Sample records for research development demonstration

  1. Grid Connectivity Research, Development & Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  2. Energy Research, Development and Demonstration

    E-Print Network [OSTI]

    Ray, R. R., Jr.

    1980-01-01T23:59:59.000Z

    energy supplies and more efficient energy systems not inconsistent with other laws of the state; 2) administer the Texas Energy Development Fund as directed by the Council; 3) maintain an awareness of all energy-related research of importance...

  3. Status and Progress in Research, Development and Demonstration...

    Energy Savers [EERE]

    and Progress in Research, Development and Demonstration of Hydrogen-Compressed Natural Gas Vehicles in China Status and Progress in Research, Development and Demonstration of...

  4. Geothermal Energy Research Development and Demonstration Program

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

  5. Codes and Standards Research, Development and Demonstration Roadmap, May 2006

    Fuel Cell Technologies Publication and Product Library (EERE)

    C&S RD&D Roadmap - 2008: This Roadmap is a guide to the Research, Development & Demonstration activities that will provide data required for Standards Development Organizations (SDOs) to develop perfo

  6. Portfolio evaluation of advanced coal technology : research, development, and demonstration

    E-Print Network [OSTI]

    Naga-Jones, Ayaka

    2005-01-01T23:59:59.000Z

    This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

  7. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect (OSTI)

    Ness, H.M.; Reuther, R.B.

    1995-12-01T23:59:59.000Z

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  8. Public Interest Energy Research Program Research Development and Demonstration Plan

    E-Print Network [OSTI]

    and Demonstration Plan Attachment IV - Carbon Sequestration in California's Terrestrial Ecosystems and Geological ..................................................................................................................................1 3.1 Global Warming and the Need for Carbon Sequestration.....................................................1 3.2 Carbon Sequestration Basics

  9. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  10. DOE's Advanced Coal Research, Development, and Demonstration Program to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelop Low-carbon Emission Coal Technologies

  11. DOE's Advanced Coal Research, Development, and Demonstration Program to

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergyBoilersPlantof EnergyEnergyDepartment ofDevelop

  12. Integrated gasification combined-cycle research development and demonstration activities in the US

    SciTech Connect (OSTI)

    Ness, H.M.; Brdar, R.D.

    1996-09-01T23:59:59.000Z

    The United States Department of Energy (DOE)`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the commercialization of integrated gasification combined-cycle (IGCC) advanced power systems. This overview briefly describes the supporting RD&D activities and the IGCC projects selected for demonstration in the Clean Coal Technology (CCT) Program.

  13. Integrated gasification combined-cycle research development and demonstration activities in the U.S.

    SciTech Connect (OSTI)

    Ness, H.M.

    1994-12-31T23:59:59.000Z

    The United States Department of Energy (DOE) has selected seven integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D)program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  14. Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report

    SciTech Connect (OSTI)

    Will Lewis, Compiler

    2006-09-01T23:59:59.000Z

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

  15. Technical support to the Solvent Refined Coal (SRC) demonstration projects: assessment of current research and development

    SciTech Connect (OSTI)

    Edwards, M.S.; Rodgers, B.R.; Brown, C.H.; Carlson, P.K.; Gambill, W.R.; Gilliam, T.M.; Holmes, J.M.; Krishnan, R.P.; Parsly, L.F.

    1980-12-01T23:59:59.000Z

    A program to demonstrate Solvent Refined Coal (SRC) technology has been initiated by the US Department of Energy (DOE) in partnership with two industrial groups. Project management responsibility has been assigned to the Oak Ridge Operations Office (ORO) of DOE. ORO requested that the Oak Ridge National Laboratory assess current research and development (R and D) activities and develop recommendations for those activities that might contribute to successful completion of the SRC demonstration plant projects. The objectives of this final report are to discuss in detail the problem areas in SRC; to discuss the current and planned R and D investigations relevant to the problems identified; and to suggest appropriate R and D activities in support of designs for the SRC demonstration plants. Four types of R and D activities are suggested: continuation of present and planned activities; coordination of activities and results, present and proposed; extension/redirection of activities not involving major equipment purchase or modifications; and new activities. Important examples of the first type of activity include continuation of fired heater, slurry rheology, and slurry mixing studies at Ft. Lewis. Among the second type of activity, coordination of data acquisition and interpretation is recommended in the areas of heat transfer, vapor/liquid equilibria, and physical properties. Principal examples of recommendations for extension/redirection include screening studies at laboratory scale on the use of carbonaceous precoat (e.g., anthracite) infiltration, and 15- to 30-day continuous tests of the Texaco gasifier at the Texaco Montebello facility (using SRC residues).

  16. Notice of Intent to Issue FOA DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office (FCTO), a Funding Opportunity Announcement (FOA) entitled ďHydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

  17. Webinar: Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations," originally presented on March 10, 2015.

  18. Real Options Valuation of U.S. Federal Renewable Energy Research,Development, Demonstration, and Deployment

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Wiser, Ryan H.

    2005-03-01T23:59:59.000Z

    Benefits analysis of US Federal government funded research, development, demonstration, and deployment (RD3) programs for renewable energy (RE) technology improvement typically employs a deterministic forecast of the cost and performance of renewable and nonrenewable fuels. The benefits estimate for a program derives from the difference between two forecasts, with and without the RD3 in place. The deficiencies of the current approach are threefold: (1) it does not consider uncertainty in the cost of non-renewable energy (NRE), and the option or insurance value of deploying RE if and when NRE costs rise; (2) it does not consider the ability of the RD3 manager to adjust the RD3 effort to suit the evolving state of the world, and the option value of this flexibility; and (3) it does not consider the underlying technical risk associated with RD3, and the impact of that risk on the programs optimal level of RD3 effort. In this paper, a rudimentary approach to determining the option value of publicly funded RE RD3 is developed. The approach seeks to tackle the first deficiency noted above by providing an estimate of the options benefit of an RE RD3 program in a future with uncertain NRE costs.While limited by severe assumptions, a computable lattice of options values reveals the economic intuition underlying the decision-making process. An illustrative example indicates how options expose both the insurance and timing values inherent in a simplified RE RD3 program that coarsely approximates the aggregation of current Federal RE RD3.This paper also discusses the severe limitations of this initial approach, and identifies needed model improvements before the approach can adequately respond to the RE RD3 analysis challenge.

  19. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  20. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

  1. Pit disassembly and conversion demonstration environmental assessment and research and development activities

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    A significant portion of the surplus plutonium is in the form of pits, a nuclear weapons component. Pits are composed of plutonium which is sealed in a metallic shell. These pits would need to be safely disassembled and permanently converted to an unclassified form that would be suitable for long-term disposition and international inspection. To determine the feasibility of an integrated pit disassembly and conversion system, a Pit Disassembly and Conversion Demonstration is proposed to take place at the Los Alamos National Laboratory (LANL). This demonstration would be done in existing buildings and facilities, and would involve the disassembly of up to 250 pits and conversion of the recovered plutonium to plutonium metal ingots and plutonium dioxide. This demonstration also includes the conversion of up to 80 kilograms of clean plutonium metal to plutonium dioxide because, as part of the disposition process, some surplus plutonium metal may be converted to plutonium dioxide in the same facility as the surplus pits. The equipment to be used for the proposed demonstration addressed in this EA would use some parts of the Advanced Recovery and Integrated Extraction System (ARIES) capability, other existing equipment/capacities, plus new equipment that was developed at other sites. In addition, small-scale R and D activities are currently underway as part of the overall surplus plutonium disposition program. These R and D activities are related to pit disassembly and conversion, MOX fuel fabrication, and immobilization (in glass and ceramic forms). They are described in Section 7.0. On May 16, 1997, the Office of Fissile Materials Disposition (MD) notified potentially affected states and tribes that this EA would be prepared in accordance with NEPA. This EA has been prepared to provide sufficient information for DOE to determine whether a Finding of No Significant Impact (FONSI) is warranted or whether an EIS must be prepared.

  2. Scenarios for Benefits Analysis of Energy Research, Development,Demonstration and Deployment

    SciTech Connect (OSTI)

    Gumerman, Etan; Marnay, Chris

    2005-09-07T23:59:59.000Z

    For at least the last decade, evaluation of the benefits of research, development, demonstration, and deployment (RD3) by the U.S. Department of Energy has been conducted using deterministic forecasts that unrealistically presume we can precisely foresee our future 10, 25,or even 50 years hence. This effort tries, in a modest way, to begin a process of recognition that the reality of our energy future is rather one rife with uncertainty. The National Energy Modeling System (NEMS) is used by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EE) and Fossil Energy (FE) for their RD3 benefits evaluation. In order to begin scoping out the uncertainty in these deterministic forecasts, EE and FE designed two futures that differ significantly from the basic NEMS forecast. A High Fuel Price Scenario and a Carbon Cap Scenario were envisioned to forecast alternative futures and the associated benefits. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) implemented these scenarios into its version of NEMS,NEMS-LBNL, in late 2004, and the Energy Information Agency created six scenarios for FE in early 2005. The creation and implementation of the EE-FE scenarios are explained in this report. Both a Carbon Cap Scenario and a High Fuel Price Scenarios were implemented into the NEMS-LBNL. EIA subsequently modeled similar scenarios using NEMS. While the EIA and LBNL implementations were in some ways rather different, their forecasts do not significantly diverge. Compared to the Reference Scenario, the High Fuel Price Scenario reduces energy consumption by 4 percent in 2025, while in the EIA fuel price scenario (known as Scenario 4) reduction from its corresponding reference scenario (known as Scenario 0) in 2025 is marginal. Nonetheless, the 4 percent demand reduction does not lead to other cascading effects that would significantly differentiate the two scenarios. The LBNL and EIA carbon scenarios were mostly identical. The only major difference was that LBNL started working with the AEO 2004NEMS code and EIA was using AEO 2005 NEMS code. Unlike the High Price Scenario the Carbon Cap scenario gives a radically different forecast than the Reference Scenario. NEMS-LBNL proved that it can handle these alternative scenarios. However, results are price inelastic (for both oil and natural gas prices) within the price range evaluated. Perhaps even higher price paths would lead to a distinctly different forecast than the Reference Scenario. On the other hand, the Carbon Cap Scenario behaves more like an alternative future. The future in the Carbon Cap Scenario has higher electricity prices, reduced driving, more renewable capacity, and reduced energy consumption. The next step for this work is to evaluate the EE benefits under each of the three scenarios. Comparing those three sets of predicted benefits will indicate how much uncertainty is inherent within this sort of deterministic forecasting.

  3. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Karl Mayer

    2010-03-31T23:59:59.000Z

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical challenge to the development of a long life LIC system is the development of a reliable and efficient steam generator. The steam generator and support equipment development is described in Section 7. Just one year ago, ECR International announced through its joint venture company, Climate Energy, that it was introducing to the USA market a new class of Micro-CHP product using the state-of-the-art Honda MCHP gas fired internal combustion (IC) engine platform. We now have installed Climate Energy Micro-CHP systems in 20 pilot demonstration sites for the 2005/2006 heating season. This breakthrough success with IC engine based systems paves the way for future advanced steam cycle Micro-CHP systems to be introduced.

  4. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  5. Office of Technology Development`s Research, Development, Demonstration, Testing and Evaluation Mid-Year Program Review. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This document presents brief summaries of waste management, remedial action, decommissioning/decontamination, and waste processing programs and issues currently being developed at Department of Energy Facilities.

  6. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    SciTech Connect (OSTI)

    Robert A. Zogg

    2011-03-14T23:59:59.000Z

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

  7. A decision analysis framework to support long-term planning for nuclear fuel cycle technology research, development, demonstration and deployment

    SciTech Connect (OSTI)

    Sowder, A.G.; Machiels, A.J. [Electric Power Research Institute, 1300 West. W.T Harris Boulevard, Charlotte, NC 28262 (United States); Dykes, A.A.; Johnson, D.H. [ABSG Consulting Inc., 300 Commerce, Suite 200, Irvine, CA 92602 (United States)

    2013-07-01T23:59:59.000Z

    To address challenges and gaps in nuclear fuel cycle option assessment and to support research, develop and demonstration programs oriented toward commercial deployment, EPRI (Electric Power Research Institute) is seeking to develop and maintain an independent analysis and assessment capability by building a suite of assessment tools based on a platform of software, simplified relationships, and explicit decision-making and evaluation guidelines. As a demonstration of the decision-support framework, EPRI examines a relatively near-term fuel cycle option, i.e., use of reactor-grade mixed-oxide fuel (MOX) in U.S. light water reactors. The results appear as a list of significant concerns (like cooling of spent fuels, criticality risk...) that have to be taken into account for the final decision.

  8. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounsel LawDemonstration Plan:Demonstration Program

  9. The U.S. Department of Energy`s integrated gasification combined cycle research, development and demonstration program

    SciTech Connect (OSTI)

    Brdar, R.D.; Cicero, D.C.

    1996-07-01T23:59:59.000Z

    Historically, coal has played a major role as a fuel source for power generation both domestically and abroad. Despite increasingly stringent environmental constraints and affordable natural gas, coal will remain one of the primary fuels for producing electricity. This is due to its abundance throughout the world, low price, ease of transport an export, decreasing capital cost for coal-based systems, and the need to maintain fuel diversity. Recognizing the role coal will continue to play, the US Department of Energy (DOE) is working in partnership with industry to develop ways to use this abundant fuel resource in a manner that is more economical, more efficient and environmentally superior to conventional means to burn coal. The most promising of these technologies is integrated gasification combined cycle (IGCC) systems. Although IGCC systems offer many advantages, there are still several hurdles that must be overcome before the technology achieves widespread commercial acceptance. The major hurdles to commercialization include reducing capital and operating costs, reducing technical risk, demonstrating environmental and technical performance at commercial scale, and demonstrating system reliability and operability. Overcoming these hurdles, as well as continued progress in improving system efficiency, are the goals of the DOE IGCC research, development and demonstrate (RD and D) program. This paper provides an overview of this integrated RD and D program and describes fundamental areas of technology development, key research projects and their related demonstration scale activities.

  10. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program Appendices

  11. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program

  12. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program1-08 2008

  13. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program1-08

  14. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program1-088

  15. Real Options Valuation of U.S. Federal Renewable Energy Research, Development, Demonstration, and Deployment

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Wiser, Ryan H.

    2005-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Real Options Valuation of US FederalBerkeley, 18 March 2005 Real Options Valuation of US Federalabove by developing a real options model of RE RD 3 that

  16. Solar Energy Research, Development, and Demonstration Act of 1974 in U.S.C.

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagement |Solar Energy Development in the

  17. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The program has progressed to the stage of evaluating full-sized (220 Ah) cells, multicell modules, and 22 kWh batteries. Nickel electrodes that display stable capacities of up to 24 Ah/plate (at C/3 drain rate) at design thickness (2.5 mm) in tests at 200/sup +/ test cycles. Iron electrodes of the composite-type are also delivering 24 Ah/plate (at C/3) at target thickness (1.0 mm). Iron plates are displaying capacity stability for 300/sup +/ test cycles in continuing 3 plate cell tests. Best finished cells are delivering 57 to 63 Wh/kg at C/3, based on cell weights of the finished cells, and in the actual designed cell volume. 6-cell module (6-1) performance has demonstrated 239 Ah, 1735 Wh, 53 WH/kg at the C/3 drain rate. This module is now being evaluated at the National Battery Test Laboratory. The 2 x 4 battery has been constructed, tested, and delivered for engineering test and evaluation. The battery delivered 22.5 kWh, as required (199 Ah discharge at 113 V-bar) at the C/3 drain rate. The battery has performed satisfactorily under dynamometer and constant current drain tests. Some cell problems, related to construction, necessitated changing 3 modules, but the battery is now ready for further testing. Reduction in nickel plate swelling (and concurrent stack electrolyte starvation), to improve cycling, is one area of major effort to reach the final battery objectives. Pasted nickel electrodes are showing promise in initial full-size cell tests and will continue to be evaluated in finished cells, along with other technology advancements. 30 figures, 14 tables.

  18. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  19. Renewable energy for America's cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    SciTech Connect (OSTI)

    Gleason, T.C.J.

    1993-01-01T23:59:59.000Z

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  20. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  1. Program mid-year summaries research, development, demonstration, testing and evaluation: Office of Technology Development, FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This mid-year review provides a summary of activities within the Office of Technology Development with individual presentations being made to DOE HQ and field management staff. The presentations are by EM-541, 542, 551, and 552 organizations.

  2. DOE FY 2010 Budget Request and Recovery Act Funding for Energy Research, Development, Demonstration, and Deployment: Analysis and Recommendations

    SciTech Connect (OSTI)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew

    2009-06-01T23:59:59.000Z

    The combination of the FY 2010 budget request for the Department of Energy (DOE) and the portion of the American Recovery and Reinvestment Act of 2009 (ARRA) funds likely to be available in 2010 would (assuming that they would be split evenly between FY 2010 and FY 2011) result in a doubling in funding available for energy research, development, and deployment (ERD and D) from $3.6 billion in FY 2009 to $7.2 billion in FY 2010. Without the stimulus funds, DOE ERD and D investments in FY 2010 would decrease very slightly when compared to FY 2009. Excluding the $7.5 billion for the Advanced Technology Vehicles Manufacturing Loans in FY 2009, the FY 2010 budget request for deployment represents a 33 percent decrease from the FY 2009 levels from $520 million to $350 million. This decrease is largely due to the large amounts of funds appropriated in ARRA for DOE deployment programs, or $23.6 billion, which are three times greater than those appropriated in the FY 2009 budget. These very substantial funding amounts, coupled with the broad range of institutional innovations the administration is putting in place and movement toward putting a price on carbon emissions, will help accelerate innovation for a broad range of energy technologies. DOE's Advanced Research Projects Agency-Energy (ARPA-E) and the Energy Innovation Hubs are important initiatives that could contribute to two weak points of the government's energy innovation effort, namely funding high-risk projects in transformational technologies and in companies that have not traditionally worked with the government and strengthening the integration of basic and applied research in priority areas. Increasing the funding for different types of energy storage research, providing some support for exploring opportunities in coal-to-liquids with carbon capture and storage (CCS) and coal-and-biomass-to-liquids with CCS, and reducing funding for fission RD and D are other actions that Congress could take in the short-term. Energy storage may play a crucial role in the future of the power and transportation systems, which together consume two thirds of primary energy in the United States. A recent National Academy of Science report recommended carrying out detailed scenario assessments of the penetration of unconventional fuels from coal and coal and biomass with CCS. And the research plan provided for nuclear fission does not justify spending as many funds as were requested. The proposed funding for FY 2010 and the resources from ARRA, however, do not guarantee that the United States will finally enjoy the predictable and consistent publicly-funded energy technology innovation effort that it needs. The Obama administration must put in place a comprehensive energy technology innovation strategy that will ensure that an expanded ERD3 effort is both sustainable and efficient. This commission would be charged with, inter alia, developing a strategy that optimizes the integration of the various stages of innovation (research, development, demonstration, early deployment), as well as integrates efforts across technology areas. The database upon which this analysis is based may be downloaded in Excel format at: http://belfercenter.ksg.harvard.edu/publication/19119/ .

  3. Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.

  4. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  5. Research development and demonstration of a fuel cell/battery powered bus system. Interim report, August 1, 1991--April 30, 1992

    SciTech Connect (OSTI)

    Romano, S.; Wimmer, R.

    1992-04-30T23:59:59.000Z

    This report describes the progress in the Georgetown University research, development and demonstration project of a fuel cell/battery powered bus system. The topics addressed in the report include vehicle design and application analysis, technology transfer activities, coordination and monitoring of system design and integration contractor, application of fuel cells to other vehicles, current problems, work planned, and manpower, cost and schedule reports.

  6. Research, development and demonstration of a fuel cell/battery powered bus system. Phase 1, Final report

    SciTech Connect (OSTI)

    NONE

    1990-02-28T23:59:59.000Z

    Purpose of the Phase I effort was to demonstrate feasibility of the fuel cell/battery system for powering a small bus (under 30 ft or 9 m) on an urban bus route. A brassboard powerplant was specified, designed, fabricated, and tested to demonstrate feasibility in the laboratory. The proof-of-concept bus, with a powerplant scaled up from the brassboard, will be demonstrated under Phase II.

  7. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  8. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The FY 1980 program continued to involve full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas. Improved Electroprecipitation Process (EPP) nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities of 23 to 25 Ah for the C/3 drain rate at 200+ test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes are displaying capacity stability for > 1000 test cycles in continuing 3 plate cell tests. Finished cells have delivered 57 to 61 Wh/kg at C/3, and have demonstrated cyclic stability to 500+ cycles at 80% depth of discharge profiles at Westinghouse. A 6-cell module that demonstrated 239 Ah, 1735 Wh, 48 Wh/kg at the C/3 drain rate has also been evaluated at the National Battery Test Laboratory, ANL. It operated for 327 test cycles, to a level of 161 Ah at the C/3 rate, before being removed from test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives. Pasted nickel electrodes continue to show promise for meeting the life objectives while, simultaneously, providing a low manufacturing cost. Refinements have occurred in the areas of cell hardware, module manifolding and cell interconnections. These improvements have been incorporated into the construction and testing of the cells and modules for this program. Temperature tests at 0/sup 0/C were performed on a 6-cell module and showed a decrease in capacity of only 25% in Ah and .29% in Wh as compared to 25/sup 0/C performance. Additional tests are planned to demonstrate performance at -15/sup 0/C and 40/sup 0/C.

  9. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1981

    SciTech Connect (OSTI)

    None

    1982-03-01T23:59:59.000Z

    The progress of the design and development program is detailed. Results of drop tests, characteristics tests, and life cycle tests are presented and discussed. Results of tests of mechanical agitation of the electrolyte by air bubbling and an air lift pump are reported. Work on the electrode designs and electrolyte circulation systems is reported. (WHK)

  10. Research, development, and demonstration of nickel-zinc batteries for electric-vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    Progress in work at Exide in three main development areas, i.e., battery design and development, nickel cathode study, and electrochemical studies is reported. Battery design and development concentrated on the optimization of design parameters, including electrode spacing, charging methods, electrolyte concentration, the design and fabrication of prototype cells and modules, and testing to verify these parameters. Initial experiments indicated that an interelectrode spacing of 2.5 mm was optimum when normal (D.C.) charging is used. It was during these experiments that a high rate charging technique was developed to deposit a dense active zinc which did not shed during vibration. A 4 cell - 300 Ah experimental module was built and sent to NBTL for testing. Initial testing on this module and a 300 Ah cell are reported. Experiments on electrolyte concentration indicate that higher concentrations of KOH (8M, 9M or 10M) are beneficial to capacity maintenance. Available nickel cathodes were evaluated for possible use in the VIBROCEL. These included pocket, sintered plaque impregnated, nickel plated steel wool impregnated, plastic bonded and CMG (multifoil) electrodes. These electrodes have Coulombic densities ranging from 70 Ah/Kg for pocket plates to 190 Ah/Kg for CMG electrodes. Detailed test data are presented for each type including rate capability, effect of zincate on performance, and capacity maintenance with cycling. Work on zinc deposition emphasized the special charging technique. This is a deposition using special waveforms of charging current, to deposit dense crystalline zinc on the anode substrate.

  11. Hydrogen fueling station development and demonstration

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

  12. USDA, DOE to Invest up to $18.4 million for Biomass Research, Development and Demonstration Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-Japan Working GroupDepartmentDevelopmentPage 1

  13. Renewable energy for America`s cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    SciTech Connect (OSTI)

    Gleason, T.C.J.

    1993-01-01T23:59:59.000Z

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D&D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  14. Energy Research, Development and Demonstration

    E-Print Network [OSTI]

    Ray, R. R., Jr.

    1980-01-01T23:59:59.000Z

    available as indicated in the publication list appended to this paper. ANALYSIS OF 1978-79 EDF FUNDING AREA NO. OF PROJECTS EDF FUNDS GENERATED HATCHING FUNDS TOTAL RD&D INVESTMENT Basic EDF Proj ects: Lignite Geotherma 1 Conservation... 80-81 FUNDING LEVEL $K % LIGNITE 800 21.3 GEOTHERMAL 200 5.3 WIND 200 5.3 BIOMASS 600 16.0 SOLAR 410 11.0 CONSERVATION 675 18.0 OIL AND GAS 70 1.9 NUCLEAR 15 0.4 TEPP 500 13.3 INNOVATIVE 130 3.5 OTHER (REPORTS, MONITORS...

  15. Demonstration/Development of Reactivity Controlled Compression...

    Broader source: Energy.gov (indexed) [DOE]

    DemonstrationDevelopment of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications Dr. Rolf Reitz Wisconsin Engine...

  16. Development and Demonstration of Ultrafiltration Simulants

    SciTech Connect (OSTI)

    Russell, Renee L.; Billing, Justin M.; Peterson, Reid A.; Rinehart, Donald E.; Smith, Harry D.

    2009-02-24T23:59:59.000Z

    According to Bechtel National, Inc. (BNI) Test Specification 24590-PTF-TSP-RT-06-006, Rev 0, Simulant Development to Support the Development and Demonstration of Leaching and Ultrafiltration Pretreatment Processes,Ē simulants for boehmite, gibbsite, and filtration are to be developed that can be used in subsequent bench and integrated testing of the leaching/filtration processes for the waste treatment plant (WTP). These simulants will then be used to demonstrate the leaching process and to help refine processing conditions which may impact safety basis considerations (Smith 2006). This report documents the results of the filtration simulant development.

  17. CEC-500-2010-FS-004 Development and Demonstration of

    E-Print Network [OSTI]

    -competitiveness of concentrating PV systems. ∑ Improving grid stability by using an active inverter capable of injectingCEC-500-2010-FS-004 Development and Demonstration of a Concentrating PV System With Integrated Active Micro-Inverters RENEWABLE ENERGY RESEARCH PIER Renewable Energy Research www

  18. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration 2009 DOE Hydrogen Program and Vehicle...

  19. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post-Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration Presentation from the U.S. DOE Office...

  20. DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development...

    Energy Savers [EERE]

    DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development Milestone DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development Milestone February 19, 2015...

  1. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    SciTech Connect (OSTI)

    Roy C. Herndon

    2001-02-28T23:59:59.000Z

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  2. CLTC is a not-for-profit research, development and demonstration facility leading innovations in energy-efficient lighting and daylighting technologies.

    E-Print Network [OSTI]

    California at Davis, University of

    in energy-efficient lighting and daylighting technologies. Collaborating with partners in government common ways CLTC utilizes funding to advance the science of energy-efficient lighting and daylighting and field test emerging lighting and daylighting technologies. Demonstrations help vet the performance

  3. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The Fuel...

  4. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Multi-Year Research, Development, and Demonstration Plan - Appendix C: Hydrogen Quality Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan -...

  5. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Energy Savers [EERE]

    Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations March 3, 2015 - 2:33pm...

  6. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

  7. Hydrogen Posture Plan: An Integrated Research, Development and...

    Energy Savers [EERE]

    Hydrogen Posture Plan: An Integrated Research, Development and Demonstration Plan Hydrogen Posture Plan: An Integrated Research, Development and Demonstration Plan The 2006...

  8. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979. [165 Ah, 36. 5 Wh/kg

    SciTech Connect (OSTI)

    Bodamer, G.W.; Branca, G.C.; Cash, H.R.; Chrastina, J.R.; Yurick, E.M.

    1980-06-01T23:59:59.000Z

    Progress during the 1979 fiscal year is reported. All the tooling and capital equipment required for the pilot line production has been installed. A limited amount of plate production has been realized. A highly automated and versatile testing facility was established. The fabrication and testing of the initial calculated design is discussed. Cell component adjustments and the trade-offs associated with those changes are presented. Cells are being evaluated at the 3-hour rate. They have a capacity of 165 Ah and an energy density of 36.5 Wh/kg, and have completed 105 cycles to date. Experimental results being pursued under the advanced battery development program to enhance energy density and cycle life are presented. Data on the effects of different electrolyte specific gravity, separators, retainers, paste densities, battery additives and grid alloy composition on battery performance are presented and evaluated. Advanced battery prototype cells are under construction. Quality Assurance activities are summarized. They include monitoring the cell and battery fabrication and testing operations as well as all relevant documentation procedures. 12 figures, 28 tables.

  9. Grid Connectivity Research, Development & Demonstration Projects

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Grid Connectivity Research, Development & Demonstration Projects

    Broader source: Energy.gov (indexed) [DOE]

    implement the SAE J28472 DC charging communication protocol Power Line Communication (PLC) over 1 kHz pilot wire requires a broad range of coexistence, crosstalk and...

  11. Systems Integration Research, Development, and Demonstration | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergy State7/109 Historical Perspective onCompetitiveof

  12. Photonics Research and Development

    SciTech Connect (OSTI)

    Pookpanratana, Sujitra; Shlayan, Neveen; Venkat, Rama; Das, Bisjwajit; Boehm, Bob; Heske, Clemens; Fraser, Donald; Moustakas, Theodore

    2010-01-15T23:59:59.000Z

    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV‚??s Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home‚??s electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation‚??s energy consumption ‚?? by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve energy efficiency and lower costs for display and lighting applications (UNLV College of Engineering); (2) advancing green LED technology based on the Indium-Gallium-Nitride system (BU), thus improving conversion efficiencies; (3) employing unique state-of-the-art X-ray, electron and optical spectroscopies with microscopic techniques to learn more about the electronic structure of materials and contacts in LED devices (UNLV College of Science); (4) establishing a UNLV Display Lighting Laboratory staffed with a specialized team of academic researchers, students and industrial partners focused on identifying and implementing engineering solutions for lighting display-related problems; and (5) conducting research, development and demonstration for HSL essential to the resolution of technological barriers to commercialization.

  13. Carbon Dioxide Capture and Storage Demonstration in Developing...

    Open Energy Info (EERE)

    Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  14. Development, Test and Demonstration of a Cost-Effective, Compact...

    Broader source: Energy.gov (indexed) [DOE]

    taylor.pdf More Documents & Publications Development, Test and Demonstration of a Cost-Effective, Compact, Light-Weight, and Scalable High Temperature Inverter for HEVs, PHEVs, and...

  15. Development and Demonstration of Fischer-Tropsch Fueled Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fischer-Tropsch Fueled Heavy-Duty Vehicles with Control Technologies for Reduced Diesel Exhaust Emissions Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty...

  16. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  17. Advanced Reactor Research and Development Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and...

  18. The Development and Demonstration of an Electric Submersible...

    Broader source: Energy.gov (indexed) [DOE]

    0 4.4.2 The Development and Demonstration of an Electric Submersible Pump at High Temperatures - High-temperature Motor Windings for Down-hole Pumps Used in Geothermal Energy...

  19. Development, Test and Demonstration of a Cost-Effective, Compact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation ape012taylor2011o.pdf More Documents & Publications Development, Test and Demonstration of a Cost-Effective, Compact, Light-Weight, and Scalable High...

  20. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 5.0 Systems Integration Fuel Cell Technologies Office Multi-Year Research, Development,...

  1. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and...

  2. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreword Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Foreword The Geothermal Technologies Program Multi-Year Research, Development and...

  3. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices The Geothermal Technologies Program Multi-Year Research, Development...

  4. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Cover Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Cover Cover of the Fuel Cell Technologies Office Multi-Year Research, Development,...

  5. Nuclear Safety Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of...

  6. Cooperative Research & Development Agreements | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRADA SHARE Cooperative Research and Development Agreement A Cooperative Research and Development Agreement (CRADA) allows non-federal entities (industry, universities,...

  7. Aging Aircraft NDI Development and Demonstration Center (AANC): An overview

    SciTech Connect (OSTI)

    Walter, P.L.

    1991-01-01T23:59:59.000Z

    A major center with emphasis on validation of nondestructive inspection techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing test beds for nondestructive inspection validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed. 3 refs.

  8. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research,...

  9. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges The Geothermal Technologies Program Multi-Year Research,...

  10. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research,...

  11. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan The Geothermal Technologies Program Multi-Year Research,...

  12. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research,...

  13. Public Interest Energy Research Program Research Development and Demonstration Plan

    E-Print Network [OSTI]

    ..................................................................................................................................2 3.1 Computational and Decision-Analysis Tools for Integrated Risk Assessment.....................3

  14. Sustainable Development Research Institute fonds

    E-Print Network [OSTI]

    Handy, Todd C.

    Sustainable Development Research Institute fonds Compiled by Erwin Wodarczak and Melanie Hardbattle Projects series Sous-fonds Description o "Women and Sustainable Development: Canadian Perspectives (UBC Library catalogue) #12;Fonds Description Sustainable Development Research Institute fonds. ≠ 1985

  15. Precision Information Environment (PIE) for International Safeguards: Pre-Demonstration Development Use Cases

    SciTech Connect (OSTI)

    Gastelum, Zoe N.; Henry, Michael J.

    2013-11-13T23:59:59.000Z

    In FY2013, the PIE International Safeguards team demonstrated our development progress to U.S. Department of Energy (DOE) staff from the Office of Nonproliferation and International Security (NA-24, our client) and the Office of Defense Nuclear Nonproliferation Research and Development (NA-22). Following the demonstration, the team was asked by our client to complete additional development prior to a planned demonstration at the International Atomic Energy Agency (IAEA), scheduled tentatively for January or spring of 2014. The team discussed four potential areas for development (in priority order), and will develop them as time and funding permit prior to an IAEA demonstration. The four capability areas are: 1. Addition of equipment manuals to PIE-accessible files 2. Optical character recognition (OCR) of photographed text 3. Barcode reader with information look-up from a database 4. Add Facilities to Data Model 5. Geospatial capabilities with information integration Each area will be described below in a use case.

  16. Eltron Research & Development

    SciTech Connect (OSTI)

    Evenson, Carl; Mackay, Richard; Faull, John

    2014-03-01T23:59:59.000Z

    This topical report covers technical work conducted under contract DE-FC26-05NT42469 between FY06 Q1 through FY14 Q2. The project evolved through several budget periods, budget revisions and continuation applications. This report covers work performed under the ďbaseĒ program. In 2010 ARRA funding was added to the project. A separate report covering the ARRA portion of the project was submitted to DOE. The original project was focused on research and development for scale-up of hydrogen separation membrane for a FutureGen type power plant. The work included membrane testing and evaluation of metal alloy flat plates vs. tubes and metal membranes vs. cermet membranes. In addition, economic analysis and process modeling was performed. The original project team included CoorsTek, NORAM, and Praxair. In FY10Q2 a continuation application was filed for conducting a scale-up test at Eastman Chemical. In this part of the project a Subscale Engineering Prototype (SEP) membrane skid was designed, fabricated, and operated on a gasified coal slip-stream on Eastmanís site in Kingsport, TN. Following operation, the project was reorganized and a second continuation application with a new statement of work was initiated in FY12Q1. Finally, based on DOEís decision not to proceed with a Process Development Unit (PDU) field test, a third continuation application and statement of work was initiated in FY13Q1 to close out the project.

  17. Noxtechźs PAC System Development and Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    under license Mitsui Babcock * Transportation Market patent (one basic) protected Plasma process: 80 hp Plasma System prototype demonstrated 94% NOx reduction next generation...

  18. Geothermal Research and Development Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

  19. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  20. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    1 Hydrogen Production Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production Hydrogen Production technical plan...

  1. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    2 Hydrogen Delivery Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery Hydrogen Delivery technical plan section...

  2. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3 Hydrogen Storage Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage Hydrogen Storage technical plan section of...

  3. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management The Geothermal Technologies Program Multi-Year...

  4. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from...

  5. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year...

  6. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Table of Contents Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents The Geothermal Technologies Program Multi-Year...

  7. Draft Funding Opportunity Announcement for Research and Development...

    Broader source: Energy.gov (indexed) [DOE]

    to issue a solicitation in August 2005 for polymer electrolyte membrane (PEM) fuel cell research and development (demonstrations and manufacturing will not be included in this...

  8. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary The Geothermal Technologies Program Multi-Year...

  9. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    A: Budgetary Information Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix A: Budgetary Information Appendix A: Budgetary...

  10. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6 Technology Validation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.6 Technology Validation Technology Validation technical...

  11. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    E: Acronyms Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix E: Acronyms Appendix E: Acronyms section of the Fuel Cell Technologies...

  12. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Appendix D: Project Evaluation Form Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix D: Project Evaluation Form Appendix D: Project...

  13. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    9 Market Transformation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation Market Transformation technical...

  14. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Preface and Document Revision History Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Preface and Document Revision History Preface and...

  15. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6.0 Program Management Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 6.0 Program Management Program Management section of the...

  16. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.8 Education and Outreach Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.8 Education and Outreach Education and Outreach...

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Executive Summary Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Executive Summary Executive Summary section of the Fuel Cell Technologies...

  18. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Broader source: Energy.gov (indexed) [DOE]

    Office webinar "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations" held on March...

  19. Laboratory Directed Research & Development

    E-Print Network [OSTI]

    Ohta, Shigemi

    ......................................................................43 Measuring Dark Energy and Dark Matter Using Gravitational Lensing ............................................................11 Development of an Ultrafast Electron Diffraction Facility for Condensed Matter Physics Challenges Electrochemical Fuel Generation from Water and Carbon Dioxide..............................................19

  20. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Broader source: Energy.gov [DOE]

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  1. implementing bioenergy applied research & development

    E-Print Network [OSTI]

    Northern British Columbia, University of

    1 A Northern Centre for Renewable Energy implementing bioenergy applied research & development to develop local solutions to these challenges by integrating campus operations, education, and research will help the University meet its current and future energy needs, reduce or eliminate our greenhouse gas

  2. Emerging Water Heating Technologies Research & Development Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

  3. DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners...

    Broader source: Energy.gov (indexed) [DOE]

    SCADA Test Bed (NSTB) Program gave a four-hour demonstration and presentation of their Roadmap-related control systems security work. DOE NSTB Researchers Demonstrate R&D Successes...

  4. Development and Demonstration of a Fuel-Efficient HD Engine ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    piston geometry, improved charge air system, revised base engine components reduce friction and turbocompounding. deer11deojeda.pdf More Documents & Publications Development...

  5. The Development and Demonstration of an Electric Submersible...

    Broader source: Energy.gov (indexed) [DOE]

    ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report Fielding of HT-seismic Tools and Evaluation of HT-FPGA Module - Development of a HT-seismic Tool; 2010...

  6. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    : FEDERSPIEL CONTROLS (NOW VIGILENT) AND STATE OF CALIFORNIA DEPARTMENT OF GENERAL SERVICES DATA CENTER ENERGY EFFICIENT COOLING CONTROL DEMONSTRATION Achieving Instant Energy Savings with Vigilent Office Manager Energy Efficiency Research Office Laurie ten Hope Deputy Director RESEARCH AND DEVELOPMENT

  7. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Demonstration: California Energy Commission Prepared by: Electric Power Research Institute #12; Prepared by: Primary: California Energy Commission Jamie Patterson Contract Manager Fernando Pina Office Manager Energy Efficiency

  8. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  9. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  10. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

    Office of Legacy Management (LM)

    .' :h I : ' ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WASHINGTON, D.C. 20545 October 24, 1975 :.. ,. Memo to Piles' CARNEGIE-MELLON SC&RCCYCLOTRON On October 23, 1975, W....

  11. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15T23:59:59.000Z

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  12. Development, Test and Demonstration of a Cost-Effective, Compact,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries1000: DevelopmentDepartment

  13. Electric utility research and development

    SciTech Connect (OSTI)

    Not Available

    1982-10-25T23:59:59.000Z

    Nineteen papers presented at a seminar held by the National Association of Regulatory Utility Commissioners (NARUC) at North Carolina State University during October, 1982 represent an opportunity for an exchange of research information among regulators, utility officials, and research planners. The topics range from a regulatory perspective of research and development to a review of new and evolving technologies. Separate abstracts were prepared for each of the papers for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis.

  14. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    SciTech Connect (OSTI)

    Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01T23:59:59.000Z

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energyís Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  15. Research and Development with Full Scale Research

    E-Print Network [OSTI]

    Sijpheer, N.; Bakker, E.J.; Opstelten, I.

    2010-01-01T23:59:59.000Z

    One of the research programs of the Energy research Centre of the Netherlands (ECN) concerns the built environment. Several facilities to conduct the research activities are at ECN's disposal. One of these facilities, are five research dwellings...

  16. DOE Funds 21 Research, Development and Demonstration Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Lawrence Berkeley National Laboratory, University of Utah, Pinnacle Technologies, GeoMechanics International, University of Nevada - Reno, TerraTekSchlumberger (Reno, Nev.): to...

  17. Status and Progress in Research, Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the hydrogen combustion is a real practical way. It is interested that the hydrogen- natural gas mixture can reduce the NOx evidently. It is believed that combustion is the...

  18. Research, Development, Demonstration, and Deployment | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department ofEMSpent NuclearEnergy|Department

  19. Multi-Year Research, Development, and Demonstration Plan | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the NationalPennsylvania |FebruaryEnergy5,Energy

  20. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments |FossilThis documentDOEThe| Department of

  1. NGNP Research and Development Status

    SciTech Connect (OSTI)

    David A. Petti

    2010-08-01T23:59:59.000Z

    At the inception of the Next Generation Nuclear Plant (NGNP) project, experts from the Department of Energy (DOE) national laboratories, gas reactor vendors, and universities collaborated to establish technology research and development (R&D) roadmaps. These roadmaps outlined the testing and computational development activities needed to qualify the materials and validate the modeling and simulation tools to be used in the design and safe operation of the NGNP, a helium-cooled, high temperature gas reactor (HTGR).

  2. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.3B. Certified 7-14-2011.

  3. Research and Development with Full Scale Research

    E-Print Network [OSTI]

    Sijpheer, N.; Bakker, E.J.; Opstelten, I.

    2010-01-01T23:59:59.000Z

    One of the research programs of the Energy research Centre of the Netherlands (ECN) concerns the built environment. Several facilities to conduct the research activities are at ECN's disposal. One of these facilities, are ...

  4. Sandia Researchers Develop Promising Chemical Technology for...

    Energy Savers [EERE]

    Sandia Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am...

  5. Research & Development Roadmap: Emerging Water Heating Technologies...

    Energy Savers [EERE]

    Emerging Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating...

  6. Water Heating Technologies Research and Development Roadmap ...

    Energy Savers [EERE]

    Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

  7. Sandia National Laboratories: Integrated Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateEnergy InfrastructureAdvanced Electric SystemsIntegrated Research and Development Integrated Research and Development Sandia's Renewable Systems and Energy Infrastructure...

  8. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  9. Development and pilot demonstration program of a waste minimization plan at Argonne National Laboratory

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.; Thuot, J.R.

    1991-01-01T23:59:59.000Z

    In response to US Department of Energy directives, Argonne National Laboratory (ANL) has developed a waste minimization plan aimed at reducing the amount of wastes at this national research and development laboratory. Activities at ANL are primarily research- oriented and as such affect the amount and type of source reduction that can be achieved at this facility. The objective of ANL's waste minimization program is to cost-effectively reduce all types of wastes, including hazardous, mixed, radioactive, and nonhazardous wastes. The ANL Waste Minimization Plan uses a waste minimization audit as a systematic procedure to determine opportunities to reduce or eliminate waste. To facilitate these audits, a computerized bar-coding procedure is being implemented at ANL to track hazardous wastes from where they are generated to their ultimate disposal. This paper describes the development of the ANL Waste Minimization Plan and a pilot demonstration of the how the ANL Plan audited the hazardous waste generated within a selected divisions of ANL. It includes quantitative data on the generation and disposal of hazardous waste at ANL and describes potential ways to minimize hazardous wastes. 2 refs., 5 figs., 8 tabs.

  10. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.7 Hydrogen Safety, Codes and Standards Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards...

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF PIEZOELECTRIC MATERIALS FOR ROADWAY ENERGY HARVESTING Cost of Energy and Demonstration Roadmap Prepared for: California Energy Commission Prepared by: DNV KEMA Energy & Sustainability JANUARY 2014 CEC5002013007

  12. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    B: InputOutput Matrix Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix B: InputOutput Matrix Appendix B: InputOutput Matrix...

  13. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    4.0 Systems Analysis Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis Systems Analysis section of the Fuel Cell...

  14. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    5 Manufacturing R&D Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.5 Manufacturing R&D Manufacturing R&D technical plan section...

  15. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    2.0 Program Benefits Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 2.0 Program Benefits Program Benefits section of the Fuel Cell...

  16. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Section 3.0 Technical Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.0 Technical Plan Technical Plan section of the Fuel...

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.4 Fuel Cells Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells Fuel Cells technical plan section of the Fuel Cell...

  18. Research at Research Development Services and

    E-Print Network [OSTI]

    · $400M ongoing upgrade · FEL Light Source (~14kW) CEBAF #12;Alternative Energy ·Algal Biodiesel Research

  19. Carbon sequestration research and development

    SciTech Connect (OSTI)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31T23:59:59.000Z

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  20. Explosive detection research and development

    SciTech Connect (OSTI)

    Malotky, L.O.

    1988-01-01T23:59:59.000Z

    The detection of explosives carried by a passenger or included in checked baggage is a priority objective of the Federal Aviation Administration's (FAA) Security Research and Development Program. Significant accomplishments have been made in the detection of explosives in checked baggage. A technology, thermal neutron analysis, has been developed and tested extensively in airports with actual passenger baggage. The screening of people for explosives is also progressing with laboratory testing underway of an integrated passenger screening portal. The portal is designed to extract and detect not only the more volatile explosives but also the low-vapor-pressure military explosives. In addition to these two mature technologies, the FAA is also funding research in new technologies for bulk and vapor detection of explosives to identify and refine approaches which will be more efficient and effective. The ultimate objective is to field systems to protect the traveling public from terrorist-placed explosives without interrupting the free flow of people and materials we have grown to expect.

  1. Agricultural Research for Development Innovations & Incentives

    E-Print Network [OSTI]

    Agricultural Research for Development Innovations & Incentives The Swedish research network Agricultural Research for Development (Agri4D) organises an annual multi/inter-disciplinary and multi-stakeholder conference on agriculture, livestock and forest research in an international development context. Since

  2. Industrial Advanced Turbine Systems: Development and Demonstration. Annual report, September 14, 1995--September 30, 1996

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The objective of the cooperative agreements granted under the program is to join the DOE with industry in research and development that will lead to commercial offerings in the private sector. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of U.S. industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled U.S. technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program (DE-FC21-95MC31173) by the DOE`s Office of Energy Efficiency and Renewable Energy (EE). Technical administration of the Cooperative Agreement will be provided from EE`s Chicago Operations Office. Contract administration of the Cooperative Agreement will be provided from DOE`s Office of Fossil Energy, Morgantown Energy Technology Center (METC).

  3. Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration Project

    E-Print Network [OSTI]

    Diamond, Richard

    Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration is that the actual, installed energy-efficiency measures and building characteristics changed from the design practice rather than assumptions based on the regional building code. For example, the Energy Edge small

  4. Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics

    SciTech Connect (OSTI)

    Tokuhiro, Akira; Jones, Byron

    2013-09-13T23:59:59.000Z

    This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

  5. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    collaborations. The Office of Research and Development is responsible for managing the Science Campaign which conducts new scientific research and combines it with existing data...

  6. Sandia National Laboratories: cooperative research and development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research and development agreement Caterpillar, Sandia CRADA Opens Door to Multiple Research Projects On April 17, 2013, in Capabilities, Computational Modeling & Simulation, CRF,...

  7. Laboratory Directed Research and Development FY 1992

    SciTech Connect (OSTI)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31T23:59:59.000Z

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  8. Energy Research and Development Division STAFF REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division STAFF REPORT NATURAL GAS RESEARCH AND DEVELOPMENT 2013 Annual Report CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor OCTOBER 2013 CEC5002013111 #12; CALIFORNIA ENERGY COMMISSION Linda Schrupp Primary Authors Prepared for: California

  9. Institutional research and development, FY 1987

    SciTech Connect (OSTI)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

    1987-01-01T23:59:59.000Z

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  10. Institutional Research & Development News | National Nuclear...

    National Nuclear Security Administration (NNSA)

    newsreleasesradiationdetection. Livermore researchers developed the first plastic material capable of efficiently distinguishing neutrons from gamma rays, something...

  11. EMSL Research and Capability Development Proposals Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of Live and LC-NMR Microbial Metabolomics Methods for Systems Biology Studies: A Test Case Relevant to Biofuels Production Project start date: Spring 2009 EMSL Lead...

  12. NREL: Wind Research - Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenand Development A

  13. Development and demonstration of an enhanced spreadsheet-based well log analysis software. Final report, May 1998

    SciTech Connect (OSTI)

    Watney, W.L.; Doveton, J.H.; Guy, W.J.

    1998-10-01T23:59:59.000Z

    The Advanced Class Work Program is a field-based research and demonstration program for demonstration of advanced or improved technologies identified in the Department of Energy`s Class Field Demonstration Projects. The objective of the Advanced Class Work program is to conduct field demonstrations of technologies for which a small, incremental amount of work will produce or improve a transferable, useful technology for oil recovery. The goal of the program is to enhance the products of near-term Class projects and maximize the applicability and effectiveness of project results. PfEFFER (Petrofacies Evaluation of Formations For Engineering Reservoirs) is a well log analysis computer package. The software was tested and successfully applied in Schaben Field, a DOE Class 2 Field Demonstration Project to assist in improving reservoir characterization and assessing reservoir performance. PfEFFER v.1 was released in January, 1996 as a commercial spreadsheet-based well-log analysis program developed and distributed through the Kansas Geological Survey. The objectives of this project were: Task 1 -- Enhance the PfEFFER software package; Task 2 -- Develop major new modules to significantly augment PfEFFER capabilities; Task 3 -- Conduct field demonstration of software application using the necessary reservoir data acquired from oil operators and construct a database; and Task 4 -- Perform technology transfer activities that include workshops, reports, presentations, or other methods to communicate results to interested parties.

  14. OE Power Systems Engineering Research & Development Program Partnershi...

    Office of Environmental Management (EM)

    Mission Power Systems Engineering Research and Development OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research &...

  15. Research and Development Conference CIEE Program 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    CIEE's second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director's discretionary research, and exploratory research will also be featured in this report.

  16. Research and Development Conference CIEE Program 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    CIEE`s second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director`s discretionary research, and exploratory research will also be featured in this report.

  17. Networking and Information Technology Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Research and Development (NITRD) Program, as required by the High-Performance Computing Act of 1991 (P.L. 102-194), the Next Generation Internet Research Act of...

  18. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31T23:59:59.000Z

    The research and development project supported the engineering, design and implementation of onroad Electric Vehicle (ďEVĒ) charging technologies. It included development of potential solutions for DC fast chargers (ďDCFCĒ) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The projectís period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: ? Short Commute: Defined as EVs performing in limited duration, routine commutes. ? Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. ? Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the ďCityĒ) and Aker Wade Power Technologies, LLC (ďAker WadeĒ) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehiclerelated greenhouse gas (ďGHGĒ) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the projectís Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  19. DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES

    SciTech Connect (OSTI)

    NEIL K. MCDOUGALD

    2005-04-30T23:59:59.000Z

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

  20. Development and Demonstration of a Relocatable Ocean OSSE System: Optimizing Ocean Observations for Hurricane Forecast

    E-Print Network [OSTI]

    forecasts for individual storms and improved seasonal forecast of the ocean thermal energy availableDevelopment and Demonstration of a Relocatable Ocean OSSE System: Optimizing Ocean Observations in the Gulf of Mexico is being extended to provide NOAA the ability to evaluate new ocean observing systems

  1. Agricultural Research for Development Scales & Diversity

    E-Print Network [OSTI]

    Agricultural Research for Development Scales & Diversity SLU, Uppsala 28-29 September 2011 28th September 2011 (morning) Agricultural Investments ..... Shenggen Fan, IFPRI Livestock production≠ Global and local importance and development John McDermott, ILRI Smallholder agricultural intensification ≠ means

  2. FILE CPO-a-.... l~a.yii GE DOCUMENT NO. 80SDS4230 DEVELOPMENT AND DEMONSTRATION

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    FILE CPO•-a-.... l£~a.yii GE DOCUMENT NO. 80SDS4230 DEVELOPMENT AND DEMONSTRATION OF A 31~STIRLING Government or any agency thereof. #12;GE DOCUMENT NO. 80SDS4230 DEVELOPMENT AND DEMONSTRATION OF STIRLING

  3. DOE Cooperative Research and Development Agreements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 483.1, DOE Cooperative Research and Development Agreements, dated 1-12-01, which establishes requirements for the performance of technology transfer through the use of Cooperative Research and Development Agreements (CRADAs). Canceled by DOE O 483.1A.

  4. Executive Summit on Wind Research and Development | Department...

    Office of Environmental Management (EM)

    Executive Summit on Wind Research and Development Executive Summit on Wind Research and Development Executive Summit on Wind Research and Development Each year, DOE EERE invests...

  5. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Broader source: Energy.gov [DOE]

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  6. Laboratory Directed Research and Development LDRD-FY-2011

    SciTech Connect (OSTI)

    Dena Tomchak

    2012-03-01T23:59:59.000Z

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  7. Research and Development Roadmap for Water Heating Technologies

    SciTech Connect (OSTI)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01T23:59:59.000Z

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  8. NREL: Photovoltaics Research - Standards Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6 July 16,Standards Development NREL's

  9. History of the Energy Research and Development Administration

    SciTech Connect (OSTI)

    Buck, A.L.

    1982-03-01T23:59:59.000Z

    Congress created the Energy Research and Development Administration on October 11, 1974 in response to the Nation's growing need for additional sources of energy. The new agency would coordinate energy programs formerly scattered among many federal agencies, and serve as the focus point for a major effort by the Federal Government to expand energy research and development efforts. New ways to conserve existing supplies as well as the commercial demonstration of new technologies would hopefully be the fruit of the Government's first significant effort to amalgamate energy resource development programs. This history briefly summarizes the accomplishments of the agency.

  10. Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report

    SciTech Connect (OSTI)

    Gasper, John R. [Argonne National Laboratory] [Argonne National Laboratory; Veselka, Thomas D. [Argonne National Laboratory] [Argonne National Laboratory; Mahalik, Matthew R. [Argonne National Laboratory] [Argonne National Laboratory; Hayse, John W. [Argonne National Laboratory] [Argonne National Laboratory; Saha, Samrat [Argonne National Laboratory] [Argonne National Laboratory; Wigmosta, Mark S. [PNNL] [PNNL; Voisin, Nathalie [PNNL] [PNNL; Rakowski, Cynthia [PNNL] [PNNL; Coleman, Andre [PNNL] [PNNL; Lowry, Thomas S. [SNL] [SNL

    2014-05-19T23:59:59.000Z

    This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in more energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.

  11. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-06T23:59:59.000Z

    The order establishes policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Cancels DOE O 483.1 Admin Chg 1 and DOE M 483.1-1.

  12. Sandia National Laboratories: cooperative research & development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cooperative research & development agreement Cool Earth Solar and Sandia Team Up in First-Ever Public-Private Partnership on Livermore Valley Open Campus On February 26, 2013, in...

  13. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. No cancellation.

  14. Rail gun development for EOS research

    SciTech Connect (OSTI)

    Fowler, C.M.; Peterson, D.R.; Hawke, R.S.; Brooks, A.L.

    1981-01-01T23:59:59.000Z

    The status of a railgun program for EOS research in progress at Los Alamos and Livermore National Laboratories is described. The operating principle of rail guns, the power supplies used to drive them, diagnostic techniques used to monitor their performance and initial efforts to develop projectiles suitable for EOS research are discussed. (WHK)

  15. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  16. Microgrid Design, Development and Demonstration - Final Report for Phase I and Phase II

    SciTech Connect (OSTI)

    Bose, Sumit; Krok, Michael

    2011-02-08T23:59:59.000Z

    This document constitutes GEís final report for the Microgrid Design, Development and Demonstration program for DOEís Office of Electricity Delivery and Energy Reliability, Award DE-FC02-05CH11349. It contains the final report for Phase I in Appendix I, and the results the work performed in Phase II. The program goal was to develop and demonstrate a Microgrid Energy Management (MEM) framework for a broad set of Microgrid applications that provides unified controls, protection, and energy management. This project contributed to the achievement of the U.S. Department of Energyís Renewable and Distributed Systems Integration Program goals by developing a fully automated power delivery microgrid network that: - Reduces carbon emissions and emissions of other air pollutants through increased use of optimally dispatched renewable energy, - Increases asset use through integration of distributed systems, - Enhances reliability, security, and resiliency from microgrid applications in critical infrastructure protection, constrained areas of the electric grid, etc. - Improves system efficiency with on-site, distributed generation and improved economic efficiency through demand-side management.

  17. Horsehead Resource Development Company, Inc. , flame reactor technology. Technology demonstration summary

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Under the Superfund Innovative Technology Evaluation (SITE) program, the Horsehead Resource Development Company, Inc., (HRD) Flame Reactor was evaluated during a series of test runs. The tests were conducted at the HRD facility in Monaca, PA, using 72 tons of secondary lead smelter soda slag (waste feed) from the National Smelting and Refining Company, Inc., site in Atlanta, GA. The waste feed contained lead, zinc, iron, and many other metals and inorganic compounds. This summary includes an overview of the demonstration, a technology description, analytical results, and conclusions.

  18. Fuel Cells for Transportation - Research and Development: Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development: Program Abstracts Fuel Cells for Transportation - Research and Development: Program Abstracts Remarkable progress has been achieved in the development of...

  19. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04T23:59:59.000Z

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬? 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  20. Industrial advanced turbine systems: Development and demonstration. Quarterly report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. This delay has been intentionally planned in order to better match program tasks to the anticipated availability of DOE funds. To ensure the timely realization of DOE/Solar program goals, the development schedule for the smaller system (Mercury 50) and enabling technologies has been maintained, and commissioning of the field test unit is scheduled for May of 2000. As of the end of the reporting period work on the program is 24.7% complete (22.8% last quarter). Work on the Mercury 50 development and ATS technology development portions of the program (WBS 10000 et seq) is 41.6% complete. Although a great amount of work occurred in the quarter, a significant amount of this work entailed the revision and rerelease of several Mercury 50 drawings. Estimates of percent compete are based upon milestones completed. In order to maintain objectivity in assessing schedule progress, Solar uses a 0/100 percent complete assumption for milestones rather than subjectively estimating progress toward completion of milestones. Cost and schedule variation information is provided in Section 4.0 Program Management.

  1. Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation. FY 1993 Program Summary

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    DOE has set a goal to clean up its complex and to bring all sites into compliance with applicable environmental regulations. This initiative is slated for completion by the year 2019. Four years ago there was no coordinated plan for identifying or cleaning these contaminated sites. Since 1989, DOE`s Office of Environmental Restoration and Waste Management has invested time, money, and manpower to establish a wide range of programs to meet this immense challenge. DOE is responsible for waste management and clean up of more than 100 contaminated installations in 36 states and territories. This includes 3,700 sites: over 26,000 acres, with hazardous or radioactive contaminated surface or groundwater, soil, or structures; over 26,000 acres requiring remediation, with the number growing as new sites are defined; 500 surplus facilities awaiting decontamination and decommissioning and approximately 5,000 peripheral properties (residences, businesses) that have soil contaminated with uranium tailings.

  2. Transmission-Planning Research & Development Scoping Project

    E-Print Network [OSTI]

    -99-013 Prepared For: Linda Kelly, Project Manager Energy Systems Integration Program Laurie ten Hope, PIER ProgramTransmission-Planning Research & Development Scoping Project CALIFORNIA ENERGY COMMISSION, California Institute for Energy and the Environment under Contract No. 500-99-013 and by the U.S. Department

  3. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Admin Chg, dated 9-18-2013. Canceled by DOE O 483.1A.

  4. Developing Scottish Priorities for MRSA Research

    E-Print Network [OSTI]

    Glasgow, University of

    Developing Scottish Priorities for MRSA Research: A Clinician's View Dr Malcolm G Booth Intensive Care Unit Royal infirmary Glasgow #12;MRSA deaths up by nearly quarter The number of deaths linked to the hospital superbug MRSA has risen by nearly a quarter, statistics show. The Office for National Statistics

  5. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2013-06-28T23:59:59.000Z

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  6. Industrial advanced turbine systems: Development and demonstration. Quarterly report, July 1--September 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. Significant efforts were spent this quarter to reforecast and control expenditures due to Solar`s and DOE`s current funding and resource constraints. Selective reductions and delays in program activities were identified and implemented. Although these actions will increase technical risk and the attainment of stretch goals, it is not anticipated that the schedule for initial test units or the attainment of basic program performance requirements will be impacted. As of the end of the reporting period work on the program is 22.80% complete based upon milestones completed. This measurement is considered quite conservative as numerous drawings on the Mercury 50 are near release. Variance information is provided in Section 4.0-Program Management.

  7. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Rita Spencer; Kyle Wheeler

    2000-06-01T23:59:59.000Z

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  8. Institutional research and development, FY 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.

  9. DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference

    Broader source: Energy.gov [DOE]

    More than 150 energy sector leadersóincluding nearly 100 asset owners and operatorsógathered at the 2009 EnergySec Annual Summit in Seattle, WA, on Sept. 23-24, where researchers from the...

  10. Hybrid Ventilation Optimization and Control Research and Development...

    Energy Savers [EERE]

    Hybrid Ventilation Optimization and Control Research and Development Hybrid Ventilation Optimization and Control Research and Development Lead Performer: Massachusetts Institute of...

  11. Nuclear Safety Research and Development Program Proposal Submittal...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Safety Research and Development Program Proposal Submittal Instructions for Fiscal Year 2015 1.0 INTRODUCTION The Nuclear Safety Research and Development (NSR&D) Program...

  12. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current...

  13. CHP Research and Development - Presentation by Oak Ridge National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011...

  14. NOx Abatement Research and Development CRADA with Navistar Incorporate...

    Broader source: Energy.gov (indexed) [DOE]

    NOx Abatement Research and Development CRADA with Navistar Incorporated NOx Abatement Research and Development CRADA with Navistar Incorporated 2009 DOE Hydrogen Program and...

  15. New York State Energy Research and Development Authority

    Broader source: Energy.gov [DOE]

    One of DOE's key partners is the New York State Energy Research and Development Authority (NYSERDA), which operates a successful combined heat and power (CHP) and clean distributed generation (DG) research, development, and deployment program. NYSERDA supports development and demonstration of CHP systems throughout all end-use sectors. It also collects and analyzes project performance data, conducts market studies, and supports the Northeast Clean Energy Application Center (CEAC). The NYSERDA-DOE partnership evaluates CHP project proposals and shares lessons learned through conferences, workshops, and other activities. This partnership has provided value to New York residents and to energy professionals across the country. NYSERDA projects have led to electric demand reduction, higher fuel efficiency, emissions reduction, lower energy costs, job creation, and increased product sales.

  16. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    SciTech Connect (OSTI)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z. [and others

    1997-12-01T23:59:59.000Z

    Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).

  17. VISDTA: A video imaging system for detection, tracking, and assessment: Prototype development and concept demonstration

    SciTech Connect (OSTI)

    Pritchard, D.A.

    1987-05-01T23:59:59.000Z

    It has been demonstrated that thermal imagers are an effective surveillance and assessment tool for security applications because: (1) they work day or night due to their sensitivity to thermal signatures; (2) penetrability through fog, rain, dust, etc., is better than human eyes; (3) short or long range operation is possible with various optics; and (4) they are strictly passive devices providing visible imagery which is readily interpreted by the operator with little training. Unfortunately, most thermal imagers also require the setup of a tripod, connection of batteries, cables, display, etc. When this is accomplished, the operator must manually move the camera back and forth searching for signs of aggressor activity. VISDTA is designed to provide automatic panning, and in a sense, ''watch'' the imagery in place of the operator. The idea behind the development of VISDTA is to provide a small, portable, rugged system to automatically scan areas and detect targets by computer processing of images. It would use a thermal imager and possibly an intensified day/night TV camera, a pan/ tilt mount, and a computer for system control. If mounted on a dedicated vehicle or on a tower, VISDTA will perform video motion detection functions on incoming video imagery, and automatically scan predefined patterns in search of abnormal conditions which may indicate attempted intrusions into the field-of-regard. In that respect, VISDTA is capable of improving the ability of security forces to maintain security of a given area of interest by augmenting present techniques and reducing operator fatigue.

  18. Laboratory Directed Research and Development Program

    SciTech Connect (OSTI)

    Ogeka, G.J.

    1991-12-01T23:59:59.000Z

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  19. Exploratory research and development FY90

    SciTech Connect (OSTI)

    Struble, G.L.; Middleton, C.; Baldwin, G.; Cherniak, J.; Clements, W.; Donohue, M.L.; Francke, A.; Kirvel, R.D.; MacGregor, P.; Shaw, G. (eds.)

    1990-01-01T23:59:59.000Z

    In general, the Exploratory Research and Development (ER D) Program supports research projects considered too basic or long-range to be funded by other Lawrence Livermore National Laboratory (LLNL) programs. This Program is managed for the Laboratory Director by a special assistant who chairs the LLNL's IR D Review Committee. Membership in the Review Committee comprises senior LLNL scientists, engineers, and managers whose areas of expertise span the range of scientific disciplines pursued at the Laboratory. The research supported by the Program falls into three categories: Exploratory Research in the Disciplines, Director's Initiatives, and Laboratory-Wide Competition. The first two, Exploratory Research and Director's Initiatives, promote pioneering work in the various scientific disciplines and programmatic areas. Laboratory departments and divisions propose and manage projects in the Exploratory Research category. The Laboratory Director, with the advice of the Review Committee, selects several larger projects to fund as Director's Initiative. These projects, which are proposed and managed by the responsible associate director, are intended to enhance the scope of existing programs or establish new technical directions and programs for the Laboratory. All FY90 projects are described in detail in this report. Other publications on ER D projects are included in the Publications List at the back of this report.

  20. RESEARCH PROPOSAL The Master of Social Work program seeks candidates with a demonstrated interest in acquiring a deeper

    E-Print Network [OSTI]

    Barthelat, Francois

    MSW Thesis RESEARCH PROPOSAL GUIDELINES The Master of Social Work program seeks candidates with a demonstrated interest in acquiring a deeper understanding of how to design and implement a study in the areas Work education are highly valued at the graduate level of study. In 4 pages maximum (single

  1. SuperTruck ? Development and Demonstration of a Fuel-Efficient...

    Energy Savers [EERE]

    and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  2. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Office of Environmental Management (EM)

    and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  3. Directions in automotive engine research and development

    SciTech Connect (OSTI)

    Samuels, G.

    1980-01-01T23:59:59.000Z

    The advent of high fuel costs and automotive fuel economy and emission regulations has cast doubt on the economic superiority and even the technical feasibility of conventional spark ignition and diesel engines, and has opened the field to other concepts. The emission regulations and their effect on the design and efficiency of conventional engines are reviewed, the research and development effort to improve the performance of conventional engines and to develop advanced engines is discussed, and the current status of these engines is presented.

  4. Laboratory Directed Research and Development FY 2000

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2001-02-27T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  5. A national research & development strategy for biomass crop feedstocks

    SciTech Connect (OSTI)

    Wright, L.L.; Cushman, J.H.

    1997-07-01T23:59:59.000Z

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limits of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.

  6. Pellet injector research and development at ORNL

    SciTech Connect (OSTI)

    Combs, S.K.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.W.

    1993-06-01T23:59:59.000Z

    A variety of pellet injector designs have been developed at ORNL including single-shot guns that inject one pellet, multiple-shot guns that inject four and eight pellets, machine gun-types (single- and multiple-barrel) that can inject up to >100 pellets, and centrifugal accelerators (mechanical devices that are inherently capable of high repetition rates and long-pulse operation). With these devices, macroscopic pellets (1--6 mm in diameter) composed of hydrogen isotopes are typically accelerated to speeds of {approximately}1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. In the past few years, steady progress has been made at ORNL in the development and application of pellet injectors for fueling present-day and future fusion devices. In this paper, we briefly describe some research and development activities at ORNL, including: (1) two recent applications and a new one on large experimental fusion devices, (2) high-velocity pellet injector development, and (3) tritium injector research.

  7. Development of Nb3Sn 11 T single aperture demonstrator dipole for LHC upgrades

    SciTech Connect (OSTI)

    Zlobin, A.V.; Apollinari, G.; Andreev, N.; Barzi, E.; Kashikhin, V.V.; Nobrega, f.; Novitski, I.; /Fermilab; Auchmann, B.; Karppinen, M.; Rossi, L.; /CERN

    2011-03-01T23:59:59.000Z

    The LHC collimation upgrade foresees additional collimators installed in dispersion suppressor regions. To obtain the necessary space for the collimators, a solution based on the substitution of LHC main dipoles for stronger dipoles is being considered. CERN and FNAL have started a joint program to demonstrate the feasibility of Nb{sub 3}Sn technology for this purpose. The goal of the first phase is the design and construction of a 2-m long single-aperture demonstrator magnet with a nominal field of 11 T at 11.85 kA with 20% margin. This paper describes the magnetic and mechanical design of the demonstrator magnet and summarizes its design parameters.

  8. Laboratory Directed Research and Development Program FY 2007

    SciTech Connect (OSTI)

    Hansen, Todd C; editor, Todd C Hansen,

    2008-03-12T23:59:59.000Z

    Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

  9. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    SciTech Connect (OSTI)

    Liss, William E; Cygan, David F

    2013-04-17T23:59:59.000Z

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?the Super Boiler√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s typical firetube boilers.

  10. Demonstrating the benefits of knowledge management assets : developing and applying a valuation methodology

    E-Print Network [OSTI]

    Taylor, Aaron B

    2006-01-01T23:59:59.000Z

    Since the early 1980s numerous knowledge-dependent organizations have made diligent attempts to measure their intangible assets. In more recent years, knowledge-dependent organizations have expressed a desire to demonstrate ...

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    AND BIOFUEL DEMONSTRATION PROJECT Oceanside Water Pollution Control Plant Prepared forRelated Environmental Research ∑ Energy Systems Integration ∑ Environmentally Preferred Advanced Generation Brown Grease Recovery and Biofuel Demonstration: Oceanside Water Pollution Control Plant Final Report

  12. Development and Demonstration of the Open Automated Demand Response Standard for the Residential Sector

    SciTech Connect (OSTI)

    Herter, Karen; Rasin, Josh; Perry, Tim

    2009-11-30T23:59:59.000Z

    The goal of this study was to demonstrate a demand response system that can signal nearly every customer in all sectors through the integration of two widely available and non- proprietary communications technologies--Open Automated Demand Response (OpenADR) over lnternet protocol and Utility Messaging Channel (UMC) over FM radio. The outcomes of this project were as follows: (1) a software bridge to allow translation of pricing signals from OpenADR to UMC; and (2) a portable demonstration unit with an lnternet-connected notebook computer, a portfolio of DR-enabling technologies, and a model home. The demonstration unit provides visitors the opportunity to send electricity-pricing information over the lnternet (through OpenADR and UMC) and then watch as the model appliances and lighting respond to the signals. The integration of OpenADR and UMC completed and demonstrated in this study enables utilities to send hourly or sub-hourly electricity pricing information simultaneously to the residential, commercial and industrial sectors.

  13. Air Force Announces Funding for Alternative Energy Research & Development

    Broader source: Energy.gov [DOE]

    The Air Force Research Laboratory (AFRL) has released a Broad Area Announcement (BAA) for over $25 million for Alternative Energy Research & Development.

  14. Bil DO"N 'l''~W. GE DOCUMENT NO. 79SDS4207 DEVELOPMENT AND DEMONSTRATION

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DEVELOPMENT ............................ 3-1 3.1 Introduction .................... 3-1 3.2 Combustor ....................... 4-9 4.5 Advanced Combustor Development ...... ............ 4-11 I iii #12;TABLE OF CONTENTS (Continued) Section Page 4.5.1 Advanced Combustor .......................... 4-11 4. 5. 2 Heater Head Fin

  15. FILE cur ;-^ A GE DOCUMENT NO. 78SDS4223 DEVELOPMENT AND DEMONSTRATION

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DECEMBER 1977 4, space division I ^ -- Ľ-ę^^ITAP GENERAL ELECTRIC #12;GE DOCUMENT NO. 78SDS4223 DEVELOPMENT. COO/2911-2 JULY THROUGH DECEMBER 1977 GENERAL* ELECTRIC SPACE DIVISION Valley Forge Space Center P. 0-10 3-6 CO Emissions . . 3-11 3-7 Development Ceramic Burner ............. 3-13 3-8 Prototype 1

  16. Cooperative research and development agreements at METC

    SciTech Connect (OSTI)

    Ludlow, J.C.

    1996-12-31T23:59:59.000Z

    The Morgantown Energy Technology Center (METC) is always interested in discussing partnering opportunities with those in the private sector. One way METC can work with the private sector and academia is through Cooperative Research and Development Agreements (CRADAs). From METC`s perspective, a good CRADA consists of two elements: a good project and a good CRADA partner. Good CRADA projects address goals that are beneficial to both the private sector participant and METC. Of primary interest to METC is the development and deployment of clean, efficient power generation technologies and environmental remediation technologies. For power generation, METC`s primary focus is on Integrated Gasification Combined Cycle (IGCC)systems, Pressurized Fluidized-Bed Combustion (PFBC) systems, Advanced Turbine Systems (ATS), Externally Fired Combined-Cycle (EFCC) power systems, fuel cell systems, and fuels technology systems. METC`s environmental remediation interests focus on the development of high-payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites, and to manage DOE-generated waste faster, safer, and cheaper than environmental cleanup technologies that are currently available. Regarding CRADA partners, preference is given to small businesses and to business units located in the United States which agree that products resulting from the CRADA will be manufactured substantially in the United States.

  17. Healthcare Energy Efficiency Research and Development

    SciTech Connect (OSTI)

    Black, Douglas R.; Lai, Judy; Lanzisera, Steven M; Parrish, Kristen D.; Singer, Brett C.

    2011-01-31T23:59:59.000Z

    Hospitals are known to be among the most energy intensive commercial buildings in California. Estimates of energy end-uses (e.g. for heating, cooling, lighting, etc.) in hospitals are uncertain for lack of information about hospital-specific mechanical system operations and process loads. Lawrence Berkeley National Laboratory developed and demonstrated a benchmarking system designed specifically for hospitals. Version 1.0 featured metrics to assess energy performance for the broad variety of ventilation and thermal systems that are present in California hospitals. It required moderate to extensive sub-metering or supplemental monitoring. In this new project, we developed a companion handbook with detailed equations that can be used toconvert data from energy and other sensors that may be added to or already part of hospital heating, ventilation and cooling systems into metrics described in the benchmarking document.This report additionally includes a case study and guidance on including metering into designs for new hospitals, renovations and retrofits. Despite widespread concern that this end-use is large and growing, there is limited reliable information about energy use by distributed medical equipment and other miscellaneouselectrical loads in hospitals. This report proposes a framework for quantifying aggregate energy use of medical equipment and miscellaneous loads. Novel approaches are suggested and tried in an attempt to obtain data to support this framework.

  18. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    SciTech Connect (OSTI)

    None

    2010-03-01T23:59:59.000Z

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

  19. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY for: California Energy Commission Prepared by: San Diego State Research Foundation #12 Energy Commission Raquel E. Kravitz Program Manager Fernando Pina Office Manager Energy Systems Research

  20. Laboratory Directed Research and Development Program

    SciTech Connect (OSTI)

    Ogeka, G.J.; Romano, A.J.

    1992-12-01T23:59:59.000Z

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  1. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01T23:59:59.000Z

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  2. Workshop: Photovoltaics Research and Development Beyond SunShot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Research and Development Beyond SunShot Workshop: Photovoltaics Research and Development Beyond SunShot May 22, 2014 2:30PM to 8:00PM PDT Pacific B This participatory...

  3. GLASS FORMULATION DEVELOPMENT AND TESTING FOR COLD CRUCIBLE INDUCTION MELTER (CCIM) ADVANCED REMEDIATION TECHNOLOGIES DEMONSTRATION PROJECT - 9208

    SciTech Connect (OSTI)

    Marra, J; Amanda Billings, A; David Peeler, D; Michael Stone, M; Tommy Edwards, T

    2008-08-27T23:59:59.000Z

    Over the past few years, Cold Crucible Induction Melter (CCIM) demonstrations have been completed using SRS sludge batches 2, 3 and 4 (SB2, SB3 and SB4) simulant compositions. These campaigns demonstrated the ability of the CCIM to effectively produce quality glasses at high waste loadings. The current Advanced Remediation Technology (ART) Phase II-A Project is aimed at demonstrating the CCIM technology under representative DWPF flowsheet conditions and to demonstrate extended operations of the melter. A glass composition development effort was completed to identify and recommend a frit composition and sludge batch 4 (SB4) simulant waste loading target for subsequent ART-Phase II-A CCIM demonstration testing. Based on the results of the glass formulation testing, it was recommended that the Frit 503-R6 composition (B{sub 2}O{sub 3} = 14 wt %; Li{sub 2}O = 9 wt %; Na{sub 2}O = 3 wt %; and SiO{sub 2} = 74 wt %) be utilized for the demonstration. Furthermore, a waste loading of 46 wt % was recommended. The recommended frit and waste loading would produce a glass with acceptable durability with a liquidus temperature adequately below the 1250 C nominal CCIM operating temperature. This frit composition and waste loading was found to result in a glass that met CCIM processing requirements for viscosity, electrical conductivity and thermal conductivity. The recommended frit and waste loading level should also provide a buffer for sludge product compositional variation to support the Phase II-A CCIM demonstration.

  4. DOE-APPROVED COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT LANGUAGE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANGUAGE AND GUIDANCE The Modular Cooperative Research and Development Agreement (CRADA) was developed to promote consistency throughout the Department of Energy (DOE). The...

  5. Canada Research Chair, Tier II in Economics of Sustainable Development

    E-Print Network [OSTI]

    Martin, Jeff

    Canada Research Chair, Tier II in Economics of Sustainable Development The University of Winnipeg has designated a Tier II Canada Research Chair in the Economics of Sustainable Development within and enhanced research support. The Canada Research Chair program was established by the Government of Canada

  6. Thermochemical Conversion Research and Development: Gasification and Pyrolysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    Biomass gasification and pyrolysis research and development activities at the National Renewable Energy Laboratory and Pacific Northwest National Laboratory.

  7. Used Fuel Disposition Campaign Disposal Research and Development...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign International Activities Implementation Plan Review of...

  8. The deployment of urban logistics solutions from research, development and pilot results

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    The deployment of urban logistics solutions from research, development and pilot results Lessons logistics solutions is one of the main pending questions in the field of urban goods transport research demonstration project, this paper presents the main issues related to the deployment of urban logistics

  9. Cummins Engine Company B5.9 Propane Engine Development, Certification, and Demonstration Project

    SciTech Connect (OSTI)

    The ADEPT Group, Inc. (Los Angeles, California)

    1998-12-18T23:59:59.000Z

    The objective of this project was to successfuly develop and certify an LPG-dedicated medium-duty original equipment manufacturer (OEM) engine that could be put into production. The engine was launched into production in 1994, and more than 800 B5.9G engines are now in service in the United States and abroad. This engine is now offered by more than 30 bus and truck OEMs.

  10. Automotive Research Center (ARC) "The Automotive Research Center (ARC) develops simulation and modeling tools for discovering

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Automotive Research Center (ARC) "The Automotive Research Center (ARC) develops simulation with industry to leverage and transfer the efforts and results http://arc.engin.umich.edu/ #12;

  11. Development and demonstration of a wood-fired gas turbine system

    SciTech Connect (OSTI)

    Smith, V.; Selzer, B.; Sethi, V.

    1993-08-01T23:59:59.000Z

    The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

  12. Bridging Research Interactions Through Collaborative Development...

    Broader source: Energy.gov (indexed) [DOE]

    Office of Science research facilities, including major facilities for x-ray and neutron scattering, nanoscale science, advanced microcharacterization, environmental...

  13. Office of Technology Development`s Research, Development, Demonstration, Testing and Evaluation Mid-Year Program Review. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This document, Volume 2, presents brief summaries of programs being investigated at USDOE sites for waste processing, remedial action, underground storage tank remediation, and robotic applications in waste management.

  14. Development and demonstration of a personal monitoring system for exposure to hydrogen fluoride. Final report

    SciTech Connect (OSTI)

    Young, M.S.; Monat, J.P.

    1993-09-01T23:59:59.000Z

    A good, functional Hydrogen Fluoride Gasbadge dosimeter has been developed for sampling of airborne HF vapor. The device is small (7.7 cm {times} 5.4 cm {times} 1.9 cm) and can easily and conveniently be worn on one`s lapel. It consists of polyethylene and polypropylene parts and a triethanolamine-impregnated polyproylene collection element. It is completely self contained, requiring no pumps, impingers, or sampling tubes. Subsequent to sampling, the collection element is analyzed quickly and easily with a fluoride selective-ion electrode. Laboratory tests were conducted to determine precision, linearity, interference effects, influences of temperature and humidity, and collection element stability over time. Results of the tests indicate that the Abcor Gasbadge HF dosimeter is an excellent passive HF monitor for work spaces, and that results obtained with it are accurate within {plus_minus}25%. These results have been corroborated in a field study.

  15. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30T23:59:59.000Z

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  16. Research and Development Concerning Coalbed Natural Gas

    SciTech Connect (OSTI)

    William Ruckelshaus

    2008-09-30T23:59:59.000Z

    The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good quality, most of it is discharged to surface drainages or to soil (for irrigation). CBNG water quality generally declines when moving from the Cheyenne River drainage northwestward to the Belle Fourche, Little Powder, and Powder River drainages and in the central and western part of the PRB, most CBNG water goes to evaporation-infiltration ponds or is discharged directly to surface drainages. Concerns center on the salinity of the water, usually measured as total dissolved solids (TDS), or electrical conductivity (EC) and sodium adsorption ratio (SAR). Other management options currently in use include injection, managed irrigation (with additives to mitigate the effects of high salinity), atomization, and treatment by reverse osmosis or ion exchange. A key water quality issue is the cumulative effect of numerous CBNG water discharges on the overall water quality of basin streams. This leads to one of the most contentious issues in CBNG development in Wyoming's PRB: Montana's concern about the potential downstream effects of water quality degradation on rivers flowing north into Montana. Many of the benefits and costs associated with CBNG development have been debated, but dealing with CBNG water quantity and quality arguably has been the most difficult of all the issues. Given the importance of these issues for continued development of CBNG resources in Wyoming and elsewhere, the DOE-NETL funded project presented here focuses on CBNG co-produced water management. The research was organized around nine separate, but interrelated, technical project tasks and one administrative task (Task 1). The nine technical project tasks were pursued by separate research teams at the University of Wyoming, but all nine tasks were coordinated to the extent possible in order to maximize information gained about CBNG co-produced waters. In addition to project management in Task 1, the key research tasks included: (2) estimating groundwater recharge rates in the PRB; (3) groundwater contamination of trace elements from CBNG disposal ponds; (4) use of environmental tracers in assessing wate

  17. Passive and low energy research and development: a global view

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1984-01-01T23:59:59.000Z

    Passive and low energy applications in buildings have become a topic of worldwide interest within the last few years. It has now been demonstrated very clearly that indoor comfort can be maintained with an expenditure of only 10 to 20% of the energy often required by modern buildings. This is accomplished through a combination of conservation measures to minimize the load, passive use of solar energy for heating, natural cooling, and daylighting. The major research emphasis has been on devising mathematical models to characterize heat flow within buildings, on the validation of these models by comparison with test results, and on the subsequent use of the models to investigate the influence of both design parameters and weather on system performance. Design guidelines have been developed, and simplified methods of analysis have been promulgated. Performance has been monitored in test modules, test buildings, and many residential and commercial buildings. The results both confirm good performance and establish the accuracy of model predictions. A significant change in the research picture has been seen in the last 4 years; whereas the major effort was originally in the United States, research is now being conducted in many countries throughout the world as many people have realized that passive and low energy methods are appropriate in virtually every climate and are well suited to economic, convenient, and reliable building construction and operation.

  18. Development of Tritium AMS for Biomedical Sciences Research

    SciTech Connect (OSTI)

    Dingley, K H; Chiarappa-Zucca, M L

    2002-01-01T23:59:59.000Z

    Tritium ({sup 3}H) is a radioisotope that is extensively utilized in biological research. Normally in the biological sciences, {sup 3}H is quantified by liquid scintillation counting. For the most sensitive measurements, liquid scintillation counting requires large samples and counting times of several-hours. In contrast, provisional studies at LLNL's Center for Accelerator Mass Spectrometry have demonstrated that Accelerator Mass Spectrometry (AMS) can be-used to quantify {sup 3}H in milligram-sized biological samples with a 100 1000-fold improvement in detection limits when compared to scintillation counting. This increased sensitivity is expected to have great impact in the biological research community. However, before {sup 3}H AMS can be used routinely and successfully, two areas of concern needed to be addressed: (1) sample preparation methods needed to be refined and standardized, and (2) smaller and simpler AMS instrumentation needed to be developed. To address these concerns, the specific aims of this project were to: (1) characterize small dedicated {sup 3}H AMS spectrometer (2) develop routine and robust biological sample preparation methods, and (3) with the aid of our external collaborations, demonstrate the application of {sup 3}H AMS in the biomedical sciences. Towards these goals, the {sup 3}H AMS instrument was installed and optimized to enhance performance. The sample preparation methodology was established for standard materials (water and tributyrin) and biological samples. A number of biological and environmental studies which require {sup 3}H AMS were undertaken with university collaborators and our optimized analysis methods were employed to measure samples from these projects.

  19. Poverty and Inequality Research Cluster Global Development and Happiness

    E-Print Network [OSTI]

    Sussex, University of

    Poverty and Inequality Research Cluster Global Development and Happiness: How can Data Volume 2013 No 432 #12;2 The Poverty and Inequality research cluster, part of the Vulnerability and Poverty Reduction team at IDS, produces research on poverty, inequality and wellbeing. Our research

  20. Ohio Coal Research and Development Program (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Coal Development Office invests in the development and implementation of technologies that can use Ohio's vast reserves of coal in an economical, environmentally sound manner. Projects are...

  1. Request for Information: Photovoltaic Reliability and Durability Research and Development

    Broader source: Energy.gov [DOE]

    The United States Department of Energy (DOE) Ė Office of Energy Efficiency and Renewable Energy (EERE) seeks feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to solar photovoltaic (PV) reliability and durability research and development.

  2. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SAIC SOLAR DISHUse Energy Efficiency ∑ Energy Innovations Small Grants ∑ EnergyRelated Environmental Research ∑ EnergyUse Energy Efficiency ∑ Renewable Energy Technologies ∑ Transportation Solar Dish Concentrator

  3. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT HYBRID SOLAR LIGHTINGUse Energy Efficiency ∑ Energy Innovations Small Grants ∑ EnergyRelated Environmental Research ∑ EnergyUse Energy Efficiency ∑ Renewable Energy Technologies ∑ Transportation Hybrid Solar Lighting

  4. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    CEC5002013042 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National ∑ EnergyRelated Environmental Research ∑ Energy Systems Integration ∑ Environmentally Preferred Advanced. The information from this project contributes to Energy Research and Development Division's Buildings End

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY for: California Energy Commission Prepared by: San Diego State Research Foundation #12: California Energy Commission Raquel Kravitz Program Manager Fernando Pina Office Manager Energy Systems

  6. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF LARVAL Coastal Boundary Layer Flow SEPTEMBER 2007 CEC5002013049 Prepared for: California Energy Commission Energy Commission Joe O'Hagan Contract Manager Linda Spiegel Office Manager Energy Generation Research

  7. Energy Research and Development Division DRAFT PROJECT REPORT

    E-Print Network [OSTI]

    Use Energy Efficiency ∑ Renewable Energy Technologies ∑ Transportation Natural Gas Energy Efficiency Energy Research and Development Division DRAFT PROJECT REPORT NATURAL GAS ENERGY EFFICIENCY in Buildings ≠ Roadmap for Future Research is the final report for the Buildings Natural Gas Roadmap

  8. CEC5002013045 Energy Research and Development Division

    E-Print Network [OSTI]

    ), California Independent System Operator (California ISO), and other California Energy Commission PIER JUNE 2007 CEC5002013045 Energy Research Prepared For: California Energy Commission Prepared By: KEMA, Inc. #12; Prepared by

  9. Research, Development and Demonstration of Bio-Mass Boiler for Food Industry

    SciTech Connect (OSTI)

    Fisher, Steve; Knapp, David

    2012-03-31T23:59:59.000Z

    Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a ‚??biomass-fired‚?Ě boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using ‚??carbon neutral‚?Ě fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO{sub 2}) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO{sub 2} emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO{sub 2} emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO{sub 2}. The boiler does require auxiliary ‚??functions,‚?Ě however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO{sub 2} emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO{sub 2} per year.

  10. Scenarios for Benefits Analysis of Energy Research, Development, Demonstration and Deployment

    E-Print Network [OSTI]

    Gumerman, Etan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    10. References EIA, 2003. Annual Energy Outlook 2003. EnergyEIA, 2004(b). Annual Energy Outlook 2004: With ProjectionsEIA-0383(2004) EIA, 2005. Annual Energy Outlook 2005: With

  11. DOE Funds 21 Research, Development and Demonstration Projects for up to $78

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout ¬ĽDepartment of2 DOE F 1300.2Million to Promote Enhanced

  12. DOE Funds 21 Research, Development and Demonstration Projects for up to $78

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE Fuel CellMillion to Promote

  13. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Cover

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2ofFuel CellEnergy About

  14. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 Fuel Cell2| Department ofA -Page 3E -

  15. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 Fuel Cell2| Department ofA -Page 3E

  16. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | Department of Energy HVACEnergy Savings

  17. Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement (FOA) Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducation ¬Ľ ForFuelHydrogen and

  18. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect (OSTI)

    Dena Tomchak

    2011-03-01T23:59:59.000Z

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  19. Product Demonstrations

    Broader source: Energy.gov [DOE]

    The Consortium will pursue a number of demonstrations following the general procedure used by DOE's GATEWAY demonstration program. Specific products to be featured in a demonstration may be...

  20. Sandia National Laboratories: Research: Research & Development 100 Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and NuclearReportMaterials Science

  1. CHEMICAL PROCESS RESEARCH AND DEVELOPMENT PROGRAM

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    flow modeling of coal or related slurries will be carriedconsumption by the coal contained in the slurry. FOOTNOTE9777 (1979), Slurry-Reactor Development for Coal Conversion

  2. 2012 Advanced Applications Research & Development Peer Review...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Advanced Applications R&D Peer Review - Mode Meter Development - Ning Zhou, PNNL 2012 Advanced Applications R&D Peer Review - Oscillation Monitoring System - Mani...

  3. Institutional Research & Development Reports | National Nuclear...

    National Nuclear Security Administration (NNSA)

    and Development (LDRD) supports experiment studies that combine irradiation and corrosion effects: (Left) Irradiation and corrosion experiments chamber; (right) Lead bismuth...

  4. Migration and Development Research Scoping Study

    E-Print Network [OSTI]

    Boyer, Edmond

    , poverty, inequality and growth....................................................... 3 2.3. Socio the effects of migration and remittances on development indicators such as poverty, health, inequality, income

  5. Director's Discretionary Research and Development Program, Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report FY 2007 Draft Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site. Director's Discretionary...

  6. Sandia National Laboratories: Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Personnel Water Power in the News Geothermal Advanced Bit Development Geothermal Energy & Drilling Technology Hydrogen and Fuel Cells Program Materials & Components...

  7. EMSL Research and Capability Development Proposals Cryogenic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Capability Development Proposals Cryogenic NMR and Advanced Electronic Structure Theory as a Unique EMSL Capability for Complex Systems: Application to the Photosynthetic...

  8. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Technical paper...

  9. Research & Development Needs for Building-Integrated Solar Technologie...

    Energy Savers [EERE]

    photovoltaic-thermal systems (PVT), active solar lighting, and building-integrated photovoltaics (BIPV). View the full report Report: Research & Development Needs for...

  10. Sandia Energy - Research and Development of Next Generation Scada...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Development of Next Generation Scada Systems Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for...

  11. Research & Development Roadmap: Next-Generation Low Global Warming...

    Broader source: Energy.gov (indexed) [DOE]

    potential (GWP) when released to the atmosphere. This research and development (R&D) roadmap for next-generation low-GWP refrigerants provides recommendations to the Building...

  12. Research and Development Roadmap: Windows and Building Envelope...

    Broader source: Energy.gov (indexed) [DOE]

    office windows. This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and...

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    supplies, dry cooling systi Energy Research and Development Division FINAL PROJECT REPORT INLET AIR SPRAY COOLINGUse Energy Efficiency ∑ Renewable Energy Technologies ∑ Transportation Inlet Air Spray Cooling

  14. A History of Geothermal Energy Research and Development in the...

    Broader source: Energy.gov (indexed) [DOE]

    geothermalhistory3engineering.pdf More Documents & Publications A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006...

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT INTEGRATING BIOENERGETICS, SPACIAL ∑ Transportation Integrating Bioenergetics, Spatial Scales, and Population Dynamics for Environmental Flow

  16. Research and Development Needs for Wind Systems Utilizing Controllable...

    Energy Savers [EERE]

    areas: Grid Integration Manufacturing Research and Development Wind Turbine Power Electronics Advanced Grid Modeling and Simulation. This RFI is not intended to inform a...

  17. Research and Development Strategies for Compressed & Cryo-Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary Report Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop...

  18. Draft Funding Opportunity Announcement for Research and Development...

    Broader source: Energy.gov (indexed) [DOE]

    upcoming solicitation for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy. sowdraft.pdf More Documents & Publications Fuel Cell...

  19. Hydrogen & Fuel Cells: Review of National Research and Development...

    Open Energy Info (EERE)

    Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen & Fuel Cells: Review of...

  20. RESEARCH AND DEVELOPMENT ROADMAP FOR WATER HEATING TECHNOLOGIES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Navigant Consulting, Inc. RESEARCH AND DEVELOPMENT ROADMAP FOR WATER HEATING TECHNOLOGIES Prepared for: Oak Ridge National Laboratory Subcontract Number 4000093134...

  1. Argonne researchers develop two new diamond inventions | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop two new diamond inventions By Jared Sagoff * October 10, 2014 Tweet EmailPrint ARGONNE, IL - Researchers at the US Department of Energy's Argonne National Laboratory have...

  2. Laboratory directed research and development. Annual report, fiscal year 1995

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This document is a compilation of the several research and development programs having been performed at the Pacific Northwest National Laboratory for the fiscal year 1995.

  3. Research Centre for Sustainable Development (RCSD), Chinese Academy...

    Open Energy Info (EERE)

    Research Centre for Sustainable Development (RCSD), Chinese Academy of Social Sciences (CASS) Place: China Coordinates: 35.86166, 104.195397 Loading map......

  4. NOx Abatement Research and Development CRADA with Navistar Incorporate...

    Broader source: Energy.gov (indexed) [DOE]

    Abatement Research and Development CRADA with Navistar Incorporated (successor to International Truck and Engine Corporation) Josh A. Pihl and Todd J. Toops Oak Ridge National...

  5. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2014-04-17T23:59:59.000Z

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing is between now and 2016 when the candidate processes are down-selected in preparation for the MP-1, FSP-1, and MP-2 plate manufacturing campaigns. A number of key risks identified by the FFC are discussed in this plan, with recommended mitigating actions for those activities within FFC, and identification of risks that are impacted by activities in other areas of the Convert Program. The R&D Plan does not include discussion of FFC initiatives related to production-scale manufacturing of fuel (e.g., establishment of the Pilot Line Production Facility), rather, the goal of this plan is to document the R&D activities needed ultimately to enable high-quality and cost-effective production of the fuel by the commercial fuel fabricator. The intent is for this R&D Plan to be a living document that will be reviewed and updated on a regular basis (e.g., annually) to ensure that FFC R&D activities remain properly aligned to the needs of the Convert Program. This version of the R&D Plan represents the first annual review and revision.

  6. The joint Baltic Sea research and development programme Strategic reSearch agenda 2011-2017

    E-Print Network [OSTI]

    Johannesson, Henrik

    The joint Baltic Sea research and development programme Strategic reSearch agenda 2011-2017 BOnUS PUBlicatiOn nO. 12 #12;BONUS Strategic reSearch agenda 2011-2017 The joint Baltic Sea research and development programme BOnUS PUBlicatiOn nO. 12 #12;BONUS Strategic reSearch ageNda 2011-2017 2 BONUS vision

  7. GRANTS DEVELOPMENT OFFICEGRANTS DEVELOPMENT OFFICE Research and Graduate Programs

    E-Print Network [OSTI]

    Sze, Lawrence

    ://www.grants.calpoly.edu/http://www.grants.calpoly.edu/ #12;TABLE OF CONTENTSTABLE OF CONTENTS GRANTS DEVELOPMENT OFFICE STAFF XENIA BIXLER, Director Complex

  8. NTRCI Legacy Engine Research and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Connie Smith-Holbert; Joseph Petrolino; Bart Watkins; David Irick

    2011-12-31T23:59:59.000Z

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine‚??s commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector was designed, manufactured and demonstrated in the GEN2.5B prototype.

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SMART GRID ROADMAP and Development Division funding efforts are focused on the following RD&D program areas: ∑ Buildings EndUse Energy Efficiency ∑ Renewable Energy Technologies ∑ Transportation The Smart Grid Roadmap

  10. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Modeling, Landscape Genetics, and Habitat Connectivity for the Mohave Ground Squirrel to Guide Renewable Energy Research and Development Division FINAL PROJECT REPORT Habitat Energy Development JANUARY 2013 CEC5002014003 Prepared for: California Energy Commission Prepared

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Developing5002013109 Prepared for: California Energy Commission Prepared by: Growpro Inc #12; Prepared by Waimauku, New Zealand Contract Number: PIR-07-001 Prepared for: California Energy Commission Abolghasem

  12. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT Energy Commission Prepared by: Lawrence Berkeley National Laboratory #12; PREPARED BY: Primary-09-010 Prepared for: California Energy Commission Matthew Fung Contract Manager Virginia Lew Office Manager Energy

  13. Drug Discovery and Development from Marine Biology-Based Research

    E-Print Network [OSTI]

    Jawitz, James W.

    Drug Discovery and Development from Marine Biology- Based Research Oceanyx Pharmaceuticals is a novel drug discovery and development company that leverages marine biology-based natural identified two lead candidates, largazole and apratoxin, as potential drug candidates for the treatment

  14. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30T23:59:59.000Z

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  15. Magnesium Research and Technology Development: Project 48976

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advise DOE on criticalkey funding areas for Mg 3 z z Approach Approach Approach Increase automotive industry awareness in the use of Mg Develop and maintain the Magnesium R&D...

  16. Idaho National Laboratory Research & Development Impacts

    SciTech Connect (OSTI)

    Nicole Stricker

    2015-01-01T23:59:59.000Z

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energyís national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratoryís engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nationís nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INLís Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nationís premier applied science laboratories.

  17. (Geosciences research and development). [Annotated bibliography

    SciTech Connect (OSTI)

    Not Available

    1991-03-01T23:59:59.000Z

    This report represents the final report of the University of Utah Research Institute under US Department of Energy Contract No. DE-AC07-85ID12489. It consists of the abstracts and references of all technical reports generated by UURI under this contract. This report lists the abstracts in DOE report number sequence. The author index of this report will be useful in locating specific references. These reports are all related to earth science and geothermal energy.

  18. Developing Research Capabilities in Energy Biosciences

    SciTech Connect (OSTI)

    Brown, Donald D

    2008-01-01T23:59:59.000Z

    Scientists founded the Life Sciences Research Foundation (LSRF) in 1983 as a non-profit pass through foundation that awards post doctoral fellowships in all areas of the life sciences. LSRF scientists review hundreds of applications each year from PhDs seeking support. For example this year, our 26th, we received 800 applications and our peer review committee will choose about 50 finalists who are eligible for these awards. We have no endowment so we solicit sponsors each year. The fellowships are sponsored by research oriented companies, foundations, philanthropists, the Howard Hughes Medical Institute, and other organizations who believe in the value of awarding fellowships to the best and the brightest young scientists. Our web site has a complete listing of all details about LSRF (http://www.lsrf.org/). In the late 1980s the Division of Bioscience in the Office of Basic Energy Science, a granting agency of the Department of Energy, joined this partnership. Bioscience's mandate was to support non-medical microbiology and plant sciences. LSRF received a series of 5 year grants from DOE to award fellowships to our top applicants in these fields of research. We began to support DOE-Energy Bioscience post doctoral fellows in 1989. From 1989 through 2004 when DOE funding ended our partnership awarded 41 DOE-Energy Bioscience Fellows of the Life Sciences Research Foundation. Each of these was a three year fellowship. DOE-Energy Biosciences was well matched with LSRF. Our extensive peer review screened applicants in all areas of the life sciences. Most LSRF sponsors are interested in supporting fellows who work on diseases. At the time that we began our partnership with DOE we had no sponsors willing to support plant biology and non medical microbiology. For 15 years DOE played a major role in the training of the very best young scientists in these important fields of research simply through its support of LSRF post doctoral fellows. Young scientists interested in plant biology knew to apply to LSRF for a chance to receive a post doctoral award. We are enclosing a list of the 41 fellows who were supported through this partnership. The list includes some of the most distinguished plant biologists in the country, and our training partnership has had a profound impact on the field of plant biology.

  19. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    SciTech Connect (OSTI)

    Yoginder P. Chugh

    2002-10-01T23:59:59.000Z

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  20. Laboratory Directed Research and Development FY2008 Annual Report

    SciTech Connect (OSTI)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24T23:59:59.000Z

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  1. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  2. Technology Demonstration Partnership Policy

    Broader source: Energy.gov [DOE]

    This City Council memorandum establishes a framework for engaging in and evaluating demonstration partnerships with the goal of developing, testing, and demonstrating emerging technologies, product, and service innovations.

  3. REPORT TO THE PRESIDENT ON FEDERAL ENERGY RESEARCH AND DEVELOPMENT

    E-Print Network [OSTI]

    REPORT TO THE PRESIDENT ON FEDERAL ENERGY RESEARCH AND DEVELOPMENT FOR THE CHALLENGES OF THE TWENTY-FIRST CENTURY PRESIDENT'S COMMITTEE OF ADVISORS ON SCIENCE AND TECHNOLOGY PANEL ON ENERGY RESEARCH of the President's Committee of Advisors on Science and Technology (PCAST) the final report Federal Energy Research

  4. Research, Innovation & Economic Development at North Carolina State University ReseaRch Impetus

    E-Print Network [OSTI]

    Langerhans, Brian

    economic opportunities and improve people's lives. "Research is an investment in the future. Basic researchresults Research, Innovation & Economic Development at North Carolina State University XI, NO. 2 FALL 2011 ReseaRch Impetus: economIc RecoveRy #12;TRaNSlaTINg RESEaRCh INTo ECoNomIC gRowTh TaBlE oF Co

  5. ComMod: engaged research's contribution to sustainable development

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    187 Chapter 8 ComMod: engaged research's contribution to sustainable development sigrid au A stance justified by the needs of sustainable development The emergence of the sustainable development). Sustainable development asserted itself as a response to a preoccupying global situa- tion, notably

  6. Final Report Continued research, development and test of

    E-Print Network [OSTI]

    Final Report - Public - Continued research, development and test of SOFC Technology PSO Project No .....................................................................................................10 3.3.2 >8000 hours stack test with new stack technology...............................................12 3.4.2 Stacks for in-house research, development and testing ....................................12

  7. Energy Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs,EnergyAugustPublicEnergy Research

  8. Fermilab | Science | Particle Physics | Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A ThisFermilab'sSpaceResearch &

  9. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center atdiffusivities inJLF Forms JLFJLFan LDRD

  10. Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >>Programs ¬Ľ LDRD

  11. NETL: Onsite Research & Development Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgenda Workshop AgendaGraphic of aEnergyResearch

  12. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y d rSiC Research

  13. Ethiopian Development Research Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace Center (DLR) Sector EnergyResearch Institute

  14. Fuel Cycle Research and Development Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartmentaboutInformation ResourcesResearch

  15. Photovoltaics Research and Development | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4newsSolarrd IEEE PVSC,Research

  16. Research & Development Projects | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department ofEMSpent Nuclear FuelsPaylor,GradedResearch

  17. Wind Research and Development | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacksof EnergyWhenWindWind Research and

  18. Laboratory Directed Research & Development (LDRD) Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVentureFrontiers Research

  19. Sandia National Laboratories: Cooperative Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100Life atCareersAgreement

  20. Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public Reading RoomNonproliferation / Research

  1. Researchers are developing novel zeolite-based materials with 1-D nanopores for automotive applications.

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Researchers are developing novel zeolite-based materials with 1-D nanopores for automotive configuration. The calculations also demonstrate the important role of zeolite aluminum location and the relative aluminum arrangement in that site, current calculations are evaluating the catalytic activity

  2. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    P. E. MacDonald

    2005-01-01T23:59:59.000Z

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  3. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    None

    2005-01-01T23:59:59.000Z

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  4. Geo energy research and development: technology transfer

    SciTech Connect (OSTI)

    Traeger, R.K.

    1982-03-01T23:59:59.000Z

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  5. research and development | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development of NovelHigh( (Improving theA

  6. Office of Research and Economic Development S. David Kimball, Ph.D.

    E-Print Network [OSTI]

    Neimark, Alexander V.

    Clinical Outcomes Office of Research and Economic Development Strengths in Translational Research Genetics Development Clinical Trials Clinical Practice Clinical Outcomes Office of Research and Economic Development Science Pathways Probes Therapies Basic Research Translational Sciences Clinical Research Medicinal

  7. Small Hydropower Research and Development Technology Project

    SciTech Connect (OSTI)

    Blackmore, Mo [Near Space Systems, Inc.] [Near Space Systems, Inc.

    2013-12-06T23:59:59.000Z

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  8. Progress in Muon Cooling Research and Development

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MuCool Collaboration

    2003-01-29T23:59:59.000Z

    The MuCool R&D program is described. The aim of MuCool is to develop all key pieces of hardware required for ionization cooling of a muon beam. This effort will lead to a more detailed understanding of the construction and operating costs of such hardware, as well as to optimized designs that can be used to build a Neutrino Factory or Muon Collider. This work is being undertaken by a broad collaboration including physicists and engineers from many national laboratories and universities in the U.S. and abroad. The intended schedule of work will lead to ionization cooling being well enough established that a construction decision for a Neutrino Factory could be taken before the end of this decade based on a solid technical foundation.

  9. Advanced Turbo-Charging Research and Development

    SciTech Connect (OSTI)

    None

    2008-02-27T23:59:59.000Z

    The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger' because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.

  10. SARC: Development and Support of a Sarcoma Research Consortium Infrastructure

    SciTech Connect (OSTI)

    Arkison, Jim

    2007-10-29T23:59:59.000Z

    SARC is a non-for-profit organization whose mission and vision is to advocate for the collaboration on the design of clinical trials on sarcoma, to further the knowledge regarding the diagnosis and treatment of sarcoma and provide accurate and up to date information to physicians, patients and families. The objectives are to assist in the development of the infrastructure for the continued growth and spectrum of clinical research, to facilitate biannual meeting of investigators, and to develop a preclinical research base that would design and conduct research that would improve the process of drug treatments selected for clinical research trials.

  11. Developing ''SMART'' equipment and systems through collaborative NERI research and development

    SciTech Connect (OSTI)

    HARMON,DARYL L.; CHAPMAN,LEON D.; GOLAY,MICHAEL W.; MAYNARD,KENNETH P.; SPENCER,JOSEPH W.

    2000-06-05T23:59:59.000Z

    The United States Department of Energy initiated the Nuclear Energy Research Initiative (NERI) to conduct research and development with the objectives of: (1) overcoming the principal technical obstacles to expanded nuclear energy use, (2) advancing the state of nuclear technology to maintain its competitive position in domestic and world markets, and (3) improving the performance, efficiency, reliability, and economics of nuclear energy. Fiscal Year 1999 program funding is $19 Million, with increased finding expected for subsequent years, emphasizing international cooperation. Among the programs selected for funding is the ``Smart Equipment and Systems to Improve Reliability and Safety in Future Nuclear Power Plant Operations''. This program is a 30 month collaborative effort bringing together the technical capabilities of ABB C-E Nuclear Power, Inc. (ABB CENP), Sandia National Laboratories, Duke Engineering and Services (DE and S), Massachusetts Institute of Technology (MIT) and Pennsylvania State University (PSU). The program's goal is to design, develop and evaluate an integrated set of smart equipment and predictive maintenance tools and methodologies that will significantly reduce nuclear plant construction, operation and maintenance costs. To accomplish this goal the Smart Equipment program will: (1) Identify and prioritize nuclear plant equipment that would most likely benefit from adding smart features; (2) Develop a methodology for systematically monitoring the health of individual pieces of equipment implemented with smart features (i.e. smart equipment); (3) Develop a methodology to provide plant operators with real-time information through smart equipment Man-Machine Interfaces (MMI) to support their decision making; (4) Demonstrate the methodology on a targeted component and/or system; (5) Expand the concept to system and plant levels that allow communication and integration of data among smart equipment. This paper will discuss (1) detailed subtask plans for the entire program, including expected achievements, (2) preliminary results from the early program phases and (3) the program's relationship to other NERI programs being conducted by the same team.

  12. SUPPORT FOR THE COMPLETION OF THE ARM PROJECT AND DEVELOPMENT OF A FIELD DEMONSTRATION OF THE GWIS MODEL FOR A VIRTUAL ENTERPRISE

    SciTech Connect (OSTI)

    F. DAVID MARTIN; MARK B. MURPHY - STRATEGIC TECHNOLOGY RESOURCES, LLC

    1999-12-31T23:59:59.000Z

    Strategic Technology Resources, L.L.C. (STR) provided work for Los Alamos National Laboratory (LANL) in response to Request for Proposal 005BZ0019-35. The objectives of the work in this project were to: (1) support the completion of the Advanced Reservoir Management (ARM) cooperative research and development agreement (CRADA) LA9502037, and (2) support the development of a field demonstration of the LANL-developed Global Weapons Information System (GWIS) model for virtual enterprises. The second objective was contingent upon DOE approval of the Advanced Information Management (AIM) CRADA. At the request of the LANL Technical Representative, the project was granted a no-cost extension to November 30, 1999. As part of the project, STR provided managerial support for the ARM CRADA by: (1) assessing the data resources of the participating companies, (2) facilitating the transfer of technical data to LANL, (3) preparing reports, (4) managing communications between the parties to the ARM CRADA, and (5) assisting with the dissemination of information between the parties to technical professional societies and trade associations. The first phase of the current project was to continue to engage subcontractors to perform tasks in the ARM CRADA for which LANL expertise was lacking. All of the ARM field studies required of the project were completed, and final reports for all of the project studies are appended to this final report. The second phase of the current project was to support the field demonstration of the GWIS model for virtual enterprises in an oilfield setting. STR developed a hypertext Webpage that describes the concept and implementation of a virtual enterprise for reservoir management in the petroleum industry. Contents of the hypertext document are included in this report on the project.

  13. Institutional Research and Development: (Annual report), FY 1986

    SciTech Connect (OSTI)

    Strack, B. (ed.)

    1987-01-01T23:59:59.000Z

    The Institutional Research and Development (IR and D) program was established at the Lawrence Livermore National Laboratory (LLNL) by the Director in October 1984. The IR and D program fosters exploratory work to advance science and technology; disciplinary research to create varied, innovative approaches to selected scientific fields; and long-term research in support of the defense and energy missions at LLNL. Each project in the IR and D program was selected after personal interviews by the Director and his delegates and was deemed to show unusual promise. These projects include research in the following fields: chemistry and materials science, computation, earth sciences, engineering, nuclear chemistry, biotechnology, environmental consequences of nuclear war, geophysics and planetary physics, and supercomputer research and development. A separate section of the report is devoted to research projects receiving individual awards.

  14. Microscale combustion: Technology development and fundamental research Yiguang Ju a

    E-Print Network [OSTI]

    Ju, Yiguang

    of micro-thrusters, micro internal combustion engines, and micro chemical reactors summarized. ThirdlyReview Microscale combustion: Technology development and fundamental research Yiguang Ju a , Kaoru Maruta b,* a Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ

  15. Development of Technical Nuclear Forensics for Spent Research Reactor Fuel

    E-Print Network [OSTI]

    Sternat, Matthew Ryan 1982-

    2012-11-20T23:59:59.000Z

    , an inverse analysis was developed to re-construct the burnup, initial uranium isotopic compositions, and cooling time of a research reactor spent fuel sample. A convergence acceleration technique was used that consisted of an analytical calculation to predict...

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Commission Marla Mueller Contract Manager Guido Franco Program Area Lead Energy-Related Environmental Energy Research and Development Division FINAL PROJECT REPORT A SEASONAL DECEMBER 2011 CEC5002013035 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley

  17. Nuclear Safety Research and Development Annual Report, December...

    Broader source: Energy.gov (indexed) [DOE]

    December 8, 2014 This document is the first annual report of DOE's Nuclear Safety Research and Development (NSR&D) Program, managed by the Office of Nuclear Safety in the Office of...

  18. The Department of the Navy's Research Development and Acquisition Community

    E-Print Network [OSTI]

    The Department of the Navy's Research Development and Acquisition Community Efforts to Achieve the Navy's Energy Goals Enabling Energy Security Strategic Directions Dr. John V. Amy, Jr. ASN (RDA) CHSENG

  19. 3-minute diagnosis: Researchers develop new method to recognize pathogens

    ScienceCinema (OSTI)

    Beer, Reg

    2014-05-30T23:59:59.000Z

    Imagine knowing precisely why you feel sick ... before the doctor's exam is over. Lawrence Livermore researcher Reg Beer and his engineering colleagues have developed a new method to recognize disease-causing pathogens quicker than ever before.

  20. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SMUD OFFPEAK OVERCOOLING PROJECT DECEMBER 2007 CEC5002013066 Prepared for: California Energy Commission Prepared by: Davis Energy Group #12; PREPARED BY: Primary Author(s): David Springer Davis Energy Group Davis, CA

  1. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY AND ENERGY EFFICIENCY IN CALIFORNIA AIR QUALITY MANAGEMENT DISTRICTS DECEMBER 2011 CEC5002013047 Prepared for: California Energy Commission Prepared by: Synapse Energy

  2. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PLANNING ALTERNATIVE5002013021 Prepared for: California Energy Commission Prepared by: Facet Decision Systems, Inc. #12-08-030 Prepared for: California Energy Commission Linda Spiegel Contract Manager Linda Spiegel Office Manager

  3. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PRELIMINARY ESTIMATES5002013051 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National Laboratory: 500-99-013 Prepared for: California Energy Commission Steve Ghadiri Contract Manager Fernando PiŮa

  4. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT GREENGUIDE FOR SUSTAINABLE ENERGY EFFICIENT REFRIGERATED STORAGE FACILITIES MARCH 2013 CEC-500-2013-145 Prepared for: California Energy for: California Energy Commission Anish Gautam Contract Manager Virginia Lew Office Manager Energy

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LIGHTING CALIFORNIA'S FUTURE RetrofitIntegrated Classroom Lighting System (RICLS) Prepared for: California Energy Commission Managed by: Architectural Energy Corporation Prepared by: Finelite Inc. FEBRUARY 2013 CEC

  6. The impact of accounting for research and development on innovation

    E-Print Network [OSTI]

    Li, Lei (Lynn Lei)

    2012-01-01T23:59:59.000Z

    This paper examines whether a change in the accounting rule for research and development (R&D) cost is associated with changes in the innovation process. Specifically, I examine whether R&D expenditure, the number of patents ...

  7. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    or pricing event. The California Energy Commission is considering standards that would include a requirement Energy Research and Development Division FINAL PROJECT REPORT Technology MARCH 2013 CEC5002012077 Prepared for: California Energy Commission Prepared by: Heschong Mahone

  8. Researchers Develop Tool to Assess Supernetwork Efficiency and Vulnerability

    E-Print Network [OSTI]

    Nagurney, Anna

    , electrical power supply chains and telecommunications networks. University of Massachusetts Amherst components like roads, electrical power stations or transmission lines are destroyed and captures how usersResearchers Develop Tool to Assess Supernetwork Efficiency and Vulnerability Natural disasters

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    ENERGY BALANCE UPDATE AND DECOMPOSITION ANALYSIS FOR THE INDUSTRY AND BUILDING SECTORS APRIL 2013 ∑ Transportation California Energy Balance Update and Decomposition Analysis for the Industry and Building Energy Research and Development Division FINAL PROJECT REPORT CALIFORNIA

  10. Improving the efficiency of research and development using belief networks

    E-Print Network [OSTI]

    Yost, Keith A

    2009-01-01T23:59:59.000Z

    Within the past thirty years, the U.S. government has spent over three trillion dollars supporting research and development projects across its various federal agencies. There is a considerable, long-standing need to ...

  11. Laboratory directed research and development 2006 annual report.

    SciTech Connect (OSTI)

    Westrich, Henry Roger

    2007-03-01T23:59:59.000Z

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  12. Laboratory directed research development annual report. Fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGYEFFICIENT Energy Commission Prepared by: Lawrence Berkeley National Laboratory #12; PREPARED BY: Primary.lbl.gov Contract Number: 500-06-053 Prepared for: California Energy Commission Paul Roggensack Contract Manager

  14. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGYEFFICIENT HIGHTECH BUILDINGS DECEMBER 2008 CEC5002013062 Prepared for: California Energy Commission Prepared by-06-053 Prepared for: California Energy Commission Paul Roggensack Contract Manager Virginia Lew Office Manager

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    efforts are focused on securing stable and economical storage, transportation, and delivery of natural gas-Use Energy Efficiency ∑ Renewable Energy Technologies ∑ Transportation California Natural Gas StorageEnergy Research and Development Division FINAL PROJECT REPORT CALIFORNIA NATURAL GAS STORAGE

  16. Research and information needs for management of oil shale development

    SciTech Connect (OSTI)

    Not Available

    1983-05-01T23:59:59.000Z

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  17. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    the aircraft off the ground for each mission. i #12;PREFACE The California Energy Commission Energy Research/Agricultural/Water End-Use Energy Efficiency ∑ Renewable Energy Technologies ∑ Transportation California AutonomousEnergy Research and Development Division FINAL PROJECT REPORT CALIFORNIA AUTONOMOUS UNMANNED AERIAL

  18. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Franco Program Area Lead Energy-Related Environmental Research Linda Spiegel Office Manager Energy on the following RD&D program areas: ∑ Buildings EndUse Energy Efficiency ∑ Energy Innovations Small Grants Energy Research and Development Division FINAL PROJECT REPORT AIRQUALITY IMPACTS OF HEAT

  19. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Lu (PNNL). The development of the dynamic phasor model was led by Bernard Lesieutre (LBNL by David Chassin (PNNL). The research for the white paper on load monitoring was conducted by Henry Huang (PNNL). The research for the white paper on uncertainty analysis was conducted by Ian Hiskens

  20. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    model was led by Henry Huang and Ning Lu (PNNL). The development of the dynamic phasor model was led data tool was conducted by David Chassin (PNNL). The research for the white paper on load monitoring was conducted by Henry Huang (PNNL). The research for the white paper on uncertainty analysis was conducted

  1. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT POTENTIAL TARGETS AND BENEFITS FOR URBAN ENERGY SYSTEMS RESEARCH MAY 2009 CEC-500-2010-009 Prepared for: California Energy Commission Institute of the Environment Los Angeles, CA Contract Number: BOA-99-207-P Prepared for: California Energy

  2. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY INNOVATIONS: California Energy Commission Prepared by: San Diego State Research Foundation #12; Prepared by: Primary Diego, CA 92182-1858 (619) 594-1900 Contract Number: 500-98-014 Prepared for: California Energy

  3. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY INNOVATIONS: California Energy Commission Prepared by: San Diego State Research Foundation #12; Prepared by: Primary-1858 (619) 594-1900 Contract Number: 500-98-014 Prepared for: California Energy Commission Raquel E. Kravitz

  4. Laboratory directed research and development. FY 1995 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J. [comps.

    1996-03-01T23:59:59.000Z

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PROBABILISTIC TRANSMISSION CONGESTION FORECASTING DECEMBER 2012 CEC-500-2013-120 Prepared for: California Energy Commission Prepared by: Electric Research Institute Contract Number: UC MR-052 Prepared for: California Energy Commission Jamie Patterson

  6. Status report of the EPA`s Air Pollution Prevention and Control Division`s biomass-to-energy development and demonstration projects

    SciTech Connect (OSTI)

    Purvis, C.R. [Environmental Protection Agency, Research Triangle Park, NC (United States); Cleland, J. [Research Triangle Institute, Research Triangle Park, NC (United States); Craig, J.D. [Cratech, Inc., Tahoka, TX (United States)] [and others

    1996-12-31T23:59:59.000Z

    The US Environmental Protection Agency`s (EPA`s) Air Pollution Prevention and Control Division (APPCD) is participating in research, development, and demonstration projects that will convert biomass energy to electrical power, resulting in waste utilization, pollution alleviation, and energy conservation. The goal is to demonstrate the technical, economic, and environmental feasibility of an innovative energy conversion technology. This paper describes the status of each project. The first project is a demonstration of a design that consists of a fixed-bed gasifier, a gas cleaning system, a spark ignited syngas engine, and a diesel dual fuel engine. The technology will use wood waste as fuel and produce approximately 1 MWe. The design of the technology is complete, equipment fabrication is underway, and installation, start-up, testing, and demonstration will follow by September 1996. The second project is a biomass-fueled intergrated-gasifier gas turbine (BIGGT) power plant. Phase 1 is complete and consisted of the design, fabrication, and operation of a 0.5 metric ton per hour (tph) (0.55 tph) pressurized fluidized-bed gasifier with a slipstream hot gas cleanup system. Phase 2 is to increase the feed rate to 1 metric tph (1.1 tph) and uprate the gasifier to operate at 10 atmospheres (981 kPa) with a full scale, dry, hot gas cleanup system capable of being integrated with a 1 MWe rated gas turbine engine. Construction of Phase 2 will begin in the summer of 1996. The third project is a demonstration of a biomass-fueled power plant. The system operates with an open Brayton cycle using a fluidized-bed combustor and heat exchangers to heat compressed air and drive a turbine/generator set. The system discharges clean hot air which can be used for cogeneration applications. The system will use lumber wastes as fuel and will produce approximately 200 kWe. Fabrication is underway, and the demonstration is scheduled to accumulate 8000 hours of operation over 1 to 2 years.

  7. Laboratory Directed Research and Development annual report, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  8. Implementation of the FAA research and development electromagnetic database

    SciTech Connect (OSTI)

    McDowall, R.L. (Computer Resource Management, Inc., Atlantic City, NJ (USA)); Grush, D.J.; Cook, D.M. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Glynn, M.S. (Federal Aviation Administration, Atlantic City, NJ (USA). Technical Center)

    1991-01-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) has been assisting the Federal Aviation Administration (FAA) in developing a database of information about lightning. The FAA Research and Development Electromagnetic Database (FRED) will ultimately contain data from a variety of airborne and groundbased lightning research projects. This paper contains an outline of the data currently available in FRED. It also lists the data sources which the FAA intends to incorporate into FRED. In addition, it describes how the researcher may access and use the FRED menu system. 2 refs., 12 figs.

  9. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01T23:59:59.000Z

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

  10. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    SciTech Connect (OSTI)

    Backus, P.M.; Benson, C.E.; Gilbert, V.P.

    1994-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

  11. DOE Issues RFP for West Valley Demonstration Project Probabilistic...

    Office of Environmental Management (EM)

    that will provide support to the DOE, West Valley Demonstration Project, and the New York State Energy Research and Development Authority in performing a probabilistic analysis...

  12. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF NEW TESTING PROTOCOLS FOR MEASURING THE PERFORMANCE OF SHOWERHEADS MARCH 2010 CEC-500-2013-130 Prepared for: California Energy: California Energy Commission Brad Meister Contract Manager Virginia Lew Office Manager Energy Efficiency

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF STEAM for: California Energy Commission Prepared by: University of California #12; PREPARED BY: Primary-781-5791 951-781-5790 (fax) Contract Number: 500-09-008 Prepared for: California Energy Commission David

  14. University Venture Development Fund Transforming today's research and development into tomorrow's businesses

    E-Print Network [OSTI]

    Bertini, Robert L.

    University Venture Development Fund Transforming today's research and development into tomorrow: University Venture Development Fund P.O. Box 243 Portland, OR 97207 Phone (503) 725-4911 It is highly this process. Thank you for supporting the University Venture Development Fund! PDX_DOCS:401207.2 [33137

  15. UA researchers develop develop a device for moving industrial vehicles without drivers

    E-Print Network [OSTI]

    Escolano, Francisco

    in settings with extreme human conditions (cold storage, waste management , etc....) The device is availableUA researchers develop develop a device for moving industrial vehicles without drivers Researchers Localization And Mapping). This technology is applicable to any business or industrial environment where

  16. Laboratory-directed research and development: FY 1996 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J. [comps.

    1997-05-01T23:59:59.000Z

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  17. Concept for the Intermountain Center for Mining Research and Development

    SciTech Connect (OSTI)

    Not Available

    2005-06-01T23:59:59.000Z

    The Intermountain Center for Mining Research and Development (ICMRD) was established with the Idaho National Laboratory (INL) as the cornerstone, and with regional universities, mining schools, and the Western mining industry as full members. In aggregate, the members provide the strong mining research and development capabilities and knowledge that are essential to the success of such a research center. The ICMRD is an organization that identifies technical needs, partially funds, and provides project management for research projects. The ICMRD will primarily serve the nine Intermountain States, but will not restrict other regions, research organizations, or academic institutions from membership. The ICMRD's nine primary states are: Idaho, Montana, Wyoming, Utah, Colorado, Nevada, Arizona, Alaska, and New Mexico. The business and project management functions of the ICMRD will be located at INL. Research projects may be performed by INL, one of the member research organizations, academic institutions, mining companies/suppliers, or preferably, by a partnership of several of these institutions. Teaming among members will be essential in providing quality R&D. The ICMRD will accomplish its research goals by creating partnerships between the research organizations, federal and state agencies, and the mining industry. The ICMRD will provide project management, technical and financial support, and technology transfer opportunities. The ICMRD, through its associated academic partners, will provide a base for development and testing of mining, metallurgical, and environmental technologies in the laboratory through pilot-scale environments. Through these partnerships, the ICMRD will provide a vehicle to achieve its objectives of developing innovative mining technologies, enhancing the capabilities of the regional mining schools and universities, and improving the global competitiveness of the U.S. mining industry.

  18. Laboratory Directed Research and Development Program Assessment for FY 2008

    SciTech Connect (OSTI)

    Looney,J.P.; Fox, K.J.

    2008-03-31T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within existing mission areas, as well as to develop new research mission areas in response to DOE and National needs. As the largest expense in BNL's LDRD program is the support graduate students, post-docs, and young scientists, LDRD provides base for continually refreshing the research staff as well as the education and training of the next generation of scientists. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

  19. Laboratory directed research and development program FY 1997

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  20. Cast Metal Coalition Research and Development Closeout Report

    SciTech Connect (OSTI)

    Allen, D.

    2000-08-01T23:59:59.000Z

    The Cast Metal Coalition, composed of more than 22 research providers and universities and 149 industrial partners, has completed a four-year research and development partnership with the Department of Energy. This report provides brief summaries of the 29 projects performed by the Coalition. These projects generated valuable information in such aspects of the metals industry as process prediction technologies, quality control, improved alloys, product machinability, and casting process improvements.

  1. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  2. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  3. Human dimensions in cyber operations research and development priorities.

    SciTech Connect (OSTI)

    Forsythe, James Chris; Silva, Austin Ray; Stevens-Adams, Susan Marie; Bradshaw, Jeffrey [Institute for Human and Machine Cognition

    2012-11-01T23:59:59.000Z

    Within cyber security, the human element represents one of the greatest untapped opportunities for increasing the effectiveness of network defenses. However, there has been little research to understand the human dimension in cyber operations. To better understand the needs and priorities for research and development to address these issues, a workshop was conducted August 28-29, 2012 in Washington DC. A synthesis was developed that captured the key issues and associated research questions. Research and development needs were identified that fell into three parallel paths: (1) human factors analysis and scientific studies to establish foundational knowledge concerning factors underlying the performance of cyber defenders; (2) development of models that capture key processes that mediate interactions between defenders, users, adversaries and the public; and (3) development of a multi-purpose test environment for conducting controlled experiments that enables systems and human performance measurement. These research and development investments would transform cyber operations from an art to a science, enabling systems solutions to be engineered to address a range of situations. Organizations would be able to move beyond the current state where key decisions (e.g. personnel assignment) are made on a largely ad hoc basis to a state in which there exist institutionalized processes for assuring the right people are doing the right jobs in the right way. These developments lay the groundwork for emergence of a professional class of cyber defenders with defined roles and career progressions, with higher levels of personnel commitment and retention. Finally, the operational impact would be evident in improved performance, accompanied by a shift to a more proactive response in which defenders have the capacity to exert greater control over the cyber battlespace.

  4. Laboratory directed research and development annual report. Fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  5. GATEWAY Demonstrations

    Broader source: Energy.gov [DOE]

    DOE GATEWAY demonstrations showcase high-performance LED products for general illumination in a variety of commercial and residential applications. Demonstration results provide real-world experience and data on state-of-the-art solid-state lighting (SSL) product performance and cost effectiveness. These results connect DOE technology procurement efforts with large-volume purchasers and provide buyers with reliable data on product performance.

  6. DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartmentContaminated Ground WaterNSTB Researchers

  7. Digital Music Research UK Roadmap www.dmrn.org/roadmap Developed by the Digital Music Research Network 1

    E-Print Network [OSTI]

    Miranda, Eduardo Reck

    Digital Music Research ≠ UK Roadmap www.dmrn.org/roadmap Developed by the Digital Music Research ≠ UK Roadmap www.dmrn.org/roadmap Developed by the Digital Music Research Network 2 includes weightings are. Neither is it #12;Digital Music Research ≠ UK Roadmap www.dmrn.org/roadmap Developed

  8. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect (OSTI)

    Newman,L.

    2007-12-31T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SMART GRID INFORMATION ASSURANCE report, Smart Grid Information Assurance and Security Technology Assessment was prepared on the following RD&D program areas: ∑ Buildings EndUse Energy Efficiency ∑ Energy Innovations Small Grants

  10. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Integrated CHP Company, California Air Resource Board, U.S. Department of Energy, Integrated CHP Systems Corporation Integrated CHP Using UltraLow NOx Supplemental Firing is the final report for the Integrated CHP Using Ultra

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT RWE SCHOTT SOLAR Energy Commission Prepared by: RWE Schott Solar, Inc #12; PREPARED BY: Primary Author(s): Miles C on the following RD&D program areas: ∑ Buildings EndUse Energy Efficiency ∑ Energy Innovations Small Grants

  12. Laboratory directed research and development program, FY 1996

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  13. Area of cooperation includes: Joint research and development on

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Technologies August 2, 2006: HCL Technologies Ltd (HCL), India's leading global IT services company, has signed projects that are using this technology currently such as BioGrid in Japan, National Grid Service in UKArea of cooperation includes: · Joint research and development on Grid computing technologies

  14. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    directly from the sun because harvesting solar energy using photovoltaic technologiesEnergy Research and Development Division FINAL PROJECT REPORT REPORT ON ROUTE TO SCALEUP OF POLYMER Energy Commission Prepared by: California Solar Energy Collaborative(CSEC) University of California Davis

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT RANKING AND PRIORITIZING THE DEPLOYMENT OF COMMUNITY- SCALE ENERGY MEASURES BASED ON THEIR INDIRECT EFFECTS IN CALIFORNIA'S CLIMATE ZONES MARCH 2013 CEC-500-2013-122 ALTOSTRATUS Prepared for: California Energy Commission Prepared by

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ADVANCED POWER ELECTRONICS INTERFACE-2014-006 Prepared for: California Energy Commission Prepared by: National Renewable Energy Laboratory #12;PREPARED Harrison National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Contract Number

  17. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY REDUCTION IN MEMBRANE-2013-132 Prepared for: California Energy Commission Prepared by: University of California, Irvine and Kennedy Main Street, Suite 140 Irvine, CA 92614 Contract Number: MRA-02-082 Prepared for: California Energy

  18. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LOW≠COST, ENERGY≠SAVING, SOLID STATE SMART WINDOWS AUGUST 2012 CEC5002013026 Prepared for: California Energy Commission Number: PIR-10-049 Prepared for: California Energy Commission Dustin Davis Contract Manager Virginia Lew

  19. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT STANDARDS, RULES, AND ISSUES FOR INTEGRATION OF RENEWABLE RESOURCES SEPTEMBER 2010 CEC-500-2013-149 Prepared for: California Energy Commission for: California Energy Commission Steve Ghadiri Contract Manager Fernando Pina Office Manager Energy

  20. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT TECHNICAL BRIEFS: California Energy Commission Prepared by: E SOURCE #12; PREPARED BY: Primary Author(s): Ira Krepchin-03-005 Prepared for: California Energy Commission David Weightman Contract Manager Virginia Lew Office Manager

  1. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PILOT PHASE OF A FIELD STUDY TO DETERMINE WASTE OF WATER AND ENERGY IN RESIDENTIAL HOT WATER DISTRIBUTION SYSTEMS JULY 2009 CEC-500-2013-135 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National Laboratory #12;PREPARED

  2. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT EFFICIENT HEAT AND POWER SYSTEMS FOR CHP APPLICATIONS MARCH 2012 CEC-500-2014-002 Prepared for: California Energy Commission Prepared by-003 Prepared for: California Energy Commission Mike Kane Contract Manager Linda Spiegel Office Manager Energy

  3. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DRILLING AND TESTING5002013083AP Prepared for: California Energy Commission Prepared by: Layman Energy Associates, Inc. #12; PREPARED BY: Primary Author(s): Erik B. Layman Layman Energy Associates, Inc. 1584 Cordova Drive San Luis

  4. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DRILLING AND TESTING Prepared for: California Energy Commission Prepared by: Layman Energy Associates, Inc. #12; PREPARED BY: Primary Author(s): Erik B. Layman Layman Energy Associates, Inc. 1584 Cordova Drive San Luis

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LIFECYCLE ENERGY: California Energy Commission Prepared by: University of California, Berkeley Department of Civil-1712 510-642-7300 Contract Number: 500-02-004 Work Authorization MR-048 Prepared for: California Energy

  6. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT TIME OF USE WATER METER IMPACTS · Transportation Time-of-Use Water Meter Impacts on Customer Water Use is the final report for the Time of Use This report was prepared as the result of work sponsored by the California Energy Commission. It does

  7. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT COMPENSATION CEC5002013114 Prepared for: California Energy Commission Prepared by: Stratus Consulting Inc. #12-04-025 Prepared for: California Energy Commission Joe O'Hagan Contract Manager Linda Spiegel Office Manager Energy

  8. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT THE ICHTHYOPLANKTON OF KING HARBOR, REDONDO BEACH, CALIFORNIA 19742006 APRIL 2008 CEC5002013053 Prepared for: California Energy Angeles, CA 90041 Contract Number: 500-04-025 Prepared for: California Energy Commission Joseph O

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ADVANCED CHARACTERIZATION OF WIND RESOURCES IN SELECTED FOCUS AREAS OF CALIFORNIA Prepared for: California Energy Commission Prepared by: AWS-06-024 Prepared for: California Energy Commission Mike Kane Contract Manager Linda Spiegel Office Manager Energy

  10. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT REDUCTIONS IN URBAN OUTDOOR WATER USE-2013-152 Prepared for: California Energy Commission Prepared by: University of California #12;PREPARED BY: Primary of California, Los Angeles Contract Number: PIR-08-005 Prepared for: California Energy Commission Joseph O

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT CALIFORNIA TRANSMISSION CONGESTION ASSESSMENT DECEMBER 2007 CEC-500-2011-007 Prepared for: California Energy Commission Prepared by: Electric Pasadena, CA Contract Number: BOA-142 Prepared for: California Energy Commission Jamie Patterson Contract

  12. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT AN ECONOMIC ANALYSIS OF SIX DAIRY DIGESTER SYSTEMS IN CALIFORNIA Volume 2 MARCH 2013 CEC-500-2014-001-V2 Prepared for: California Energy: California Energy Commission Abolghasem Edalati Contract Manager Linda Spiegel Office Manager Energy

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LIFE-CYCLE ASSESSMENT AND URBAN SUSTAINABILITY OCTOBER 2010 CEC-500-2013-129 Prepared for: California Energy Commission Prepared by: University for: California Energy Commission Erik Stokes Contract Manager Linda Spiegel Office Manager Energy

  14. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT COMMERCE ENERGY BIOGAS/PV MINIGRID in California APRIL 2012 CEC-500-2013-127 Prepared for: California Energy Commission Prepared by: CH2MHill #12 Number: 500-00-036 Prepared for: California Energy Commission Zhiqin Zhang Contract Manager Linda Spiegel

  15. Sustainability Research & Development Consortium for DoD Installations

    E-Print Network [OSTI]

    Sustainability Research & Development Consortium for DoD Installations Warner College of Natural the growing need for sustainability planning, imple- mentation, and facilitation on United States military bases. CEMML is already a proven global provider of re- search and sustainable management of natural

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT RADIANT HEATING AND COOLING AND MEASURED HOME PERFORMANCE FOR CALIFORNIA HOMES JUNE 2013 CEC-500-2013-153 Prepared for: California Energy-Use Energy Efficiency ∑ Renewable Energy Technologies ∑ Transportation Radiant Heating and Cooling

  17. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Edison Taylor Engineering The New York Times TRACO University of California, Berkeley UniversityEnergy Research and Development Division FINAL PROJECT REPORT HIGH PERFORMANCE BUILDING FA√?ADE SOLUTIONS NOVEMBER 2009 CEC-500-2012-049 Prepared for: California Energy Commission Prepared by: Lawrence

  18. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT NATURAL GAS OPTIMIZED ADVANCED HEAVY ∑ Renewable Energy Technologies ∑ Transportation Natural Gas-optimized Advanced Heavy-duty Engine is the final&R 412 88, Gothenburg, Sweden Telephone: +46-31-3220998 Mobile: +46-7390-20998 Contract Number: PIR-08

  19. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT NOVEMBER 2010 CEC5002013048 Prepared for: California Energy Commission Prepared by: California Biomass Collaborative BIOFUELS as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views

  20. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    -Use Energy Efficiency ∑ Renewable Energy Technologies ∑ Transportation The Value of Natural Gas StorageEnergy Research and Development Division FINAL PROJECT REPORT THE VALUE OF NATURAL GAS STORAGE AND THE IMPACT OF RENEWABLE GENERATION ON CALIFORNIA'S NATURAL GAS INFRASTRUCTURE DECEMBER 2009 CEC-500

  1. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    ∑ Renewable Energy Technologies ∑ Transportation Production of Substituted Natural Gas from the Wet Organic Renewable natural gas has been identified by the California Energy Commission as an important alternativeEnergy Research and Development Division FINAL PROJECT REPORT Production of Substituted Natural

  2. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    that use natural gas water heaters could see their annual natural gas water heating consumption drop by 35Energy Research and Development Division FINAL PROJECT REPORT WATER HEATING DESIGN GUIDE DECEMBER · Environmentally Preferred Advanced Generation · Industrial/Agricultural/Water End-Use Energy Efficiency

  3. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect (OSTI)

    Looney,J.P.; Fox, K.

    2009-04-01T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and d

  4. The Cooperative Research and Development Agreement A Cooperative Research and Development Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafetyTed5, 2015Computing forCooperative Research

  5. Tomographic data developed using the ABEM RAMAC borehole radar system at the Mixed Waste Landfill Integrated Demonstration

    SciTech Connect (OSTI)

    MacLeod, G.A.; Barker, D.L.; Molnar, S. [Raytheon Services Nevada, Las Vegas, NV (United States)

    1994-02-18T23:59:59.000Z

    The ABEM RAMAC borehole radar system was run as part of the Mixed Waste Landfill Integrated Demonstration for Sandia National Laboratories at Kirtland AFB. Tomograms were created between three test boreholes-UCAP No. 1, UCAP No. 2, and UCAP No. 3. These tomograms clearly delineate areas of amplitude attenuation and residual time of arrival or slowness differences. Plots for slowness were made using both the maximum and minimum of the first arrival pulse. The data demonstrates that the ABEM RAMAC 60-MHz pulse sampling radar system can be used to collect usable data in a highly conductive environment.

  6. Status Report on the Development of Research Campaigns

    SciTech Connect (OSTI)

    Baer, Donald R.; Baker, Scott E.; Washton, Nancy M.; Linggi, Bryan E.

    2013-06-30T23:59:59.000Z

    Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energyís (DOEís) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specific scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns.

  7. Laboratory Directed Research and Development Program FY2004

    SciTech Connect (OSTI)

    Hansen, Todd C.

    2005-03-22T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

  8. Intellectual Property Provisions (GLB-115) Grant Research, Development, or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergy IntegratedIntellectualResearch,Demonstration

  9. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  10. Laboratory Directed Research and Development FY 1998 Progress Report

    SciTech Connect (OSTI)

    John Vigil; Kyle Wheeler

    1999-04-01T23:59:59.000Z

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  11. Laboratory directed research and development: FY 1997 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J. [comps.

    1998-05-01T23:59:59.000Z

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  12. A Technique for Demonstrating Safety and Correctness of Program Translators

    E-Print Network [OSTI]

    A Technique for Demonstrating Safety and Correctness of Program Translators : Strategy and Case Research Institute, Republic of Korea 2014-11-05 #12;2 Contents ∑ 1. Introduction ∑ 2. The Demonstration Strategy ≠ 1. Safety demonstration ≠ 2. Correctness demonstration ∑ 3. The Development of Supporting Tools

  13. Laboratory Directed Research and Development Program Assessment for FY 2007

    SciTech Connect (OSTI)

    Newman,L.; Fox, K.J.

    2007-12-31T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

  14. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    SciTech Connect (OSTI)

    FOX,K.J.

    2006-01-01T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators and Self Assessment.

  15. Idaho National Laboratory Directed Research and Development FY-2009

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research focus at the INL. These sections begin with the DOE-NE Nuclear Science and Technology mission support area,

  16. 1995 Laboratory-Directed Research and Development Annual report

    SciTech Connect (OSTI)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31T23:59:59.000Z

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  17. 1996 Laboratory directed research and development annual report

    SciTech Connect (OSTI)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01T23:59:59.000Z

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  18. Energy Efficient Community Development in California: Chula Vista Research Project

    SciTech Connect (OSTI)

    Gas Technology Institute

    2009-03-31T23:59:59.000Z

    In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, the central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.

  19. Vehicle Technologies Office Merit Review 2014: Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and...

  20. Laboratory Directed Research and Development 1998 Annual Report

    SciTech Connect (OSTI)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14T23:59:59.000Z

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  1. RESEARCH ARTICLE Developing and fully developed turbulent flow in ribbed channels

    E-Print Network [OSTI]

    Thole, Karen A.

    RESEARCH ARTICLE Developing and fully developed turbulent flow in ribbed channels Nicholas D features, such as ribs, are often placed along the walls of a channel to increase the convective surface- dence on the Reynolds number. A staggered rib-roughened channel study was performed using time

  2. Laboratory Directed Research and Development Program. Annual report

    SciTech Connect (OSTI)

    Ogeka, G.J.

    1991-12-01T23:59:59.000Z

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  3. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  4. Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative

    SciTech Connect (OSTI)

    Hively, LM

    2003-02-13T23:59:59.000Z

    NERI Project No.2000-0109 began in August 2000 and has three tasks. The first project year addressed Task 1, namely development of nonlinear prognostication for critical equipment in nuclear power facilities. That work is described in the first year's annual report (ORNLTM-2001/195). The current (second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2-3. This report describes the work for the second project year, spanning August 2001 through August 2002, including status of the tasks, issues and concerns, cost performance, and status summary of tasks. The objective of the second project year's work is a compelling demonstration of the nonlinear prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus (DOE/NE-20) is that it would be preferable to show forewarning of failure for different kinds of nuclear-grade equipment, as opposed to many different failure modes from one piece of equipment. Long-term monitoring of operational utility equipment is possible in principle, but is not practically feasible for the following reason. Time and funding constraints for this project do not allow us to monitor the many machines (thousands) that will be necessary to obtain even a few failure sequences, due to low failure rates (<10{sup -3}/year) in the operational environment. Moreover, the ONLY way to guarantee a controlled failure sequence is to seed progressively larger faults in the equipment or to overload the equipment for accelerated tests. Both of these approaches are infeasible for operational utility machinery, but are straight-forward in a test environment. Our subcontractor has provided such test sequences. Thus, we have revised Tasks 2.1-2.4 to analyze archival test data from such tests. The second phase of our work involves validation of the nonlinear prognostication over the second and third years of the proposed work. Recognizing the inherent limitations outlined in the previous paragraph, Dr. Feltus urged Oak Ridge National Laboratory (ORNL) to contact other researchers for additional data from other test equipment. Consequently, we have revised the work plan for Tasks 2.1-2.2, with corresponding changes to the work plan as shown in the Status Summary of NERI Tasks. The revised tasks are as follows: Task 2.1--ORNL will obtain test data from a subcontractor and other researchers for various test equipment. This task includes development of a test plan or a description of the historical testing, as appropriate: test facility, equipment to be tested, choice of failure mode(s), testing protocol, data acquisition equipment, and resulting data from the test sequence. ORNL will analyze this data for quality, and subsequently via the nonlinear paradigm for prognostication. Task 2.2--ORNL will evaluate the prognostication capability of the nonlinear paradigm. The comparison metrics for reliability of the predictions will include the true positives, true negatives, and the forewarning times. Task 2.3--ORNL will improve the nonlinear paradigm as appropriate, in accord with the results of Tasks 2.1-2.2, to maximize the rate of true positive and true negative indications of failure. Maximal forewarning time is also highly desirable. Task 2.4--ORNL will develop advanced algorithms for the phase-space distribution function (PS-DF) pattern change recognition, based on the results of Task 2.3. This implementation will provide a capability for automated prognostication, as part of the maintenance decision-making. Appendix A provides a detailed description of the analysis methods, which include conventional statistics, traditional nonlinear measures, and ORNL's patented nonlinear PSDM. The body of this report focuses on results of this analysis.

  5. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    SciTech Connect (OSTI)

    Los Alamos National Laboratory

    2001-05-01T23:59:59.000Z

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  6. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect (OSTI)

    Hansen (Ed.), Todd

    2007-03-08T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  7. Laboratory Directed Research and Development annual report, fiscal year 1997

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  8. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    SciTech Connect (OSTI)

    Ribeiro, V. A. R. M. [Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Russo, P. [EU Universe Awareness, Leiden Observatory, Leiden University, PO 9513 Leiden, 2300 RA (Netherlands); CŠrdenas-AvendaŮo, A., E-mail: vribeiro@ast.uct.ac.za, E-mail: russo@strw.leidenuniv.nl [Departamento de FŪsica, Universidad Nacional de Colombia, Carrera 45 No 26-85, Edificio Gutierrťz, BogotŠ, DC (Colombia)

    2013-12-01T23:59:59.000Z

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  9. Laboratory directed research and development program FY 1999

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2000-03-08T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  10. Laboratory Directed Research and Development Program FY 2001

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2002-03-15T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  11. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect (OSTI)

    Smith, S.A.; Moore, N.L.

    1987-02-01T23:59:59.000Z

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  12. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01T23:59:59.000Z

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  13. FY 1999 Laboratory Directed Research and Development annual report

    SciTech Connect (OSTI)

    PJ Hughes

    2000-06-13T23:59:59.000Z

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  14. Non-US electrodynamic launchers research and development

    SciTech Connect (OSTI)

    Parker, J.V.; Batteh, J.H.; Greig, J.R.; Keefer, D.; McNab, I.R.; Zabar, Z.

    1994-11-01T23:59:59.000Z

    Electrodynamic launcher research and development work of scientists outside the United States is analyzed and assessed by six internationally recognized US experts in the field of electromagnetic and electrothermal launchers. The assessment covers five broad technology areas: (1) Experimental railguns; (2) Railgun theory and design; (3) Induction launchers; (4) Electrothermal guns; (5) Energy storage and power supplies. The overall conclusion is that non-US work on electrodynamic launchers is maturing rapidly after a relatively late start in many countries. No foreign program challenges the US efforts in scope, but it is evident that the United States may be surpassed in some technologies within the next few years. Until recently, published Russian work focused on hypervelocity for research purposes. Within the last two years, large facilities have been described where military-oriented development has been underway since the mid-1980s. Financial support for these large facilities appears to have collapsed, leaving no effective effort to develop practical launchers for military or civilian applications. Electrodynamic launcher research in Europe is making rapid progress by focusing on a single application, tactical launchers for the military. Four major laboratories, in Britain, France, Germany, and the Netherlands, are working on this problem. Though narrower in scope than the US effort, the European work enjoys a continuity of support that has accelerated its progress. The next decade will see the deployment of electrodynamic launcher technology, probably in the form of an electrothermal-chemical upgrade for an existing gun system. The time scale for deployment of electromagnetic launchers is entirely dependent on the level of research-and-development effort. If resources remain limited, the advantage will lie with cooperative efforts that have reasonably stable funding such as the present French-German program.

  15. Infrastructure, human resources, international cooperation, research and development, environment and health, societal issues, industrial innovation, Infrastructure, human resources, international cooperation, research and development, environment and hea

    E-Print Network [OSTI]

    ZŁrich, Universitšt

    Infrastructure, human resources, international cooperation, research and development, environment and health, societal issues, industrial innovation, Infrastructure, human resources, international Infrastructure, human resources, international cooperation, research and development, environment and health

  16. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    editor, Todd C Hansen

    2009-02-23T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

  17. FY2007 Laboratory Directed Research and Development Annual Report

    SciTech Connect (OSTI)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20T23:59:59.000Z

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  18. Laboratory Directed Research and Development Program FY2011

    SciTech Connect (OSTI)

    none, none

    2012-04-27T23:59:59.000Z

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  19. Digital Music Research UK Roadmap www.dmrn.org/roadmap Developed by the Digital Music Research Network 1

    E-Print Network [OSTI]

    Miranda, Eduardo Reck

    Digital Music Research ≠ UK Roadmap www.dmrn.org/roadmap Developed by the Digital Music Research the development of knowledge and the development of the field. The DMRN Roadmap project made two surveys recognition of audio; machine recognition of music) #12;Digital Music Research ≠ UK Roadmap www.dmrn.org/roadmap

  20. DEVELOPMENT AND DEMONSTRATION OF A SUPERCRITICAL HELIUM-COOLED CRYOGENIC VISCOUS COMPRESSOR PROTOTYPE FOR THE ITER VACUUM SYSTEM

    SciTech Connect (OSTI)

    Duckworth, Robert C [ORNL; Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Combs, Stephen Kirk [ORNL; Rasmussen, David A [ORNL; Edgemon, Timothy D [ORNL; Hechler, Michael P [ORNL; Barbier, Charlotte N [ORNL; Pearce, R.J.H. [ITER Organization, Cadarache, France; Kersevan, R. [ITER Organization, Cadarache, France; Dremel, M. [ITER Organization, Cadarache, France; Boissin, Jean Claude [Consultant

    2012-01-01T23:59:59.000Z

    As part of the vacuum system for the ITER fusion project, a cryogenic viscouscompressor (CVC) is being developed to collect hydrogenic exhaust gases from the toruscryopumps and compress them to a high enough pressure by regeneration for pumping tothe tritium reprocessing facility. Helium impurities that are a byproduct of the fusionreactions pass through the CVC and are pumped by conventional vacuum pumps andexhausted to the atmosphere. Before the development of a full-scale CVC, a representative,small-scale test prototype was designed, fabricated, and tested. With cooling provided bycold helium gas, hydrogen gas was introduced into the central column of the test prototypepump at flow rates between 0.001 g/s and 0.008 g/s. Based on the temperatures and flowrates of the cold helium gas, different percentages of hydrogen gas were frozen to the column surface wall as the hydrogen gas flow rate increased. Results from the measured temperatures and pressures will form a benchmark that will be used to judge future heattransfer enhancements to the prototype CVC and to develop a computational fluid dynamicmodel that will help develop design parameters for the full-scale CVC.

  1. Program management plan for development, demonstration, testing, and evaluation efforts associated with Oak Ridge Reservation`s Land Disposal Restrictions Federal Facility Compliance Agreement

    SciTech Connect (OSTI)

    Conley, T.B.

    1994-04-01T23:59:59.000Z

    This program management plan covers the development, demonstration, testing, and evaluation efforts necessary to identify treatment methods for all the waste listed in Appendix B of the ORR`s LDR/FFCA as well as any new wastes which meet Appendix B criteria. To successfully identify a treatment method, at least a proof-of-principle level of understanding must be obtained: that is, the candidate processes must be demonstrated as effective in treating the wastes to the LDR; however, an optimized process is not required. Where applicable and deemed necessary and where the budgets will support them, pilot-scale demonstrations will be pursued. The overall strategy being adopted in this program will be composed of the following activities: Scoping of the study; characterization; development and screening of alternatives; treatability investigations; and detailed analysis of alternatives.

  2. Separations and Waste Forms Research and Development: FY 2012 Accomplishments Report

    SciTech Connect (OSTI)

    Not Listed

    2013-02-01T23:59:59.000Z

    This report contains FY 2012 accomplishments for the Separations and Waste Form Research and Development Project.

  3. EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

    Broader source: Energy.gov [DOE]

    Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

  4. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  5. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    SciTech Connect (OSTI)

    FOX,K.J.

    2002-12-31T23:59:59.000Z

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2002. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All Fy 2002 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2003. The BNL LDRD budget authority by DOE in FY 2002 was $7 million. The actual allocation totaled $6.7 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

  6. HTGR Dust Safety Issues and Needs for Research and Development

    SciTech Connect (OSTI)

    Paul W. Humrickhouse

    2011-06-01T23:59:59.000Z

    This report presents a summary of high temperature gas-cooled reactor dust safety issues. It draws upon a literature review and the proceedings of the Very High Temperature Reactor Dust Assessment Meeting held in Rockville, MD in March 2011 to identify and prioritize the phenomena and issues that characterize the effect of carbonaceous dust on high temperature reactor safety. It reflects the work and input of approximately 40 participants from the U.S. Department of Energy and its National Labs, the U.S. Nuclear Regulatory Commission, industry, academia, and international nuclear research organizations on the topics of dust generation and characterization, transport, fission product interactions, and chemical reactions. The meeting was organized by the Idaho National Laboratory under the auspices of the Next Generation Nuclear Plant Project, with support from the U.S. Nuclear Regulatory Commission. Information gleaned from the report and related meetings will be used to enhance the fuel, graphite, and methods technical program plans that guide research and development under the Next Generation Nuclear Plant Project. Based on meeting discussions and presentations, major research and development needs include: generating adsorption isotherms for fission products that display an affinity for dust, investigating the formation and properties of carbonaceous crust on the inside of high temperature reactor coolant pipes, and confirming the predominant source of dust as abrasion between fuel spheres and the fuel handling system.

  7. Laboratory Directed Research and Development Program FY98

    SciTech Connect (OSTI)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  8. Development and research of a coaxial microwave plasma thruster

    SciTech Connect (OSTI)

    Yang Juan; Xu Yingqiao; Tang Jinlan; Mao Genwang; Yang Tielian [College of Astronautics, Northwestern Polytechnic University, Xi'an 710072 (China); Tan Xiaoquen [School of Mechatronics, Northwestern Polytechnic University, Xi'an 710072 (China)

    2008-08-15T23:59:59.000Z

    An overview of the research on a coaxial microwave plasma thruster at Northwestern Polytechnic University is presented. Emphasis is put on the development and research on key components of the thruster system, a microthrust balance, plasma plume diagnostics, and a numerical simulation of the plasma flow field inside the thruster cavity. The developed thruster cavity is chosen from a coaxial resonant cavity with concentrated capacitance, which can operate well in atmosphere and vacuum conditions. The development of a microwave source shows that a magnetron powered by a switch power supply has advantages in the power level and efficiency, but a solid state microwave source synthesized from the arsenide field effect transistor is superior in weight and volume. Through elimination of the effect of large gravity and resistance force induced by a gas pipe line and a microwave transmitting line on the microthrust, 15 mN and 340 s in the performance of the microwave plasma thruster at 70 W and with helium gas are measured. Diagnosing experiment shows that the plasma plume density is in the range of (1-7.2)x10{sup 16}/m{sup 3}. Numerical simulation of the plasma flow field inside the coaxial thruster cavity shows that there is a good match between the microwave power and gas flow rate.

  9. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction

    SciTech Connect (OSTI)

    Ostowari, Ken; Nosson, Ali

    2000-09-30T23:59:59.000Z

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

  10. Recent Progress in Redox Flow Battery Research and Development

    SciTech Connect (OSTI)

    Wang, Wei; Luo, Qingtao; Li, Bin; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2013-02-20T23:59:59.000Z

    With the increase need to seamlessly integrate the renewable energy with the current grid which itself is evolving into a more intelligent, efficient, and capable electrical power system, it is envisioned that the energy storage system will play a more prominent role in bridging the gap between the current technology and a clean sustainable future in grid reliability and utilization. Redox flow battery technology is leading the way in this perspective in providing a well balanced approach for current challenges. Recent progress in the research and development of redox flow battery technology is reviewed here with a focus on new chemistries and systems.

  11. Research and Development Report, Fiscial Year 1989-1990.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-08-01T23:59:59.000Z

    Since the 1940s, the Bonneville Power Administrative (BPA), has sought to advance an efficient system to provide the Pacific Northwest region with safe, reliable, and cost-effective electrical power. Research and development (R D) activities support that mission. Each biennium, R D managers issue a digest report of the various programs and activities in each of the technological arenas. The report covers a few projects, considered as yielding particularly significant results, as spotlights. Others are described less fully; in some cases with a simple annotation. The report's divisions correspond to the major categories of R D projects: fish and wildlife, energy resources, and transmission technology. 18 figs., 4 tabs.

  12. 1997 Laboratory directed research and development. Annual report

    SciTech Connect (OSTI)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31T23:59:59.000Z

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  13. A summary of high-temperature electronics research and development

    SciTech Connect (OSTI)

    Thome, F.V.; King, D.B.

    1991-10-18T23:59:59.000Z

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab.

  14. Research and Development Roadmap for Emerging HVAC Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric,RMPipeline FirstSpent NuclearHowResearch & Development

  15. New York State Energy Research and Development Authority, Albany, NY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewState Energy Research and Development

  16. Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.

    SciTech Connect (OSTI)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD; Schutz, Dustin [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD

    2013-11-01T23:59:59.000Z

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  17. FY 2014 Annual Progress Report - Advanced Combustion Engine Research and Development (Book)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  18. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    Liese Dallbauman

    2004-06-30T23:59:59.000Z

    During this reporting period, kickoff and planning meetings were held. Subcontracted experimental and modeling tasks were defined. Efforts to address the numerical stability problems that hamper FEM3A's applicability to low wind speed, stable atmospheric conditions were initiated. A detailed review of FEM3A code and its execution, required for development of an accessible user interface, was also begun. A one-day workshop on LNG safety models has been scheduled for September 2004. The goals of this project are to develop a national focal point for LNG safety research and technical dissemination and to develop the FEM3A dispersion model for application to general scenarios involving dispersion problems with obstacle and terrain features of realistic complexity. During this reporting period, the objectives and scope of the project and its constituent tasks were discussed at a project kickoff meeting in Morgantown. Details of the subcontracted experimental and modeling tasks were further defined at a separate meeting at the University of Arkansas. Researchers at the university have begun to modify the turbulence closure model used in FEM3A to insure numerical stability during simulation of low-wind-speed, stable atmospheric conditions. The university's wind tunnel is being prepared for upcoming experimental studies. GTI has begun a detailed review of the FEM3A code and its execution that will provide guidance during development of an accessible user interface. Plans were made for a one day workshop on LNG safety models that will be held at the end of September and will provide an introduction to currently available and pending software tools.

  19. Development of an Extreme Environment Materials Research Facility at Princeton

    SciTech Connect (OSTI)

    Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

    2010-11-17T23:59:59.000Z

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new materials, and the investigation of repair mechanisms. Effects on materials will be analyzed with in situ beam probes and instrumentation as the target is exposed to radiation, thermal fluxes and other stresses. Photon and monochromatic neutron fluxes, produced using a variable-energy (4-45 MeV) electron linac and the highly asymmetric electron-positron collisions technique used in high-energy physics research, can provide non-destructive, deep-penetrating structural analysis of materials while they are undergoing testing. The same beam lines will also be able to generate neutrons from photonuclear interactions using existing Bremsstrahlung and positrons on target quasi-monochromatic gamma rays. Other diagnostics will include infrared cameras, residual gas analyzer (RGA), and thermocouples; additional diagnostic capability will be added.

  20. The Rise of Federally Funded Research and Development Centers

    SciTech Connect (OSTI)

    DALE,BRUCE C.; MOY,TIMOTHY D.

    2000-09-01T23:59:59.000Z

    Federally funded research and development centers (FFRDCS) area unique class of research and development (R and D) facilities that share aspects of private and public ownership. Some FFRDCS have been praised as national treasures, but FFRDCS have also been the focus of much criticism through the years. This paper traces the history of FFRDCS through four periods: (1) the World War II era, which saw the birth of federal R and D centers that would eventually become FFRDCS; (2) the early Cold War period, which exhibited a proliferation of FFRDCS despite their unclear legislative status and growing tension with an increasingly capable and assertive defense industry, (3) there-evaluation and retrenchment of FFRDCS in the 1960s and early 1970s, which resulted in a dramatic decline in the number of FFRDCS; and (4) the definition and codification of the FFRDC entity in the late 1970s and 1980s, when Congress and the executive branch worked together to formalize regulations to control FFRDCS. The paper concludes with observations on the status of FFRDCS at the end of the twentieth century.