National Library of Energy BETA

Sample records for research facility expansion

  1. Research Facility,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Upon conclusion of the field campaign,

  2. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Our state-of-the-art facilities are available to industry entrepreneurs, engineers, scientists, and universities for researching and developing their energy technologies. Our researchers and technicians who operate these labs and facilities are ready to work with you and share their expertise. Alphabetical Listings Laboratories Test and User Facilities Popular Facilities Energy Systems Integration Facility Integrated Biorefinery Research Facility Process Development

  3. NREL: Research Facilities - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology...

  4. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  5. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  6. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-028 ARM Climate Research Facility Quarterly Ingest Report Fourth Quarter: ...

  7. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-15-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  8. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARM-15-019 ARM Climate Research Facility Quarterly Value-Added Product Report ... implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  9. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARM-15-020 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ... maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  10. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman April ... DOESC-ARM-14-014 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ...

  11. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman April ... DOESC-ARM-14-009 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  12. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January ... DOESC-ARM-14-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  13. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October ... DOESC-ARM-14-027 ARM Climate Research Facility Quarterly Value-Added Product Report ...

  14. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman ... DOESC-ARM-11-023 ARM Climate Research Facility Quarterly Value-Added Product Report ...

  15. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman July ... DOESC-ARM-14-023 ARM Climate Research Facility Quarterly Ingest Report Third Quarter: ...

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2015 ... DOESC-ARM-15-038 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January ... DOESC-ARM-15-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  18. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2014 ... DOESC-ARM-14-020 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  19. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman February ... DOESC-ARM-12-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman ... DOESC-ARM-11-021 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  1. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  2. Pyrotek Graphitization Facility Expansion Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt016_es_sekedat_2011_p.pdf (756.86 KB) More Documents & Publications Pyrotek Graphitization Facility Expansion Project Pyrotek Graphitization Facility Expansion Project EA-1720: Finding of No Significant Impact

  3. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes LES ARM Symbiotic Simulation and Observation Workflow Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science

  4. NREL: Photovoltaics Research - Solar Energy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic ...

  5. NREL: Transportation Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities NREL conducts vehicles and fuels research in laboratories and test sites on its 327-acre main campus in Golden, Colorado, and at specialized facilities within the region. Industry, government, and university partners benefit from access to NREL equipment and facilities tailored to analyze a broad spectrum of energy-efficient vehicle and fuel technologies and innovations. NREL engineers and researchers work closely with a wide variety of partners to research and develop advanced

  6. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research...

  7. Photovoltaic Research Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  8. NREL: Research Facilities Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Research Facilities Here you'll find information about the National Renewable Energy Laboratory's R&D facility and laboratory capabilities. These state-of-the-art facilities...

  9. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that...

  10. NREL: Electricity Integration Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities NREL's electricity integration research is conducted in state-of-the-art ... reliable integration of renewable electricity, fuel production, storage, and building ...

  11. The Sanford underground research facility at Homestake

    SciTech Connect (OSTI)

    Heise, J.

    2014-06-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  12. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites ...

  13. NREL: Research Facilities - Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the lab, researchers study plant structures from the tissue scale to the molecular ... Photobiological Laboratory Researchers use this lab for enzyme engineering to block the ...

  14. Expansion of DOE-DOT Tight Oil Research Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expansion of DOE-DOT Tight Oil Research Work - Sandia Energy Energy Search Icon Sandia ... Twitter Google + Vimeo Newsletter Signup SlideShare Expansion of DOE-DOT Tight Oil ...

  15. Advanced Component Research Facility (ACRES)

    SciTech Connect (OSTI)

    Bohn, M.

    1980-07-01

    A detailed description of the SERI Advanced Component Research Facility (ACRES) is given. Background information explicates the facility's history, developed around the two Omnium-G parabolic dish concentrators. The Omnium-G concentrators and electrical power plant are described. The purpose and a detailed descripttion of ACRES is also given. Included is a description of the measurement capabilities, the controls, and each component of the facility.

  16. CMR: Chemistry and Metallurgy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMR: Chemistry and Metallurgy Research Facility CMR: Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) ...

  17. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  18. Nuclear Science Research facility at LANSCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and Nuclear Science (WNR) Facility at LANSCE lansce facility at LANL Introduction ... Neutron Scattering Center (Target-1) and the Neutron and Nuclear Science Research facility ...

  19. Breakwater Research Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search Basic Specifications Facility Name Breakwater Research Facility Overseeing Organization United States Army Corp of Engineers (ERDC)...

  20. Flood Fighting Research Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search Basic Specifications Facility Name Flood Fighting Research Facility Overseeing Organization United States Army Corp of Engineers (ERDC)...

  1. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-027 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  2. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  3. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  4. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  5. Research Facilities | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities In keeping with its integrated approach to environmental research, SREL has a wide range of analytical and experimental capabilities, from biogeochemical, radiological, and genetic analyses to plant, animal, and microbial facilities, two unique experimental facilities, and standard tools for an array of field research. Radioecology Microbiology Experimental Facilities Biogeochemistry DNA Laboratory Field Research RADIOECOLOGY Scintillation spec. Gamma counter Animal body

  6. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  7. Atmospheric Radiation Measurement Program Climate Research Facility...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Program Climate Research Facility Operations ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  8. ARM Climate Research Facility Data Management Facility Quarterly...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Government or any agency thereof. DOESC-ARM-15-023 ARM Climate Research Facility Data Management Facility Quarterly Report Second Quarter: January 1 to March 31, 2015 NN...

  9. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  10. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Explosive Components Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  11. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  12. NREL: Research Facilities - Test and User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and...

  13. NREL Research Support Facilities (RSF)

    High Performance Buildings Database

    Golden, CO NREL's Research Support Facilities building (RSF) will be a total of 218,000 sq. feet. It will have two parallel secured employee wings, one of which will be 4 stories and the other 3 stories. A connector building housing most of the public spaces will run perpendicular through both wings. The RSF will provide workspace for 742 employees. The RSF is designed to be a zero energy building through the use of innovative energy efficiency, daylighting, and renewable energy strategies, including photovoltaic solar electric systems to generate electricity.

  14. CMR: Chemistry and Metallurgy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMR: Chemistry and Metallurgy Research Facility CMR: Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) building supports research and experimental activities for plutonium and uranium analytical chemistry and metallurgy. CMR capabilities support a number of national security programs, such as non-proliferation and nuclear safeguards. The CMR Facility In 1952, the first LANL CMR facility was completed. At that time, the

  15. Facilities | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities PARC has three laboratories located in Brauer Hall on the Danforth Campus at Washington University in St. Louis. These labs are available to all PARC members...

  16. Research facility access & science education

    SciTech Connect (OSTI)

    Rosen, S.P.; Teplitz, V.L.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  17. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  18. Atmospheric Radiation Measurement Climate Research Facility Annual...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research ...

  19. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Advanced Power Sources Laboratory Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  20. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  1. NREL: Photovoltaics Research - Outdoor Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outdoor Test Facility Aerial photo of the Outdoor Test Facility. The Outdoor Test Facility at NREL is used to evaluate prototype, precommercial, and commercial modules. Outdoor Test Facility (OTF) researchers study and evaluate advanced or emerging PV technologies under simulated, accelerated indoor and outdoor, and prevailing outdoor conditions. One of the major roles of researchers at the OTF is to work with industry to develop uniform and consensus standards and codes for testing PV devices.

  2. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications.

  3. Advanced Powertrain Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four-wheel drive (4WD) dynamometers and state-of-the-art instrumentation to reveal important information on performance, fuel economy, energy consumption and emissions output.

  4. Integrated Biorefinery Research Facility | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Biorefinery Research Facility NREL's Integrated Biorefinery Research Facility (IBRF) enables researchers and industry partners to develop, test, evaluate, and demonstrate processes and technologies for the production of bio-based products and fuels. Interior of industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard hats. In addition to the facility itself, NREL's world-renowned expert staff works with IBRF partners at every stage of

  5. Atmospheric Radiation Measurement Climate Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists

  6. Atmospheric Radiation Measurement Climate Research Facility Operations

    Office of Scientific and Technical Information (OSTI)

    Quarterly Report October 1-December 31, 2012 (Program Document) | SciTech Connect Program Document: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility

  7. NREL: Sustainable NREL - Research Support Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Research Support Facility (RSF) is the laboratory's newest sustainable green building. This 360,000 ft2 Leadership in Energy and Environmental Design (LEED) Platinum office ...

  8. NREL: Energy Systems Integration Facility - Research Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fixed equipment, the facility incorporates electrical, thermal, fuels, and data acquisition bus work throughout. These research buses tie individual laboratories together and...

  9. The Sanford Underground Research Facility at Homestake (SURF)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lesko, K. T.

    2015-03-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the Berkeley and CUBED low-background counters. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark mattermore » experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability. These plans include a Generation-2 Dark Matter experiment and the US flagship neutrino experiment, LBNE.« less

  10. The Sanford Underground Research Facility at Homestake (SURF)

    SciTech Connect (OSTI)

    Lesko, K. T.

    2015-03-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the Berkeley and CUBED low-background counters. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability. These plans include a Generation-2 Dark Matter experiment and the US flagship neutrino experiment, LBNE.

  11. Sandia National Laboratories: Research: Facilities: Annular Core Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Facility Annular Core Research Reactor facility Nuclear science photo At the Annular Core Research Reactor (ACRR) facility, Sandia researchers can subject various test objects to a mixed photon and neutron irradiation environment featuring either a very rapid pulse rate or a long-term, steady-state rate. Research and other activities The radiation produced at the ACRR is used for the following research activities: Neutron-scattering experiments Nondestructive testing, including

  12. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  13. Computational Research and Theory (CRT) Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Research and Theory (CRT) Facility Community Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description Wang Hall, previously the Computational Research and Theory Facility, is the new home for high performance computing at LBNL and houses the National Energy Research Scientific Computing Center (NERSC). NERSC supports DOE's mission to discover,

  14. NREL: Hydrogen and Fuel Cells Research - Research Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Photo of person at work in laboratory setting. NREL researcher evaluates catalyst activity at the Electrochemical Characterization Laboratory. Photo by Dennis Schroeder, NREL NREL conducts hydrogen and fuel cell R&D at a variety of research facilities at our main 327-acre campus in Golden, Colorado, as well as the National Wind Technology Center near Boulder, Colorado. Industry, government, and university partners benefit from access to our state-of-the-art facilities and

  15. Expansion of Facilities on the North Slope of Alaska in Time for the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Polar Year Expansion of Facilities on the North Slope of Alaska in Time for the International Polar Year Zak, Bernard Sandia National Laboratories Ivey, Mark Sandia National Laboratories Zirzow, Jeffrey Sandia National Laboratories Brower, Walter UIC Science Division ARM/NSA Ivanoff, James NSA Whiteman, Doug NSA/AAO Sassen, Kenneth University of Alaska Fairbanks Truffer-Moudra, Dana University of Alaska Fairbanks Category: Infrastructure & Outreach The International Polar

  16. Ames Laboratory Research Reactor Facility Ames, Iowa

    Office of Legacy Management (LM)

    ,, *' ; . Final Radiological Condition of the Ames Laboratory Research Reactor Facility Ames, Iowa _, . AGENCY: Office of Operational Safety, Department of Energy ' ACTION: Notice of Availability of Archival Information Package SUMMARY: The'Office of Operational Safety of the Department O i Energy (DOE) has reviewed documentation relating to the decontamination and decommissioning operations conducted at the Ames Laboratory Research Reactor Facility, Ames, Iowa and has prepared an archival

  17. NREL Research Support Facility (RSF) Documentary

    ScienceCinema (OSTI)

    None

    2013-05-29

    he ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.

  18. Geothermal research at the Puna Facility

    SciTech Connect (OSTI)

    Chen, B.

    1987-06-01

    This report consists of two research papers: (1) Isotopic and Mineralogical Analyses of Samples from the HGP-A Well; (2) Report on Kapoho Geothermal Reservoir Study at the Puna Facility. These papers contain results of recent research and outline future activities.

  19. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Pulsed Power and Systems Validation Facility Pulsed Power and Systems Validation Facility The Pulsed Power and System Validation Technology Deployment Center offers access to unique equipment to support specialized research, along with the expertise to address complex problems dealing with radiation effects. User Support
 The knowledgeable staff brings a broad spectrum of experience in the design and setup of experiments. Emphasis is placed on optimizing the operation and results

  20. Isentropic expansion of copper plasma in Mbar pressure range at “Luch” laser facility

    SciTech Connect (OSTI)

    Bel'kov, S. A.; Derkach, V. N.; Garanin, S. G.; Mitrofanov, E. I.; Voronich, I. N.; Fortov, V. E.; Levashov, P. R.; Minakov, D. V.

    2014-01-21

    We present experimental results on thermodynamic properties of dense copper plasma in Mbar pressure range. The laser facility “Luch” with laser intensity 10{sup 14} W/cm{sup 2} is used to compress copper up to ∼8 Mbar by a strong shock wave; subsequent expansion of copper plasma into Al, Ti, Sn allows us to obtain release isentropes of copper by the impedance–matching method. A theoretical analysis and quantum simulations show that in our experiments strongly coupled quantum plasma is generated.

  1. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  2. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Program Document: ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added ...

  3. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added Product Report ...

  4. ARM Climate Research Facility Radar Operations Plan (Program...

    Office of Scientific and Technical Information (OSTI)

    Climate Research Facility Radar Operations Plan Citation Details In-Document Search Title: ARM Climate Research Facility Radar Operations Plan Roles, responsibilities, and ...

  5. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added ...

  6. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1-September 30, 2012 Citation Details In-Document Search Title: ARM Climate Research Facility ...

  7. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, ...

  8. Sandia Energy - Cyber Research Facility Opens at Sandia's California...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Home Energy Assurance Cyber Energy Surety Facilities News News & Events Cybersecurity Technologies Research Laboratory Cyber Research Facility Opens at Sandia's...

  9. Ultrafast Laser Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Laser Facility Ultrafast Laser Facility Click for an Overview of the Ultrafast Laser Facility The PARC Ultrafast Laser Facility, under the direction of Associate Director ...

  10. Field Campaign Guidelines (ARM Climate Research Facility)

    SciTech Connect (OSTI)

    Voyles, JW

    2011-01-17

    The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

  11. Holifield Heavy Ion Research Facility: Users handbook

    SciTech Connect (OSTI)

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

  12. OSTIblog Articles in the Sanford Underground Research Facilities Topic |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information Underground Research Facilities

  13. Haselden/RNL - Research Support Facility Documentary

    ScienceCinema (OSTI)

    None

    2013-05-29

    The US Department of Energy's (DOE) Research Support Facility (RSF) on the campus of the National Renewable Energy Laboratory is positioned to be one of the most energy efficient buildings in the world. It will demonstrate NREL's role in moving advanced technologies and transferring knowledge into commercial applications. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  14. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas. (LEW)

  15. ARM Climate Research Facilities on the North Slope of Alaska...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Research Facilities on the North Slope of Alaska: Field Campaigns in 2007, New Facilities, and the International Polar Year Radiative Heating in Underexplored Bands...

  16. ARM Climate Research Facility Management Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan Revised April 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  17. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Weapon and Force Protection Center Weapon and Force Protection Center Video Cameras Weapon and Force Protection Center The Center for Security Systems is a fully integrated research-to- development-to-application center that provides systems and technologies that understand, identify, and solve the nation's security problems. The Center includes extensive development and testing facilities for all aspects of physical security including the following: sensors video image processing

  18. Aerial Flyover of New Research Facilities

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Idaho National Laboratory is focused on continued development of its primary campus areas, including our Idaho Falls campus, to enable the INL to meet DOE expectations as the nations lead nuclear energy laboratory. This video identifies some of the existing Idaho Falls campus facilities and highlights planned and potential future development to support campus growth. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.

  19. Carbon Fiber Pilot Plant and Research Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Plant and Research Facilities Carbon Fiber Pilot Plant and Research Facilities 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. lm003_warren_2010_o.pdf (2 MB) More Documents & Publications Lower Cost Carbon Fiber Precursors Carbon Fiber Technology Facility Carbon Fiber Technology Facility

  20. Fermilab | Illinois Accelerator Research Center | Fermilab Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Through IARC access to many Fermilab facilities would be possible. These facilities are further detailed below, but include: conventional and superconducting magnet testing and assembly facilities, SRF cavity assembly, processing and test facilities, access to various particle beams, superconducting cabling manufacturing and testing, particle detector manufacturing and development and high performance computing resources. 1) Beam Test Facilities: NML Pulsed SRF Facility A RF unit test

  1. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  2. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  3. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic

  4. ARM Climate Research Facility Annual Report 2005

    SciTech Connect (OSTI)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  5. Integrated Biorefinery Research Facility (IBRF I-II) (Post CD...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 PDF icon 000521 & ...

  6. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  7. NSTX: Facility/Research Highlights and Near Term Facility Plans

    SciTech Connect (OSTI)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  8. Environmental Protection Agency Research Triangle Park (RTP) Research Facility

    High Performance Buildings Database

    Research Triangle Park, NC The EPA's new RTP campus houses over 2,000 people in 600 laboratory modules--one of the largest multi-disciplinary groups of environmental scientists in the world. The complex includes four 5-story laboratory blocks, three 3-story office blocks, and a 6-story office building that also houses special program areas. The facility design embodies the EPA's environmental ethics.

  9. Solar Energy Research Center Instrumentation Facility

    SciTech Connect (OSTI)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  10. Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

  11. Energy Secretary Moniz dedicates new research facility at Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Secretary Moniz dedicates new research facility at Ames Laboratory Contacts: For ... AMES, IOWA-Energy Secretary Ernest Moniz emphasized the role of materials research in ...

  12. Argonne's Materials Engineering Research Facility - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research August 8, 2012, Videos Argonne's Materials Engineering Research Facility Argonne's Materials Engineering Research Facility (MERF) enables the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up

  13. New Research Facility Holds Promise For Nation's Energy Future...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Research Facility Holds Promise For Nation's Energy Future Leaders Praise Innovative ... Golden, Colo. - Ground was broken today on a new facility at the U.S. Department of ...

  14. Research Facilities | ANSER Center | Argonne-Northwestern National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Facilities Home > Research > Research Facilities Facilities Beyond the extensive facilities available in laboratories of ANSER Center members, the participating institutions below bring substantial collateral resources that strengthen ANSER Center programs. The Argonne Advanced Photon Source (APS): a third-generation synchrotron hard x-ray source providing unprecedented brilliance and photon flux for state-of-the-art time-resolved structural characterization The Northwestern

  15. Mass Spectrometer Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Facility Mass Spectrometer Facility The PARC Mass Spectrometer Facility uses customized instrumentation to directly measure the individual polypeptide mass of different light-harvesting complexes to do assignment to specific gene products and investigate protein processing. Newly developed techniques are also applied to measure the mass of native protein complexes. Structural information of complexes is extracted by combining protein chemical modification and H/D exchange

  16. Photobioreactor Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photobioreactor Facility The PARC photobioreactors feature the unique combination of a reactor and monitoring device, which allows for a high level of accuracy in temperature,...

  17. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities, is to provide capabilities to simulate a wide range of environments for component and system testing. The environments can range from normal in-use environments...

  18. Atmospheric Radiation Measurement Climate Research Facility ...

    Office of Scientific and Technical Information (OSTI)

    ARM Aerial Vehicles Program. * Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors ...

  19. NREL: Research Facilities - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    viable energy products, organizations may partner with NREL to use our state-of-the-art laboratories, testing and user facilities. We typically develop technology partnership...

  20. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  1. NREL: Research Facilities - Laboratories and Facilities by Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researching a multitude of building technologies, including heating, ventilation, and air-conditioning (HVAC) systems; desiccant cooling and dehumidification systems; active solar...

  2. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. ... approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive. ...

  3. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2014-11-21

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

  4. Fermilab | Illinois Accelerator Research Center | IARC Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IARC Facilities Rendering Visit the IARC Multimedia Gallery The IARC Facility Located in the heart of the industrial area of the Fermi lab campus, IARC will consist of 36, 000 square feet of heavy assembly, technical, and office space in the existing heavy industrial building plus an additional 47,000 square feet of technical, office and educational space in the State funded addition. The resulting 83,000 square foot IARC complex will provide space and infrastructure for scientists and engineers

  5. Charter for the ARM Climate Research Facility Science Board

    SciTech Connect (OSTI)

    Ferrell, W

    2013-03-08

    The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

  6. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect (OSTI)

    Marks, Tobin Jay

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  7. NREL: Energy Systems Integration Facility - Research Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research, development, and demonstration needed to transform the nation's energy system. ... research, development, and demonstration activities and create new, integrated ...

  8. Scenes from Argonne's Materials Engineering Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Scenes from Argonne's Materials Engineering Research Facility Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Lithium-ion batteries Programs Chemical sciences & engineering Electrochemical energy storage Materials science

  9. Stateline Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stateline Expansion Wind Farm Jump to: navigation, search Name Stateline Expansion Wind Farm Facility Stateline Expansion Sector Wind energy Facility Type Commercial Scale Wind...

  10. Advancing Climate Science with Global Research Facilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Climate Science with Global Research Facilities Advancing Climate Science with Global Research Facilities April 24, 2014 - 3:23pm Addthis This Gulfstream-1 research plane carries a payload of more than 30 scientific instruments to measure smoke from forest fires and other biomass burns. | Image courtesy of Pacific Northwest National Laboratory. This Gulfstream-1 research plane carries a payload of more than 30 scientific instruments to measure smoke from forest fires and other biomass

  11. NETL- High-Pressure Combustion Research Facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  12. NETL- High-Pressure Combustion Research Facility

    SciTech Connect (OSTI)

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  13. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and

  14. Biomass Gasification Research Facility Final Report

    SciTech Connect (OSTI)

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    also addressed safety concerns associated with thermochemical process operation that constrain the location and configuration of potential gas analysis equipment. Initial analyzer costs, reliability, accuracy, and operating and maintenance costs were also considered prior to the assembly of suitable analyzers for this work. Initial tests at GTI’s Flex-Fuel Test Facility (FFTF) in late 2004 and early 2005 successfully demonstrated the transport and subsequent analysis of a single depressurized, heat-traced syngas stream to a single analyzer (an Industrial Machine and Control Corporation (IMACC) Fourier-transform infrared spectrometer (FT-IR)) provided by GTI. In March 2005, our sampling approach was significantly expanded when this project participated in the U.S. DOE’s Novel Gas Cleaning (NGC) project. Syngas sample streams from three process locations were transported to a distribution manifold for selectable analysis by the IMACC FT-IR, a Stanford Research Systems QMS300 Mass Spectrometer (SRS MS) obtained under this Cooperative Agreement, and a Varian micro gas chromatograph with thermal conductivity detector (μGC) provided by GTI. A syngas stream from a fourth process location was transported to an Agilent Model 5890 Series II gas chromatograph for highly sensitive gas analyses. The on-line analyses made possible by this sampling system verified the syngas cleaning achieved by the NGC process. In June 2005, GTI collaborated with Weyerhaeuser to characterize the ChemrecTM black liquor gasifier at Weyerhaeuser’s New Bern, North Carolina pulp mill. Over a ten-day period, a broad range of process operating conditions were characterized with the IMACC FT-IR, the SRS MS, the Varian μGC, and an integrated Gas Chromatograph, Mass Selective Detector, Flame Ionization Detector and Sulfur Chemiluminescence Detector (GC/MSD/FID/SCD) system acquired under this Cooperative Agreement from Wasson-ECE. In this field application, a single sample stream was extracted from

  15. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities (ESEF) High Altitude Chamber High Altitude chamber Technical Characteristics 27-foot diameter vacuum sphere Simulate altitudes up to 230,000 feet Test articles up to 1-ton weight and 60 inch diameter Testing centrifuge to 600 rpm 15-20 minutes to reach maximum altitude Explosive and pyrotechnic testing Ejection, inflation, and free-fall testing Remote high-speed video capability

  16. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities (ESEF) Hypersonic Wind Tunnel Technical Characteristics Blowdown to vacuum M = 5, 8, 14 Re = 0.2 - 10 x 106/ft Run times: ~45 sec at 45 minute intervals Gases: air at Mach 5 N2 at Mach 8 and 14 18" diameter test section 4" - 5" maximum diameter model size Stagnation temperature to 2500°R Related Links Wind tunnel operation maps Overview briefing of the wind tunnels

  17. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  18. Fire Protection for Underground Research Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presenter: James Priest, Ph.D., Senior Fire Protection Engineer ES&H, Universities Research Associates ‐ FNAL

  19. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  20. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Technical Characteristics Blowdown to atmosphere M∞= 0.5 - 1.3, 1.5, 2.0, 2.5, 3.0 Re = 3 - 20 × 106/ft Run times: 20-120 seconds at 20-30 minute intervals 12" × 12" test section ~1" diameter model size Transonic Test Section Multiple configurations 4 porous walls 3 porous & 1 solid wall (half-body models) 2 porous walls, 2 solid walls (imaging) 4 solid walls Test section enclosed in

  1. Research Support Facility - Zero Energy Building Moves Closer to Reality

    SciTech Connect (OSTI)

    2010-04-01

    The DOE's Research Support Facility showcases high-performance design features, passive energy strategies, and renewable energy. It is a prototype for future large-scale net-zero energy buildings.

  2. NREL Selects Contractor for New Research Support Facility - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Selects Contractor for New Research Support Facility Building to showcase renewable energy and energy efficiency technologies August 2, 2006 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has selected J.E. Dunn Rocky Mountain Construction to design and construct the first phase of the Laboratory's new Research Support Facilities (RSF). The value of the contract is $9.4 million, appropriated by the Energy and Water Development Subcommittee of the U.S.

  3. NREL's Research Support Facility Certified LEED® Platinum - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL's Research Support Facility Certified LEED® Platinum NREL's second LEED Platinum building is a replicable model of energy efficient commercial office design June 29, 2011 The Research Support Facility (RSF) located on the campus of the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been certified LEED® Platinum for New Construction by the U.S. Green Building Council (USGBC), a non-profit organization dedicated to sustainable building design

  4. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact

  5. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected.

  6. Biomass Gasification Research Facility Final Report

    SciTech Connect (OSTI)

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature

  7. ARM Climate Research Facility Annual Report 2004

    SciTech Connect (OSTI)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  8. The Safety and Tritium Applied Research (STAR) Facility: Status-2004

    SciTech Connect (OSTI)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Sharpe, J.P.; Schuetz, S.T.; Petti, D.A.

    2005-07-15

    The Safety and Tritium Applied Research (STAR) Facility, a US DOE National User Facility at the Idaho National Engineering and Environmental Laboratory (INEEL), comprises capabilities and infrastructure to support both tritium and non-tritium research activities important to the development of safe and environmentally friendly fusion energy. Research thrusts include (1) interactions of tritium and deuterium with plasma-facing-component (PFC) materials, (2) fusion safety issues [PFC material chemical reactivity and dust/debris generation, activation product mobilization, tritium behavior in fusion systems], and (3) molten salts and fusion liquids for tritium breeder and coolant applications. This paper updates the status of STAR and the capabilities for ongoing research activities, with an emphasis on the development, testing and integration of the infrastructure to support tritium research activities. Key elements of this infrastructure include a tritium storage and assay system, a tritium cleanup system to process glovebox and experiment tritiated effluent gases, and facility tritium monitoring systems.

  9. Powering Research | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A metal-binding protein designed by the Baker laboratory. Towards Breakthroughs in Protein Structure Calculation and Design David Baker Allocation Program: INCITE Allocation Hours: 120 Million Breakthrough Science At the ALCF, we provide researchers from industry, academia, and government agencies with access to leadership-class supercomputing capabilities and a team of expert computational scientists. This unparalleled combination of resources is enabling breakthroughs in science and

  10. Earthquake research for the safer siting of critical facilities

    SciTech Connect (OSTI)

    Cluff, J.L.

    1980-01-01

    The task of providing the necessities for living, such as adequate electrical power, water, and fuel, is becoming more complicated with time. Some of the facilities that provide these necessities would present potential hazards to the population if serious damage were to occur to them during earthquakes. Other facilities must remain operable immediately after an earthquake to provide life-support services to people who have been affected. The purpose of this report is to recommend research that will improve the information available to those who must decide where to site these critical facilities, and thereby mitigate the effects of the earthquake hazard. The term critical facility is used in this report to describe facilities that could seriously affect the public well-being through loss of life, large financial loss, or degradation of the environment if they were to fail. The term critical facility also is used to refer to facilities that, although they pose a limited hazard to the public, are considered critical because they must continue to function in the event of a disaster so that they can provide vital services.

  11. Safety Culture and Best Practices at Japan's Fusion Research Facilities

    SciTech Connect (OSTI)

    Rule, Keith

    2014-05-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  12. Safety Culture And Best Practices At Japan's Fusion Research Facilities

    SciTech Connect (OSTI)

    Rule, K.; King, M.; Takase, Y.; Oshima, Y.; Nishimura, K.; Sukegawa, A.

    2014-04-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  13. Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

    SciTech Connect (OSTI)

    Lamb, Peter J.

    2013-06-13

    Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

  14. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  15. Geothermal research at the Puna facility. Technical progress report

    SciTech Connect (OSTI)

    Chen, B.

    1985-12-12

    Research progress is reported. A conceptual model of the reservoir was developed comprising two production zones of different characteristics: the upper zone producing liquid while the lower zone produces vapor. Preliminary studies were carried out at the HGP-A facility on the flocculation behavior of silica under various conditions. (ACR)

  16. Geothermal research at the Puna Facility. Technical report

    SciTech Connect (OSTI)

    Chen, B.

    1986-04-01

    This report consists of a summary of the experiments performed to date at the Puna Geothermal Research Facility on silica in the geothermal fluid from the HGP-A well. Also presented are some results of investigations in commercial applications of the precipitated silica. (ACR)

  17. ARM Climate Research Facility Monthly Instrument Report September 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-10-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  18. ARM Climate Research Facility Monthly Instrument Report June 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-07-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  19. ARM Climate Research Facility Monthly Instrument Report July 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-08-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  20. ARM Climate Research Facility Monthly Instrument Report August 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-09-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  1. ARM Climate Research Facility Instrumentation Status and Information April 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-05-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  2. ARM Climate Research Facility Instrumentation Status and Information January 2010

    SciTech Connect (OSTI)

    JW Voyles

    2010-02-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. ARM Climate Research Facility Monthly Instrument Report May 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-06-21

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ARM Climate Research Facility Instrumentation Status and Information March 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-04-19

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ARM Climate Research Facility Instrumentation Status and Information February 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2010-03-25

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ARM Climate Research Facility Instrumentation Status and Information December 2009

    SciTech Connect (OSTI)

    JW Voyles

    2010-12-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ARM Climate Research Facility Instrumentation Status and Information October 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. Novel neutron sources at the Radiological Research Accelerator Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Yanping; Garty, G.; Marino, S. A.; Massey, Thomas Neal; Johnson, G. W.; Randers-Pehrson, Gerhard; Brenner, D. J.

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will bemore » based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.« less

  9. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  10. Overview of Innovative PMI Research on NSTX-U and Associated PMI Facilities at PPPL

    SciTech Connect (OSTI)

    M. Ono, M. Jaworski, R. Kaita, C. N. Skinner, J.P. Allain, R. Maingi, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team

    2012-09-19

    Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50. Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1-September 30, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1-December 31, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1-June 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  15. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  18. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2013-07-31

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  19. Development of an Extreme Environment Materials Research Facility at Princeton

    SciTech Connect (OSTI)

    Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

    2010-11-17

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new

  20. Guidance for Fast-Track Cooperative Research And Development Agreement (CRADA) Programs at DOE Facilities.

    Broader source: Energy.gov [DOE]

    This AL provides guidance for implementing a new Fast Track CRADA Program (Fast Track or Fast Track Program) at DOE Facilities (i.e., National Laboratories, single-purpose research facilities, and other Department facilities) (Facilities) that streamlines the execution of Cooperative Research and Development Agreements (CRADAs) across the DOE complex.

  1. Capsule review of the DOE research and development and field facilities

    SciTech Connect (OSTI)

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  2. Central Japan Synchrotron Radiation Research Facility Project-(II)

    SciTech Connect (OSTI)

    Yamamoto, N.; Takashima, Y.; Hosaka, M.; Takami, K.; Morimoto, H.; Ito, T.; Sakurai, I.; Hara, H.; Okamoto, W.; Watanabe, N.; Takeda, Y.; Katoh, M.; Hori, Y.; Sasaki, S.

    2010-06-23

    A synchrotron radiation facility that is used not only for basic research, but also for engineering and industrial research and development has been proposed to be constructed in the Central area of Japan. The key equipment of this facility is a compact electron storage ring that is able to supply hard X-rays. The circumference of the storage ring is 72 m with the energy of 1.2 GeV, the beam current of 300 mA, and the natural emittance of about 53 nm-rad. The configuration of the storage ring is based on four triple bend cells, and four of the twelve bending magnets are 5 T superconducting ones. The bending angle and critical energy are 12 degree and 4.8 keV, respectively. For the top-up operation, the electron beam will be injected from a booster synchrotron with the full energy. Currently, six beamlines are planned for the first phase starting from 2012.

  3. Desiccant contamination research: Report on the desiccant contamination test facility

    SciTech Connect (OSTI)

    Pesaran, A.A.; Bingham, C.E.

    1991-07-01

    The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

  4. ARM Climate Research Facility | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ARM Climate Research Facility Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface

  5. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    SciTech Connect (OSTI)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying

  6. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  7. Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility - Critical Experiments Sandia Pulsed Reactor Facility - Critical Experiments Sandia scientist John Ford places fuel rods in the Seven Percent Critical Experiment (7uPCX) at the Sandia Pulsed Reactor Facility Critical Experiments (SPRF/CX) test reactor - a reactor stripped down to its simplest form. The Sandia Pulsed Reactor Facility - Critical Experiments (SPRF/CX) provides a flexible, shielded location for performing critical experiments that employ different reactor core

  8. DOE/SC-ARM-14-024 ARM Climate Research Facility Data Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 ARM Climate Research Facility Data Management Facility Quarterly Report NN Keck July 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

  9. DOE/SC-ARM-15-007 ARM Climate Research Facility Data Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ARM Climate Research Facility Data Management Facility Quarterly Report NN Keck January 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

  10. DOE/SC-ARM-14-031 ARM Climate Research Facility Data Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ARM Climate Research Facility Data Management Facility Quarterly Report NN Keck September 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

  11. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  12. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    SciTech Connect (OSTI)

    Dyer, R.S.; Diamante, J.M.; Duffey, R.B.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.

  13. Orange County Government Solar Demonstration and Research Facility

    SciTech Connect (OSTI)

    Parker, Renee; Cunniff, Lori

    2015-05-12

    Orange County Florida completed the construction of a 20 kilowatt Solar Demonstration and Research Facility in March 2015. The system was constructed at the Orange County/University of Florida Cooperative Extension Center whose electric service address is 6021 South Conway Road, Orlando, Florida 32802. The Solar Demonstration and Research Facility is comprised of 72 polycrystalline photovoltaic modules and 3 inverters which convert direct current from the solar panels to alternating current electricity. Each module produces 270 watts of direct current power, for a total canopy production of just under 20,000 watts. The solar modules were installed with a fixed tilt of 5 degrees and face south, toward the equator to maximize the amount of sunlight captures. Each year, the electricity generated by the solar array will help eliminate 20 metric tons of carbon dioxide emissions as well as provide covered parking for staff and visitors vehicles. The solar array is expected to generate 27,000 kilowatt hours of electricity annually equating to an estimated $266 savings in the monthly electric bill, or $3,180 annually for the Orange County/University of Florida Cooperative Extension Center. In addition to reducing the electric bill for the Extension Center, Orange County’s solar array also takes advantage of a rebate incentive offered by the local utility, Orlando Utility Commission, which provided a meter that measures the amount of power produced by the solar array. The local utility company’s Solar Photovoltaic Production Incentive will pay Orange County $0.05 per kilowatt hour for the power that is produced by the solar array. This incentive is provided in addition to Net Metering benefits, which is an effort to promote the use of clean, renewable energy on the electric grid. The Photovoltaic Solar Demonstration and Research Facility also serves an educational tool to the public; the solar array is tied directly into a data logger that provides real time power

  14. Medical Applications of Non-Medical Research: Applications Derived from BES-Supported Research and Research at BES Facilities

    DOE R&D Accomplishments [OSTI]

    1998-07-01

    This publication contains stories that illustrate how the Office of Basic Energy Sciences (BES) research and major user facilities have impacted the medical sciences in the selected topical areas of disease diagnosis, treatment (including drug development, radiation therapy, and surgery), understanding, and prevention.

  15. Ground Broken for New Job-Creating Accelerator Research Facility at DOE's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermi National Accelerator Laboratory in Illinois | Department of Energy Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois December 16, 2011 - 11:49am Addthis WASHINGTON, D.C. - Today, ground was broken for a new accelerator research facility being built at the Department of Energy's (DOE's) Fermi

  16. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  17. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  18. Implementation Plans for a Systems Microbiology and Extremophile Research Facility

    SciTech Connect (OSTI)

    Wiley, H. S.

    2009-04-20

    solve DOE problems. Recent advances in whole-genome sequencing for a variety of organisms and improvements in high-throughput instrumentation have contributed to a rapid transition of the biological research paradigm towards understanding biology at a systems level. As a result, biology is evolving from a descriptive to a quantitative, ultimately predictive science where the ability to collect and productively use large amounts of biological data is crucial. Understanding how the ensemble of proteins in cells gives rise to biological outcomes is fundamental to systems biology. These advances will require new technologies and approaches to measure and track the temporal and spatial disposition of proteins in cells and how networks of proteins and other regulatory molecules give rise to specific activities. The DOE has a strong interest in promoting the application of systems biology to understanding microbial function and this comprises a major focus of its Genomics:GTL program. A major problem in pursuing what has been termed “systems microbiology” is the lack of the facilities and infrastructure for conducting this new style of research. To solve this problem, the Genomics:GTL program has funded a number of large-scale research centers focused on either mission-oriented outcomes, such as bioenergy, or basic technologies, such as gene sequencing, high-throughput proteomics or the identification of protein complexes. Although these centers generate data that will be useful to the research community, their scientific goals are relatively narrow and are not designed to accommodate the general community need for advanced capabilities for systems microbiology research.

  19. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect (OSTI)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  20. Measurement and Control Systems of Tritium Facilities for Scientific Research

    SciTech Connect (OSTI)

    Vinogradov, Yu.I.; Kuryakin, A.V.; Yukhimchuk, A.A.

    2005-07-15

    The technical approach, equipment and software developed during the creation of measurement and control systems for two complexes are described. The first one is a complex that prepares the gas mixture and targets of the 'TRITON' facility. The 'TRITON' facility is designed for studying muon catalyzed fusion reactions in triple mixtures of H/D/T hydrogen isotopes over wide ranges of temperature and pressure. The second one is 'ACCULINNA' - the liquid tritium target designed to investigate the neutron overloaded hydrogen and helium nuclei. These neutron-overloaded nuclei are produced in reactions of tritium beams on a heavy hydrogen and tritium target.

  1. A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY

    SciTech Connect (OSTI)

    Takahashi, P.; Seki, A.; Chen, B.

    1985-01-22

    The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

  2. Direct sunlight facility for testing and research in HCPV

    SciTech Connect (OSTI)

    Sciortino, Luisa Agnello, Simonpietro Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa; Barbera, Marco; Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo; Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  3. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  4. ARM Climate Research Facility Quarterly Instrument Report Fourth...

    Office of Scientific and Technical Information (OSTI)

    future instrumentation, and (4) Small Business Innovation Research instrument development. ... Language: English Subject: 54 ENVIRONMENTAL SCIENCES; BUSINESS; CLIMATES; RADIATIONS; ...

  5. New Research Facility to Remove Hurdles to Offshore Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, 2013 - 1:59pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. Virginia Beach, Virginia - A new U.S. Department of Energy (DOE) research facility could help bring the United States closer to generating power from the winds and

  6. Energy-Efficiency & Water Institute Research Facility, Purdue University, (IN)

    SciTech Connect (OSTI)

    Nnanna, Agbai

    2015-01-30

    The renovation of the Schneider Avenue Building to construct two research laboratories within the building is complete. The research laboratories are for the Purdue Calumet Water Institute and the Energy Efficiency and Reliability Center. The Water Institute occupies approximately 1000+ SF of research space plus supporting offices. The Energy-Efficiency Center occupies approximately 1000+ SF that houses the research space. The labs will enhance the Water & Energy Institute’s research capabilities necessary to tackle these issues through the development of practical approaches critical to local government and industry. The addition of these research laboratories to the Purdue University Calumet campus is in both direct support of the University’s Strategic Plan as well as the 2008 Campus Master Plan that identifies a 20% shortage of research space.

  7. Breaking Ground on Computational Research and Theory Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. ...

  8. Ground Broken for New Job-Creating Accelerator Research Facility...

    Energy Savers [EERE]

    DOE's Office of Science Director William Brinkman participated in the groundbreaking ceremony. "The Illinois Accelerator Research Center will help fuel innovation by developing ...

  9. Research at the BNL Tandem Van de Graaff Facility, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Research programs at the Brookhaven Van de Graaff accelerators are summarized. Major accomplishments of the laboratory are discussed including quasielastic reactions, high-spin spectroscopy, yrast spectra, fusion reactions, and atomic physics. The outside user program at the Laboratory is discussed. Research proposed for 1981 is outlined. (GHT)

  10. Research Support Facility - Zero Energy Building Moves Closer to Reality (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    The DOE's Research Support Facility showcases high-performance design features, passive energy strategies, and renewable energy. It is a prototype for future large-scale net-zero energy buildings.

  11. DOE/SC-ARM-12-006 ARM Climate Research Facility Radar Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 ARM Climate Research Facility Radar Operations Plan May 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States...

  12. NSTX Report on FES Joint Facilities Research Milestone 2010

    SciTech Connect (OSTI)

    Maingi, R.; Ahn, J- W.; Gray, T. K.; McLean, A. G.; Soukhanovskii, V. A.

    2011-03-24

    Annual Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER. The divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality ?*, beta ?, parallel heat flux q||, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

  13. New Construction Jobs Begin as Argonne Builds New Energy Research Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Construction Jobs Begin as Argonne Builds New Energy Research Facility New Construction Jobs Begin as Argonne Builds New Energy Research Facility June 3, 2011 - 2:08pm Addthis Senator Richard Durbin, University of Chicago President Robert Zimmer, Secretary Chu, and Argonne Director Eric Isaacs break ground for the new Energy Sciences Building. | Photo Courtesy of Argonne National Laboratory Senator Richard Durbin, University of Chicago President Robert Zimmer,

  14. ARM - What is the ARM Climate Research Facility Doing About Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WarmingWhat is the ARM Climate Research Facility Doing About Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is the ARM Climate Research Facility Doing About Global Warming? Atmospheric Radiation Measurement (ARM) scientists are studying the effects of clouds on weather

  15. Federal Facility Agreement for the Laboratory for Energy-Related Health Research Summary

    Office of Environmental Management (EM)

    Energy Related Health Research Agreement Name Federal Facility Agreement for the Laboratory for Energy- Related Health Research State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA/RCRA Scope Summary Establish a procedural framework and schedule for developing, implementing and monitoring appropriate response actions at LEHR Parties DOE; USEPA; California Department of Toxic Substances Control; Central Valley Regional Water Quality Control Board; California

  16. Sandia National Laboratories: Z Pulsed Power Facility: Z Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Z Research Every great advance in science has issued from a new audacity of imagination. - John Dewey Z researchers meet the toughest scientific challenges with innovation and ingenuity that breed groundbreaking results. Read Z's publications and the sections below to learn more about this work. Shane Science Z provides the fastest, most accurate, and cheapest method to determine how materials will react under high pressures and temperatures, characteristics that can then be expressed in

  17. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  18. Performance improvement in a research and development facility

    SciTech Connect (OSTI)

    Forbes, R.J.; Hoke, P.B.

    1986-10-01

    This paper traces the development of the Performance Improvement Process at the Oak Ridge National Laboratory from a two-year pilot phase to the Laboratory's current program. The unique challenges associated with the introduction of an improvement program in a research and development community are also discussed.

  19. Pyrotek Graphitization Facility Expansion Project

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  20. Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Sinars Studying matter at conditions found nowhere else on Earth Z provides the fastest, most accurate, and most affordable method to determine how materials will react under high pressures and temperatures, characteristics that can then be expressed in formulas called equations of state. Combining theoretical simulations with laboratory work, Sandia researchers are able to perform more precisely than ever before. Exposing targets to the high power levels of Z also allows scientists to

  1. Instrumentation Overview ARM Climate Research Facility 18th Annual ARM Science Team Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview ARM Climate Research Facility 18th Annual ARM Science Team Meeting Jimmy Voyles Voyles STM.2008 Presentation Outline Voyles STM.2008 Presentation Outline * Program Science Goals and Approach Voyles STM.2008 Presentation Outline * Program Science Goals and Approach * Research Sites Voyles STM.2008 Presentation Outline * Program Science Goals and Approach * Research Sites * Instrument Strategy Voyles STM.2008 Presentation Outline * Program Science Goals and Approach * Research Sites *

  2. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    SciTech Connect (OSTI)

    Chen, Jingguang; Frenkel, Anatoly; Rodriguez, Jose; Adzic, Radoslav; Bare, Simon R.; Hulbert, Steve L.; Karim, Ayman; Mullins, David R.; Overbury, Steve

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  3. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  4. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1–December 30, 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2011-01-17

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  6. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect (OSTI)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  7. A facility for accelerator research and education at Fermilab

    SciTech Connect (OSTI)

    Church, Mike; Nagaitsev, Sergei; /Fermilab

    2009-01-01

    Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

  8. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    SciTech Connect (OSTI)

    Sexton, L.; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  9. DOE/SC-ARM-13-023 ARM Climate Research Facility ANNUAL REPORT - 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-023 ARM Climate Research Facility ANNUAL REPORT - 2013 On the cover: From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship, Spirit, operated by Horizon Lines, for the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation;

  10. Accident Investigation of the June 17, 2012, Construction Accident- Structural Steel Collapse at The Over pack Storage Expansion #2 at the Naval Reactors Facility at the Idaho National Laboratory, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This report documents the Naval Reactors investigation into the collapse ofa partially-erected spent fuel storage building, Overpack Storage Expansion #2 (OSE2), at the Naval Reactors Facility. The Accident Investigation Board inspected the scene, collected physical and photographic evidence, interviewed involved personnel, and reviewed relevant documents to determine the key causes of the accident. Based on the information gathered during the investigation, the Board identified several engineering and safety deficiencies that need to be addressed to prevent recurrence.

  11. The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research

    SciTech Connect (OSTI)

    Langanke, K. [GSI Helmholtzzentrum fr Schwerionenforschung, Technische Universitt Darmstadt, Frankfurt Institute of Advanced Studies, D-64291 Darmstadt (Germany)

    2014-05-09

    In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum fr Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

  12. Technology Solutions Case Study: Cold Climate Foundation Wall Hygrothermal Research Facility, Cloquet, Minnesota

    SciTech Connect (OSTI)

    2014-09-01

    This case study describes the University of Minnesota’s Cloquet Residential Research Facility (CRRF) in northern Minnesota, which features more than 2,500 ft2 of below-grade space for building systems foundation hygrothermal research. Here, the NorthernSTAR Building America Partnership team researches ways to improve the energy efficiency of the building envelope, including wall assemblies, basements, roofs, insulation, and air leakage.

  13. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    ScienceCinema (OSTI)

    Yelick, Kathy

    2013-05-29

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  14. LBNL Computational Research & Theory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012

    ScienceCinema (OSTI)

    Yelick, Kathy

    2013-05-29

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  15. LBNL Computational Research & Theory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012

    SciTech Connect (OSTI)

    Yelick, Kathy

    2012-01-01

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  16. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    SciTech Connect (OSTI)

    Yelick, Kathy

    2012-01-01

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  17. Research Support Facility Data Center: An Example of Best Practices Implementation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure details the design and operations of the Research Support Facility (RSF) data center. The National Renewable Energy Laboratory (NREL) is world-renowned for its commitment to green building construction. To further this commitment to green building and leading by example, NREL included an ultra-energy-efficient data center in the laboratory's new Research Support Facility (RSF), which recently received a Leadership in Energy and Environmental Design{reg_sign} (LEED) Platinum designation from the U.S. Green Building Council.

  18. DECOMMISSIONING OF THE NUCLEAR FACILITIES OF VKTA AT THE ROSSENDORF RESEARCH SITE

    SciTech Connect (OSTI)

    U. Helwig, W. Boessert

    2003-02-27

    VKTA decommissioned the old nuclear facilities of former GDR's (German Democratic Republic) Central Institute of Nuclear Research which was closed end of 1991. VKTA is responsible for fissile material and waste management, environmental and radiation protection and runs an accredited laboratory for environmental and radionuclide analytics. The Rossendorf research site is located east of the city of Dresden. The period from 1982 to about 1997 was mainly characterized by obtaining the necessary licenses for decommissioning and developing a new infrastructure (i.e. waste treatment facility, interim storages for fissile material and waste, clearance monitoring facility). The decommissioning work has been in progress since that time. The decommissioning projects are concentrated on three complexes: (1) the reactors and a fuel development and testing facility, (2) the radioisotope production facilities, and (3) the former liquid and solid waste storage facilities. The status of decommissioning progress and treatment of the residues will be demonstrated. Finally an outlook will be given on the future tasks of VKTA based on the ''Conception VKTA 2000 plus'', which was confirmed by the Saxonian government last year.

  19. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-02-27

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy

  20. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  1. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    SciTech Connect (OSTI)

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.

  2. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  3. Design-Build Process for the Research Support Facility (RSF) (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

  4. Research Support Facility - A Model of Super Efficiency (RSF) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This fact sheet published by the National Renewable Energy Laboratory discusses the lab's newest building, the Research Support Facility (RSF). The RSF is a showcase for ultra-efficient workplaces. Various renewable energy and energy efficiency features have been employed so that the building achieves a Leadership in Energy and Environmental Design (LEED) Platinum rating from the U.S. Green Building Council.

  5. FACT SHEET U.S. Department of Energy ARM Aerial Facility G-1 Research Aircraft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility G-1 Research Aircraft The Gulfstream-159 (G-1) twin turboprop aircraft, owned by Battelle Memorial Institute since 1988 and operated by the Pacific Northwest National Laboratory for the U.S. Department of Energy (DOE), serves as an airborne atmospheric research laboratory for DOE and other users. The aircraft can measure a wide range of radiative, aerosol, and cloud properties, as well as collect gas-phase measurements. It is capable of taking measurements at altitudes approaching

  6. Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    L. Harvego; Brion Bennett

    2011-11-01

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  7. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    SciTech Connect (OSTI)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  8. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility floorplan Facility Floorplan

  9. The ARM Climate Research Facility: A Review of Structure and Capabilities

    SciTech Connect (OSTI)

    Mather, James H.; Voyles, Jimmy W.

    2013-03-01

    The Atmospheric Radiation Measurement (ARM) program (www.arm.gov) is a Department of Energy, Office of Science, climate research user facility that provides atmospheric observations from diverse climatic regimes around the world. Use of ARM data is free and available to anyone through the ARM data archive. ARM is approaching 20 years of operations. In recent years, the facility has grown to add two mobile facilities and an aerial facility to its network of fixed-location sites. Over the past year, ARM has enhanced its observational capabilities with a broad array of new instruments at its fixed and mobile sites and the aerial facility. Instruments include scanning millimeter- and centimeter-wavelength radars; water vapor, cloud/aerosol extinction, and Doppler lidars; a suite of aerosol instruments for measuring optical, physical, and chemical properties; instruments including eddy correlation systems to expand measurements of the surface and boundary layer; and aircraft probes for measuring cloud and aerosol properties. Taking full advantage of these instruments will involve the development of complex data products. This work is underway but will benefit from engagement with the broader scientific community. In this article we will describe the current status of the ARM program with an emphasis on developments over the past eight years since ARM was designated a DOE scientific user facility. We will also describe the new measurement capabilities and provide thoughts for how these new measurements can be used to serve the climate research community with an invitation to the community to engage in the development and use of these data products.

  10. DOE/SC-ARM-10-032 ARM Climate Research Facility AnnuAl RepoRt - 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10-032 ARM Climate Research Facility AnnuAl RepoRt - 2010 Recovery Act HigHligHts September 2009 * One hundred percent of allocated funding from the American Recovery and Reinvestment Act of 2009 released to the Atmospheric Radiation Measurement (ARM) Climate Research Facility. October 2009 * Preliminary design reviews successfully completed for new solar spectrometer and Data Management Facility (DMF) upgrades. December 2009 * Preliminary design reviews successfully completed for 18 new radars

  11. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    SciTech Connect (OSTI)

    MacKinnon, Robert J.

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  12. Design and Validation of Control Room Upgrades Using a Research Simulator Facility

    SciTech Connect (OSTI)

    Ronald L. Boring; Vivek Agarwal; Jeffrey C. Joe; Julius J. Persensky

    2012-11-01

    Since 1981, the United States (U.S.) Nuclear Regulatory Commission (NRC) [1] requires a plant- specific simulator facility for use in training at U.S. nuclear power plants (NPPs). These training simulators are in near constant use for training and qualification of licensed NPP operators. In the early 1980s, the Halden Man-Machine Laboratory (HAMMLab) at the Halden Reactor Project (HRP) in Norway first built perhaps the most well known set of research simulators. The HRP offered a high- fidelity simulator facility in which the simulator is functionally linked to a specific plant but in which the human-machine interface (HMI) may differ from that found in the plant. As such, HAMMLab incorporated more advanced digital instrumentation and controls (I&C) than the plant, thereby giving it considerable interface flexibility that researchers took full advantage of when designing and validating different ways to upgrade NPP control rooms. Several U.S. partnersthe U.S. NRC, the Electrical Power Research Institute (EPRI), Sandia National Laboratories, and Idaho National Laboratory (INL) as well as international members of the HRP, have been working with HRP to run control room simulator studies. These studies, which use crews from Scandinavian plants, are used to determine crew behavior in a variety of normal and off-normal plant operations. The findings have ultimately been used to guide safety considerations at plants and to inform advanced HMI designboth for the regulator and in industry. Given the desire to use U.S. crews of licensed operators on a simulator of a U.S. NPP, there is a clear need for a research simulator facility in the U.S. There is no general-purpose reconfigurable research oriented control room simulator facility in the U.S. that can be used for a variety of studies, including the design and validation of control room upgrades.

  13. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  14. DOE/SC-ARM-10-006.2 ARM Climate Research Facility Instrumentation Status and Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Instrumentation Status and Information JW Voyles February 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  15. ARM Climate Research Facility Quarterly Value-Added Product Report, Fourth Quarter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  16. DOE/SC-ARM-13-004 Charter for the ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Charter for the ARM Climate Research Facility Science Board March 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

  17. Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility

    SciTech Connect (OSTI)

    Barnard, John; Cohen, Ron; Friedman, Alex; Grote, Dave; Lund, Steven; Sharp, Bill; Bieniosek, Frank; Ni, Pavel; Roy, Prabir; Henestroza, Enrique; Jung, Jin-Young; Kwan, Joe; Lee, Ed; Leitner, Matthaeus; Lidia, Steven; Logan, Grant; Seidl, Peter; Vay, Jean-Luc; Waldron, Will

    2009-03-23

    Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li{sup +} ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify

  18. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  20. TYPE OF OPERATION R Research & Development T& Facility Type

    Office of Legacy Management (LM)

    --____ R Research & Development T& Facility Type 0 Production scale testing a Pilat scale Y-. Bench Scale Process i Theoretical Studies Sample & Analysis 0 Productian 0 Disposal/Storage a Research Organization a Government 0 Other Sponsored i F[fa' tty ------__------__ I Prime 5 Subcontractor 0 Purchase Order a Other information (i.e., cost + fixed fee, unit p CgNTRACTING PERIOD: L.&G , PX& & cx LFkoL ~~~~~~~~~----------_ __ _______ OWNERSH; P: AEC/MED AEC/MED GOVT GOVT

  1. Data Quality Assessment and Control for the ARM Climate Research Facility

    SciTech Connect (OSTI)

    Peppler, R

    2012-06-26

    The mission of the Atmospheric Radiation Measurement (ARM) Climate Research Facility is to provide observations of the earth climate system to the climate research community for the purpose of improving the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their coupling with the Earth's surface. In order for ARM measurements to be useful toward this goal, it is important that the measurements are of a known and reasonable quality. The ARM data quality program includes several components designed to identify quality issues in near-real-time, track problems to solutions, assess more subtle long-term issues, and communicate problems to the user community.

  2. AN AGE-OLD PHENOMENON; A COMPLEX CHALLENGE Sandia's Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FALL* 2000 AN AGE-OLD PHENOMENON; A COMPLEX CHALLENGE Sandia's Combustion Research Facility A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 3 ALSO: Sandia Red Team Hacks All Computer Defenses New Power Company Software Helps Keep Nation's Power On S A N D I A T E C H N O L O G Y ON THE COVER: For the cover: The combustion chemistry of a blue methane flame is studied using a molecular-beam mass spectrometer. The toothlike quartz probe provides input to the spectrometer. (Photo by

  3. Facilities | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design ... facility to develop, test, evaluate, and demonstrate bioenergy processes and technologies. ...

  4. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities A new research frontier awaits! Our door is open, and we thrive on mutually beneficial partnerships and collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, Los Alamos National Laboratory can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities. While our largest user

  5. Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility

    SciTech Connect (OSTI)

    Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

    2010-01-11

    To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  9. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  14. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Towards an Experimental Testbed Facility for Cyber-Physical Security Research

    SciTech Connect (OSTI)

    Edgar, Thomas W.; Manz, David O.; Carroll, Thomas E.

    2012-01-07

    Cyber-Physical Systems (CPSs) are under great scrutiny due to large Smart Grid investments and recent high profile security vulnerabilities and attacks. Research into improved security technologies, communication models, and emergent behavior is necessary to protect these systems from sophisticated adversaries and new risks posed by the convergence of CPSs with IT equipment. However, cyber-physical security research is limited by the lack of access to universal cyber-physical testbed facilities that permit flexible, high-fidelity experiments. This paper presents a remotely-configurable and community-accessible testbed design that integrates elements from the virtual, simulated, and physical environments. Fusing data between the three environments enables the creation of realistic and scalable environments where new functionality and ideas can be exercised. This novel design will enable the research community to analyze and evaluate the security of current environments and design future, secure, cyber-physical technologies.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  3. Fixed-bed gasification research using US coals. Volume 1. Program and facility description

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Poole, A.R.; Pui, D.; Liu, B.; Kittleson, D.

    1984-10-01

    The United States Department of Interior, Bureau of Mines, Twin Cities Research Center, Minneapolis, Minnesota is the site of a 6.5 foot diameter Wellman-Galusha gasifier, installed in 1977-1978. This gasifier, combustor/incinerator, and flue gas scrubber system in the past had been operated jointly by Bureau of Mines personnel, personnel from member companies of the Mining and Industrial Fuel Gas Group, and United States Department of Energy personnel-consultants. Numerous tests using a variety of coals have to date been performed. In May of 1982, Black, Sivalls and Bryson, Incorporated (BS and B) was awarded the contract to plan, execute, and report gasification test performance data from this small industrial fixed-bed gasification test facility. BS and B is responsible for program administration, test planning, test execution, and all documentation of program activities and test reports. The University of Minnesota, Particle Technology Laboratory (UMPTL) is subcontractor to BS and B to monitor process parameters, and provide analysis for material inputs and outputs. This report is the initial volume in a series of reports describing the fixed-bed gasification of US coals at the Bureau of Mines, Twin Cities Research Center. A history of the program is given in Section 1 and a thorough description of the facility in Section 2. The operation of the facility is described in Section 3. Monitoring systems and procedures are described in Sections 4 and 5. Data reduction tools are outlined in Section 6. There is no executive summary or conclusions as this volume serves only to describe the research program. Subsequent volumes will detail each gasification test and other pertinent results of the gasification program. 32 references, 23 figures, 15 tables.

  4. A guide to research facilities at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The guide is divided into two parts. Topping the pages are descriptions of laboratories at NREL that provide sophisticated experimental equipment, testing capabilities, or processes that may not be available in the private sector. Scientific categories are designated at the top of the pages in blue; individual laboratory descriptions follow alphabetically, along with the names and phone numbers of the laboratory managers. In blue boxes at the bottom of the pages are articles about NREL, our technology transfer program, and our facilities, as well as guidelines for students, researchers, and industrial collaborators who wish to use them. A list of key contacts and a map of the campus follows the laboratory descriptions.

  5. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-03-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be

  6. EA-1943: Construction and Operation of the Long Baseline Neutrino Facility and Deep Underground Neutrino Experiment at Fermilab, Batavia, Illinois, and Sanford Underground Research Facility, Lead, South Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOE/EA-1799).

  7. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOE/EA-1799).

  8. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  9. What is the ARM Climate Research Facility: Is Global Warming a Real Bias or a Statistical Anomaly?

    SciTech Connect (OSTI)

    Egami, Takeshi; Sisterson, Douglas L.

    2010-03-10

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) is a U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research national user facility. With multi-laboratory management of distributed facilities worldwide, the ACRF does not fit the mold of a traditional user facility located at a national laboratory. The ACRF provides the world's most comprehensive 24/7 observational capabilities for obtaining atmospheric data specifically for climate change research. Serving nearly 5,000 registered users from 15 federal and state agencies, 375 universities, and 67 countries, the ACRF Data Archive collects and delivers over 5 terabytes of data per month to its users. The ACRF users provide critical information about cloud formation processes, water vapor, and aerosols, and their influence on radiative transfer in the atmosphere. This information is used to improve global climate model predictions of climate change.

  10. Melting of the metallic wastes generated by dismantling retired nuclear research facilities

    SciTech Connect (OSTI)

    Chong-Hun Jung; Pyung-Seob Song; Byung-Youn Min; Wang-Kyu Choi

    2008-01-15

    The decommissioning of nuclear installations results in considerably large amounts of radioactive metallic wastes such as stainless steel, carbon steel, aluminum, copper etc. It is known that the reference 1,000 MWe PWR and 881 MWe PHWR will generate metal wastes of 24,800 ton and 26,500 ton, respectively. In Korea, the D and D of KRR-2 and a UCP at KAERI have been performed. The amount of metallic wastes from the KRR-1 and UCP was about 160 ton and 45 ton, respectively, up to now. These radioactive metallic wastes will induce problems of handling and storing these materials from environmental and economical aspects. For this reason, prompt countermeasures should be taken to deal with the metal wastes generated by dismantling retired nuclear facilities. The most interesting materials among the radioactive metal wastes are stainless steel (SUS), carbon steel (CS) and aluminum wastes because they are the largest portions of the metallic wastes generated by dismantling retired nuclear research facilities. As most of these steels are slightly contaminated, if they are properly treated they are able to be recycled and reused in the nuclear field. In general, the technology of a metal melting is regarded as one of the most effective methods to treat metallic wastes from nuclear facilities. In conclusion: The melting of metal wastes (Al, SUS, carbon steel) from a decommissioning of research reactor facilities was carried out with the use of a radioisotope such as cobalt and cesium in an electric arc furnace. In the aluminum melting tests, the cobalt was captured at up to 75% into the slag phase. Most of the cesium was completely eliminated from the aluminum ingot phase and moved into the slag and dust phases. In the melting of the stainless steel wastes, the {sup 60}Co could almost be retained uniformly in the ingot phase. However, we found that significant amounts of {sup 60}Co remained in the slag at up to 15%. However the removal of the cobalt from the ingot phase was

  11. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the

  12. Status and Plans for the National Spherical Torus Experimental Research Facility

    SciTech Connect (OSTI)

    M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors

    2005-07-27

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

  13. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    SciTech Connect (OSTI)

    Weigl, M. [Forschungszentrum Karlsruhe GmbH, Projekttragerforschungszentrum Karlsruhe (PTKA-WTE), Karlsruhe (Germany)

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich and Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)

  14. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow

  15. Building America Technology Solutions for New and Existing Homes: Cold Climate Foundation Wall Hygrothermal Research Facility (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This case study describes the research conducted at the University of Minnesota’s Cloquet Residential Research Facility (CRRF) in northern Minnesota, which features more than 2,500 ft2 of below-grade space for building systems foundation hygrothermal research. Here, the NorthernSTAR Building America Partnership team researches ways to improve the energy efficiency of the building envelope, including wall assemblies, basements, roofs, insulation, and air leakage.

  16. Preliminary Measurements From A New Flat Plate Facility For Aerodynamic Research

    SciTech Connect (OSTI)

    D. M. McEligot; D. W. Nigg; E. J. Walsh; D. Hernon; M.R.D. Davies

    2005-03-01

    This paper details the design and preliminary measurements used in the characterisation of a new flat plate research facility. The facility is designed specifically to aid in the understanding of entropy generation throughout the boundary layer with special attention given to non-equilibrium flows. Hot-wire measurements were obtained downstream of two turbulence generating grids. The turbulence intensity, integral and dissipation length scale ranges measured are 1.6%-7%, 5mm-17mm and 0.7mm-7mm, respectively. These values compared well to existing correlations. The flow downstream of both grids was found to be homogenous and isotropic. Flow visualisation is employed to determine aerodynamic parameters such as flow 2-dimensionality and the effect of the flap angle on preventing separation at the leading edge. The flow was found to be 2-dimensional over all measurement planes. The non-dimensional pressure distribution of a modern turbine blade suction surface is simulated on the flat plate through the use of a variable upper wall. The Reynolds number range based on wetted plate length and inlet velocity is 70,000-4,000,000.

  17. Ash Deposit Formation and Deposit Properties. A Comprehensive Summary of Research Conducted at Sandia's Combustion Research Facility

    SciTech Connect (OSTI)

    Larry L. Baxter

    2000-08-01

    This report summarizes experimental and theoretical work performed at Sandia's Combustion Research Facility over the past eight years on the fate of inorganic material during coal combustion. This work has been done under four broad categories: coal characterization, fly ash formation, ash deposition, and deposit property development. The objective was to provide sufficient understanding of these four areas to be able to predict coal behavior in current and advanced conversion systems. This work has led to new characterization techniques for fuels that provide, for the first time, systematic and species specific information regarding the inorganic material. The transformations of inorganic material during combustion can be described in terms of the net effects of the transformations of these individual species. Deposit formation mechanisms provide a framework for predicting deposition rates for abroad range of particle sizes. Predictions based on these rates many times are quite accurate although there are important exceptions. A rigorous framework for evaluating deposit has been established. Substantial data have been obtained with which to exercise this framework, but this portion of the work is less mature than is any other. Accurate prediction of deposit properties as functions of fuel properties, boiler design, and boiler operating conditions represents the single most critical area where additional research is needed.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-06-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent

  20. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-01-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006

    SciTech Connect (OSTI)

    Sisterson, DL

    2006-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  3. Fusion-Fission Research Facility (FFRF) as a Practical Step Toward Hybrids

    SciTech Connect (OSTI)

    L. Zakharov, J. Li and Y. Wu

    2010-11-18

    The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.

  4. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  5. Gas-metering test and research facility to meet North Sea needs

    SciTech Connect (OSTI)

    Bosio, J.; Wilcox, P.; Sembsmoen, O. )

    1988-12-12

    A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipeline network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.

  6. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    SciTech Connect (OSTI)

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  7. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  8. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It

  10. Source Apportionment of Stack Emissions from Research and Development Facilities Using Positive Matrix Factorization

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Larson, Timothy V.

    2014-08-19

    Emissions from research and development (R&D) facilities are difficult to characterize due to the wide variety of processes used, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compounds (VOCs) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified from 9-11 source-related factors contributing to the stack emissions depending on the building. The factors that were similar between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions. Several other factors had similar profiles for two or more buildings but not for all four. One factor for each building was a combination of p/m-xylene, o-xylene and ethylbenzene. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit. Although the PMF model predicted the profiles of the off-shift samples, the percent of total emissions was under-predicted by the model versus the measured data.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 × 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90

  13. Decommissioning and Demolition of a Redundant UK Research Facility at AWE Aldermaston - 12453

    SciTech Connect (OSTI)

    Pritchard, Paul

    2012-07-01

    The redundant two-storey brick built research facility on the AWE Site at Aldermaston, UK is in the closing stages of decommissioning and demolition. The facility was used for a variety of purposes up to 1995 predominately involving the use of alpha-emitting isotopes. The two main areas of alpha-based contamination have been decommissioned with the removal of hot -boxes and fume cupboards on the ground floor and HEPA filter units and ventilation equipment on the first floor. Many of these activities were undertaken using both airline fed suits, (supplied via a free standing mobile unit), and full face respirators. Asbestos materials were located and cleared from the first floor by specialist contractor. All sections of active drain running from the building to the site active effluent disposal system were removed early in the program using established techniques with specialist monitoring equipment used to provide confidence in the data required for disposal of the decommissioning debris. In particular a dedicated High Resolution Gamma Spectrometer (radioactive materials scanning unit) was utilized to categorise waste drums and wrapped packages. The building has been decommissioned and the monitoring and sampling of the structure was completed in November 2011 - the results demonstrating that the building was clear of contamination in accordance with UK clearance and exemption requirements. The demolition plan was developed and implemented in December with site excavation of foundations and site clearance currently ongoing in preparation for final site backfill activities and project close. A number of useful lessons have been learnt during the operations and are set out at the rear of the main text. (authors)

  14. Copper Mountain Expansion I and II Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Mountain Expansion I and II Solar Power Plant Jump to: navigation, search Name Copper Mountain Expansion I and II Solar Power Plant Facility Copper Mountain Expansion I and II...

  15. Free Air CO2 Enrichment (FACE) Research Data from the Nevada Desert FACE Facility (NDFF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at the Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. NDFF whole-ecosystem manipulation is a flagship experiment of the Terrestrial Carbon Process (TCP) research program of the US Dept. of Energy. It is also a core project of the International Geosphere-Biosphere Program (IGBP) and a contribution to the US Global Change Research Program. The NDFF was developed in conjunction with the National Science Foundation (NSF) and DOE-EPSCoR programs. FACE (Free-Air-Carbon dioxide-Enrichment) technology allows researchers to elevate the carbon dioxide level in large study plots while minimizing ecosystem disturbance. At the NDFF the concentration of CO2 was elevated by 50 percent above the present atmospheric levels in three plots in the Mojave Desert ecosystem, while six other plots remained at the current level. This experimental design provided a large area in which integrated teams of scientists could describe and quantify processes regulating carbon, nutrient, and water balances in desert ecosystems.

  16. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  17. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-04-23

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability

  18. Atmospheric Radiation Measurement program climate research facilities quarterly report April 1 - June 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-07-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter); for the North Slope Alaska (NSA) locale it is 1,965.60 hours (0.90 x 2,184); and for the Tropical Western Pacific (TWP) locale it is 1,856.40 hours (0.85 x 2,184). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 1390.80 hours (0.95 x 1464). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  19. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  20. Atmospheric Radiation Measurement program climate research facility operations quarterly report April 1 - June 30, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-07-26

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2009 Facility News ARM Aerial Facility Leads International Discussions on Aircraft Research Bookmark and Share Five research aircraft participated in the VAMOS...

  2. Vehicle Technologies Office Merit Review 2015: User Facilities for Energy Storage Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about user facilities...

  3. ARM Climate Research Facility Quarterly Value-Added Product Report January 1–March 30, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2011-06-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, and (3) future VAPs that have been recently approved.

  4. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    SciTech Connect (OSTI)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

  5. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 4, 2010 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of the ARM mobile facilities, aerial facility, and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility. Facility availability is as follows: ARM Mobile Facility 2 (AMF2) available FY2013 ARM Mobile Facility 1 (AMF1) available March 2015

  7. DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; White, Jonathan

    2011-09-01

    The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-10-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-07-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  10. DOE/SC-ARM-11-004 ARM Climate Research Facility The U.S. Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The TWP site is composed of facilities at Manus Island in Papua New Guinea; the island Republic of Nauru; and Darwin, Australia. Data are transmitted continuously from each site by ...

  11. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Broader source: Energy.gov [DOE]

    Technical paper on the development of a hydrogen reformer, vehicle refueling facility, and PEM fuel cell for Las Vegas, NV presented at the 2002 Annual Hydrogen Review held May 6-8, 2002 in Golden, CO.

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 21, 2014 [Facility News] ARM Facility Embarks on Expansion in the United States Bookmark and Share A reconfiguration plan is being set in motion for the ARM Facility that will result in even better observations of atmospheric processes at the SGP site. A reconfiguration plan is being set in motion for the ARM Facility that will result in even better observations of atmospheric processes at the SGP site. Through 20 years of measurements at its observations sites around the world, the ARM

  13. ARM Climate Research Facility Quarterly Value-Added Product Report First Quarter: October 01-December 31, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2012-02-28

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  14. ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1–September 30, 2012

    SciTech Connect (OSTI)

    Sivaraman, C

    2012-11-13

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  15. ARM Climate Research Facility Quarterly Value-Added Product Report Third Quarter: April 01–June 30, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2011-08-18

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive

  16. Department of Energy’s ARM Climate Research Facility External Data Center Operations Plan Located At Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Cialella, A.; Gregory, L.; Lazar, K.; Liang, M.; Ma, L.; Tilp, A.; Wagener, R.

    2015-05-01

    The External Data Center (XDC) Operations Plan describes the activities performed to manage the XDC, located at Brookhaven National Laboratory (BNL), for the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. It includes all ARM infrastructure activities performed by the Data Management and Software Engineering Group (DMSE) at BNL. This plan establishes a baseline of expectation within the ARM Operations Management for the group managing the XDC.

  17. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    SciTech Connect (OSTI)

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  18. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  19. The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Bess; J. Werner

    2011-09-01

    The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on...

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility use by total visitor days and facility to track actual visitors and active user research computer accounts. Historical data show an apparent relationship between the...

  2. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  3. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect (OSTI)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-04-11

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-07-25

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1–December 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2010-01-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  7. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  8. Mound Facility activities in chemical and physical research: July-December 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-18

    Research is reported in the following fields: isotope separation (Ar, C, He, Kr, Ne, O, Xe), low-temperature research (H intermolecular potential functions, gas analysis in trennschaukel), separation chemistry (/sup 229/Th, /sup 231/Pa, /sup 230/Th, /sup 234/U), separation research (liquid thermal diffusion, Ca isotope separation, molecular beam scattering, mutual diffusion of noble gas mixtures, lithium chemical exchange with cryptands), and calculations in plutonium chemistry (algorithms, valence in natural water). (DLC)

  9. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The investigation of various Two-Stage Liquefaction (TSL) process configurations was conducted at the Wilsonville Advanced Coal Liquefaction R D Facility between July 1982 and September 1986. The facility combines three process units. There are the liquefaction unit, either thermal (TLU) or catalytic, for the dissolution of coal, the Critical Solvent Deashing unit (CSD) for the separation of ash and undissolved coal, and a catalytic hydrogenation unit (HTR) for product upgrading and recycle process solvent replenishment. The various TSL process configurations were created by changing the process sequence of these three units and by recycling hydrotreated solvents between the units. This report presents a description of the TSL configurations investigated and an analysis of the operating and performance data from the period of study. Illinois No. 6 Burning Star Mine coal Wyodak Clovis Point Mine coal were processed. Cobalt-molybdenum and disposable iron-oxide catalysts were used to improve coal liquefaction reactions and nickel-molybdenum catalysts were used in the hydrotreater. 28 refs., 31 figs., 13 tabs.

  10. Cryogenic expansion machine

    DOE Patents [OSTI]

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  11. ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 01–September 30, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2011-11-02

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text.

  12. Letter Report for Analytical Results for five Swipe Samples from the Northern Biomedical Research Facility, Muskegon Michigan

    SciTech Connect (OSTI)

    Ivey, Wade

    2013-12-17

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, received five swipe samples on December 10, 2013 from the Northern Biomedical Research Facility in Norton Shores, Michigan. The samples were analyzed for tritium and carbon-14 according to the NRC Form 303 supplied with the samples. The sample identification numbers are presented in Table 1 and the tritium and carbon-14 results are provided in Table 2. The pertinent procedure references are included with the data tables.

  13. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility Electrostatic Discharge (ESD) Laboratory Other Facilities and Capabilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-09-30

    Description. Individual raw data streams from instrumentation at the ACRF fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at PNNL for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The DOE requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) site is 1,987.2 hours (0.90 2,208), and that for the Tropical Western Pacific (TWP) site is 1,876.8 hours (0.85 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this

  15. EA-1081: Carlsbad Environmental Monitoring and Research Center Facility, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to continue U.S. Department of Energy funding of the Carlsbad Environmental Monitoring & Research Center in the Waste Isolation Pilot...

  16. Overview of innovative PMI research on NSTX-U and associated PMI facilities at PPPL

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    M. Ono; Jaworski, M.; Kaita, R.; Skinner, C. N.; Allain, J. P.; Maingi, R.; Scotti, F.; Soukhanovskii, V. A.

    2013-05-01

    Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTX-U, the PMI research has received a strong emphasis. Moreover, with ˜15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2.

  17. Facilities | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of the Hydrogen Infrastructure Testing and Research Facility building, with fuel cell charging stations and vehicles Hydrogen Infrastructure Testing and Research Facility A ...

  18. Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria

    SciTech Connect (OSTI)

    K. J. Allen; T. G. Apostolov; I. S. Dimitrov

    2009-03-01

    The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

  19. Enhanced Soundings for Local Coupling Studies: 2015 ARM Climate Research Facility Field Campaign

    SciTech Connect (OSTI)

    Ferguson, CR; Santanello, JA; Gentine, P

    2015-11-01

    Matching observed diurnal cycles is a fundamental yet extremely complex test for models. High temporal resolution measurements of surface turbulent heat fluxes and boundary layer properties are required to evaluate the daytime evolution of the boundary layer and its sensitivity to land-atmosphere coupling. To address this need, (12) one-day intensive observing periods (IOP) with enhanced radiosonding will be carried out at the ARM Southern Great Plains (SGP) Central Facility (CF) during summer 2015. Each IOP will comprise a single launch to correspond with the nighttime overpass of the A-Train of satellites (~0830 UTC) and hourly launches during daytime beginning from 1130 UTC and ending at 2130 UTC. At 3-hourly intervals (i.e., 1140 UTC, 1440 UTC, 1740 UTC, and 2040 UTC) a duplicate second radiosonde will be launched 10 minutes subsequent to launch of the on-hour radiosonde for the purpose of assessing horizontal atmospheric variability. In summary, each IOP will have a 14-sounding supplement to the 6-hourly operational sounding schedule at the ARM-SGP CF. The IOP days will be decided before sunset on the preceding day, according to the judgment of the PI’s and taking into consideration daily weather forecasts and the operability of complimentary ARM-SGP CF instrumentation. An overarching goal of the project is to address how ARM could better observe land-atmosphere coupling to support the evaluation and refinement of coupled weather and climate models.

  20. MATCHED-INDEX-OF-REFRACTION FLOW FACILITY FOR FUNDAMENTAL AND APPLIED RESEARCH

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots; Donald M. McEligot; Richard Skifton; Hugh McIlroy

    2014-11-01

    Significant challenges face reactor designers with regard to thermal hydraulic design and associated modeling for advanced reactor concepts. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. The matched index of refraction (MIR) flow facility at Idaho National Laboratory (INL) has a unique capability to contribute to the development of validated computational fluid dynamics (CFD) codes through the use of state-of-the-art optical measurement techniques, such as Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). PIV is a non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer particles within a fluid. At the heart of a PIV calculation is the cross correlation algorithm, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. Generally, the displacement is indicated by the location of the largest peak. To quantify these measurements accurately, sophisticated processing algorithms correlate the locations of particles within the image to estimate the velocity (Ref. 1). Prior to use with reactor deign, the CFD codes have to be experimentally validated, which requires rigorous experimental measurements to produce high quality, multi-dimensional flow field data with error quantification methodologies. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. Computational techniques with supporting test data may be needed to address the heat transfer from the fuel to the coolant during the transition from turbulent to laminar flow, including the possibility of an early

  1. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  2. Quality assurance grading guidelines for research and development at DOE facilities

    SciTech Connect (OSTI)

    Powell, T.B.; Morris, R.N.

    1993-01-01

    The quality assurance (QA) requirements for the US Department of Energy (DOE) are established in DOE Order 5700.6C. This order is applicable for all DOE departmental elements, management, and maintenance and operating contractors and requires that documented Quality Assurance Programs (QAPs) are prepared at all levels; it has one attachment. The DOE Office of Energy Research (DOE-ER) has issued a standard to ensure implementation of the full intent of this order in the ER community.

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Board Established for ARM Climate Research Facility Bookmark and Share The scientific infrastructure established by the ARM Program - heavily instrumented research sites, the ARM Data Archive, and the ARM Mobile Facility under development - is now available for use by scientists worldwide through the ARM Climate Research Facility. As a national user facility, this unique asset provides the opportunity for a broader national and international research community to study global change. The

  4. January 16, 2009: Expansion of Spallation Neutron Source | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 16, 2009: Expansion of Spallation Neutron Source January 16, 2009: Expansion of Spallation Neutron Source January 16, 2009: Expansion of Spallation Neutron Source January 16, 2009 The Department gives its initial approval to begin plans for the Oak Ridge National Laboratory (ORNL) to build a second target station for the Spallation Neutron Source, expanding what is already the world's most powerful pulsed neutron scattering facility. The new station, which will cost approximately $1

  5. Plans for future neutron facilities within the DOE Office of Energy Research

    SciTech Connect (OSTI)

    Thomas, I.

    1995-10-01

    M.R.C. Greenwood brought out some things about the importance of making sure that the public, who funds our work, knows that there is value to it. Currently, the Basic Energy Sciences (BES) advisory committee has a panel that is doing just that for BES research. I insisted that this panel not be the same folks. It is chaired by an economist and it has several nontechnical members on it. I wanted them to have some, you might say, people off the street on it. I have some confidence that often when you bring things to the people, you get good decisions.

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October

  7. Dismantling Structures and Equipment of the MR Reactor and its Loop Facilities at the National Research Center 'Kurchatov Institute' - 12051

    SciTech Connect (OSTI)

    Volkov, V.G.; Danilovich, A.S.; Zverkov, Yu. A.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Muzrukova, V.D.; Pavlenko, V.I.; Semenov, S.G.; Fadin, S.Yu.; Shisha, A.D.; Chesnokov, A.V.

    2012-07-01

    In 2008 a design of decommissioning of research reactors MR and RFT has been developed in the National research Center 'Kurchatov institute'. The design has been approved by Russian State Authority in July 2009 year and has received the positive conclusion of ecological expertise. In 2009-2010 a preparation for decommissioning of reactors MR and RFT was spent. Within the frames of a preparation a characterization, sorting and removal of radioactive objects, including the irradiated fuel, from reactor storage facilities and pool have been executed. During carrying out of a preparation on removal of radioactive objects from reactor sluice pool water treating has been spent. For these purposes modular installation for clearing and processing of a liquid radioactive waste 'Aqua - Express' was used. As a result of works it was possible to lower volume activity of water on three orders in magnitude that has allowed improving essentially of radiating conditions in a reactor hall. Auxiliary systems of ventilation, energy and heat supplies, monitoring systems of radiating conditions of premises of the reactor and its loop-back installations are reconstructed. In 2011 the license for a decommissioning of the specified reactors has been received and there are begun dismantling works. Within the frames of works under the design the armature and pipelines are dismantled in a under floor space of a reactor hall where a moving and taking away pipelines of loop facilities and the first contour of the MR reactor were replaced. A dismantle of the main equipment of loop facility with the gas coolant has been spent. Technologies which were used on dismantle of the radioactive contaminated equipment are presented, the basic works on reconstruction of systems of maintenance of on the decommissioning works are described, the sequence of works on the decommissioning of reactors MR and RFT is shown. Dismantling works were carried out with application of means of a dust suppression that, in

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility's North Slope of Alaska (NSA) locale was completed the weekend of April ... observations during arctic winters at the NSA and other high latitude research sites. ...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subcomponents. The ARM Climate Research Facility maintains research sites around the globe, each with a suite of instruments that must be maintained and calibrated to ensure the...

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Cumulative Quarterly Report October 1, 2003 - September 30, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  11. Weakly relativistic plasma expansion

    SciTech Connect (OSTI)

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  12. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    SciTech Connect (OSTI)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT

  13. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...wrret1liljclouFF.cN.YYYYMMDD.hhmmss where: XXX the location of the instrument (nsa, sgp, ... Datastream Variable Name Variable Long Name Units XXXmwrlosFF.b1 XXX is all sites tbsky23 ...

  14. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Long Name Units XXXbeflux1longFF. c1 XXX is sgp FF is C1 downshorthemisp ... Normal Irradiance Wm2 XXXirt25mFF.b1 XXX is sgp FF is C1 upshorthemisp Upwelling ...

  15. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 17 2.49 SGP Area Surface Cloud and SW Radiation Grid ......... 18 2.51 Surface Spectral Albedo (SURFSPECALB) ...

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 17 2.50 SGP Area Surface Cloud and SW Radiation Grid (SFCCLDGRID) ...... 17 2.51 Shortwave Array Spectroradiometer ...

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 2 2.4 ARM Cloud Retrieval Ensemble Data Set (ACRED) ......VAP. 2.4 ARM Cloud Retrieval Ensemble Data Set (ACRED) Translator: Shaocheng Xie, ...

  18. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 2 2.4 ARM Cloud Retrieval Ensemble Data Set (ACRED) ............ 18 4.1 CARES Data SetAerosol Modeling Testbed (AMT) ...

  19. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 2 2.1 ARM Cloud Retrieval Ensemble Data Set (ACRED) ......(ECOs). 2.1 ARM Cloud Retrieval Ensemble Data Set (ACRED) Translator: Shaocheng Xie, ...

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1 2.1 ARM Cloud Retrieval Ensemble Data Set (ACRED) ......(ECOs). 2.1 ARM Cloud Retrieval Ensemble Data Set (ACRED) Translator: Shaocheng Xie, ...

  1. Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... Schematic representation of the experimental set-up. Shown in the figure is the jet-stirre...

  2. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special thanks to our VAP development team for providing timely and complete updates to the Engineering Change Orders and Engineering Work Orders, Dana Dupont and Rolanda Jundt, ...

  3. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special thanks to our VAP development team for providing timely and complete updates to the Engineering Change Orders and Engineering Work Orders, and to Dana Dupont and Rolanda ...

  4. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Permalink Air Force Research Laboratory Testing ...

  5. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Argonne maintains two state-of-the-art facilities for high-energy physics research. The Argonne Wakefield Accelerator Facility is home to technology that produces high accelerating gradients that could form the basis of the next generation of particle accelerators. Additionally, the 4 Tesla Magnet Facility reuses hospital MRI magnets to provide benchmarking for new muon experiments that will be performed at Fermilab. 4 Tesla Magnet Facility Learn More » Argonne Wakefield Accelerator

  6. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    SciTech Connect (OSTI)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  7. A Request for Planning Funds for a Research and Study Abroad Facility in Geneva, Switzerland in Affiliation with the European Laboratory for Particle Physics

    SciTech Connect (OSTI)

    campbell, myron

    2013-03-31

    To create a research and study abroad program that would allow U.S. undergraduate students access to the world-leading research facilities at the European Organization for Nuclear Research (CERN), the World Health Organization, various operations of the United Nations and other international organizations based in Geneva.The proposal is based on the unique opportunities currently existing in Geneva. The Large Hadron Collider (LHC) is now operational at CERN, data are being collected, and research results are already beginning to emerge. At the same time, a related reduction of activity at U.S. facilities devoted to particle physics is expected. In addition, the U.S. higher-education community has an ever-increasing focus on international organizations dealing with world health pandemics, arms control and human rights, a nexus also centered in Geneva.

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Backup Software Improves Processing, Reliability at Data Management Facility Bookmark and Share Real-time data from all three of the ARM Climate Research Facility sites (North Slope of Alaska, Southern Great Plains, and Tropical Western Pacific) are collected and processed at the ARM Climate Research Facility Data Management Facility (DMF) each day. Processing involves the application of algorithms for performing simple averaging routines, qualitative comparisons, or more complicated

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 20, 2014 [Facility News, Publications] 2013 ARM Annual Report Now Available Bookmark and Share The 2013 edition of the ARM Climate Research Facility Annual Report was published in February 2014. The first 25 pages include a short overview of the Facility, followed by featured field campaigns, user research results, and summaries of infrastructure achievements. The back portion of the report includes a summary of all 2013 field campaigns conducted throughout the ARM Facility and a

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2015 [Facility News] New Science Board Members Tackle ARM's Expanding Landscape Bookmark and Share With facilities around the world hosting field campaigns on a regular basis, the ARM Climate Research Facility continues to be an important resource to the scientific community. Thanks to the vigilance of the ARM Science Board, the ARM Facility is able to support quality science with over 70 campaigns a year. Comprised of highly-respected scientists from the external climate research community,

  11. Facilities Management | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Management Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance, construction, security, property, and facility services. The lab's 206-acre campus includes 169 acres owned by the U.S. Department of Energy and 37 acres owned by the Southeast Universities Research Association. In addition, the Commonwealth of Virginia owns an 8-acre parcel referred to as the Virginia Associated Research Campus (VARC)

  12. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  13. HCCI Load Expansion Opportunities using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-based VVA Engine: The Low Load Limit

    SciTech Connect (OSTI)

    Weall, Adam J; Szybist, James P; Edwards, Kevin Dean; Foster, Matthew; Confer, Keith; Moore, Wayne

    2012-01-01

    While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000rpm. Using different injection strategies, including the NVO pilot injection approach, the single-cylinder engine is operated over a load range from 160-390 kPa net IMEP at 2000 rpm. Changes to valve opening duration on the single-cylinder HVA engine illustrate opportunities for load expansion and efficiency improvement at certain conditions. For instance, the low load limit can be extended on the HVA engine by reducing breathing and operating closer to a stoichiometric air fuel ratio (AFR) by using valve deactivation. The naturally aspirated engine used here without external EGR confirmed that as operating load increases the emissions of NOx increases due to combustion temperature. NOx emissions are found to be one limitation to the maximum load limitation, the other being high pressure rise rate. It is found that the configuration of the production intent cam-based system represents a good compromise between valve lift and duration in the low to medium load region. Changing the extent of charge motion

  14. HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Developments of a Production Intent Cam-Based VVA Engine: The Low Load Limit

    SciTech Connect (OSTI)

    Weall, Adam J; Szybist, James P; Edwards, Kevin Dean; Foster, Matthew; Confer, Keith; Moore, Wayne

    2012-01-01

    While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000rpm. Using different injection strategies, including the NVO pilot injection approach, the single-cylinder engine is operated over a load range from 160-390 kPa net IMEP at 2000 rpm. Changes to valve opening duration on the single-cylinder HVA engine illustrate opportunities for load expansion and efficiency improvement at certain conditions. For instance, the low load limit can be extended on the HVA engine by reducing breathing and operating closer to a stoichiometric air fuel ratio (AFR) by using valve deactivation. The naturally aspirated engine used here without external EGR confirmed that as operating load increases the emissions of NOx increases due to combustion temperature. NOx emissions are found to be one limitation to the maximum load limitation, the other being high pressure rise rate. It is found that the configuration of the production intent cam-based system represents a good compromise between valve lift and duration in the low to medium load region. Changing the extent of charge motion

  15. NaREC Offshore and Drivetrain Test Facility Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-04-140

    SciTech Connect (OSTI)

    Musial, W.

    2014-08-01

    The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

  16. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  17. Status of Activities on Rehabilitation Of Radioactively Contaminated Facilities and the Site of Russian Research Center ''Kurchatov Institute''

    SciTech Connect (OSTI)

    Volkov, V. G.; Ponomarev-Stepnoi, N. N.; Melkov, E. S; Ryazantsev, E. P.; Dikarev, V. S.; Gorodetsky, G. G.; Zverkov, Yu. A.; Kuznetsov, V. V.; Kuznetsova, T. I.

    2003-02-25

    This paper describes the program, the status, and the course of activities on rehabilitation of radioactively contaminated facilities and the territory of temporary radioactive waste (radwaste) disposal at the Russian Research Center ''Kurchatov Institute'' (RRC KI) in Moscow as performed in 2001-2002. The accumulation of significant amounts of radwaste at RRC KI territory is shown to be the inevitable result of Institute's activity performed in the days of former USSR nuclear weapons project and multiple initial nuclear power projects (performed from 1950's to early 1970's). A characterization of RRC KI temporary radwaste disposal site is given. Described is the system of radiation control and monitoring as implemented on this site. A potential hazard of adverse impacts on the environment and population of the nearby housing area is noted, which is due to possible spread of the radioactive plume by subsoil waters. A description of the concept and project of the RRC KI temporary radwaste disposal site is presented. Specific nature of the activities planned and performed stems from the nearness of housing area. This paper describes main stages of the planned activities for rehabilitation, their expected terms and sources of funding, as well as current status of the project advancement. Outlined are the problems faced in the performance and planning of works. The latter include: diagnostics of the concrete-grouted repositories, dust-suppression technologies, packaging of the fragmented ILW and HLW, soil clean-up, radioactive plume spread prevention, broad radiation monitoring of the work zone and environment in the performance of rehabilitation works. Noted is the intention of RRC KI to establish cooperation with foreign, first of all, the U.S. partners for the solution of problems mentioned above.

  18. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2009 [Facility News] Town Hall Meeting at AGU 2009 Fall Meeting Bookmark and Share ARM Climate Research Facility - New Measurement Capabilities for Climate Research Thursday, December 17, 6:15-7:15 pm, Moscone West Room 2002 American Recovery and Reinvestment Act American Recovery and Reinvestment Act Scientists from around the world use data from the ARM Climate Research Facility to study the interactions between clouds, aerosol and radiation. Through the American Recovery and Reinvestment

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2012 [Data Announcements, Facility News] New Data from Greenland for Arctic Climate Research Bookmark and Share Instruments for ICECAPS operate on top and inside of the Mobile Science Facility at Summit Station in Greenland. Instruments for ICECAPS operate on top and inside of the Mobile Science Facility at Summit Station in Greenland. In 2010, researchers installed a powerful suite of climate and weather instruments at Greenland's frozen research outpost, Summit Station, for a long-term

  1. Boosting Production of Radioisotopes for Diagnostics and Therapeutics: Upgrades to Brookhaven Lab's isotope production and research facility increase the yield of key medical isotopes

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE Office of Science’s Nuclear Physics Isotope Development and Production for Research and Applications program (DOE Isotope Program) seeks to make critical isotopes more readily available for energy, medical, and national security applications and for basic research. Under this program, scientists, engineers, and technicians at DOE’s Brookhaven National Laboratory recently completed the installation of a beam raster (or scanning) system designed to increase the yield of critical isotopes produced at the Brookhaven Linac Isotope Producer (BLIP), the Lab’s radioisotope production and research facility, in operation since 1972.

  2. 216-B-3 expansion ponds closure plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

  3. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement ... Atmospheric Radiation Measurement Climate Research Facility (ARM) at Global Network ARM is ...

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Arctic Cloud Experiment, and the ARM Mobile Facility's deployments at Point Reyes National Seashore and Niamey, Niger, West Africa. ARM researchers, including ARM's...

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2004 [Facility News] ARM Climate Research Facility Achieves User Milestone Three Months Ahead of Schedule Bookmark and Share Summary of the ARM Climate Research Facility User Site Visits, Archive Accounts, and Research Computer Accounts for the Period of October 1, 2003 - June 30, 2004. Far exceeding the established milestone of 800 users in fiscal year 2004, at the end of June the ARM Climate Research Facility reported a cumulative total of 940 users for the year so far. The U.S. Department

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Early Career Research Program Bookmark and Share Pierre Gentine, Columbia University in New York Pierre Gentine, Columbia University in New York Two ARM Facility users and...

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrument States Database Up and Running Bookmark and Share At the three ARM Climate Research Facility locales (Southern Great Plains, Tropical Western Pacific, and North Slope of...

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Climate Research Facility Lends Support to Military Flare Tests Bookmark and Share Prior to the flare tests, SGP personnel informed local landowners and fire departments about ...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Share As a national user facility, ARM is accessible to scientists around the globe for interdisciplinary research related to earth systems. In a continuing effort to...

  10. Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base

    SciTech Connect (OSTI)

    Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

    1980-04-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

  11. Testing the density matrix expansion against ab initio calculations of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trapped neutron drops | Argonne Leadership Computing Facility Testing the density matrix expansion against ab initio calculations of trapped neutron drops Authors: Bogner, S., Furnstahl, R.J., Hergert, H., Kortelainen, M., Maris, P., Stoitsov, M., Vary, J.P. Microscopic input to a universal nuclear energy density functional can be provided through the density matrix expansion (DME), which has recently been revived and improved. Several DME implementation strategies are tested for neutron

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 22, 2016 [Facility News] Young ASR Researcher Receives White House Award Bookmark and Share Gijs de Boer commands an Arctic air force of unmanned miniature planes Making an appearance at the White House in early May was 36-year-old Gijs de Boer, who is both an Atmospheric System Research scientist and ARM Climate Research Facility user. He is a prolific researcher with the NOAA Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder, and was

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 18, 2016 [Facility News] Next Round of Deadlines for Small Campaigns Coming Up Bookmark and Share The next deadline to propose for smaller field campaigns will be August 22. Small campaigns do not require a full deployment of ARM Facility equipment, like an ARM mobile or aerial facility. They require just an instrument or two, or are in conjunction with a larger facility operation. Costing less than $25,000, these campaigns give researchers access to ARM's equipment to perform focused,

  14. NEAC Facilities Subcommittee Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Subcommittee Report Presentation to the NEAC Committee 12/11/2015 John I. Sackett Facilities Subcommittee Members * John Ahearne * Dana Christensen * Tom Cochran * Mike Corradini * Dave Hill * Hussein Khalil * Andy Klein * Paul Murray * John Sackett, chair Subcommittee Objectives * The objective of our deliberations has been to help DOE-NE develop a means to identify, prioritize and make available those facilities important to Nuclear Energy Research and Development. - All facilities

  15. The Great Plains Wind Power Test Facility

    SciTech Connect (OSTI)

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  16. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  17. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  18. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  19. Windows and Building Envelope Facilities

    Broader source: Energy.gov [DOE]

    The Department of Energy funds these three test national lab test facilities to do window and building envelope research.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-04-08

    The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime.

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13, 2012 [Facility News] Another Kind of Rush in Alaska Bookmark and Share Summer time in Alaska this year brought a rush of visitors to the ARM Climate Research Facility Barrow site. North Slope of Alaska facility manager Mark Ivey hosted two prestigious groups of visitors: a Sandia National Laboratory leadership team in June and U.S. Department of Energy management from the Office of Biological and Environmental Research (BER) in August. In August, DOE management from the Office of Biological

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2014 [Facility News] Workshops Begin for ARM Megasites Bookmark and Share While the mission of the ARM Climate Research Facility has not changed, it is undergoing a reconfiguration to better support the linking of ARM measurements with process-oriented models. The facility reconfiguration, presented at the recent Atmospheric System Research meeting, will involve three main components: Augmenting measurements at the ARM Southern Great Plains site and the two sites on the North Slope of Alaska,

  3. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  4. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, Lawrence M.; Strum, Michael J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  5. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume III, facilities and equipment

    SciTech Connect (OSTI)

    1995-08-01

    This is the third in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume M is to describe record series pertaining to facilities and equipment at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of facilities and equipment practices at Rocky Flats, and identifies organizations contributing to facilities and equipment policies and activities. Other topics include the scope and arrangement of this volume and the organization to contact for access to these records. Comprehensive introductory and background information is available in Volume I. Other volumes in the guide pertain to administrative and general subjects, production and materials handling, workplace and environmental monitoring, employee health, and waste management. In addition, HAI has produced a subject-specific guide, titled The September 1957 Rocky Flats Fire: A Guide to Record Series of the Department of Energy and Its Contractors, which researchers should consult for further information about records related to this incident.

  6. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  7. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  8. ESIF 2014 (Energy Systems Integration Facility) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    This report covers research highlights and achievements for the Energy Systems Integration Facility in 2014.

  9. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    SciTech Connect (OSTI)

    Sheppy, M.; Beach, A.; Pless, S.

    2013-04-01

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  10. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  11. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  12. Present status and forecast of T&D facilities

    SciTech Connect (OSTI)

    Ko, In-Suk

    1994-12-31

    Before the end of the 1970s, because of our marvelous economic growth and industrial development we had made our best efforts to develop more power sources. But from the 1980s, KEPCO has invested for T&D facility of high quality and improved system reliability. The main considerations for T&D expansion are positive investment to improve facilities of the electric company, improvement of the quality of electrical equipment during manufacturing, and bettering the field construction of power facilities. In order to achieve the ultimate goal of supplying high quality electricity, we will try to improve cooperation between our domestic industries, and research institutes, and increase the exchange of international technology.

  13. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    SciTech Connect (OSTI)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  14. EA-1616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama

    Broader source: Energy.gov [DOE]

    This EA evaluates and updates the potential environmental impacts of DOE’s proposed continued operations of the NCCC Project at the PSDF plant. The NCCC is designed to test and evaluate carbon dioxide (CO2) control technologies for power generation facilities, including CO2 capture solvents and sorbents, mass-transfer devices, lower cost water-gas shift reactors, and scaled-up membrane technologies. Additionally, the NCCC evaluates methods to integrate CO2 capture technologies with other coal-based power plant systems by testing both pre-combustion and post-combustion technologies. The NCCC provides the capability to test these systems under a wide range of fuels, including bituminous and sub-bituminous coals, lignites and biomass/coal mixtures. The goal of the NCCC project is to accelerate the development, optimization, and commercialization of viable CO2 control technologies.

  15. Facility Ops | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    High Energy Physics (HEP) HEP Home About Research Facilities User Facilities Facility Ops Projects, Missions, and Status Science Highlights Benefits of HEP Funding Opportunities ...

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. Established as the first ARM research facility in 1992, the Southern Great Plains (SGP) site in Oklahoma is the "old man on the block" when it comes to infrastructure. Though significant

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mobile Facility Beta Testing Complete; System Headed to California Seashore Bookmark and Share A key addition to the ARM Climate Research Facility scientific infrastructure is ready to roll...literally. In February, the ARM Mobile Facility (AMF) is being packed up and shipped from Richland, Washington, to the Point Reyes National Seashore north of San Francisco, California. There, it will be reassembled in preparation for its first deployment as part of a 6-month experiment to study the

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 10, 2007 [Facility News] Jim Mather Selected as New ARM Technical Director Bookmark and Share Congratulations to Dr. Jim Mather, who will take the position of Technical Director of the ARM Climate Research Facility effective August 1, 2007. The Technical Director is responsible and accountable for the successful overall management of the user facility and works with the other ARM managers to this end. Jim's leadership will be critical for the successful development and evolution of the

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 15, 2008 [Facility News] ARM Mobile Facility Completes Field Campaign in Germany Bookmark and Share Researchers will study severe precipitation events that occurred in August and October 2007, stalling Rhine River traffic and causing flooding in portions of Germany. (Image source: DW-WORLD.DE) Operations at the ARM Mobile Facility (AMF) site in Heselbach, Germany, officially came to a close on January 1, 2008. As one of several measurement "supersites" situated throughout the

  20. 4 Tesla Magnet Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Tesla Magnet Facility 4 Tesla Magnet Facility Argonne researchers recently acquired two decommissioned magnets from magnetic resonance imaging (MRI) scanners from hospitals in ...

  1. Ultrafast Laser Facility - Virtual Tour | Photosynthetic Antenna...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Laser Facility - Virtual Tour December 10, 2015 Ultrafast Laser Facility - Virtual Tour A look at the technology and science in the Ultrafast lab PARC Research Scientist ...

  2. Facility Innovate | Open Energy Information

    Open Energy Info (EERE)

    to The Facility which is an architectural and design group, Facility:Innovate has done Research & Development of technology to harvest the energy of footsteps on a walking path...

  3. Pyrotek Graphitization Facility Expansion Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Purdue's INhome team at their recent "Topping Out" party (note the little tree on the roof of the house). | Photo Courtesy of the Purdue INhome Solar Decathlon team Purdue's INhome team at their recent "Topping Out" party (note the little tree on the roof of the house). | Photo Courtesy of the Purdue INhome Solar Decathlon team Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy How can I participate? The next Solar Decathlon

  4. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  5. User Facilities Expert Team - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IMG_2298.JPG User Facilities Expert Team Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device

  6. Quality assurance grading guidelines for research and development at DOE facilities. DOE Order 5700.6C

    SciTech Connect (OSTI)

    Powell, T.B.; Morris, R.N.

    1992-10-01

    The quality assurance (QA) requirements for the US Department of Energy (DOE) are established in DOE Order 5700.6C. This order is applicable for all DOE departmental elements, management, and maintenance and operating contractors and requires that documented Quality Assurance Programs (QAPS) are prepared at all levels; it has one attachment. The DOE Office of Energy Research (DOE-ER) has issued a standard to ensure implementation of the full intent of this order in the ER community. This report discusses order 5700.6C in relation to research with DOE.

  7. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  8. NSA Atqasuk Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inactive NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Atqasuk Facility-Inactive Location: 70° 28' 19.11" N, 157° 24' 28.99" W Altitude: 20 meters The Atqasuk facility, which was part of the larger ARM Climate Research Facility (ARM) North Slope of Alaska site, was installed the summer of

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2013 [Facility News] Work Cut Out for ARM Science Board Bookmark and Share With a new fixed site on the horizon in the Azores, a third ARM Mobile Facility gearing up for action in the Arctic, and more aircraft probes and sensors than scientists can shake a stick at, the ARM Facility continues to expand its considerable suite of assets for conducting climate research. Along with this impressive inventory comes the responsibility to ensure the Facility is supporting the highest-value science

  10. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2009 Facility News Turning a New Page with Facebook; Are You a Fan? Bookmark and Share Keep up with the ARM Climate Research Facilty via Facebook Keep up with the ARM Climate...

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    held this year in Seattle from January 24-28, scientists are presenting dozens of oral and poster sessions describing their research using data from the user facility. Here...

  13. NETL - Fuel Reforming Facilities

    SciTech Connect (OSTI)

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ARM Mobile Facility. ARM participated in the Student Exploration of Research in the Earth and Space Sciences (EXPRESS) program held on the last day of the 2005 AGU Fall...

  15. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to look at the science programs currently in place in Barrow, and to tour a proposed hospital site and the new Barrow Global Climate Change Research Facility currently under...

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13, 2006 Facility News Dr. Steve Ghan Appointed to Journal of Geophysical Research Editorial Board Bookmark and Share Dr. Steve Ghan was recently appointed as an editor for the...

  18. Quality Assurance Grading Guidelines for Research and Development at DOE Facilities (DOE Order 5700.6C)

    SciTech Connect (OSTI)

    Powell, T.B.

    1992-01-01

    The quality assurance (QA) requirements for the U.S. Department of Energy (DOE) are established in DOE Order 5700.6C. This order is applicable for all DOE departmental elements, management, and maintenance and operating contractors and requires that documented Quality Assurance Programs (QAPs) are prepared at all levels; it has one attachment. The DOE Office of Energy Research (DOE-ER) has issued a standard to ensure implementation of the full intent of this order in the ER community.

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2016 [Facility News] Research Balloon Lost in Alaska Bookmark and Share A tethered balloon used for atmospheric measurements was being prepared July 27 at Oliktok Point, Alaska, when an unexpected gust of wind lifted the balloon and severed its tether cord. The balloon rose and drifted north across the Beaufort Sea, dropping to the sea roughly 60 km north of Oliktok. The balloon, which carried Atmospheric Radiation Measurement (ARM) Climate Research Facility equipment worth approximately

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From the Mountains to the Prairies to the Oceans White with Foam Bookmark and Share New research lends insight to the impact of land and oceans on climate Each year, the ARM Climate Research Facility receives proposals to use key components of the facility for extended or intensive field campaigns to improve understanding of atmospheric processes that are relevant to regional and global climate. The U.S. Department of Energy has selected five field campaigns to take place from April 2016 through

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 9, 2015 [Facility News] Joint Call for Research to Analyze Aerosol Samples Collected at ARM's Southern Great Plains Site Bookmark and Share A pilot call for proposals is now open for research in focused topics in atmospheric aerosol science that takes advantage of both the analytical instrumentation and capabilities in the Environmental Molecular Sciences Laboratory (EMSL) User Facility and the infrastructure and observational capabilities of the Atmospheric Radiation Measurement (ARM)

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2016 [Facility News, Publications] ACME/ARM/ASR, or AAA, Workshop Report Available on DOE Website Bookmark and Share CESD_Report_2016_ACME.indd While the U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) and Earth System Modeling (ESM) programs have made considerable contributions to the understanding of the atmospheric component of Earth's climate system and to development and evaluation of global

  3. FERC approves Northwest pipeline expansion

    SciTech Connect (OSTI)

    Not Available

    1992-06-15

    Northwest Pipeline Co., Salt Lake City, Utah, received a final permit from the Federal Energy Regulatory Commission for a $373.4 million main gas line expansion. This paper reports that it plans to begin construction of the 443 MMcfd expansion in mid-July after obtaining further federal, state, and local permits. The expanded system is to be fully operational by second quarter 1993. When the expansion is complete, total Northwest system mileage will be 3,936 miles and system capacity about 2.49 bcfd.

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2016 [Facility News] Early Career Funding Opportunity Available Bookmark and Share earlycareerprogram A funding opportunity for early career researchers in universities and U.S. Department of Energy (DOE) national laboratories is available from the Office of Biological and Environmental Research (BER). The Early Career Research Program, now in its eighth year, supports the development of individual research programs of outstanding scientists early in their careers and stimulates research

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data on Display at New Climate Research Facility Bookmark and Share Senator Stevens (second from left) and Max Ahgeak (far left) of the Ukpeagvik Iñupiat Corporation cut a red ribbon at the building's front door to commence the new science facility's opening ceremony. On June 1, Senator Ted Stevens (R-Alaska) joined Max Ahgeak of the Ukpeagvik Iñupiat Corporation to officially open the new Barrow Global Climate Change Research Facility in Alaska. ARM was represented by Mark Ivey, North

  6. Satellite Data Support for the ARM Climate Research Facility, 8/01/2009 - 7/31/2015

    SciTech Connect (OSTI)

    Minnis, Patrick; Khaiyer, Mandana M

    2015-10-06

    This report summarizes the support provided by NASA Langley Research for the DOE ARM Program in the form of cloud and radiation products derived from satellite imager data for the period between 8/01/09 through 7/31/15. Cloud properties such as cloud amount, height, and optical depth as well as outgoing longwave and shortwave broadband radiative fluxes were derived from geostationary and low-earth orbiting satellite imager radiance measurements for domains encompassing ARM permanent sites and field campaigns during the performance period. Datasets provided and documents produced are listed.

  7. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center» Lujan Center» Matter-Radiation Interactions in

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  10. Carbon Fiber Technology Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm003_warren_2012_o.pdf (3.98 MB) More Documents & Publications Carbon Fiber Technology Facility Carbon Fiber Pilot Plant and Research Facilities Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility

  11. Cloud Occurrence Frequency at the Barrow, Alaska, ARM Climate Research Facility for 2008 Third Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect (OSTI)

    M Jensen; K Johnson; JH Mather

    2009-07-14

    Clouds represent a critical component of the Earth’s atmospheric energy balance as a result of their interactions with solar and terrestrial radiation and a redistribution of heat through convective processes and latent heating. Despite their importance, clouds and the processes that control their development, evolution and lifecycle remain poorly understood. Consequently, the simulation of clouds and their associated feedbacks is a primary source of inter-model differences in equilibrium climate sensitivity. An important step in improving the representation of cloud process simulations is an improved high-resolution observational data set of the cloud systems including their time evolution. The first order quantity needed to understand the important role of clouds is the height of cloud occurrence and how it changes as a function of time. To this end, the Atmospheric Radiation Measurement (ARM) Climate Research Facilities (ACRF) suite of instrumentation has been developed to make the observations required to improve the representation of cloud systems in atmospheric models.

  12. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  13. Clocking the Early Universe's Expansion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clocking the Early Universe's Expansion Calculations Performed at NERSC Help Scientists Close in on the Nature of Dark Energy April 17, 2014 Margie Wylie, mwylie@lbl.gov, +1 510 ...

  14. Facilities | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Evaluation / Research and Development Facilities Photo: DARHT's Accelerators help create the x-rays at DARHT, the world's most advanced radiography facility. Research and Development Facilities Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national stockpile stewardship agenda. Of varying size, scope and capabilities, the facilities work in a concert to accomplish the following

  15. User Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a premier user facility providing world-class expertise, instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research....

  16. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and Analysis Computing Center Science Work with Argonne About Safety News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne User Facilities Advanced Photon Source Argonne

  17. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, 2014 [Facility News] DOE Early Career Research Awardee to Study Water Cycle Bookmark and Share Mike Pritchard Mike Pritchard Recently announced by the DOE Office of Science Early Career Research Program, Mike Pritchard from the University of California-Irvine is one of 35 awardees who will receive funding support for their research over the next 5 years. Pritchard, Assistant Professor of Earth System Science, was selected for his research topic, "Understanding the Roles of Cloud

  19. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  20. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  1. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  2. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  3. The CAMS Accelerator Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the cams accelerator facility The CAMS Accelerator Facility Today CAMS's primary facility is a ~10,000 ft2 building that houses three state-of-the-art, accelerator-based technologies. Upper Left: The HVEC 10 MV Model FN Tandem Van de Graaff Accelerator and the lighter-ion AMS beamline. Upper Right: The NEC 1.0 MV Model 3SDH-1 Tandem Accelerator for BioAMS. Lower: The NEC 1.7 MV Model 5SDH-2 Tandem Accelerator for Ion Beam Analysis and neutron production. CAMS' principal research instrument is a

  4. Programs & User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs » Office of Science » Programs & User Facilities Programs & User Facilities Enabling remarkable discoveries, tools that transform our understanding of energy and matter and advance national, economic, and energy security Advanced Scientific Computing Research Applied Mathematics Co-Design Centers Exascale Co-design Center for Materials in Extreme Environments (ExMatEx) Center for Exascale Simulation of Advanced Reactors (CESAR) Center for Exascale Simulation of

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 15, 2010 [Facility News] Closing in on Aircraft Campaign in California Bookmark and Share This preliminary flight plan illustrates an afternoon flight to sample aged air from the Bay Area and Sacramento. This preliminary flight plan illustrates an afternoon flight to sample aged air from the Bay Area and Sacramento. In preparation for the upcoming Carbonaceous Aerosol and Radiative Effects Study (CARES) in California, the ARM Aerial Facility is putting the finishing touches on research

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2010 [Facility News] ARM Science Board Welcomes New Members Bookmark and Share Several new members have joined the ARM Science Board. This eleven-member board is an independent body that reviews proposals for use of the ARM Climate Research Facility. The board is preparing to review the recently received proposals for the FY2012 campaigns and will be meeting in August. Thanks to the following outgoing Science Board members for their service. Dr. Dave Bader, Lawrence Livermore National

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM's New Radar Operating Paradigm Aims to Maximize Performance Bookmark and Share Maintaining the pulse of the radar network is vital to research A Scanning ARM Cloud Radar is deployed with the ARM Mobile Facility on Antarctica for the ARM West Antarctic Radiation Experiment campaign. A Scanning ARM Cloud Radar is deployed with the ARM Mobile Facility on Antarctica for the ARM West Antarctic Radiation Experiment campaign. Radars have been getting a lot of attention at ARM in the last few

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2004 [Facility News] Education and Outreach Program Visits Schools in the Tropics Bookmark and Share A native islander is interviewed in his natural setting at Manus Island as part of the TWP kiosk development effort. In September 2004, the ARM Climate Research Facility Education and Outreach (EO) staff spent 23 days at the Tropical Western Pacific (TWP) locale to develop stronger working relationships with educators and administrators at each of the TWP sites-Manus Island, Nauru Island, and

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Narrow Field of View (NFOV) Radiometers Deployed Bookmark and Share The 1-channel (left) and 2-channel (right) NFOV radiometers are collocated with the infrared thermometer (green stripe) at the SGP Central Facility. Numerous other instruments are situated nearby. In September 2004, the ARM Climate Research Facility Operations staff installed a new 2-channel Narrow Field of View (NFOV) radiometer at the Southern Great Plains (SGP) site. They also installed a repaired 1-channel NFOV radiometer

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2004 [Facility News] New Narrow Field of View Radiometer Widens Range of Radiance Data Bookmark and Share Development of the new 2-channel NFOV (right) benefited greatly from a comparison with the original 1-channel version (left). Development of a new, two-channel narrow field of view (NFOV) radiometer for the ARM Climate Research Facility Southern Great Plains site is nearly complete. The two-channel NFOV replaces a similar single-channel instrument that was destroyed by lightning in June

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Service Conserves Cash Bookmark and Share In April, operations personnel completed a series of cost-saving data communication changes at the ARM Climate Research Facility Southern Great Plains (SGP) locale. The T-1 telephone lines at the four SGP boundary facilities were replaced with satellite dish technology. This change still allows large data sets to be transferred at acceptable bandwidth but at substantial savings. Inexpensive satellite services now meet data transmission needs at

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eddy Correlation Deployments Completed Bookmark and Share In mid-March, the last of a series of new eddy covariance or "eddy correlation" (ECOR) systems was installed at the ARM Climate Research Facility's Southern Great Plains (SGP) extended facility at Cyril, Oklahoma. This completes the replacement of the original ECOR systems initiated in 2002. In all, nine new ECOR systems have been deployed, including one on the 18-meter tower at the SGP forest locale at Okmulgee, Oklahoma. The

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 27, 2007 [Data Announcements, Facility News] Data from the NOAA Climate Reference Network for Barrow, AK, and Stillwater, OK, are Available Through the External Data Center Bookmark and Share The ARM Climate Research Facility is providing data in netCDF format from the U.S. Climate Reference Network (USCRN), a network of climate change monitoring stations developed by the National Oceanic and Atmospheric Administration (NOAA). This network provides long-term observations of temperature and

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2015 [Facility News, Publications] LASSO Implementation Strategy Report Available Bookmark and Share "Data cubes" that combine observations, model output, and metrics will be combined into a unified package. The ARM Climate Research Facility is entering an exciting new era where the application of ARM observations and data processing will be accelerated by routine, high-resolution modeling to enable better understanding of cloud, radiation, aerosol, and land-surface processes and

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 [Facility News] Calling All Data Archive Users Bookmark and Share DataArchive You will need to update your ARM data profile as soon as possible as part of new government reporting requirements. Researchers access data collected through the routine operations and scientific field experiments of the ARM Facility through the ARM Data Archive. An updated registration form requests information about the scientific project for which you are using ARM data. This information is a new requirement

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 15, 2009 [Facility News] Outreach Display Awarded for Communications Excellence Bookmark and Share The ARM display received the Gold Hermes Creative Award in 2009 for exemplifying communications excellence. The ARM display received the Gold Hermes Creative Award in 2009 for exemplifying communications excellence. As the ARM Climate Research Facility prepares to participate in the coming round of winter meetings, now is a good time to share news of the two industry awards its display

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 20, 2016 [Facility News] Small ARM Campaigns Do Big Science, and You Could Too Bookmark and Share Next round of deadlines for small campaigns coming up; five recently approved campaigns span from Ascension Island to Mount Bachelor Not every science campaign requires a full deployment of ARM Climate Research Facility equipment; important work can be done with just an instrument or two, or in conjunction with a larger operation. These projects fall under the category of ARM's small campaigns.

  18. Relativistic effects on plasma expansion

    SciTech Connect (OSTI)

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  19. CMI Unique Facilities | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Unique Facilities The Critical Materials Institute has created unique facilities that are available for additional research and collaboration. These include the following. There are hotlinks for some of the infrastructure and equipment listed. Those links provide information about the unique facility, where it was developed within CMI and who to contact for more information. Pilot-Scale Separations Test Bed Facility Filtration Test Facility Bulk Combinatoric Materials Synthesis Facility

  20. Generation and transmission expansion planning for renewable energy integration

    SciTech Connect (OSTI)

    Bent, Russell W; Berscheid, Alan; Toole, G. Loren

    2010-11-30

    In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.