 2011 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy announced the selection of ten projects at nine universities under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The projects will develop technologies for use in the new generation of advanced turbines that operate cleanly and efficiently using fuels derived from coal and containing high amounts of hydrogen. The selected universities - located in California, Connecticut, Indiana, Michigan, North Dakota, Ohio, Pennsylvania, Tennessee, and Texas - will direct their efforts toward enabling technologies for high-hydrogen-fueled

343

Nine Universities Begin Critical Turbine Systems Research | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research July 20, 2011 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy announced the selection of ten projects at nine universities under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The projects will develop technologies for use in the new generation of advanced turbines that operate cleanly and efficiently using fuels derived from coal and containing high amounts of hydrogen. The selected universities - located in California, Connecticut, Indiana, Michigan, North Dakota, Ohio, Pennsylvania, Tennessee, and Texas - will direct their efforts toward enabling technologies for high-hydrogen-fueled

344

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.  

E-Print Network (OSTI)

Golden, CO 80403 (303) 278-9800 Robin McGuire Savannah River Laboratory 14 Caw Caw Court Aiken, SC 29803 Hearing, November 1990 Paul Rodarte Director, Native American Program T&S Public Hearing, November 1990 J

Scott, Robert A.

345

Center for Transportation Research University of Texas at Austin  

E-Print Network (OSTI)

Center for Transportation Research University of Texas at Austin C. Michael Walton, Ph.D., P for Transportation Research University of Texas at Austin Austin, TX 78701 cmwalton@mail.utexas.edu (512) 471 pursued a career in transport systems engineering and policy analysis. Dr. Walton is a member

346

Research in Ghanaian public universities : perceptions and experiences of academic staff at the University of Ghana.  

E-Print Network (OSTI)

??With the advent of the knowledge economies, research is recognised as a catalyst for accelerated national growth. Many countries are therefore investing hugely in university (more)

Gyan, George

2010-01-01T23:59:59.000Z

347

Virtual University Research Initiative on Mobility  

Science Conference Proceedings (OSTI)

BT's technology acquisition has taken on an increasingly collaborative approach in recent years. This paper provides an insight into a long-running collaboration between BT and three universities in the mobility area.

R. M. Dennis; A. R. Beresford; K. M. Brown

2001-01-01T23:59:59.000Z

348

EDUconnections Highlights Arizona State University Research | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EDUconnections Highlights Arizona State University Research EDUconnections Highlights Arizona State University Research EDUconnections Highlights Arizona State University Research December 6, 2010 - 5:47pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs For the past year, .EDUconnections has been the Office of Science and Technical Information's online portal for highlighting some of the amazing scientific research being done at our nation's universities and colleges. They're helping get the message out about how research and technical advancements through Department of Energy sponsored programs are propelling our future workforce to new discoveries in science, engineering, mathematics and many other technical disciplines. This month they're pleased to spotlight Arizona State University. ASU's

349

EDUconnections Highlights Arizona State University Research | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EDUconnections Highlights Arizona State University Research EDUconnections Highlights Arizona State University Research EDUconnections Highlights Arizona State University Research December 6, 2010 - 5:47pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs For the past year, .EDUconnections has been the Office of Science and Technical Information's online portal for highlighting some of the amazing scientific research being done at our nation's universities and colleges. They're helping get the message out about how research and technical advancements through Department of Energy sponsored programs are propelling our future workforce to new discoveries in science, engineering, mathematics and many other technical disciplines. This month they're pleased to spotlight Arizona State University. ASU's

350

CMT Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Condensed Matter Theory Research Technical Progress Superconductivity Nobel Prize in physics awarded to Abrikosov at Stockholm ceremony: ARGONNE, Ill. (Dec. 10, 2003) Ñ The 2003 Nobel Prize in physics was awarded to Alexei A. Abrikosov of the U.S. Department of Energy's Argonne National Laboratory at a ceremony in Stockholm. Abrikosov shared the prize with two colleagues for theories about how matter can show bizarre behavior at extremely low temperatures. The Royal Swedish Academy of Sciences cited Abrikosov, Anthony J. Leggett and Vitaly L. Ginzburg for their work concerning two phenomena called superconductivity and superfluidity. ARPES spectra in the superconducting state of the cuprates are characterized by a low binding energy feature (quasiparticle peak), and a

351

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.  

DOE Green Energy (OSTI)

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

352

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.  

DOE Green Energy (OSTI)

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

353

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.  

SciTech Connect

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

354

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.  

SciTech Connect

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

355

Solar pond research at the Los Alamos National Laboratory  

DOE Green Energy (OSTI)

A description of solar pond research at Los Alamos National Laboratory is presented. The main issues in the theory of solar ponds are discussed. Among these are the interfacial-boundary-layer model, models for interface motion and pond performance, heat extraction, and ground heat loss. The core of the research effort at Los Alamos was the development of a one-dimensional computer program to accurately predict dynamic performance of a solar pond. The computer model and the experiments that were designed and performed to validate it are described. The experiments include two laboratory tanks wherein temperature, salinity, and flow visualization data were obtained and a 232 m/sup 2/ outdoor solar pond. Results from preliminary validation show good agreement between the pond's predicted dynamic behavior and that which actually occurred in the experiments. More validation using data from full-sized solar ponds is needed. A new correlation for the ratio of interfacial salt-flux to heat-flux is proposed which agrees well with our data. Recommendations for future research are given.

Jones, G.F.; Meyer, K.A.; Hedstrom, J.C.; Grimmer, D.P.

1984-01-01T23:59:59.000Z

356

Energy Secretary Hails University of Maine's Wind Research | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hails University of Maine's Wind Research Hails University of Maine's Wind Research Energy Secretary Hails University of Maine's Wind Research June 16, 2010 - 10:51am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Energy Secretary Steven Chu praised the University of Maine on Monday, calling the school's offshore wind technology program "truly impressive." Secretary Chu visited the university's Orono campus to learn more about its 10-year plan to design and deploy deepwater wind technology, an effort that could pave the way for the first floating commercial wind farm in the United States. "It's part of the leadership Maine has shown in going toward a sustainable economy," Chu told the university's newspaper. Invited by Maine Sen. Susan Collins, Chu was given a tour of the

357

High-Energy Petawatt Project at the University of Rochester's Laboratory for Laser Energetics  

Science Conference Proceedings (OSTI)

A high-energy petawatt laser, OMEGA EP, is currently under construction at the University of Rochester's Laboratory for Laser Energetics. Integrated into the existing OMEGA laser, it will support three major areas of research: (a) backlighting of high-energy-density plasmas, (b) integrated fast ignition experiments, and (c) high-intensity physics. The laser will provide two beams combined collinearly and coaxially with short pulses (~1 to 100 ps) and high energy (2.6 kJ at 10 ps). Cone-in-shell fuel-assembly experiments and simulations of short-pulse heated cryogenic targets are being performed in preparation for cryogenic integrated fast ignitor experiments on OMEGA EP.

Stoeckl, C.; Delettrez, J.A.; Kelly, J.H.; Kessler, T.J.; Kruschwitz, B.E.; Loucks, S.J.; McCrory, R.L.; Meyerhofer, D.D.; Maywar, D.N.; Morse, S.F.B.; Myatt, J.; Rigatti, A.L.; Waxer, L.J.; Zuegel, J.D.; Stephens, R.B.

2006-04-12T23:59:59.000Z

358

Tritium research laboratory cleanup and transition project final report  

Science Conference Proceedings (OSTI)

This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

Johnson, A.J.

1997-02-01T23:59:59.000Z

359

1997 Laboratory directed research and development. Annual report  

Science Conference Proceedings (OSTI)

This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

1997-12-31T23:59:59.000Z

360

PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories  

DOE Green Energy (OSTI)

From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

Finger, J.T.; Glowka, D.A.

1989-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Laboratory directed research and development annual report 2004.  

SciTech Connect

This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives.

2005-03-01T23:59:59.000Z

362

Brookhaven National Laboratory is home to world-class research facilities and sc  

NLE Websites -- All DOE Office Websites (Extended Search)

is home to world-class research facilities and scientific is home to world-class research facilities and scientific departments which attract resident and visiting scientists in many fields. This outstanding mix of machine- and mind-power has on seven occasions produced research deemed worthy of the greatest honor in science: the Nobel Prize. 2009 Nobel Prize in Chemistry Venkatraman Ramakrishnan, of the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, a former employee in Brookhaven's Biology Department, and a long-time user of Brookhaven's National Synchrotron Light Source (NSLS), and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the Weizmann Institute of Science for studying the structure and function of the ribosome.

363

Four Minority Universities Selected for Fossil Energy Research Grants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Four Minority Universities Selected for Fossil Energy Research Four Minority Universities Selected for Fossil Energy Research Grants Four Minority Universities Selected for Fossil Energy Research Grants July 28, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy has selected four universities to receive grants under the department's annual competition for fossil energy research ideas from Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). "I want to congratulate the winners of this year's competition, and thank them for their hard work," said Charles McConnell, Chief Operating Officer of DOE's Office of Fossil Energy. "Identifying the next generation of leaders and innovators is one of the keys to strengthening our economy and creating the clean energy jobs of tomorrow."

364

Studies of Photovoltaic Roofing Systems at Wind Engineering and Fluids Laboratory at Colorado State University  

E-Print Network (OSTI)

Studies of Photovoltaic Roofing Systems at Wind Engineering and Fluids Laboratory at Colorado State of photovoltaic technology to generate electricity. Various innovative systems incorporating photovoltaic panels and Fluids Laboratory (WEFL) at Colorado State University (CSU, www.windlab.colostate.edu) have been involved

365

Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995  

Science Conference Proceedings (OSTI)

The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.

Smith, M.H.

1995-07-01T23:59:59.000Z

366

FACT SHEET: Clean Coal University Research Awards and Project Descriptions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SHEET: Clean Coal University Research Awards and SHEET: Clean Coal University Research Awards and Project Descriptions IMPROVED ALLOYS By substantially increasing the pressure and temperature of the steam used to produce power, advanced ultrasupercritical (AUSC) coal-fired power plants improve generation efficiency, use less coal and release less carbon pollution. The implementation of AUSC boilers requires materials with high-temperature oxidation, corrosion and deformation resistance. These selected projects will develop new surface modification techniques or optimize existing techniques for the protection of high-temperature alloys used in AUSC coal-fired boilers and in advanced gas turbines. Southern Illinois University (Carbondale, Ill.) - Southern Illinois University Carbondale

367

LEHIGH UNIVERSITY RESEARCH AND TESTING AGREEMENT  

E-Print Network (OSTI)

, the Project. Article 4 - Costs, Billings and Other Support 4.1 It is agreed to and understood by the parties and testing project contemplated by this Agreement is of mutual interest and benefit to University have the following meanings: 1.1 "Project" shall mean the project titled

Gilchrist, James F.

368

A design guide for energy-efficient research laboratories  

Science Conference Proceedings (OSTI)

This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

Wishner, N.; Chen, A.; Cook, L. [eds.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

1996-09-24T23:59:59.000Z

369

Overview of Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

Robert W. Carling; Gurpreet Singh

1999-04-26T23:59:59.000Z

370

User guide to the Burner Engineering Research Laboratory  

SciTech Connect

The Burner Engineering Research Laboratory (BERL) was established with the purpose of providing a facility where manufacturers and researchers can study industrial natural gas burners using conventional and laser-based diagnostics. To achieve this goal, an octagonal furnace enclosure with variable boundary conditions and optical access that can accommodate burners with firing rates up to 2.5 MMBtu per hour was built. In addition to conventional diagnostic capabilities like input/output measurements, exhaust gas monitoring, suction pyrometry and in-furnace gas sampling, laser-based diagnostics available at BERL include planar Mie scattering, laser Doppler velocimetry and laser-induced fluorescence. This paper gives an overview of the operation of BERL and a description of the diagnostic capabilities and an estimate of the time required to complete each diagnostic for the potential user who is considering submitting a proposal.

Fornaciari, N.; Schefer, R.; Paul, P. [Sandia National Lab., Livermore, CA (United States); Lubeck, C. [Univ. of California, San Diego, CA (United States); Sanford, R.; Claytor, L.

1994-11-01T23:59:59.000Z

371

SOLERAS - University Research Project. Progress report 2  

Science Conference Proceedings (OSTI)

Progress to date on each of the research efforts in direct solar energy applications at public and private institutions of higher education and research in the United States is addressed. Some research topics covered include: concentrating optics for PV conversion; wind power; solar ponds; photosynthesis; amorphous silicon alloys; passive cooling; crystal growth of gallium arsenides; and solar insolation. The period of work covered by these reports is June 1984 through February 1985.

Not Available

1985-03-01T23:59:59.000Z

372

University Research Management: An Exploratory Literature Review  

E-Print Network (OSTI)

as Process. Routledge, London. Hockey, J. , Allen-Collinson,for successful research (Hockey and Allen-Collinson 2009).qualities, and experience (Hockey and Allen-Collinson 2009:

Schuetzenmeister, Falk

2010-01-01T23:59:59.000Z

373

JOANNEUM RESEARCH and Vienna University of ...  

Science Conference Proceedings (OSTI)

... Georg Schwendt? ? JOANNEUM RESEARCH, DIGITAL Institute for ... [15] OpenCV library, http://opencv ... of SPIE-IS&T Electronic Imaging, A. Said ...

2012-01-10T23:59:59.000Z

374

Laboratory Directed Research and Development 1998 Annual Report  

SciTech Connect

The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

Pam Hughes; Sheila Bennett eds.

1999-07-14T23:59:59.000Z

375

Energy Research at the University of Bath  

E-Print Network (OSTI)

the potential energy demand reductions that are achievable across the whole of the UK industrial sector of Science Review' in industrial energy efficiency commissioned by the UK Government's Office of Science oil and research into an "intelligent" lubrication oil system. This research is on target to reduce

Collomosse, John

376

Whitehead Biomedical Research Building at Emory University, Atlanta...  

NLE Websites -- All DOE Office Websites (Extended Search)

will cover the additional first cost. Project Description The Whitehead Biomedical Research Facility is an eight-story, 325,000 gross ft 2 (212,264 net ft 2 ) laboratory...

377

Center for Transportation Research University of Texas at Austin  

E-Print Network (OSTI)

Center for Transportation Research University of Texas at Austin Chandra Bhat, Ph.D. Director, Center for Transportation Research Adnan Abou-Ayyash Centennial Professor in Transportation Engineering-4535 Biography Dr. Chandra R. Bhat is the Director of the Center for Transportation Research (CTR) and the Adnan

378

Four Minority Universities Selected for Fossil Energy Research Grants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 20, 2010 - 1:00pm May 20, 2010 - 1:00pm Addthis Washington, DC - Innovative fossil energy research projects will be investigated by students and faculty from four winning institutions in the Department of Energy's annual competition for fossil energy research ideas from the nation's Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). Students and faculty from the chosen universities - the University of Texas, El Paso; Southern University and A&M College; Tennessee State University; and the University of Texas, San Antonio - will investigate projects dealing with computational energy sciences, material sciences, and sensors and controls for use in fossil fuel power systems. Established in 1984, the HBCU/OMI program was designed to encourage

379

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2009-03-02T23:59:59.000Z

380

Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion  

DOE Green Energy (OSTI)

Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.

Cheng, Robert K.

1999-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Laboratory directed research and development annual report 2003.  

SciTech Connect

Science historian James Burke is well known for his stories about how technological innovations are intertwined and embedded in the culture of the time, for example, how the steam engine led to safety matches, imitation diamonds, and the landing on the moon.1 A lesson commonly drawn from his stories is that the path of science and technology (S&T) is nonlinear and unpredictable. Viewed another way, the lesson is that the solution to one problem can lead to solutions to other problems that are not obviously linked in advance, i.e., there is a ripple effect. The motto for Sandia's approach to research and development (R&D) is 'Science with the mission in mind.' In our view, our missions contain the problems that inspire our R&D, and the resulting solutions almost always have multiple benefits. As discussed below, Sandia's Laboratory Directed Research and Development (LDRD) Program is structured to bring problems relevant to our missions to the attention of researchers. LDRD projects are then selected on the basis of their programmatic merit as well as their technical merit. Considerable effort is made to communicate between investment areas to create the ripple effect. In recent years, attention to the ripple effect and to the performance of the LDRD Program, in general, has increased. Inside Sandia, as it is the sole source of discretionary research funding, LDRD funding is recognized as being the most precious of research dollars. Hence, there is great interest in maximizing its impact, especially through the ripple effect. Outside Sandia, there is increased scrutiny of the program's performance to be sure that it is not a 'sandbox' in which researchers play without relevance to national security needs. Let us therefore address the performance of the LDRD Program in fiscal year 2003 and then show how it is designed to maximize impact.

2004-03-01T23:59:59.000Z

382

Directory of Federal Agencies and University Research Centers conducting R D in Environmental and Waste Management  

Science Conference Proceedings (OSTI)

In October 1990 PAR Enterprises, Incorporated was awarded a contract by the Department of Energy to conduct a survey and prepare a Directory of Federal Agencies and University Research Centers involved in environmental restoration and waste management research and development. To conduct the survey and organize the Directory, data from 50 Federal agencies and 100 universities was collected, evaluated and summarized. The purpose of the survey and Directory is to describe the activities and provide a reference base of Federal Agencies and University Research Cantors involved in environmental restoration and waste management research and development. The Directory contains (1) the Foreword, (2) an Introduction, (3) a Description of the Survey Organization and Research Approach, (4) the EM/OTD Key Word Networks, (5) a series of matrices that show the relationship between the OTD technical requirements and the Federal Agency/University EM capabilities, (6) the Federal Agency and University Research Center EM R D Capabilities Profiles, (7) a Glossary, and (8) an Appendix that describes the EM activities of the DOE National Laboratories and related research facilities. The survey and Directory was prepared for the Office of Technology Development (OTD), a major R D component of DOE's Office of Environmental Restoration and Waste Management.

Not Available

1991-12-01T23:59:59.000Z

383

NETL Researcher Honored with 2013 Federal Laboratory Consortium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Terry Jordan of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award for Excellence in Technology...

384

Building Energy and Environment Research in Tianjin University...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy and Environment Research in Tianjin University and Biological Particle Filtration and Removal Speaker(s): Guanyi Chen Junjie Liu Date: June 28, 2007 - 12:00pm...

385

An NSF Industry/University Cooperative Research Program CCMC PROSPECTUS  

E-Print Network (OSTI)

An NSF Industry/University Cooperative Research Program CCMC PROSPECTUS May 2005 CERAMIC ........................................................................................21 #12;PROSPECTUS, MAY 2005 3 EXECUTIVE SUMMARY Ceramic and Composite Materials Center NSF Industry...................................................................................................................8 Industrial Advisory Board

386

Research capacity development of individuals at three South African university research centres.  

E-Print Network (OSTI)

?? In South Africa, there has been recognition of the need for increasing research capacity at South African universities and within the national science system. (more)

Dison, Arona.

2007-01-01T23:59:59.000Z

387

Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility- January 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Los Alamos National Laboratory Chemistry and Metallurgy Research Facility Fire Suppression Vital Safety System

388

Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, April-June 1980  

DOE Green Energy (OSTI)

The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 30 June 1980. The Energy Quarterly Report is divided into three sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Energy Conversion and Storage Techniques, contains three articles. The first is on data analysis of OTEC core unit condenser tests, and is supported by the Department of Energy/Division of Central Solar Technology (DOE/CST). The second is on the current status of the Community Annual Storage Energy System at the U.S. Naval Air Station, Norfolk, Va., and is supported by the Department of Energy and the Department of Defense, Naval Facilities Engineering Command/Atlantic Division. The third is on utilization of landfill methane and is supported by Argonne National Laboratory.

None

1980-06-01T23:59:59.000Z

389

Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, October-December 1980  

DOE Green Energy (OSTI)

The Johns Hopkins University Applied Physics Laboratory is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 December 1980. The Energy Quarterly Report is divided into five sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains a report on institutional problems for small-scale hydroelectric power development in the southeastern states and a list of documents published by APL in the hydroelectric program and in the geothermal program, above. The third section, Seismotectonic Investigations, contains an article on work on the geologic structure of the Danbury Quadrangle that is supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC) and an in-house supported study on a new method for assessing earthquakes in intraplate regions. The fourth section, Energy Conversion and Storage Techniques, contains four articles. The first is an evaluation of the Einstein refrigerator, supported by independent IR and D funds. The second concerns fly-wheel technology development at APL supported by the Department of Energy, Division of Energy Storage (DOE/STOR). The third is a report on APL energy conservation efforts at its own buildings, and the fourth is an article on liquefied natural gas (LNG) safety evaluation, supported by the National Academy of Sciences. The fifth section explores the value of establishing an Energy Research Institute at The Johns Hopkins University.

None

1980-12-01T23:59:59.000Z

390

Research Laboratories General Motors Corporation General Motors Technical Center  

Office of Legacy Management (LM)

MI. 1-q Research Laboratories General Motors Corporation General Motors Technical Center Warren, Michigan 48090 January 21, 1977 Occupational Health Standards Branch Office of Standards Development U. S. Nuclear Requlatory Commission Washington, D.C. 20555 Attention: Mr. Robert E. Alexander, Chief Dear Mr. Alexander: In 1974, General Motors Corporation acquired a manufacturing plant in Adrian, Michigan. On October 21, 1976, General Motors announced that work would begin immediately to prepare the plant for manufacturing operations (Appendix A). A news release, made by Mr. Irving Loop of ERDA and carried by radio station WABJ of Adrian, Michigan on May 11, 1976, stated that natural uranium was handled in the plant after World War II and that

391

University of Arizona Research Computing 2012  

E-Print Network (OSTI)

in High Performance Computing and High Throughput Computing (HPC/HTC) and storage will greatly advance, the new Research Data Center houses our next generation of High Performance Computing (HPC), High on interdisciplinary concepts and on collaborations with industry. Our reliance on high performance computing

Lega, Joceline

392

Obama Administration Announces Clean Coal Research Awards for Universities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obama Administration Announces Clean Coal Research Awards for Obama Administration Announces Clean Coal Research Awards for Universities Across the Country Obama Administration Announces Clean Coal Research Awards for Universities Across the Country June 6, 2012 - 12:18pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C.- As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced that nine universities have won awards for research projects that will continue to support innovation and development of clean coal technologies. The awards, which will leverage student-led teams across the country as they continue research and development of new technologies and materials that will advance clean coal energy production, are part of the Administration's focus on ensuring we can rely on a broad range of energy sources as we move

393

Obama Administration Announces Clean Coal Research Awards for Universities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Research Awards for Clean Coal Research Awards for Universities Across the Country Obama Administration Announces Clean Coal Research Awards for Universities Across the Country June 6, 2012 - 12:18pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C.- As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced that nine universities have won awards for research projects that will continue to support innovation and development of clean coal technologies. The awards, which will leverage student-led teams across the country as they continue research and development of new technologies and materials that will advance clean coal energy production, are part of the Administration's focus on ensuring we can rely on a broad range of energy sources as we move

394

Sandia National Laboratories: Research: Intelligent Systems, Robotics, &  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Hand Sandia Hand Sandia Hand with Flowers Robots are used to perform more and more complex task and missions, and there is a need for a highly dexterous manipulation capability to support a wide variety of applications including, counter-improvised explosive device (IED), countermine, explosive ordnance disposal, search and rescue, casualty care, and operating in extreme environments. Need Current robot hands are highly dexterous and able to perform very complex manipulation tasks, but they are very expensive and thus not widely available. Sandia's Intelligent Systems, Robotics, & Cybernetics group collaborated with Stanford University and Lunar to develop The Sandia Hand for the Defense Advanced Research Projects Agency (DARPA)-sponsored Autonomous Robotic Manipulation (ARM) Program.

395

Laboratory Directed Research and Development (LDRD) | U.S. DOE Office of  

Office of Science (SC) Website

Laboratories » LPE Home » Laboratory Directed Laboratories » LPE Home » Laboratory Directed Research and Development (LDRD) Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) DOE's Philosophy on LDRD Frequently Asked Questions Success Stories Brochures Additional Information LDRD Program Contacts Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 Laboratory Directed Research and Development (LDRD) Print Text Size: A A A RSS Feeds FeedbackShare Page The Department of Energy's Engine of Discovery

396

Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites (Extended Search)

& Development & Development Page National Energy Research Scientific Computing Center T3E Individual Node Optimization Michael Stewart, SGI/Cray, 4/9/98 * Introduction * T3E Processor * T3E Local Memory * Cache Structure * Optimizing Codes for Cache Usage * Loop Unrolling * Other Useful Optimization Options * References 1 Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center Introduction * Primary topic will be single processor optimization * Most codes on the T3E are dominated by computation * Processor interconnect specifically designed for high performance codes, unlike the T3E processor * More detailed information available on the web (see References) * Fortran oriented, but I will give C compiler flag equivalents.

397

NETL: News Release - Secretary Abraham Announces University Coal Research  

NLE Websites -- All DOE Office Websites (Extended Search)

June 11, 2003 June 11, 2003 Secretary Abraham Announces University Coal Research Grants for 2003 Student-Based Projects Combine Education with Fundamental Studies of Coal Science & Technology WASHINGTON, DC - Seventeen universities in 14 states will receive $2.8 million in fossil energy research grants through a Department of Energy (DOE) program that brings science, university students and their professors together to advance the study of new clean and efficient coal-use technologies and concepts. "This is just one of the many steps the Department of Energy has taken to ensure that clean coal technology remains an effective element in President Bush?s Clear Skies Initiative," Secretary Spencer Abraham said. "We?ve already achieved many successes in the clean coal program, and I expect the 2003 University Coal Research projects will take us even further towards reducing air pollution and improving air quality throughout the nation."

398

Boise State University, CAES Energy Efficiency Research Institute | Open  

Open Energy Info (EERE)

Boise State University, CAES Energy Efficiency Research Institute Boise State University, CAES Energy Efficiency Research Institute Jump to: navigation, search Name Boise State University, CAES Energy Efficiency Research Institute Address 1910 University Drive Place Boise, Idaho Zip 83725 Coordinates 43.6056603°, -116.2059975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6056603,"lon":-116.2059975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

NETL: News Release - Six Minority Universities Win Fossil Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

August 7, 1995 August 7, 1995 DOE Adds New Fossil Energy Projects to Historically Black Colleges and Universities Grant Program WASHINGTON, DC - As part of its efforts to encourage more participation by minority college students and teachers in its national energy program, the Department of Energy (DOE) has selected seven natural gas, oil, and coal research projects to be carried out by teacher-student teams at historically black colleges and universities. The institutions will receive Federal research grants, each totalling $100,000 to $200,000, for fundamental research in topics ranging from improved oil and gas recovery and to the environmentally cleaner use of coal. One university, Clark Atlanta University, will also receive a separate smaller grant for a 1-year exploratory effort in oil processing.

400

Research Results and Further Opportunities Resulting from Collaboration with Electricity Research Centre, University College Dublin  

Science Conference Proceedings (OSTI)

In 2010, the Electric Power Research Institute (EPRI) research program on Integration of Bulk System Variable Generation (Program 173) funded the Electricity Research Centre (ERC). The ERC is an industry/university research collaboration, funded by 14 industry entities as well as other government funding agencies, based in electrical engineering at University College Dublin with an energy economics branch at Trinity College Dublin. The work performed focuses primarily on renewable generation integration;...

2011-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An Account of Oak Ridge National Laboratory's Thirteen Research Reactors  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

Rosenthal, Murray Wilford [ORNL

2009-08-01T23:59:59.000Z

402

Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, January-March 1980  

DOE Green Energy (OSTI)

The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 March 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/DGE), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigation, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission, reports on a neotectonic investigation in Connecticut. The fourth section, Energy Conversion and Storage Techniques, contains two articles, the first on OTEC core unit testing supported by the Department of Energy/Division of Central Solar Technology (DOE/CST), and the second on an analysis of the Community Annual Storage Energy System at the U.S. Naval Air Station, Norfolk, Va. This work is supported by the Department of Energy and the Department of Defense, Naval Facilities Engineering Command/Atlantic Division.

Entingh, Daniel J.

1980-03-01T23:59:59.000Z

403

Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, July-September 1980  

DOE Green Energy (OSTI)

The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 September 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigations, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC), reports on neotectonic investigations of the Manhattan Prong. The fourth section, Energy Conversion and Storage Techniques, contains three articles. The first is an evaluation of the Einstein refrigerator, supported by independent IR&D funds. The second concerns OTEC pilot plant performance calculations, supported by the Department of Energy/Division of Central Solar Technology (DOE/CST). The third, describing a study of landfill methane recovery, is supported by the National Park Service.

None

1980-09-01T23:59:59.000Z

404

Center for Transportation Training and Research Texas Southern University  

E-Print Network (OSTI)

Center for Transportation Training and Research Texas Southern University Khosro Godazi Associate Director, Center for Transportation Training and Research, and SWUTC Associate Director for Transportation.S. in City Planning. He is Director of 4-week Texas Summer Transportation Institute that has been held

405

Center for Transportation Training and Research Texas Southern University  

E-Print Network (OSTI)

Center for Transportation Training and Research Texas Southern University Carol Lewis, Ph.D. Director, Center for Transportation Training and Research, and SWUTC Executive Committee Member Texas is an Associate Professor in Transportation Studies and Direc- tor of the Center for Transportation Training

406

Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research  

SciTech Connect

The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part II: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.

Grove, L.K. (ed.)

1993-03-01T23:59:59.000Z

407

DOE - Office of Legacy Management -- Brown University - Metcalf Research  

Office of Legacy Management (LM)

Brown University - Metcalf Research Brown University - Metcalf Research Lab - RI 01 FUSRAP Considered Sites Site: Brown University (Metcalf Research Lab.) (RI.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Providence , Rhode Island RI.01-1 Evaluation Year: 1987 RI.01-1 Site Operations: Research/Development on the preparation of pure halides of heavy metals, Bench Scale Process, and Sample & Analysis. RI.01-1 Site Disposition: Eliminated - Potential for residual radioactive contamination from small quantities of radioactive material is considered remote RI.01-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium RI.01-1 Radiological Survey(s): None Indicated

408

Laboratory Directed Research and Development Program FY 2001  

E-Print Network (OSTI)

Brookhaven National Laboratory to measure the coherent far-infrared emitted from a bend magnet in the Jefferson Lab

Hansen, Todd; Levy, Karin

2002-01-01T23:59:59.000Z

409

Lawrence Berkeley Laboratory/University of California lighting program overview  

SciTech Connect

The objective of the Lighting Program is to assist and work in concert with the lighting community (composed of manufacturers, designers, and users) to achieve a more efficient lighting economy. To implement its objectives, the Lighting Program has been divided into three major categories: technical engineering, buildings applications, and human impacts (impacts on health and vision). The technical program aims to undertake research and development projects that are both long-range and high-risk and which the lighting industry has little interest in pursuing on its own, but from which significant benefits could accrue to both the public and the industry. The building applications program studies the effects that introducing daylighting in commercial buildings has on lighting and cooling electrical energy requirements as well as on peak demand. This program also examines optimization strategies for integrating energy-efficient design, lighting hardware, daylighting, and overall building energy requirements. The impacts program examines relationships between the user and the physical lighting environment, in particular how new energy-efficient technologies relate to human productivity and health. These efforts are interdisciplinary, involving engineering, optometry, and medicine. The program facilities are described and the personnel in the program is identified.

Berman, S.

1981-12-01T23:59:59.000Z

410

Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995  

Science Conference Proceedings (OSTI)

This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

NONE

1996-04-01T23:59:59.000Z

411

Laboratory tests evaluating the University of South Florida Mobile Data Acquisition System, Type 1  

DOE Green Energy (OSTI)

The University of South Florida Mobile Data Acquisition System, Version 1, was evaluated in battery laboratory bench tests and in conjunction with laboratory dynamometer tests, for accuracy, ease of operation, and performance. Two tests in each of the two environments are reported. The collected data were also used to evaluate the MDAS data conversion software package XRD10.EXE. Test results show only slightly lower accuracy than results from standard laboratory equipment and data reduction procedures. Additional environmental tests were deferred pending receipt of an improved version of the system.

Kiser, D.M.

1995-03-01T23:59:59.000Z

412

The Government-University-Industry Research Roundtable 1995 annual report  

SciTech Connect

The Government-University-Industry Research Roundtable was created just over a decade ago to provide a unique forum for dialogue among top government, university, and industry leaders of the national science and technology enterprise. The purpose is to facilitate personal working relationships and exchange of ideas about issues, problems, and promising opportunities that are facing those charged with developing and deploying science and technology resources. The open dialogue and informal exchange of ideas preclude a process of making formal recommendations or offering specific advice. Instead, the Roundtable seeks to stimulate new approaches by dissemination of its discussions, and pro-active contacts with organizations that may want to build on the idea base it establishes. After introductory material on the structure and operation of the Roundtable, accomplishments on current projects are described. Projects include: Stresses on research and education at colleges and universities; Formulating US research policies within an international context; The Federal Demonstration project, designed to improve the management of federally-funded research; Analysis of the costs of research in industrial, academic, and federal labs; Industry-university research collaborations; and Public stakeholding in America`s investment in science and technology.

1995-12-31T23:59:59.000Z

413

Geothermal heating for the Arizona Environmental Research Laboratory greenhouses  

DOE Green Energy (OSTI)

A preliminary study of the technical and economic feasibility of installing a retrofit geothermal heating system is analyzed for the Environmental Research Laboratory Farms greenhouse facility located in Tucson, Arizona. The facility consists of 10.6 acres of greenhouse area, of which 7.4 acres are currently operational. Natural gas or diesel fuel are presently used for heating. The maximum heating load is estimated to be 28,620,000 Btu/hr. Average annual heating energy consumption between 1974 and 1979 was 35,684 million But/year for 7.4 acres of greenhouse, costing an estimated $96,703 at 1981 natural gas prices. Two 2500 foot geothermal production wells are required, each capable of producing 1500 gpm of 130{sup 0}F water. The geothermal water is expected to contain 500 ppM total dissolved solids. Total estimated capital cost for installing the system is $902,946. The expected first year geothermal energy cost savigs are estimated to be $58,920. A simple payback of 9.1 years is calculated and the project has a net present value of $961,751. Geothermal heat could be supplied at a cost of $5.39 per million Btu in the first year of operation. The project as herein presented is marginally economic. However, it became clear after the study that an attractive economic case could be made for providing about 50 to 60 percent of the required heating load as a base load using geothermal energy.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

414

NETL: News Release - Six Minority Universities Win Fossil Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

May 24, 2000 May 24, 2000 Six Minority Universities Win Fossil Energy Research Grants to Advance Use of Oil, Coal, Gas Richardson, Browner Announce Government "Showcase" Project As part of the Department of Energy's continuing efforts to increase the involvement of the nation's minority institutions in energy research, Energy Secretary Bill Richardson today announced that six historically black universities and other minority institutions will share nearly $1 million in federal funding for fossil energy projects ranging from oil reservoir characterization to burner design for low-emission burners to pollution reduction from car engines. The winning schools are: Prairie View A&M University, Prairie View, TX, (2 projects): one for research into a new way of determining the geologic characteristics of complex oil reservoirs; the other for testing a new data analysis technique based on neural networks that could simplify modeling of the way fuel burns in a compression ignition engine, such as a diesel engine;

415

NETL: News Release - Six Minority Universities Selected for Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

November 28, 2005 November 28, 2005 Six Minority Universities Selected for Energy Research Grants Projects to Advance Methane Hydrate Research, Produce Hydrogen, and Improve Oil Recovery Among Selections Washington, DC - The Department of Energy has selected six institutions to receive grants for energy research through its Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) program. Carried out under the Energy Department's Office of Fossil Energy, the program gives students hands-on experience in developing technologies to promote the efficient and environmentally safe use of coal, oil, and natural gas. "I'm pleased to see the strong interest of faculty in conducting this research and training a promising group of college students," said Mark Maddox, Principal Deputy Assistant Secretary for Fossil Energy. "Their activities promote our nation's energy security and the educational growth of future energy researchers."

416

DOE - Office of Legacy Management -- University of Utah Medical Research  

Office of Legacy Management (LM)

Utah Medical Research Utah Medical Research Center - UT 02 FUSRAP Considered Sites Site: UNIVERSITY OF UTAH, MEDICAL RESEARCH CENTER (UT.02) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Salt Lake City , Utah UT.02-2 Evaluation Year: 1987 UT.02-1 Site Operations: Research and development on animal inhalation of uranium dust during the 1950s. UT.02-2 Site Disposition: Eliminated - Radiation levels below criteria UT.02-1 UT.02-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium UT.02-2 Radiological Survey(s): Yes UT.02-2 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to UNIVERSITY OF UTAH, MEDICAL RESEARCH CENTER UT.02-1 - DOE Letter; Fiore to Schiager; Subject: Elimination of

417

Ris National Laboratory Technical University of Denmark November 2007 Ris Energy Report 6  

E-Print Network (OSTI)

for a considerable increase in the use of renewable energy. IPCC states that CO2 must peak soon In its Fourth energy Even though energy efficiency has improved consider- ably in recent decades, it is technicallyRisø National Laboratory · Technical University of Denmark November 2007 Risø Energy Report 6

418

Pulsed power -- Research and technology at Sandia National Laboratories  

SciTech Connect

Over the past 15 years, steady and sometimes exciting progress has been made in the hybrid technology called Pulsed Power. Based on both electrical engineering and physics, pulsed power involves the generation, modification, and use of electrical pulses up to the multitrillion-watt and multimillion-volt ranges. The final product of these powerful pulses can take diverse forms--hypervelocity projectiles or imploding liners, energetic and intense particle beams, X-ray and gamma-ray pulses, laser light beams that cover the spectrum from ultraviolet to infrared, or powerful microwave bursts. At first, the needs of specific applications largely shaped research and technology in this field. New the authors are beginning to see the reverse--new applications arising from technical capabilities that until recently were though impossible. Compressing and heating microscopic quantities of matter until they reach ultra-high energy density represents one boundary of their scientific exploration. The other boundary might be a defensive weapon that can project vast amounts of highly directed energy over long distances. Other applications of the technology may range from the use of electron beams to sterilize sewage, to laboratory simulation of radiation effects on electronics, to electromagnetic launchings of projectiles into earth or into solar orbits. Eventually the authors hope to use pulsed power to produce an inexhaustible supply of energy by means of inertial confinement fusion (ICF)--a technique for heating and containing deuterium-tritium fuel through compression. Topics covered here are: (1) inertial confinement fusion; (2) simulation technology; (3) development of new technology; and (4) application to directed energy technologies.

1981-12-31T23:59:59.000Z

419

The Center for Computational Sciences DOE High Performance Computing Research Center at Oak Ridge National Laboratory  

E-Print Network (OSTI)

1 The Center for Computational Sciences DOE High Performance Computing Research Center at Oak Ridge Sciences DOE High Performance Computing Research Center at Oak Ridge National Laboratory Outline · CCS for Computational Sciences DOE High Performance Computing Research Center at Oak Ridge National Laboratory CCS

420

DOE/EA-1622: Final Environmental Assessment for University of Nevada, Las Vegas Research Foundation Solar Technology Center (January 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of Nevada, Las Vegas University of Nevada, Las Vegas Research Foundation SOLAR TECHNOLOGY CENTER January 2009 Final Environmental Assessment and Finding of No Significant Impact DOE/EA-1622 U.S. Department of Energy Golden Field Office National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 This Environmental Assessment was prepared on behalf of the U.S. Department of Energy by the University of Nevada, Las Vegas Research Foundation with contractual assistance from Ninyo & Moore, Inc. and MBP Consulting, LLC. Finding of No Significant Impact Solar Technology Center January 2009 Finding of No Significant Impact Solar Technology Center January 2009 Finding of No Significant Impact Solar Technology Center

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Center for Transportation Training and Research Texas Southern University  

E-Print Network (OSTI)

Center for Transportation Training and Research Texas Southern University Lei Yu, Ph.D., P.E. Professor of Transportation and Dean College of Science and Technology, and SWUTC Executive Committee Member and Technology, Industrial Technol- ogy, Mathematics, Physics, and Transportation Studies. He also oversees

422

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH & ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH & ANALYTICAL STUDIES NUMBER OF CALIFORNIA HIGH SCHOOL GRADUATES IN SELECTED COUNTIES/REGIONS Data from the State of California, Department,741 46% 171,201 45% 171,029 46% California Total 298,602 100% 382,924 100% 368,011 100% #12;CALIFORNIA

de Lijser, Peter

423

DISMANTLING OF THE FUEL CELL LABORATORY AT RESEARCH CENTRE JUELICH  

DOE Green Energy (OSTI)

The fuel cell laboratory was constructed in three phases and taken into operation in the years 1962 to 1966. The last experimental work was carried out in 1996. After all cell internals had been disassembled, the fuel cell laboratory was transferred to shutdown operation in 1997. Three cell complexes, which differed, in particular, by the type of shielding (lead, cast steel, concrete), were available until then for activities at nuclear components. After approval by the regulatory authority, the actual dismantling of the fuel cell laboratory started in March 2000. The BZ I laboratory area consisted of 7 cells with lead shieldings of 100 to 250 mm thickness. This area was dismantled from April to September 2000. Among other things, approx. 30,000 lead bricks with a total weight of approx. 300 Mg were dismantled and disposed of. The BZ III laboratory area essentially consisted of cells with concrete shieldings of 1200 to 1400 mm thickness. The dismantling of this area started in the fir st half of 2001 and was completed in November 2002. Among other things, approx. 900 Mg of concrete was dismantled and disposed of. Since more than 90 % of the dismantled materials was measurable for clearance, various clearance measurement devices were used during dismantling. The BZ II laboratory area essentially consists of cells with cast steel shieldings of 400 to 460 mm thickness. In September 2002 it was decided to continue using this laboratory area for future tasks. The dismantling of the fuel cell laboratory was thus completed. After appropriate refurbishment, the fuel cell laboratory will probably take up operation again in late 2003.

Stahn, B.; Matela, K.; Bensch, D.; Ambos, Frank

2003-02-27T23:59:59.000Z

424

Laboratory Directed Research and Development Program FY2011  

E-Print Network (OSTI)

in Water Resources Research. M. Commer, M. B. Kowalsky, S.Generation, Material Research Society 2011 Fall Meeting,to Water Resources Research. ESD-Davis LB11007 Effect of

ed, Todd Hansen

2013-01-01T23:59:59.000Z

425

Joint Center for Energy Storage Research | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Joint Center for Energy Storage Research Share Description The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S....

426

Pacific Northwest Laboratory Annual report for 1991 to the DOE Office of Energy Research  

Science Conference Proceedings (OSTI)

This report presents an overview of research conducted at the Pacific Northwest Laboratory in the following areas: Dosimetry, measurement science, and radiological and chemical physics. (CBS)

Toburen, L.H.

1992-05-01T23:59:59.000Z

427

ORNL Review - The Laboratory's Research and Development Magazine  

NLE Websites -- All DOE Office Websites (Extended Search)

in the 21st Century A CLOSER VIEW Kinga Unocic RESEARCH HORIZONS 'Zoomable' map of poplar proteins Scientists solve mercury mystery Mobility and risk FEATURED RESEARCH...

428

ORNL/PPA-2012/1 Laboratory Directed Research and  

E-Print Network (OSTI)

and temperature using the Oak Ridge National Laboratory (ORNL) HFIR. After exposure, the samples showed no visible mirror stack after exposure to neutrons from the ORNL HFIR. Fig. 9. (Left) Buildup of a high-gain target

429

Department of Energy Laboratories, Researchers to Showcase High...  

Office of Science (SC) Website

PnMPI Tools: A Whole Lot Greater than the Sum of Their Parts Martin Schulz and Bronis R. de Supinski, Lawrence Livermore National Laboratory Evaluation of Active Storage...

430

NETL: News Release - Six Minority Universities Win Fossil Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

August 3, 1996 August 3, 1996 Seven Historically Black Colleges Win Support for Fossil Energy R&D WASHINGTON, DC - As part of its efforts to encourage more participation by minority college students and teachers in its national energy program, the Department of Energy (DOE) has selected seven coal, natural gas, and oil research projects to be carried out by student-teacher teams at six Historically Black Colleges and Universities (HBCU). Six of the winning schools will partner with private sector companies and receive Federal research grants totaling $100,000 to $200,000 each. The industry-university partnerships will focus on environmental research in natural gas and oil exploration and production, advanced methods for cleaning sulfur and nitrogen pollutants from coal, and innovative coal use technologies.

431

NETL: News Release - Six Minority Universities Selected for Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

June 21, 2005 June 21, 2005 Eight Minority Universities Selected for Fossil Energy Research Grants College Students to Focus on Projects for Clean, Efficient Use of Coal WASHINGTON, DC - The Department of Energy has awarded grants to eight institutions for energy research through the Historically Black Colleges and Universities and Other Minority Institutions (HBCU) program. "It is a pleasure to see strong interest and participation in the HBCU program by such a promising group of college students," said Mark Maddox, principal deputy assistant secretary for fossil energy. "These bright minds are the key to fossil energy research of the future. The opportunity to participate in the program will not only benefit the students' educational growth but will also help secure our Nation's energy future."

432

DIRECTOR'S MESSAGE The Research Laboratory of Electronics (RLE), founded in  

E-Print Network (OSTI)

Kleber*, Jay Fineberg² & Daniel P. Lathrop* * Institute for Plasma Research and Department of Physics

433

SC Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research > Research Groups Research > Research Groups Research Groups Display # 5 10 15 20 25 30 50 100 All Title Research Groups CMT Personnel CMT Research CMT Links Condensed Matter Theory ECS Personnel ECS Research ECS Highlights Energy Conversion and Storage EM-Heating Effects EM- Electronic Valves EM-Breaking Up EM-Exploring Complexity EM-Narrow Phase Fields EM Pnictide Phase Diagram EM Molten Polysulfides EM Materials By Design EM Iron Pnictides EM Personnel EM D.J. Miller EM D.G. Hinks EM M.Grimsditch EM Tunneling EM Structural Features EM Seamless Joining EM Role of Reactive Elements EM Residual Strains EM Proximity Interactions EM Interface Roughness EM Growth Strains EM Grain Boundaries EM Extending the Phase EM Exploring the Mechanism EM Double Exchange EM Research EM Links EM Home IM Odin III

434

Oak Ridge National Laboratory Researchers of Plants, Roots, and Soil Shed  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Researchers of Plants, Roots, and Soil Shed National Laboratory Researchers of Plants, Roots, and Soil Shed Light on Arctic Ecosystem Polygon formations in Alaska provide researchers with a unique natural laboratory with which to study the Arctic and, by extension, the Earth's climate. Image credit: NGEE-Arctic Polygon formations in Alaska provide researchers with a unique natural laboratory with which to study the Arctic and, by extension, the Earth's climate. Image credit: NGEE-Arctic (hi-res image) This feature describes Oak Ridge National Laboratory research presented at the 98th annual meeting of the Ecological Society of America. The theme of the meeting, held Aug. 4-9 in Minnesota, is "Sustainable Pathways: Learning From the Past and Shaping the Future." Despite the enormity of climate research in the past couple of decades, one

435

A Community Hydrometeorology Laboratory for Fostering Collaborative Research by the Atmospheric and Hydrologic Sciences  

Science Conference Proceedings (OSTI)

A new community laboratory for fostering collaborative research between the atmospheric and hydrologic sciences communities is described. This facility, located at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, allows ...

Thomas T. Warner; David N. Yates; George H. Leavesley

2000-07-01T23:59:59.000Z

436

MHK Projects/Marine Hydrodynamics Laboratory at the University of Michigan  

Open Energy Info (EERE)

Marine Hydrodynamics Laboratory at the University of Michigan Marine Hydrodynamics Laboratory at the University of Michigan < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2808,"lon":-83.743,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

437

Laboratory Directed Research and Development Annual Report - Fiscal Year 2000  

Science Conference Proceedings (OSTI)

The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

2001-04-01T23:59:59.000Z

438

Laboratory tests evaluating the University of South Florida Mobile Data Acquisition System Type 2  

DOE Green Energy (OSTI)

Laboratory tests of the University of South Florida Mobile Data Acquisition System, Version 2, were conducted to evaluate accuracy, susceptibility to temperature changes and vibration, and ease of operation. The collected data were also used to test the MDAS data analysis software package XRD11.EXE. Subject to identified accuracy differences and recommended calibration changes, the system is judged adequate. Confirming in-vehicle tests are planned.

Kiser, D.M. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Mersman, C. [Kansas State Univ., Manhattan, KS (United States)

1995-03-01T23:59:59.000Z

439

HAZARDS SUMMARY FOR THE L-77 LABORATORY REACTOR FOR THE UNIVERSITY OF NEVADA, RENO  

SciTech Connect

A hazards summary report for the planned installation and operation of an L-77 Laboratory Reactor of the University of Nevada is presented. Site data, including information on the geography, geology, seismology, climatology, and hydrology of the area in which the reactor will be installed are included. The reactor site and administiation of the reactor facility are described along with the reactor, its uses, and its performance characteristics. Analyses of the nuclear, radiation, and operational hazards are also included. (auth)

1962-09-14T23:59:59.000Z

440

Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory  

SciTech Connect

This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

NONE

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "research laboratory university" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)  

E-Print Network (OSTI)

and hybrid electric vehicle test platforms. Relevant HHVRL project history includes: · Combined BatteryPenn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI) The Hybrid and Hydrogen Vehicle Research Laboratory (HHVRL) at the Larson Transportation Institute (LTI