Sample records for research design testing

  1. Design, construction, and testing of the direct absorption receiver panel research experiment

    SciTech Connect (OSTI)

    Chavez, J.M.; Rush, E.E.; Matthews, C.W.; Stomp, J.M.; Imboden, J.; Dunkin, S.

    1990-01-01T23:59:59.000Z

    A panel research experiment (PRE) was designed, built, and tested as a scaled-down model of a direct absorption receiver (DAR). The PRE is a 3-MW{sub t}DAR experiment that will allow flow testing with molten nitrate salt and provide a test bed for DAR testing with actual solar heating. In a solar central receiver system DAR, the heat absorbing fluid (a blackened molten nitrate salt) flows in a thin film down a vertical panel (rather than through tubes as in conventional receiver designs) and absorbs the concentrated solar flux directly. The ability of the flowing salt film to absorb flux directly. The ability of the flowing salt film to absorb the incident solar flux depends on the panel design, hydraulic and thermal fluid flow characteristics, and fluid blackener properties. Testing of the PRE is being conducted to demonstrate the engineering feasibility of the DAR concept. The DAR concept is being investigated because it offers numerous potential performance and economic advantages for production of electricity when compared to other solar receiver designs. The PRE utilized a 1-m wide by 6-m long absorber panel. The salt flow tests are being used to investigate component performance, panel deformations, and fluid stability. Salt flow testing has demonstrated that all the DAR components work as designed and that there are fluid stability issues that need to be addressed. Future solar testing will include steady-state and transient experiments, thermal loss measurements, responses to severe flux and temperature gradients and determination of peak flux capability, and optimized operation. In this paper, we describe the design, construction, and some preliminary flow test results of the Panel Research Experiment. 11 refs., 8 figs., 2 tabs.

  2. Designing and Testing Controls to Mitigate Tower Dynamic Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.; Stol, K. A.

    2007-01-01T23:59:59.000Z

    This report describes NREL's efforts to design, implement, and test advanced controls for maximizing energy extraction and reducing structural dynamic loads in wind turbines.

  3. Design science research toward designing/prototyping a repeatable model for testing location management (LM) algorithms for wireless networking.

    E-Print Network [OSTI]

    Peacock, Christopher

    2012-01-01T23:59:59.000Z

    ?? The purpose of this research effort was to develop a model that provides repeatable Location Management (LM) testing using a network simulation tool, QualNet… (more)

  4. Soil Testing and Research

    E-Print Network [OSTI]

    Ciocan-Fontanine, Ionut

    Soil Testing and Research Analytical Laboratory Copyright © 2014 University of Minnesota Soil Testing and Research Analytical Laboratory Department of Soil, Water and Climate College of Food payable to the University of Minnesota We also accept the following credit cards: Soil Testing

  5. Market Design Test Environments

    SciTech Connect (OSTI)

    Widergren, Steven E.; Sun, Junjie; Tesfatsion, Leigh

    2006-06-18T23:59:59.000Z

    Power industry restructuring continues to evolve at multiple levels of system operations. At the bulk electricity level, several organizations charged with regional system operation are implementing versions of a Wholesale Power Market Platform (WPMP) in response to U.S. Federal Energy Regulatory Commission initiatives. Recently the Energy Policy Act of 2005 and several regional initiatives have been pressing the integration of demand response as a resource for system operations. These policy and regulatory pressures are driving the exploration of new market designs at the wholesale and retail levels. The complex interplay among structural conditions, market protocols, and learning behaviors in relation to short-term and longer-term market performance demand a flexible computational environment where designs can be tested and sensitivities to power system and market rule changes can be explored. This paper presents the use of agent-based computational methods in the study of electricity markets at the wholesale and retail levels, and distinctions in problem formulation between these levels.

  6. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema (OSTI)

    Tappan, Bryce

    2015-01-05T23:59:59.000Z

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  7. On-Chip Test Infrastructure Design for Optimal Multi-Site Testing of System Chips

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    On-Chip Test Infrastructure Design for Optimal Multi-Site Testing of System Chips Sandeep Kumar Goel Erik Jan Marinissen Philips Research Laboratories IC Design ­ Digital Design & Test Prof.Jan.Marinissen¡ @philips.com Abstract Multi-site testing is a popular and effective way to increase test throughput

  8. Designing the Microbial Research Commons

    SciTech Connect (OSTI)

    Uhlir, Paul F

    2011-10-01T23:59:59.000Z

    Recent decades have witnessed an ever-increasing range and volume of digital data. All elements of the pillars of science--whether observation, experiment, or theory and modeling--are being transformed by the continuous cycle of generation, dissemination, and use of factual information. This is even more so in terms of the re-using and re-purposing of digital scientific data beyond the original intent of the data collectors, often with dramatic results. We all know about the potential benefits and impacts of digital data, but we are also aware of the barriers, the challenges in maximizing the access, and use of such data. There is thus a need to think about how a data infrastructure can enhance capabilities for finding, using, and integrating information to accelerate discovery and innovation. How can we best implement an accessible, interoperable digital environment so that the data can be repeatedly used by a wide variety of users in different settings and with different applications? With this objective: to use the microbial communities and microbial data, literature, and the research materials themselves as a test case, the Board on Research Data and Information held an International Symposium on Designing the Microbial Research Commons at the National Academy of Sciences in Washington, DC on 8-9 October 2009. The symposium addressed topics such as models to lower the transaction costs and support access to and use of microbiological materials and digital resources from the perspective of publicly funded research, public-private interactions, and developing country concerns. The overall goal of the symposium was to stimulate more research and implementation of improved legal and institutional models for publicly funded research in microbiology.

  9. A minority research and education information service: Design, develop, pilot test, and implement on-line access for historically black colleges and universities and government agencies

    SciTech Connect (OSTI)

    Rodman, J.A.

    1992-01-01T23:59:59.000Z

    This Annual Status Report describes the design, development and implementation of the Minority On-Line Information Service (MOLIS) project by Federal Information Exchange, Inc. for the period of April 1, 1991 to March 31, 1992. Summary information detailing developments prior to this reporting period will also be included to establish a comprehensive perspective of the project. The goal of the MOLIS project, was to develop, design, pilot test on-line access to current information on minority colleges and universities and federal minority opportunities. Federal Information Exchange, Inc. (FIE), a diversified information services company recognized by researchers and educators as a leader in the field of information delivery services, was awarded a 5 year small business research grant to develop and implement MOLIS. Since April 29, 1991, the inauguration of its on-line service, MOLIS has provided current information on 138 Black and Hispanic colleges and universities -- including faculty and student profiles, financial data, research centers and equipment information, pre-college and education programs, emerging capabilities, enrollment data, administrative personnel data, and current events -- as well as minority opportunities from 8 participating federal agencies.

  10. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you will findTesting

  11. FEDIX on-line information service: Design, develop, test, and implement, an on-line research and education information service

    SciTech Connect (OSTI)

    Rodman, J.A.

    1992-01-01T23:59:59.000Z

    The FEDIX Annual Status Report provides details regarding an on-line information project designed, developed and implemented by Federal Information Exchange, Inc., a diversified information services company. This document details the project design activities, summarizes the developmental phases of the project and describes the implementation activities generated to fulfill the project's objectives. The information contained in this document illustrates FIE's continuing commitment to serve as the link that facilitates the dissemination of federal information to the education community. This report reviews the project accomplishments and describes intended service enhancements.

  12. Usability testing: some current practices and research questions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    applications. Keywords User centered design, user testing, usability testing, empirical user test, users for which the system was design), and favors positive attitudes and responses from the intended users [131 Usability testing: some current practices and research questions J.M. Christian Bastien

  13. Test Factoring: Focusing Test Suites for the Task at Hand Michael D. Ernst, research advisor

    E-Print Network [OSTI]

    Liskov, Barbara

    Test Factoring: Focusing Test Suites for the Task at Hand David Saff Michael D. Ernst, research and Subject Descriptors: D.2.5 (Testing and Debug- ging): Testing tools General Terms: Algorithms, Design, Performance, Verification Keywords: test factoring, mock objects, unit testing 1. Problem: slow, unfocused

  14. Test Factoring: Focusing Test Suites for the Task at Hand Michael D. Ernst, research advisor

    E-Print Network [OSTI]

    Liskov, Barbara

    Test Factoring: Focusing Test Suites for the Task at Hand David Saff Michael D. Ernst, research and Subject Descriptors: D.2.5 (Testing and Debug­ ging): Testing tools General Terms: Algorithms, Design, Performance, Verification Keywords: test factoring, mock objects, unit testing 1. Problem: slow, unfocused

  15. 10 DESIGN SCIENCE RESEARCH FOR BUSINESS PROCESS DESIGN

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    10 DESIGN SCIENCE RESEARCH FOR BUSINESS PROCESS DESIGN: Organizational Transition at Intersport strategies. This paper elaborates on experiences from a business process design effort in an action research for taking the retail chain Intersport into a new organizational state where the new process design

  16. Solar Energy Research Institute Validation Test House Site Handbook

    SciTech Connect (OSTI)

    Burch, J.; Wortman, D.; Judkoff, R.; Hunn, B.

    1985-05-01T23:59:59.000Z

    The Validation Test House at the Solar Energy Research Institute in Golden, Colorado, is being used to collect performance data for analysis/design tool validation as part of the DOE Passive Solar Class A Performance Evaluation Program.

  17. RESEARCH ARTICLE Misuse of null hypothesis significance testing: would

    E-Print Network [OSTI]

    Newman, Michael C.

    RESEARCH ARTICLE Misuse of null hypothesis significance testing: would estimation of positive as a model system. The results indicate that especially the NPV deviates meaningfully between a test design, the p value is the probability of the test results or more extreme results given H0 is true

  18. SMART Wind Turbine Rotor: Design and Field Test | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work...

  19. Insights Gained from Testing Alternate Cell Designs

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; G. K. Housley; M. S. Sohal; D. G. Milobar; Thomas Cable

    2009-09-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900şC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Jülich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is called a bi-electrode supported cell or BSC. The electrodes are made by freeze-casting, a modified tape casting technique which creates the many micro-channels in the YSZ electrode green tape. This report presents results of the INL’s testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  20. MITG test assembly design and fabrication

    SciTech Connect (OSTI)

    Schock, A.

    1983-01-01T23:59:59.000Z

    The design, analysis, and evaluation of the Modular Isotopic Thermoelectric Generator (MITG), described in an earlier paper, led to a program to build and test prototypical, modules of that generator. Each test module duplicates the thermoelectric converters, thermal insulation, housing and radiator fins of a typical generator slice, and simulates its isotope heat source module by means of an electrical heater encased in a prototypical graphite box. Once the approx. 20-watt MITG module has been developed, it can be assembled in appropriate number to form a generator design yielding the desired power output. The present paper describes the design and fabrication of the MITG test assembly, which confirmed the fabricability of the multicouples and interleaved multifoil insulation called for by the design. Test plans, procedures, instrumentation, results, and post-test analyses, as well as revised designs, fabrication procedures, and performance estimates, are described in subsequent papers in these proceedings.

  1. Design and Development of a Vacuum Dehumidification Test Facility

    E-Print Network [OSTI]

    Schaff, Francesco Nima

    2014-08-13T23:59:59.000Z

    Control Variables .............................................................................. 103 xvii Table 23: Tabulated Test Results ................................................................................... 106 Table 24: ARPA-E..., a design operating condition for testing was determined. The Advanced Research Projects Agency-Energy (ARPA-E) specified feed-air inlet and outlet operation conditions that the membrane cooling system was to be evaluated in for comparison...

  2. Decontamination systems information and research program -- Literature review in support of development of standard test protocols and barrier design models for in situ formed barriers project

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    The US Department of Energy is responsible for approximately 3,000 sites in which contaminants such as carbon tetrachloride, trichlorethylene, perchlorethylene, non-volatile and soluble organic and insoluble organics (PCBs and pesticides) are encountered. In specific areas of these sites radioactive contaminants are stored in underground storage tanks which were originally designed and constructed with a 30-year projected life. Many of these tanks are now 10 years beyond the design life and failures have occurred allowing the basic liquids (ph of 8 to 9) to leak into the unconsolidated soils below. Nearly one half of the storage tanks located at the Hanford Washington Reservation are suspected of leaking and contaminating the soils beneath them. The Hanford site is located in a semi-arid climate region with rainfall of less than 6 inches annually, and studies have indicated that very little of this water finds its way to the groundwater to move the water down gradient toward the Columbia River. This provides the government with time to develop a barrier system to prevent further contamination of the groundwater, and to develop and test remediation systems to stabilize or remove the contaminant materials. In parallel to remediation efforts, confinement and containment technologies are needed to retard or prevent the advancement of contamination plumes through the environment until the implementation of remediation technology efforts are completed. This project examines the various confinement and containment technologies and protocols for testing the materials in relation to their function in-situ.

  3. Establishing research directions in sustainable building design

    E-Print Network [OSTI]

    Watson, Andrew

    Establishing research directions in sustainable building design: Koen Steemers The Martin Centre Research Technical Report 5 #12;Final Project Report Establishing research directions in sustainable building design Project ID Code: IT 1.28 Lead Investigator: Dr. Koen Steemers Period: 1st July 2001 to 30th

  4. Prototype spent-fuel canister design, analysis, and test

    SciTech Connect (OSTI)

    Leisher, W.B.; Eakes, R.G.; Duffey, T.A.

    1982-03-01T23:59:59.000Z

    Sandia National Laboratories was asked by the US Energy Research and Development Administration (now US Department of Energy) to design the spent fuel shipping cask system for the Clinch River Breeder Reactor Plant (CRBRP). As a part of this task, a canister which holds liquid sodium and the spent fuel assembly was designed, analyzed, and tested. The canister body survived the regulatory Type-B 9.1-m (30-ft) drop test with no apparent leakage. However, the commercially available metal seal used in this design leaked after the tests. This report describes the design approach, analysis, and prototype canister testing. Recommended work for completing the design, when funding is available, is included.

  5. Design requirements for the supercritical water oxidation test bed

    SciTech Connect (OSTI)

    Svoboda, J.M.; Valentich, D.J.

    1994-05-01T23:59:59.000Z

    This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG&G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided.

  6. A minority research and education information service: Design, develop, pilot test, and implement on-line access for historically black colleges and universities and government agencies. Annual status report, September 28, 1992--September 27, 1993

    SciTech Connect (OSTI)

    Rodman, J.A.

    1993-08-01T23:59:59.000Z

    The goal of the MOLIS project was to develop, design, and pilot test on-line access to current information on minority colleges and universities as well as federal minority opportunities. Federal Information Exchange, Inc. (FIE), a diversified information services company recognized by researchers and educators as a leader in the field of information delivery services, was awarded a 5 year small business research grant to develop and implement MOLIS. Since going on-line on April 29, 1991, MOLIS has provided current information on 138 Black and Hispanic colleges and universities -- including faculty and student profiles, financial data, research centers and equipment information, precollege and education programs, emerging capabilities, enrollment data, administrative personnel data, and current events -- as well as minority opportunities from participating federal agencies. Six federal agencies are currently participating in MOLIS, including: Agency for International Development; Department of Commerce; Department of Energy; Department of Housing and Urban Development; National Aeronautics and Space Administration; and National Science Foundation.

  7. RESEARCH OVERVIEW Design for Survivability

    E-Print Network [OSTI]

    de Weck, Olivier L.

    for value-robustness ("ilities") ­ Approach: decision analysis applied to design ­ Domain: national security Generation and Evaluation in Dynamic Tradespace Exploration Sponsor: National Science Foundation / Program using dynamic tradespace exploration Approach: · Generate alternative satellite concepts (incorporating

  8. RESEARCH REPORT Test-Potentiated Learning

    E-Print Network [OSTI]

    McDermott, Kathleen

    RESEARCH REPORT Test-Potentiated Learning: Distinguishing Between Direct and Indirect Effects of Tests Kathleen M. Arnold and Kathleen B. McDermott Washington University in St. Louis The facilitative effect of retrieval practice, or testing, on the probability of later retrieval has been the focus

  9. NREL: Wind Research - Accredited Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and EvaluationManagementWorking with Us

  10. Pressure-transient test design in tight gas formations

    SciTech Connect (OSTI)

    Lee, W.J.

    1987-10-01T23:59:59.000Z

    This paper outlines a procedure for pre- and postfracture pressure-transient test design in low-permeability (tight) gas formations. The procedures proposed are based on many years' experience in evaluating low-permeability formations, and particularly on recent experience with Gas Research Inst. (GRI) programs in eastern Devonian gas shales and in western tight-gas formations.

  11. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16T23:59:59.000Z

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  12. Lithium Circuit Test Section Design and Fabrication

    SciTech Connect (OSTI)

    Godfroy, Thomas; Garber, Anne; Martin, James [NASA Marshall Space Flight Center, Nuclear Systems Engineering Analysis, Huntsville, Alabama 35812 (United States)

    2006-01-20T23:59:59.000Z

    The Early Flight Fission -- Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  13. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01T23:59:59.000Z

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  14. Dynamic Testing of Wholesale Power Market Designs

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-Based Framework1 Junjie Sun ­ the Wholesale Power Market Platform (WPMP) ­ for common adoption by all U.S. wholesale power markets. Versions development and open-source implementation (in Java) of a computational wholesale power market organized

  15. What Happens in Research-Based Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Research-Based Design Todd Wetzel 2013.04.09 In past blogs, I discussed the incredible heat transfer challenges with cooling jet engines and gas turbines ("Heat Transfer from...

  16. Design and operation of an outdoor microalgae test facility

    SciTech Connect (OSTI)

    Weissman, J.C.; Tillett, D.M.; Goebel, R.P. (Microbial Products, Inc., Vacaville, CA (USA))

    1989-10-01T23:59:59.000Z

    The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting cost objectives.

  17. Research and design : methods for integration

    E-Print Network [OSTI]

    Ness, Richard E

    1984-01-01T23:59:59.000Z

    This study investigates the major factors which inhibit and foster the integration and application of research knowledge with design practice. The results are presented in two parts: Part I, a generic user handbook, and ...

  18. Siemens SOFC Test Article and Module Design

    SciTech Connect (OSTI)

    None

    2011-03-31T23:59:59.000Z

    Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.

  19. Advanced Control Design and Testing for Wind Turbines at the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable...

  20. A minority research and education information service: Design, develop, pilot test, and implement on-line access for historically black colleges and universities and government agencies. Annual status report, April 1, 1991--March 31, 1992

    SciTech Connect (OSTI)

    Rodman, J.A.

    1992-06-01T23:59:59.000Z

    This Annual Status Report describes the design, development and implementation of the Minority On-Line Information Service (MOLIS) project by Federal Information Exchange, Inc. for the period of April 1, 1991 to March 31, 1992. Summary information detailing developments prior to this reporting period will also be included to establish a comprehensive perspective of the project. The goal of the MOLIS project, was to develop, design, pilot test on-line access to current information on minority colleges and universities and federal minority opportunities. Federal Information Exchange, Inc. (FIE), a diversified information services company recognized by researchers and educators as a leader in the field of information delivery services, was awarded a 5 year small business research grant to develop and implement MOLIS. Since April 29, 1991, the inauguration of its on-line service, MOLIS has provided current information on 138 Black and Hispanic colleges and universities -- including faculty and student profiles, financial data, research centers and equipment information, pre-college and education programs, emerging capabilities, enrollment data, administrative personnel data, and current events -- as well as minority opportunities from 8 participating federal agencies.

  1. Design and safety analysis of an in-flight, test airfoil

    E-Print Network [OSTI]

    McKnight, Christopher William

    2006-10-30T23:59:59.000Z

    of the airfoil. With some areas of aerodynamic research choosing to utilize flight testing over wind tunnels the need to design and certify safe and reliable designs is a necessity. Commercially available codes have routinely demonstrated an ability to simulate...

  2. Seismic design, testing and analysis of reinforced concrete wall buildings

    E-Print Network [OSTI]

    Panagiotou, Marios

    2008-01-01T23:59:59.000Z

    based on the material testing data of concrete cylinders inDESIGN, TESTING AND ANALYSIS OF REINFORCED CONCRETE WALLDESIGN, TESTING AND ANALYSIS OF REINFORCED CONCRETE WALL

  3. Design and field testing of a Savonius windpump in Kenya

    SciTech Connect (OSTI)

    Smalera, A.; Kammen, D.M. [Princeton Univ., NJ (United States)

    1995-12-31T23:59:59.000Z

    One important means of improving water availability and reducing disease exposure from polluted or stagnant sources involves the design and diffusion of inexpensive and reliable water pumps. Modernized versions of the decades-old Savonius vertical axis windmill present one technology that can play an important role in this effort. To be successful, these systems must be tailored to exploit the local wind and hydrological resources, constructed and managed locally, and inexpensive to operate and maintain. We report here on our design efforts and cooperative field research with several Kenyan development organizations. Performance tests from 10-15 meter deep water pumping applications at two field sites are presented, as well as preliminary results of an analysis of the steps involved in disseminating such technology. Our research suggests that the combination of reliability and performance offered by the Savonius design make it a useful resource for community managed energy initiatives, particularly in developing nation settings.

  4. OPSAID Initial Design and Testing Report.

    SciTech Connect (OSTI)

    Hurd, Steven A.; Stamp, Jason Edwin [Sandia National Laboratories, Albuquerque, NM; Chavez, Adrian R. [Sandia National Laboratories, Albuquerque, NM

    2007-11-01T23:59:59.000Z

    Process Control System (PCS) security is critical to our national security. Yet, there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy's Office of Electricity Delivery and Reliability, aims to address this issue through developing and testing an open source architecture for PCS security. Sandia National Laboratories, along with a team of PCS vendors and owners, have developed and tested this PCS security architecture. This report describes their progress to date.2 AcknowledgementsThe authors acknowledge and thank their colleagues for their assistance with the OPSAID project.Sandia National Laboratories: Alex Berry, Charles Perine, Regis Cassidy, Bryan Richardson, Laurence PhillipsTeumim Technical, LLC: Dave TeumimIn addition, the authors are greatly indebted to the invaluable help of the members of the OPSAID Core Team. Their assistance has been critical to the success and industry acceptance of the OPSAID project.Schweitzer Engineering Laboratory: Rhett Smith, Ryan Bradetich, Dennis GammelTelTone: Ori Artman Entergy: Dave Norton, Leonard Chamberlin, Mark AllenThe authors would like to acknowledge that the work that produced the results presented in this paper was funded by the U.S. Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) as part of the National SCADA Test Bed (NSTB) Program. Executive SummaryProcess control systems (PCS) are very important for critical infrastructure and manufacturing operations, yet cyber security technology in PCS is generally poor. The OPSAID (Open PCS (Process Control System) Security Architecture for Interoperable Design) program is intended to address these security shortcomings by accelerating the availability and deployment of comprehensive security technology for PCS, both for existing PCS and inherently secure PCS in the future. All activities are closely linked to industry outreach and advisory efforts.Generally speaking, the OPSAID project is focused on providing comprehensive security functionality to PCS that communicate using IP. This is done through creating an interoperable PCS security architecture and developing a reference implementation, which is tested extensively for performance and reliability.This report first provides background on the PCS security problem and OPSAID, followed by goals and objectives of the project. The report also includes an overview of the results, including the OPSAID architecture and testing activities, along with results from industry outreach activities. Conclusion and recommendation sections follow. Finally, a series of appendices provide more detailed information regarding architecture and testing activities.Summarizing the project results, the OPSAID architecture was defined, which includes modular security functionality and corresponding component modules. The reference implementation, which includes the collection of component modules, was tested extensively and proved to provide more than acceptable performance in a variety of test scenarios. The primary challenge in implementation and testing was correcting initial configuration errors.OPSAID industry outreach efforts were very successful. A small group of industry partners were extensively involved in both the design and testing of OPSAID. Conference presentations resulted in creating a larger group of potential industry partners.Based upon experience implementing and testing OPSAID, as well as through collecting industry feedback, the OPSAID project has done well and is well received. Recommendations for future work include further development of advanced functionality, refinement of interoperability guidance, additional laboratory and field testing, and industry outreach that includes PCS owner education. 4 5 --This page intentionally left blank --

  5. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  6. SP-100 design, safety, and testing

    SciTech Connect (OSTI)

    Smith, G.L.; Cox, C.M.; Mahaffey, M.K.

    1990-07-01T23:59:59.000Z

    The SP-100 Program is developing a nuclear reactor power system that can enhance and/or enable future civilian and military space missions. The program is directed to develop space reactor technology to provide electrical power in the range of tens to hundreds of kilowatts. The major nuclear assembly test is to be conducted at the Hanford Site near Richland, Washington, and is designed to validate the performance of the 2.4-MWt nuclear and heat transport assembly. 10 refs., 5 figs.

  7. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    SciTech Connect (OSTI)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01T23:59:59.000Z

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  8. Design of Integrated Laboratory and Heavy-Duty Emissions Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Integrated Laboratory and Heavy-Duty Emissions Testing Center Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center Both simulated and actual diesel emissions...

  9. Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM Pyrolysis research is conducted at Texas A&M University at the Bioenergy Testing and Analysis Laboratory. Our researchers create

  10. Design and Development of a Low-Cost Test-Bed for Undergraduate Education in UAVs

    E-Print Network [OSTI]

    Tsiotras, Panagiotis

    Design and Development of a Low-Cost Test-Bed for Undergraduate Education in UAVs D. Jung, E. J for the development of a low-cost Unmanned Aerial Vehicle (UAV) test-bed for educational purposes. The objective) and graduate students (secondarily) in UAV research. The complete design and development of all hardware

  11. Re-START: The second operational test of the String Thermionic Assembly Research Testbed

    SciTech Connect (OSTI)

    Wyant, F.J. [Sandia National Labs., Albuquerque, NM (United States); Luchau, D. [TEAM Specialty Services, Inc., Albuquerque, NM (United States); McCarson, T.D. [New Mexico Engineering Research Inst., Albuquerque, NM (United States)

    1998-01-01T23:59:59.000Z

    The second operational test of the String Thermionic Assembly Research Testbed -- Re-START -- was carried out from June 9 to June 14, 1997. This test series was designed to help qualify and validate the designs and test methods proposed for the Integrated Solar Upper Stage (ISUS) power converters for use during critical evaluations of the complete ISUS bimodal system during the Engine Ground Demonstration (EGD). The test article consisted of eight ISUS prototype thermionic converter diodes electrically connected in series.

  12. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing...

    Broader source: Energy.gov (indexed) [DOE]

    results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing...

  13. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  14. Design of a hydraulic bulge test apparatus

    E-Print Network [OSTI]

    Koh, Cheok Wei

    2008-01-01T23:59:59.000Z

    The various equi-biaxial tension tests for sheet metal were studied and compared to determine the most appropriate equipping in the Impact and Crashworthiness Laboratory, MIT, for the testing of Advanced High Strength ...

  15. Generating Circuit Tests by Exploiting Designed Behavior

    E-Print Network [OSTI]

    Shirley, Mark Harper

    1988-12-01T23:59:59.000Z

    This thesis describes two programs for generating tests for digital circuits that exploit several kinds of expert knowledge not used by previous approaches. First, many test generation problems can be solved efficiently ...

  16. A general design for energy test procedures

    SciTech Connect (OSTI)

    Meier, Alan

    2000-06-15T23:59:59.000Z

    Appliances are increasingly controlled by microprocessors. Unfortunately, energy test procedures have not been modified to capture the positive and negative contributions of the microprocessor to the appliance's energy use. A new test procedure is described which captures both the mechanical and logical features present in many new appliances. We developed an energy test procedure for refrigerators that incorporates most aspects of the proposed new approach. Some of the strengths and weaknesses of the new test are described.

  17. Fusion Engineering and Design 81 (2006) 659664 Solid breeder test blanket module design and analysis

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01T23:59:59.000Z

    Fusion Engineering and Design 81 (2006) 659­664 Solid breeder test blanket module design This paper presents the design and analysis for the US ITER solid breeder blanket test articles. Objectives of solid breeder blanket testing during the first phase of the ITER operation focus on exploration

  18. On the Agenda of Design Management Research Proceedings IGLC `98

    E-Print Network [OSTI]

    Tommelein, Iris D.

    independent, making the management of work flow among the various specialists especially importantOn the Agenda of Design Management Research Proceedings IGLC `98 ON THE AGENDA OF DESIGN MANAGEMENT RESEARCH Glenn Ballard1 and Lauri Koskela2 ABSTRACT We propose an agenda for design management research

  19. Junior Research Fellowship in Geology (Test Codes: GEA and GEB)

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    1 Junior Research Fellowship in Geology (Test Codes: GEA and GEB) The candidates for Junior Research Fellowship in Geology will have to take two tests: Test GEA (forenoon session) and Test GEB and Geostatistics: Analysis of orientation and time-series data, Mohr's Circle of stress and strain, Geological

  20. animal test design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing of animal manure ... 11 Figure 6. Temperature profile for manure gasification... Engler, Cady; Capereda, Sergio; Mukhtar, Saqib 51 Design-led...

  1. Research-scale melter test report

    SciTech Connect (OSTI)

    Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

    1994-05-01T23:59:59.000Z

    The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known.

  2. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01T23:59:59.000Z

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  3. The design of a test rig for the identification of dynamic coefficients of a high temperature magnetic bearing

    E-Print Network [OSTI]

    Rahtika, I Putu Gede Sopan

    1998-01-01T23:59:59.000Z

    This thesis is a report on the research and Micrographics. development to design a test rig for the identification of the dynamic coefficients of a radial magnetic bearing. The test rig development is intended for dynamic coefficient observation...

  4. Fenestration System Performance Research, Testing, and Evaluation

    SciTech Connect (OSTI)

    Jim Benney

    2009-11-30T23:59:59.000Z

    The US DOE was and is instrumental to NFRC's beginning and its continued success. The 2005 to 2009 funding enables NFRC to continue expanding and create new, improved ratings procedures. Research funded by the US DOE enables increased fenestration energy rating accuracy. International harmonization efforts supported by the US DOE allow the US to be the global leader in fenestration energy ratings. Many other governments are working with the NFRC to share its experience and knowledge toward development of their own national fenestration rating process similar to the NFRC's. The broad and diverse membership composition of NFRC allows anyone with a fenestration interest to come forward with an idea or improvement to the entire fenestration community for consideration. The NFRC looks forward to the next several years of growth while remaining the nation's resource for fair, accurate, and credible fenestration product energy ratings. NFRC continues to improve its rating system by considering new research, methodologies, and expanding to include new fenestration products. Currently, NFRC is working towards attachment energy ratings. Attachments are blinds, shades, awnings, and overhangs. Attachments may enable a building to achieve significant energy savings. An NFRC rating will enable fair competition, a basis for code references, and a new ENERGY STAR product category. NFRC also is developing rating methods to consider non specular glazing such as fritted glass. Commercial applications frequently use fritted glazing, but no rating method exists. NFRC is testing new software that may enable this new rating and contribute further to energy conservation. Around the world, many nations are seeking new energy conservation methods and NFRC is poised to harmonize its rating system assisting these nations to better manage and conserve energy in buildings by using NFRC rated and labeled fenestration products. As this report has shown, much more work needs to be done to continues research to improve existing ratings and develop new ones. NFRC needs to continue the work it has begun in several nations to implement the NFRC rating system that has been introduced. Many nations are eager to accept the expertise NFRC can offer to achieve energy conservation goals. NFRC looks forward to a continues partnership with the US Department of Energy to cooperatively achieve both.

  5. Reduced-Enrichment Research and Test Reactor Program: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    The principal program objective and principal part of the proposed action is to improve the proliferation resistance of nuclear fuels used in research and test reactors by providing the technical means (through technical development, design, and testing) for reducing the uranium enrichment requirements of these fuels to substantially less than the 90 to 93% enrichment currently used. Operator acceptance of the reduced-enrichment-uranium (REU) fuel alternative will require minimizing of reactor performance reduction, fuel cycle cost increases, the number of new safety and licensing issues raised, and reactor and facility modifications. The other part of the proposed action is to assure the capability for commercial production and supply of REU fuel for use both in the US and abroad. The RERTR Program scope is limited to generic design studies, technical support to reactor operating organizations in preparing for conversions to REU fuels, fuel development, fuel demonstrations, and technical support for commercialization of REU fuels. This environmental assessment addresses the environmental consequences of RERTR Program activities and of specific conversions of typical reactors (the Ford Nuclear Reactor and one or two other to-be-designated demonstrations) to REU-fuel cycles, including domestic and international shipments of enriched uranium pertinent to the conduct of RERTR Program activities.

  6. Design, Development and Testing of Underwater Vehicles: ITB Experience

    E-Print Network [OSTI]

    Muljowidodo, Said D; Budiyono, Agus; Nugroho, Sapto A

    2008-01-01T23:59:59.000Z

    The last decade has witnessed increasing worldwide interest in the research of underwater robotics with particular focus on the area of autonomous underwater vehicles (AUVs). The underwater robotics technology has enabled human to access the depth of the ocean to conduct environmental surveys, resources mapping as well as scientific and military missions. This capability is especially valuable for countries with major water or oceanic resources. As an archipelagic nation with more than 13,000 islands, Indonesia has one of the most abundant living and non-organic oceanic resources. The needs for the mapping, exploration, and environmental preservation of the vast marine resources are therefore imperative. The challenge of the deep water exploration has been the complex issues associated with hazardous and unstructured undersea and sea-bed environments. The paper reports the design, development and testing efforts of underwater vehicle that have been conducted at Institut Teknologi Bandung. Key technology areas...

  7. Tests of a Novel Design of Resistive Plate Chambers

    E-Print Network [OSTI]

    Bilki, B; Freund, B; Neubüser, C; Onel, Y; Repond, J; Schlereth, J; Xia, L

    2015-01-01T23:59:59.000Z

    A novel design of Resistive Plate Chambers (RPCs), using only a single resistive plate, is being proposed. Based on this design, two large size prototype chambers were constructed and were tested with cosmic rays and in particle beams. The tests confirmed the viability of this new approach. In addition to showing an improved single-particle response compared to the traditional 2-plate design, the novel chambers also prove to be suitable for calorimetric applications.

  8. Final Report Continued research, development and test of

    E-Print Network [OSTI]

    Final Report - Public - Continued research, development and test of SOFC Technology PSO Project No .....................................................................................................10 3.3.2 >8000 hours stack test with new stack technology...............................................12 3.4.2 Stacks for in-house research, development and testing ....................................12

  9. Interdisciplinary Research Experiences in Mechatronics, Robotics, and Automated System Design

    E-Print Network [OSTI]

    Interdisciplinary Research Experiences in Mechatronics, Robotics, and Automated System Design Texas for undergraduate students to learn about mechatronics, robotics, and automated system design. Program objectives in research and interest in a career in mechatronics, robotics or automated system design, as evidenced

  10. STEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH

    E-Print Network [OSTI]

    Bruneau, Michel

    STEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH Michel Bruneau, P.E. 1 Dr. Bruneau is conducting research on the seismic evaluation and retrofit of existing steel bridges, steel of this research, and has co- authored the book "Ductile Design of Steel Structures" published in 1997 by Mc

  11. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31T23:59:59.000Z

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

  12. Emergent pedagogies in design research education

    E-Print Network [OSTI]

    Press, Joseph

    1997-01-01T23:59:59.000Z

    Recent demand for applied knowledge within architectural practice has resulted in the proliferation of university based research groups. Given the role advanced degree programs play in educating architectural researchers, ...

  13. Design, fabrication and testing of a bearing test rig and preliminary studies on oil mist lubrication

    E-Print Network [OSTI]

    Shamim, Abdus

    1990-01-01T23:59:59.000Z

    DESIGN, FABRICATION AND TESTING OF A BEARING TEST RIG AND PRELIMINARY STUDIES ON OIL MIST LUBRICATION A Thesis by ABDUS SHAMIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1990 Major Subject: Mechanical Engineering DESIGN, FABRICATION AND TESTING OF A BEARING TEST RIG AND PRELIMINARY STUDIES ON OIL MIST LUBRICATION A Thesis by ABDUS SHAMIM Approved as to style and content by: C...

  14. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.

    2008-03-01T23:59:59.000Z

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  15. Fuel cell design for gas hydrates exploration and research.

    E-Print Network [OSTI]

    Sauer, Gerhard, (Thesis)

    2006-01-01T23:59:59.000Z

    ?? In this thesis the design, manufacture and testing of an Alkaline Fuel Cell (AFC) that provide electrical power to a deep sea measurement problem… (more)

  16. Design and Materials The Design area is a rapidly growing research area aimed at furthering the development of

    E-Print Network [OSTI]

    Calgary, University of

    Design and Materials Design The Design area is a rapidly growing research area aimed at furthering the development of competitive products and systems. Research in this department focuses on design theories, design methodologies

  17. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    SciTech Connect (OSTI)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30T23:59:59.000Z

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waalâ??s forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have studied the effect of x-rays and Îł-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals â?? materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  18. Design of test bench apparatus for piezoelectric energy harvesters

    E-Print Network [OSTI]

    Yoon, You C. (You Chang)

    2013-01-01T23:59:59.000Z

    This thesis presents the design and analysis of an experimental test bench for the characterization of piezoelectric microelectromechanical system (MEMS) energy harvester being developed by the Micro & Nano Systems Laboratory ...

  19. Better Catalytic System Designs through Nanoscale Research |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the research would be impossible without leadership-class system like the ALCF's Blue GeneP. At the ALCF, large-scale, basic science exploration yields significant...

  20. Design and Performance of a Silicon Test Counter for HERMES

    E-Print Network [OSTI]

    -detector array has been designed and constructed to investigate the prospects for large-angle trackingDesign and Performance of a Silicon Test Counter for HERMES J. Visser a , M.G. van Beuzekom a , J. For the read-out, a local front-end with 64-channel Analog Pipeline Chips (APC) has been employed. The large

  1. Autonomous Robots in SWAT Applications: Research, Design, and Operations Challenges

    E-Print Network [OSTI]

    Autonomous Robots in SWAT Applications: Research, Design, and Operations Challenges Mr. Henry L of their application. The robot #12;builders (the ARL researchers and MLB designers) and the SWAT leaders felt Jones Prof. Stephen Rock Aerospace Robotics Laboratory Stanford University (650) 723-3389 hlj

  2. Research techniques implemented by other circuit designers

    E-Print Network [OSTI]

    Collins, Gary S.

    of producing a wireless batteryless sensor. The challenge in creating this super sensor lies in the ability design includes cascade topology for wide bandwidth, four voltage sources, resistors, capacitors

  3. Collaborative Military Vehicle Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    many others will be allowed and incentivized to contribute to the design of a military vehicle is, I think, astounding VehicleForge-300x225 Share This Article Click to email...

  4. NREL: Wind Research - Field Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and

  5. NREL: Photovoltaics Research - Emerging Technologies Engineering Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand Evaluation Emerging

  6. NREL: Research Facilities - Test and User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7WorkingWebmaster

  7. NREL: Photovoltaics Research - Outdoor Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D. Principal ScientistOutdoor Test

  8. NREL: Transportation Research - Fleet Test and Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of medium-duty truck with

  9. NREL: Transportation Research - Truck Platooning Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation PhotoSystemsTransportationTruck

  10. NREL: Transportation Research - Truck Stop Electrification Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation

  11. NREL: Wind Research - Dynamometer Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and EvaluationManagementWorking withDynamometer

  12. NREL: Wind Research - Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossible

  13. NREL: Wind Research - Structural Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField

  14. Spiral 2 cryogenic system overview: Design, construction and performance test

    SciTech Connect (OSTI)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S. [Air Liquide Advanced Technologies, Sassenage (France); Souli, M. [GANIL, Caen (France); Commeaux, C. [IPN, Orsay (France)

    2014-01-29T23:59:59.000Z

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  15. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    SciTech Connect (OSTI)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01T23:59:59.000Z

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will be performed to develop probability of confidence in what is measured in the test loop. Overall, the testing loop will allow development of needed heat transfer related thermophysical parameters for all the salts, validate existing correlations, validate measuring instruments under harsh environment, and have extensive corrosion testing of materials of construction.

  16. NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)

    SciTech Connect (OSTI)

    Keller, J.; Halse, C.

    2014-05-01T23:59:59.000Z

    The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

  17. Design verification and cold-flow modeling test report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, and TRW proprietary information has been excluded.

  18. HyRAM Testing Strategy and Quality Design Elements.

    SciTech Connect (OSTI)

    Reynolds, John Thomas

    2014-12-01T23:59:59.000Z

    Strategy document and tentative schedule for testing of HyRAM, a software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. Because proposed and existing features in HyRAM that support testing are important factors in this discussion, relevant design considerations of HyRAM are also discussed. However, t his document does not cover all of HyRAM desig n, nor is the full HyRAM software development schedule included.

  19. Statistical models and experimental designs for poultry research

    E-Print Network [OSTI]

    Abdel Baky, Anwar Ahmed

    1972-01-01T23:59:59.000Z

    STATISTICAL MODELS AND EXPERIMENTAL DESIGNS FOR POULTRY RESEARCH A Thesis by Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1973 Major Subject...: Statistics STATISTICAL MODELS AND EXPERIMENTAL DESIGNS FOR POULTRY RESEARCH A Thesis by ANWAR ARMED ABDEL BAKY Approved as to sty1e snd content by: Head of Department Member mber Member Msy 1973 4 36 6 i 1 Statistical Models and Experimental...

  20. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  1. Accelerated Articles Design and Testing of a Multivariate Optical

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    #12;Accelerated Articles Design and Testing of a Multivariate Optical Element: The First Demonstration of Multivariate Optical Computing for Predictive Spectroscopy O. Soyemi, D. Eastwood, L. Zhang, H Street, Suite 102, Lincoln, Nebraska 68508 A demonstration of multivariate optical computing is presented

  2. CSM RESEARCH INTERNSHIP POLICY External sponsors may support research and design projects by CSM students through Graduate or

    E-Print Network [OSTI]

    CSM RESEARCH INTERNSHIP POLICY External sponsors may support research and design projects by CSM students through Graduate or Undergraduate Research Fellowships (RF), Research Assistantships (RA to the minimum stipend for Graduate Research Assistants. Sponsors should be aware that tuition payments

  3. Design and Installation of a Disposal Cell Cover Field Test

    SciTech Connect (OSTI)

    Benson, C.H. [University of Wisconsin–Madison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

    2011-02-27T23:59:59.000Z

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  4. Progress in conceptual design of a tokamak engineering test breeder

    SciTech Connect (OSTI)

    Huang, J.; Sheng, G.

    1993-12-31T23:59:59.000Z

    A tokamak engineering test breeder, TETB, was proposed in 1988. It has a liquid lithium self-cooled blanket of the fast fission type. Since 1989, revisions have been made for an improved version, the TETB-II. A fission suppressed blanket was adopted and the lithium cooling pattern changed, resulting in a much lower MHD pressure drop. The emphasis of this report is on the component design and analysis using computer codes.

  5. Design of a Gas Test Loop Facility for the Advanced Test Reactor

    SciTech Connect (OSTI)

    C. A. Wemple

    2005-09-01T23:59:59.000Z

    The Office of Nuclear Energy within the U.S. Department of Energy (DOE-NE) has identified the need for irradiation testing of nuclear fuels and materials, primarily in support of the Generation IV (Gen-IV) and Advanced Fuel Cycle Initiative (AFCI) programs. These fuel development programs require a unique environment to test and qualify potential reactor fuel forms. This environment should combine a high fast neutron flux with a hard neutron spectrum and high irradiation temperature. An effort is presently underway at the Idaho National Laboratory (INL) to modify a large flux trap in the Advanced Test Reactor (ATR) to accommodate such a test facility [1,2]. The Gas Test Loop (GTL) Project Conceptual Design was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Such a capability will be needed if programs such as the AFCI, Gen-IV, the Next Generation Nuclear Plant (NGNP), and space nuclear propulsion are to meet development objectives and schedules. These programs are beginning some irradiations now, but many call for fast flux testing within this decade.

  6. Robust Design of Reliability Test Plans Using Degradation Measures.

    SciTech Connect (OSTI)

    Lane, Jonathan Wesley; Lane, Jonathan Wesley; Crowder, Stephen V.; Crowder, Stephen V.

    2014-10-01T23:59:59.000Z

    With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus, it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. Generally, the assumption is made that the error associated with a degradation measure follows a known distribution, usually normal, although in practice cases may arise where that assumption is not valid. In this paper, we examine such degradation measures, both simulated and real, and present non-parametric methods to demonstrate reliability and to develop reliability test plans for the future production of components with this form of degradation.

  7. FEDIX on-line information service: Design, develop, test, and implement, an on-line research and education information service. Annual status report, March 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Rodman, J.A.

    1992-06-01T23:59:59.000Z

    The FEDIX Annual Status Report provides details regarding an on-line information project designed, developed and implemented by Federal Information Exchange, Inc., a diversified information services company. This document details the project design activities, summarizes the developmental phases of the project and describes the implementation activities generated to fulfill the project`s objectives. The information contained in this document illustrates FIE`s continuing commitment to serve as the link that facilitates the dissemination of federal information to the education community. This report reviews the project accomplishments and describes intended service enhancements.

  8. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2010 1409 Gate-Sizing-Based Single Vdd Test for Bridge

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    complementary metal- oxide-semiconductor and can constitute 50% or more, of total defect count [1]. A bridge, SEPTEMBER 2010 1409 Gate-Sizing-Based Single Vdd Test for Bridge Defects in Multivoltage Designs Saqib design technique. Recent research has shown that testing for resistive bridging faults in such designs

  9. CDF Run IIb silicon: Stave design and testing

    SciTech Connect (OSTI)

    Rong-Shyang Lu

    2003-11-07T23:59:59.000Z

    The CDF Silicon Vertex Detectors (SVX) have been shown to be excellent tools for heavy flavor physics, with the secondary vertex detection and good vertex resolution.The CDF RunIIb Silicon Vertex Detector (SVXIIb) was designed to be a radiation tolerant replacement for the current SVXII which was not anticipated to survive the projected Run II luminosity dose. The outer five layers use identical structural elements, called staves, to support six silicon sensors on each side. The stave is composed of carbon fiber skins on a foam core with a built-in cooling tube. Copper on Kapton bus cable carriers power and data/control signals underneath three silicon modules on each side of the stave. A Hybrid equipped with four new SVX4 chips are used to readout two silicon sensors on each module which can be readout and tested independently. This new design concept leads to a very compact mechanical and electrical detecting unit, allowing streamline production and ease of testing and installation. A description of the design and mechanical performance of the stave is given. They also present here results on the electrical performance obtained using prototype staves as well as results with the first pre-production parts.

  10. Design and test of SX-FEL cavity BPM

    E-Print Network [OSTI]

    Yuan, Renxian; Chen, Zhichu; Yu, Luyang; Wang, Baopen; Leng, Yongbin

    2013-01-01T23:59:59.000Z

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1{\\mu}m, even 0.1{\\mu}m. The CBPM was optimized by using a coupling slot to damp the TM010 mode in the output signal. The isolation of TM010 mode is about 117dB, and the shunt impedance is about 200{\\Omega}@4.65GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM110 mode was about 90mV/mm when the source was 6dBm, and the accomplishable minimum voltage was about 200{\\mu}V. The resolution of the CBPM was about 0.1{\\mu}m from the linear fitting result based on the cold test.

  11. RESEARCH POSTER PRESENTATION DESIGN 2012 www.PosterPresentations.com

    E-Print Network [OSTI]

    von der Heydt, RĂĽdiger

    method of treatment is through percutaneous coronary artery intervention (PCI) and stenting. In 2005RESEARCH POSTER PRESENTATION DESIGN © 2012 www.PosterPresentations.com Coronary artery disease and Interventions, and the American College of Chest Physicians provide recommendations for the management

  12. 213Neuroscience/Philosophy Psychology 250--Research Design and Analysis

    E-Print Network [OSTI]

    Dresden, Gregory

    213Neuroscience/Philosophy Psychology 250--Research Design and Analysis Psychology 252--Sensation conference. Staff. Fall-Winter PHILOSOPHY (PHIL) Pierre S. duPont Foundation PROFESSOR SESSIONS ASSOCIATE PROFESSOR MAHON ASSISTANT PROFESSORS BELL, GREGORY MAJOR A major in philosophy leading to a Bachelor of Arts

  13. RESEARCH POSTER PRESENTATION DESIGN 2011 www.PosterPresentations.com

    E-Print Network [OSTI]

    Hall, Sharon J.

    services in Life Cycle Assessment, Part II: toward an ecologically based LCA. Environmental science in life cycle assessment (LCA) is an important step to provide rigorous environmental impact accountingRESEARCH POSTER PRESENTATION DESIGN © 2011 www.PosterPresentations.com Life Cycle Assessment

  14. RESEARCH POSTER PRESENTATION DESIGN 2011 www.PosterPresentations.com

    E-Print Network [OSTI]

    Hall, Sharon J.

    service indicators into Life Cycle Assessment (LCA) in order to quantify large-scale ecosystem service. Including ecosystem services in life cycle assessment (LCA) is an important step to provide rigorousRESEARCH POSTER PRESENTATION DESIGN © 2011 www.PosterPresentations.com Life Cycle Assessment

  15. Game Theoretic Research on the Design of International Environmental Agreements

    E-Print Network [OSTI]

    GĂĽting, Ralf Hartmut

    layer and more recently the concern about the impacts of global warming. All these environmentalGame Theoretic Research on the Design of International Environmental Agreements: Insights, Critical environmental agreements (IEAs) using the method of game theory has sharply increased. However, there have also

  16. RESEARCH POSTER PRESENTATION DESIGN 2012 www.PosterPresentations.com

    E-Print Network [OSTI]

    Zhu, Xiaojin "Jerry"

    RESEARCH POSTER PRESENTATION DESIGN © 2012 www.PosterPresentations.com Air pollution is currently Inferring Air Pollution by Sniffing Social Media To deal with the air pollution, we first need to monitor it also suffer air pollution 1.Linear regression model on Weibo bag-of-words features. 2.K nearest

  17. National Geothermal Data System Design and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNVEnergyDesign and Testing

  18. Validation of the new mixture design and testing protocol for lime stabilization

    E-Print Network [OSTI]

    Yusuf, Fateh Ul Anam Muhammad Shafee

    2001-01-01T23:59:59.000Z

    and testing protocol is presented for lime stabilized subgrades. Comparison of field test data and laboratory test data shows that laboratory design test properties were achieved in the field. These properties are used in a mechanistic analysis to assess...

  19. RERTR 2009 (Reduced Enrichment for Research and Test Reactors)

    SciTech Connect (OSTI)

    Totev, T.; Stevens, J.; Kim, Y. S.; Hofman, G.; Matos, J.; Hanan, N.; Garner, P.; Dionne, B.; Olson, A.; Feldman, E.; Dunn, F.; Nuclear Engineering Division; Atomic Research Center; Inst. of Nuclear Physics; LLNL; INL; Korea Atomic Energy Research Inst.; Comisi?n Nacional de Energ?a At?mica; Nuclear Reactor Lab.; Inst. of Atomic Energy-Poland; AECL-Canada; Hungarian Academy of Sciences KFKI Atomic Energy Research Inst.; Japan Atomic Energy Agency; Nuclear Power Inst. of China; Kyoto Univ. Research Reactor Inst.

    2010-03-01T23:59:59.000Z

    The U.S. Department of Energy/National Nuclear Security Administration's Office of Global Threat Reduction in cooperation with the China Atomic Energy Authority and International Atomic Energy Agency hosted the 'RERTR 2009 International Meeting on Reduced Enrichment for Research and Test Reactors.' The meeting was organized by Argonne National Laboratory, China Institute of Atomic Energy and Idaho National Laboratory and was held in Beijing, China from November 1-5, 2009. This was the 31st annual meeting in a series on the same general subject regarding the conversion of reactors within the Global Threat Reduction Initiative (GTRI). The Reduced Enrichment for Research and Test Reactors (RERTR) Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets.

  20. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect (OSTI)

    Smith, S.A.; Moore, N.L.

    1987-02-01T23:59:59.000Z

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  1. Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.; Balas, M. J.

    2006-01-01T23:59:59.000Z

    Control can improve wind turbine performance by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory, we are implementing and testing state-space controls on the Controls Advanced Research Turbine (CART), a turbine specifically configured to test advanced controls. We show the design of control systems to regulate turbine speed in Region 3 using rotor collective pitch and reduce dynamic loads in Regions 2 and 3 using generator torque. These controls enhance damping in the first drive train torsion mode. We base these designs on sensors typically used in commercial turbines. We evaluate the performance of these controls by showing field test results. We also compare results from these modern controllers to results from a baseline proportional integral controller for the CART. Finally, we report conclusions to this work and outline future studies.

  2. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    SciTech Connect (OSTI)

    none,

    2014-02-27T23:59:59.000Z

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  3. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01T23:59:59.000Z

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  4. Final Turbine and Test Facility Design Report Alden/NREC Fish...

    Broader source: Energy.gov (indexed) [DOE]

    Final Turbine and Test Facility Design Report AldenNREC Fish Friendly Turbine Final Turbine and Test Facility Design Report AldenNREC Fish Friendly Turbine The final report...

  5. Testing whether major innovation capabilities are systemic design capabilities: analyzing rule-renewal design capabilities in a case-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Testing whether major innovation capabilities are systemic design capabilities: analyzing rule-renewal design capabilities are positively related to new business development, whereas rule-reuse design-renewal design capabilities in a case- control study of historical new business developments. Authors: Pascal Le

  6. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    SciTech Connect (OSTI)

    Unknown

    2002-02-08T23:59:59.000Z

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  7. A design guide for energy-efficient research laboratories

    SciTech Connect (OSTI)

    Wishner, N.; Chen, A.; Cook, L. [eds.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24T23:59:59.000Z

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  8. Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Stephen Rehmeyer Pepe

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Testing Small Wind Turbine Generators: Design of a Driving Dynamometer by Stephen Rehmeyer Pepe Sc, Berkeley Spring 2007 #12;Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Copyright c 2007 by Stephen Rehmeyer Pepe #12;Abstract Testing Small Wind Turbine Generators: Design of a Driving

  9. NREL: Wind Research - Small Wind Turbine Independent Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossibleResearchSmall

  10. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    SciTech Connect (OSTI)

    Soli T. Khericha

    2006-09-01T23:59:59.000Z

    This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

  11. Enhancements in Glovebox Design Resulting from Laboratory-Conducted FIre Tests

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Wunderlich, Gregory M.; Mcentire, James R.; Richmond, William G.

    2013-06-14T23:59:59.000Z

    The primary mission of the Pit Disassembly and Conversion Facility (PDCF) Project was to disassemble nuclear weapons pits and convert the resulting special nuclear materials to a form suitable for further disposition. Because of the nature of materials involved, the fundamental system which allowed PDCF to perform its mission was a series of integrated and interconnected gloveboxes which provided confinement and containment of the radioactive materials being processed. The high throughput planned for PDCF and the relatively high neutron and gamma radiation levels of the pits required that gloveboxes be shielded to meet worker dose limits. The glovebox shielding material was required to contain high hydrogen concentrations which typically result in these materials being combustible. High combustible loadings created design challenges for the facility fire suppression and ventilation system design. Combustible loading estimates for the PDCF Plutonium (Pu) Processing Building increased significantly due to these shielding requirements. As a result, the estimates of combustible loading substantially exceeded values used to support fire and facility safety analyses. To ensure a valid basis for combustible loading contributed by the glovebox system, the PDCF Project funded a series of fire tests conducted by the Southwest Research Institute on door panels and a representative glovebox containing Water Extended Polyester (WEP) radiological shielding to observe their behavior during a fire event. Improvements to PDCF glovebox designs were implemented based on lessons learned during the fire test. In particular, methods were developed to provide high levels of neutron shielding while maintaining combustible loading in the glovebox shells at low levels. Additionally, the fire test results led to design modifications to mitigate pressure increases observed during the fire test in order to maintain the integrity of the WEP cladding. These changes resulted in significantly reducing the credited combustible loading of the facility. These advances in glovebox design should be considered for application in nuclear facilities within the Department of Energy complex in the future.

  12. DESIGN AND TESTING FOR NOVEL JOINT FOR WAVE REFLECTORS James Tedd1

    E-Print Network [OSTI]

    tests. This is a steel bar reinforced concrete tank with the dimensions 15.7 m long, 8.5 m wide and 1DESIGN AND TESTING FOR NOVEL JOINT FOR WAVE REFLECTORS James Tedd1 , Erik Friis-Madsen2 , and Peter of the Wave Dragon has begun. This paper describes the design and testing process behind this. Tests conducted

  13. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    SciTech Connect (OSTI)

    Mourao, Rogerio P.; Leite da Silva, Luiz [Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte (Brazil)] [Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte (Brazil); Miranda, Carlos A.; Mattar Neto, Miguel [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil)] [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil); Quintana, Jose F.A.; Saliba, Roberto O. [Comision Nacional de Energia Atomica, Bariloche (Argentina)] [Comision Nacional de Energia Atomica, Bariloche (Argentina); Novara, Oscar E. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)] [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2013-07-01T23:59:59.000Z

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  14. NREL - FY09 Lab Call: Supporting Research and Testing for MHK...

    Energy Savers [EERE]

    - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review NREL - FY09 Lab Call: Supporting Research and Testing for MHK...

  15. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    SciTech Connect (OSTI)

    Levy, E.; Kessler, B.; Mullens, M.; Rath, P.

    2014-01-01T23:59:59.000Z

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  16. Design and development of a high-temperature sodium compatibility testing facility

    SciTech Connect (OSTI)

    Hvasta, M. G.; Nolet, B. K.; Anderson, M. H. [Univ. of Wisconsin-Madison, 1500 Engineering Dr., Madison - ERB 841, WI 53705 (United States)

    2012-07-01T23:59:59.000Z

    The use of advanced alloys within sodium-cooled fast reactors (SFRs) has been identified as a means of increasing plant efficiency and reducing construction costs. In particular, alloys such as NF-616, NF-709 and HT-UPS are promising because they exhibit greater strength than traditional structural materials such as 316-SS. However, almost nothing is known about the sodium compatibility of these new alloys. Therefore, research taking place at the Univ. of Wisconsin-Madison is focused on studying the effects of sodium corrosion on these materials under prototypic SFR operating conditions (600 [ deg. C], V Na=10 [m/s], C 0{approx} 1 [wppm]). This paper focuses on the design and construction of the testing facility with an emphasis on moving magnet pumps (MMPs). Corrosion data from a preliminary 500 [hr] natural convection test will also be presented. (authors)

  17. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    SciTech Connect (OSTI)

    Yoder, JR.G.L.

    2006-03-08T23:59:59.000Z

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  18. VERIFICATION TESTING AND DESIGN PROCEDURE FOR FRP GRID REINFORCED CONCRETE SLABS

    E-Print Network [OSTI]

    Bank, Lawrence C.

    1 VERIFICATION TESTING AND DESIGN PROCEDURE FOR FRP GRID REINFORCED CONCRETE SLABS by Jeffrey J (Civil Engineering) at the UNIVERSITY OF WISCONSIN-MADISON 2009 #12;2 VERIFICATION TESTING AND DESIGN that can be positioned quickly. Initial testing on three dimensional fiber reinforced polymer grids has led

  19. Design and implementation of nanoscale fiber mechanical testing apparatus

    E-Print Network [OSTI]

    Brayanov, Jordan, 1981-

    2004-01-01T23:59:59.000Z

    The rapid growth in the synthetic manufacturing industry demands higher resolution mechanical testing devices, capable of working with nanoscale fibers. A new device has been developed to perform single-axis tensile tests ...

  20. Design of thermal control systems for testing of electronics

    E-Print Network [OSTI]

    Sweetland, Matthew, 1970-

    2001-01-01T23:59:59.000Z

    In the electronic component manufacturing industry, most components are subjected to a full functional test before they are sold. Depending on the type of components, these functional tests may be performed at room ...

  1. Faculty Position in Design Research School of Architecture

    E-Print Network [OSTI]

    Barthelat, Francois

    & Buildings; Sustainable Design; Advanced Construction) and supervision of Masters and PhD-level students, for example, without being limited to, integrative design practice, sustainable design, digital fabrication and other building technologies, and building systems. Teaching responsibilities include design studio

  2. Module Design, Materials, and Packaging Research Team: Activities and Capabilities

    SciTech Connect (OSTI)

    McMahon, T. J.; del Cueto, J.; Glick, S.; Jorgensen, G.; Kempe, M.; Kennedy, C.; Pern, J.; Terwilliger, K

    2005-01-01T23:59:59.000Z

    Our team activities are directed at improving PV module reliability by incorporating new, more effective, and less expensive packaging materials and techniques. New and existing materials or designs are evaluated before and during accelerated environmental exposure for the following properties: (1) Adhesion and cohesion: peel strength and lap shear. (2) Electrical conductivity: surface, bulk, interface and transients. (3) Water vapor transmission: solubility and diffusivity. (4) Accelerated weathering: ultraviolet, temperature, and damp heat tests. (5) Module and cell failure diagnostics: infrared imaging, individual cell shunt characterization, coring. (6) Fabrication improvements: SiOxNy barrier coatings and enhanced wet adhesion. (7) Numerical modeling: Moisture ingress/egress, module and cell performance, and cell-to-frame leakage current. (8) Rheological properties of polymer encapsulant and sheeting materials. Specific examples will be described.

  3. Design Parameters and Commissioning of Vertical Inserts Used for Testing the XFEL Superconducting Cavities

    E-Print Network [OSTI]

    J. Schaffran; Y. Bozhko; B. Petersen; D. Meissner; M. Chorowski; J. Polinski

    2013-06-26T23:59:59.000Z

    The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2015 on, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The superconducting XFEL linear accelerator consists of 100 accelerator modules with more than 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF). This paper gives an overview of the design parameters and the commissioning of the vertical insert, used in two cryostats (XATC) of the AMTF-hall. The Insert serves as a holder for 4 nine-cell cavities. This gives the possibility to cool down 4 cavities to 2K in parallel and, consequently, to reduce the testing time. The following RF measurement, selected as quality check, will be done separately for each cavity. Afterwards the cavities will be warmed up again and will be sent to the accelerator module assembly.

  4. Design parameters and commissioning of vertical inserts used for testing the XFEL superconducting cavities

    SciTech Connect (OSTI)

    Schaffran, J.; Bozhko, Y.; Petersen, B.; Meissner, D. [Deutsches Elektronen Synchrotron DESY, Notkestr. 85, D-22607 Hamburg (Germany); Chorowski, M.; Polinski, J. [Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2014-01-29T23:59:59.000Z

    The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2015 on, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The superconducting XFEL linear accelerator consists of 100 accelerator modules with more than 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF). This paper gives an overview of the design parameters and the commissioning of the vertical insert, used in two cryostats (XATC) of the AMTF-hall. The Insert serves as a holder for 4 nine-cell cavities. This gives the possibility to cool down 4 cavities to 2K in parallel and, consequently, to reduce the testing time. The following RF measurement, selected as quality check, will be done separately for each cavity. Afterwards the cavities will be warmed up again and will be sent to the accelerator module assembly.

  5. Seismic design, testing and analysis of reinforced concrete wall buildings

    E-Print Network [OSTI]

    Panagiotou, Marios

    2008-01-01T23:59:59.000Z

    of Slender Reinforced Concrete Walls”. Structural Journal,T. (1975). “Reinforced Concrete Structures”. John Wiley &Design of Reinforced Concrete and Masonry Buildings”. John

  6. Design of field test plots for a sloped waste rock surface

    SciTech Connect (OSTI)

    O`Kane, M. [O`Kane Consultants, Inc., Saskatoon, Saskatchewan (Canada); Stoicescu, J.; Haug, M. [M.D. Haug and Associates Ltd., Saskatoon, Saskatchewan (Canada); Januszewski, S. [Westmin Resources Ltd., Campbell River, British Columbia (Canada). Myra Falls Operations; Mchaina, D.M. [Westmin Resources Ltd., Vancouver, British Columbia (Canada)

    1998-12-31T23:59:59.000Z

    Westmin Resources Limited is a Western Canadian mining company with producing interests in base and precious metals and coals. Westmin`s Myra Falls Operations produce copper, zinc, and gold concentrates. The Myra Falls Operations are located in the central interior of Vancouver Island in a hanging glacial valley. Mean annual precipitation is approximately 3,000 mm with more than 75% occurring during the months of October to April. Historic surface deposition of waste rock has resulted in acid rock drainage (ARD). An applied research program was initiated to develop a cover system for the waste rock material at the Myra Falls site. The objective is to develop a cover system which controls the ingress of oxygen and infiltration of water, while providing a medium for sustainable vegetation that is consistent with the end land use of the area. Progress to date suggests that modified local till materials (amended with either fly ash or bentonite) can be used in soil cover construction. Four test plots were designed using two-dimensional saturated-unsaturated modelling tools to ensure that the performance of each test plot was representative of a full scale ARD cover system. This paper summarizes the design philosophy and principles of the cover system as well as the methodology for the two-dimensional numerical modelling program. Conclusions and results from the numerical modelling program are presented with a focus on implications for construction of the field test plots and installation of the performance monitoring instruments. The numerical modelling demonstrated that the hydraulic performance of a soil cover system placed on a sloped waste rock surface will be much different than that predicted by idealized one-dimensional numerical models, and in general current design methodologies. The modelling clearly demonstrated that the design of small scale field test plots was not a simple task. The physical dimensions of the field test plots had a significant impact on the ideal location for monitoring instruments and incorrect placement of instruments would lead to an erroneous measure of test plot performance.

  7. Design and testing of components for a low cost laser cutter

    E-Print Network [OSTI]

    Ramos, Joshua D

    2011-01-01T23:59:59.000Z

    The main goal of this thesis is to document the design and testing of various components for use in a low cost laser cutting mechanism for hobbyists and recreational designers. Different electronics were used to assess the ...

  8. Design and analysis of a composite flywheel preload loss test rig

    E-Print Network [OSTI]

    Preuss, Jason Lee

    2004-09-30T23:59:59.000Z

    INTRODUCTION...................................................................................1 1.1 Overview.............................................................................1 1.2 Literature Review..................................................................2 1.3 Objectives and Novel Contributions...................................4 II PLM FLYWHEEL TEST RIG DESIGN................................................. 6 2.1 Design Process...

  9. Design and testing of a high accuracy robotic single-cell manipulator

    E-Print Network [OSTI]

    Yoon, Jun Young, S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    We have designed, built and tested a high accuracy robotic single-cell manipulator to be able to pick individual cells from array of microwells, each 30 Pm or 50 pm cubed. Design efforts have been made for higher accuracy, ...

  10. Current Postdoctoral Researchers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

  11. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01T23:59:59.000Z

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  12. Final Turbine and Test Facility Design Report Alden/NREC Fish Friendly Turbine

    Broader source: Energy.gov [DOE]

    The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

  13. AVNG as a Test Case for Cooperative Design

    SciTech Connect (OSTI)

    Luke, S J

    2010-05-21T23:59:59.000Z

    Designing a measurement system that might be used in a nuclear facility is a challenging, if not daunting, proposition. The situation is made more complicated when the system needs to be designed to satisfy the disparate requirements of a monitoring and a host party - a relationship that could prove to be adversarial. The cooperative design of the elements of the AVNG (Attribute Verification with Neutrons and Gamma Rays) system served as a crucible that exercised the possible pitfalls in the design and implementation of a measurement system that could be used in a host party nuclear facility that satisfied the constraints of operation for both the host and monitoring parties. Some of the issues that needed to be addressed in the joint design were certification requirements of the host party and the authentication requirements of the monitoring party. In this paper the nature of the problem of cooperative design will be introduced. The details of cooperative design revolve around the idiosyncratic nature of the adversarial relationship between the parties involved in a possible measurement regime, particularly if measurements on items that may contain sensitive information are being pursued. The possibility of an adversarial interaction is more likely if an information barrier is required for the measurement system. The origin of the antagonistic elements of the host party and hosted party relationship will be considered. In addition, some of the conclusions will be presented that make cooperative design (and development) proceed more efficiently. Finally, some lessons learned will be presented as a result of this expedition into cooperative design.

  14. Test blanket modules in ITER: An overview on proposed designs and required DEMO-relevant materials

    E-Print Network [OSTI]

    Abdou, Mohamed

    Test blanket modules in ITER: An overview on proposed designs and required DEMO-relevant materials, Russian Federation Abstract Within the framework of the ITER Test Blanket Working Group, the ITER Parties have made several proposals for test blanket modules to be tested in ITER from the first day of H

  15. Design of a horizontal test cryostat for superconducting RF cavities for the FREIA facility at Uppsala University

    SciTech Connect (OSTI)

    Chevalier, N. R.; Thermeau, J.-P.; Bujard, P.; Junquera, T. [Accelerators and Cryogenic Systems (ACS), 86 rue de Paris, 91400 Orsay (France); Hermansson, L.; Kern, R. Santiago; Ruber, R. [Uppsala University, Department of Physics and Astronomy, 75120 Uppsala (Sweden)

    2014-01-29T23:59:59.000Z

    Uppsala University is constructing a large scale facility, called FREIA (Facility for Research Instrumentation and Accelerator Development). FREIA includes a helium liquefier and an accelerator test facility and has the capacity to test superconducting radio-frequency (RF) cavities with the same RF system and RF power level as in an accelerator. A central element of FREIA is a horizontal test cryostat connected in closed loop to a helium liquefier. This cryostat can house two fully equipped (tuners, piezo, power coupler, helium tank) superconducting cavities to perform full RF high power tests and operate at temperatures between 1.8 K and 4.2 K. The cryostat is designed to accommodate a large array of superconducting cavities and magnets, among which the European Spallation Source (ESS) type spoke and high-? elliptical cavities as well as TESLA/ILC type elliptical cavities. The present status of the project and the design of the cryostat are reported.

  16. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01T23:59:59.000Z

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  17. The effects of competition on family rankings in progeny tests of different plot design

    E-Print Network [OSTI]

    Morrow, Daniel Franklin

    2012-06-07T23:59:59.000Z

    Research Area Cherokee County, Texas A. J. Hodges Experimental Sabine Parish, Louisiana Temple Research Area Cherokee County, Texas Temple Research Area Cherokee County, Texas Stephen F. Austin Exp. Fo Nacogdoches County, Texas A. J. Hodges... was performed on Texas Forest Service plantation 006. The test was an open-pollinated superior loblolly pine progeny test made up of IOO-tree square block plots and was established in Cherokee 22 County, Texas in 1956-57. The test individuals were planted...

  18. Design and vibration testing of a flexible seal whisker model

    E-Print Network [OSTI]

    Gerber, Christopher D

    2013-01-01T23:59:59.000Z

    Harbor seal whiskers have a unique surface structure that dramatically reduces vortex induced vibrations as they move through the water. Concurrently with rigid whisker experiments, this project focuses on the design and ...

  19. Computer Techniques for Cogeneration Plant Design and Testing

    E-Print Network [OSTI]

    Stewart, J. C.

    alternate ambient conditions, gas turbine part load operation, alternate gas turbine fuel, zero steam turbine production. The off-design run follows a calcula ion procedure similar to a design run. The first step is to calculate the GT performance... AND 259. DEGF -- - -- - ----- -- ----- -----.-- - -- -- ------ .---- - -- - --- - - ---- --- - ----~ -------------- ---- ------------- -- -- - GAS IURB INE LOAD 1 - 100.0 AM8. ORY BULB TEMP. OEGF - 66.0 PLANT HEAT 9ALANCE RELATIVE HUMIDITY 60...

  20. Designing, testing, and analyzing coupled, flux transformer heat

    E-Print Network [OSTI]

    Renzi, Kimberly Irene

    1998-01-01T23:59:59.000Z

    of identical effective length, this research shows that sufficient heat can be transferred across the system to work effectively in situations where the single heat pie will fail to operate. The thermal resistance in the condenser and evaporator sections need...

  1. NGNP Component Test Capability Design Code of Record

    SciTech Connect (OSTI)

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01T23:59:59.000Z

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  2. Tracers and Tracer Testing: Design, Implementation, Tracer Selection, and Interpretation Methods

    SciTech Connect (OSTI)

    G. Michael Shook; Shannon L.; Allan Wylie

    2004-01-01T23:59:59.000Z

    Conducting a successful tracer test requires adhering to a set of steps. The steps include identifying appropriate and achievable test goals, identifying tracers with the appropriate properties, and implementing the test as designed. When these steps are taken correctly, a host of tracer test analysis methods are available to the practitioner. This report discusses the individual steps required for a successful tracer test and presents methods for analysis. The report is an overview of tracer technology; the Suggested Reading section offers references to the specifics of test design and interpretation.

  3. Design of an Integrated Laboratory Scale Test for Hydrogen Production via High Temperature Electrolysis

    SciTech Connect (OSTI)

    G.K. Housley; K.G. Condie; J.E. O'Brien; C. M. Stoots

    2007-06-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is researching the feasibility of high-temperature steam electrolysis for high-efficiency carbon-free hydrogen production using nuclear energy. Typical temperatures for high-temperature electrolysis (HTE) are between 800ş-900şC, consistent with anticipated coolant outlet temperatures of advanced high-temperature nuclear reactors. An Integrated Laboratory Scale (ILS) test is underway to study issues such as thermal management, multiple-stack electrical configuration, pre-heating of process gases, and heat recuperation that will be crucial in any large-scale implementation of HTE. The current ILS design includes three electrolysis modules in a single hot zone. Of special design significance is preheating of the inlet streams by superheaters to 830°C before entering the hot zone. The ILS system is assembled on a 10’ x 16’ skid that includes electronics, power supplies, air compressor, pumps, superheaters, , hot zone, condensers, and dew-point sensor vessels. The ILS support system consists of three independent, parallel supplies of electrical power, sweep gas streams, and feedstock gas mixtures of hydrogen and steam to the electrolysis modules. Each electrolysis module has its own support and instrumentation system, allowing for independent testing under different operating conditions. The hot zone is an insulated enclosure utilizing electrical heating panels to maintain operating conditions. The target hydrogen production rate for the ILS is 5000 Nl/hr.

  4. Design, Construction, and Testing of A New Class of Mobile Robots for Cave Exploration

    E-Print Network [OSTI]

    design process and results from initial tests. Keywords: Cave robot, exploration, subterraneanDesign, Construction, and Testing of A New Class of Mobile Robots for Cave Exploration Ivan aimed at Exploration of subterranean spaces. The key innovation is the combination of highly

  5. Cognitive Map-Design Research in the Twentieth Century: Theoretical and Empirical Approaches

    E-Print Network [OSTI]

    Montello, Daniel R.

    Cognitive Map-Design Research in the Twentieth Century: Theoretical and Empirical Approaches Daniel R. Montello ABSTRACT: Cognitive map-design research has the goal of understanding human cognition in order to improve the design and use of maps. As a systematic sub-discipline of cartography, cognitive

  6. Design predictions and diagnostic test methods for hydronic heating systems in ASHRAE standard 152P

    SciTech Connect (OSTI)

    Andrews, J.W.

    1996-04-01T23:59:59.000Z

    A new method of test for residential thermal distribution efficiency is currently being developed under the auspices of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). The initial version of this test method is expected to have two main approaches, or ``pathways,`` designated Design and Diagnostic. The Design Pathway will use builder`s information to predict thermal distribution efficiency in new construction. The Diagnostic Pathway will use simple tests to evaluate thermal distribution efficiency in a completed house. Both forced-air and hydronic systems are included in the test method. This report describes an approach to predicting and measuring thermal distribution efficiency for residential hydronic heating systems for use in the Design and Diagnostic Pathways of the test method. As written, it is designed for single-loop systems with any type of passive radiation/convection (baseboard or radiators). Multiloop capability may be added later.

  7. Static load test of Arquin-designed CMU wall.

    SciTech Connect (OSTI)

    Jensen, Richard Pearson; Cherry, Jeffery L.

    2008-12-01T23:59:59.000Z

    The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block used in constructing the wall are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBAP), Sandia National Laboratories conducted a series of tests that statically loaded wall segments to compare the Arquin method to a more traditional method of constructing CMU walls. A total of 12 tests were conducted, three with the Arquin method using a W5 reinforcing wire, three with the traditional method of construction using a number 3 rebar as reinforcing, three with the Arquin method using a W2 reinforcing wire, and three with the traditional construction method but without rebar. The results of the tests showed that the walls constructed with the Arquin method and with a W5 reinforcing wire withstood more load than any of the other three types of walls that were tested.

  8. Two Empirical Tests of Design Principles for Survivable System Architecture

    E-Print Network [OSTI]

    de Weck, Olivier L.

    underscores several of the findings of the 2001 Rumsfeld Commission to Assess U.S. National Security Space's successful test of an anti-satellite (Asat) weapon against an aging Chinese Feng Yun 1C weather satellite Management and Organization: (1) that satellites are vulnerable to a broad spectrum of hostile acts (e

  9. An adaptable, low cost test-bed for unmanned vehicle systems research.

    E-Print Network [OSTI]

    Goppert, James M.

    2011-01-01T23:59:59.000Z

    ?? An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The… (more)

  10. Single Component Sorption-Desorption Test Experimental Design Approach Discussions

    SciTech Connect (OSTI)

    Phil WInston

    2011-09-01T23:59:59.000Z

    A task was identified within the fission-product-transport work package to develop a path forward for doing testing to determine behavior of volatile fission products behavior and to engage members of the NGNP community to advise and dissent on the approach. The following document is a summary of the discussions and the specific approaches suggested for components of the testing. Included in the summary isare the minutes of the conference call that was held with INL and external interested parties to elicit comments on the approaches brought forward by the INL participants. The conclusion was that an initial non-radioactive, single component test will be useful to establish the limits of currently available chemical detection methods, and to evaluated source-dispersion uniformity. In parallel, development of a real-time low-concentration monitoring method is believed to be useful in detecting rapid dispersion as well as desorption phenomena. Ultimately, the test cycle is expected to progress to the use of radio-traced species, simply because this method will allow the lowest possible detection limits. The consensus of the conference call was that there is no need for an in-core test because the duct and heat exchanger surfaces that will be the sorption target will be outside the main neutron flux and will not be affected by irradiation. Participants in the discussion and contributors to the INL approach were Jeffrey Berg, Pattrick Calderoni, Gary Groenewold, Paul Humrickhouse, Brad Merrill, and Phil Winston. Participants from outside the INL included David Hanson of General Atomics, Todd Allen, Tyler Gerczak, and Izabela Szlufarska of the University of Wisconsin, Gary Was, of the University of Michigan, Sudarshan Loyalka and Tushar Ghosh of the University of Missouri, and Robert Morris of Oak Ridge National Laboratory.

  11. Spent Nuclear Fuel (SNF) Storage Project Fuel Basket Handling Grapple Design Development Test Report

    SciTech Connect (OSTI)

    CHENAULT, D.M.

    2000-01-06T23:59:59.000Z

    Acceptance testing of the SNF Fuel Basket Lift Grapple was accomplished to verify the design adequacy. This report shows the results affirming the design. The test was successful in demonstrating the adequacy of the grapple assembly's inconel actuator shaft and engagement balls for in loads excess of design basis loads (3200 pounds), 3X design basis loads (9600 pounds), and 5X design basis loads (16,000 pounds). The test data showed that no appreciable yielding for the inconel actuator shaft and engagement balls at loads in excess of 5X Design Basis loads. The test data also showed the grapple assembly and components to be fully functional after loads in excess of 5X Design Basis were applied and maintained for over 10 minutes. Following testing, each actuator shaft (Item 7) was liquid penetrant inspected per ASME Section 111, Division 1 1989 and accepted per requirements of NF-5350. This examination was performed to insure that no cracking had occurred. The test indicated that no cracking had occurred. The examination reports are included as Appendix C to this document. From this test, it is concluded that the design configuration meets or exceeds the requirements specified in ANSI N 14 6 for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More.

  12. Design and preliminary test results of Daya Bay RPC modules*

    SciTech Connect (OSTI)

    Hackenburg, R.

    2011-09-01T23:59:59.000Z

    Resistive Plate Chamber (RPC) modules will be used as one part of the cosmic muon veto system in the Daya Bay reactor neutrino experiment. A total of 189 RPC modules will cover the three water pools in the experiment. To achieve track reconstruction and high efficiency, each module consists of 4 layers, each of which contains two sizes of bare chambers. The placement of bare chambers is reversed in different layers to reduce the overlapping dead areas. The module efficiency and patch efficiency were studied both in simulation and test of the data analysis. 143 modules have been constructed and tested. The preliminary study shows that the module and patch 3 out of 4 layers efficiency reaches about 98%.

  13. Simulation, design, and testing of a portable concrete median barrier

    E-Print Network [OSTI]

    Walker, Kenneth Charles

    1979-01-01T23:59:59.000Z

    35250. 35250. 0. 0 Position ~tt 70. 8 71. 7 80. 1 82. 0 98. 0 100. 1 105. 2 107. 3 38 TABLE 5. Simulation Results of Previous CMB Crash Tests Test CAL-291 CAL-294 NY-1 NY-2 CMB-24 CMB-2 Observed Maximum Deflection (ft 0. 52 0. 46... 25 30 50 75 100 0 25 30 50 75 100 35. 31 29. 06 27. 93 22. 73 19. 96 18. 76 33. 80 28. 01 26. 94 26. 70 21. 87 19. 07 22. 32 21. 37 21. 17 19. 89 18, 82 18. 34 17. 74 16. 87 16. 80 16. 55 16. 25 15. 98 2. 94 2. 42...

  14. Winchester/Camberley Homes New Construction Test House Design, Construction, and Short-Term Testing in a Mixed-Humid Climate

    SciTech Connect (OSTI)

    Mallav, D.; Wiehagen, J.; Wood, A.

    2012-10-01T23:59:59.000Z

    The NAHB Research Center partnered with production builder Winchester/Camberley Homes to build a DOE Building America New Construction Test House (NCTH). This single family, detached house, located in the mixed-humid climate zone of Silver Spring, MD, was completed in June 2011. The primary goal for this house was to improve energy efficiency by 30% over the Building America B10 benchmark by developing and implementing an optimized energy solutions package design that could be cost effectively and reliably constructed on a production basis using quality management practices. The intent of this report is to outline the features of this house, discuss the implementation of the energy efficient design, and report on short-term testing results. During the interactive design process of this project, numerous iterations of the framing, air sealing, insulation, and space conditioning systems were evaluated for energy performance, cost, and practical implementation. The final design featured numerous advanced framing techniques, high levels of insulation, and the HVAC system entirely within conditioned space. Short-term testing confirmed a very tight thermal envelope and efficient and effective heating and cooling. In addition, relevant heating, cooling, humidity, energy, and wall cavity moisture data will be collected and presented in a future long-term report.

  15. NREL: Transportation Research - Innovative Way to Test Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Way to Test Batteries Fills a Market Niche A square piece of machinery with a lid that opens upwards NETZSCH's Isothermal Battery Calorimeter (IBC 284), developed by...

  16. Final Site-Specific Decommissioning Inspection Report for the University of Washington Research and Test Reactor

    SciTech Connect (OSTI)

    Sarah Roberts

    2006-10-18T23:59:59.000Z

    Report of site-specific decommissioning in-process inspection activities at the University of Washington Research and Test Reactor Facility.

  17. Design and preliminary testing of a thermionic AMTEC cascade

    SciTech Connect (OSTI)

    Miskolczy, G. [Thermo Trex Corp., 85 First Avenue, Waltham, Massachusetts 02254 (United States); Sievers, B.; Svedberg, B. [Advanced Modular Power Systems, Inc., 4667 Freedom Drive, Ann Arbor, Michigan 48108 (United States); Schuller, M. [Phillips Laboratory/VTPN, Kirtland Air Force Base, New Mexico 87117 (United States); VanHagen, T.; Smith, J. [General Atomics, 3550 General Atomics Court, San Diego, California 92121-1194 (United States); Reiners, E.; LeMire, R. [ORION International Technologies, Inc., 6501 Americas Parkway NE, Suite 200, Albuquerque, New Mexico 87110 (United States)

    1996-03-01T23:59:59.000Z

    This paper describes the design of an experiment to demonstrate the feasibly of operating a cascade of a Thermionic Energy Converter (TEC) with an Alkali Metal Thermo Electric Converter (AMTEC). Both of these devices convert heat to electricity without moving mechanical parts and lend themselves to be incorporated into a cascade. Typically, the TEC operates from a hot temperature of 2000 K to 1700 K, rejecting heat at 1100 K to 700 K, while the AMTEC operates from a hot temperature of 1100 K to 900 K and a cold temperature of about 400 K. These temperature ranges form almost ideal cascade. {copyright} {ital 1996 American Institute of Physics.}

  18. OPSAID Initial Design and TestingReport | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 - AcquisitionOPSAID Initial Design and

  19. NREL: Wind Research - NREL Assesses National Design Standards...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assesses National Design Standards for Offshore Wind Energy Projects This photo shows a row of offshore wind turbines from a vertical perspective. The blades from each turbine are...

  20. Pile design predictions in sand and gravel using in situ tests

    E-Print Network [OSTI]

    Huff, Linda Grubbs

    1983-01-01T23:59:59.000Z

    1983 Ma]or Sub]ect: Civil Engineering PILE DESIGN PREDICTIONS IN SAND AND GRAVEL USING IN SITU TESTS A Thesis by LINDA GRUBBS HUFF Approved as to style and content by: Harry M. Coyle Chairman of Committee syne A. Du lap Member Chri opher C... Committee: Dr. Harry M. Coyle The pressuremeter, cone penetrometer and standard penetration tests are in situ tests which are being performed more frequently in recent years to obtain soil parameters used in the design of pile foundations. New design...

  1. SRNL Review And Assessment Of WTP UFP-02 Sparger Design And Testing

    SciTech Connect (OSTI)

    Poirier, M. R.; Duignan, M. R.; Fink, S. D.; Steimke, J. L.

    2014-03-24T23:59:59.000Z

    During aerosol testing conducted by Parsons Constructors and Fabricators, Inc. (PCFI), air sparger plugging was observed in small-scale and medium-scale testing. Because of this observation, personnel identified a concern that the steam spargers in Pretreatment Facility vessel UFP-02 could plug during Waste Treatment and Immobilization Plant (WTP) operation. The U. S. Department of Energy (DOE) requested that Savannah River National Laboratory (SRNL) provide consultation on the evaluation of known WTP bubbler, and air and steam sparger issues. The authors used the following approach for this task: reviewed previous test reports (including smallscale testing, medium-scale testing, and Pretreatment Engineering Platform [PEP] testing), met with Bechtel National, Inc. (BNI) personnel to discuss sparger design, reviewed BNI documents supporting the sparger design, discussed sparger experience with Savannah River Site Defense Waste Processing Facility (DWPF) and Sellafield personnel, talked to sparger manufacturers about relevant operating experience and design issues, and reviewed UFP-02 vessel and sparger drawings.

  2. Design and Environmental Analysis (DEA) combines innovative design thinking with insightful design research to understand how the built

    E-Print Network [OSTI]

    Chen, Tsuhan

    +Will Sustainability Designer, HOK Architects Event Planner, U.S. Green Building Council Lighting Designer, Theo Kondos-Certified Designer, Leo A. Daly Development Coordinator, Urban Green Council Facility Planner, Perkins, sustainable and healthy futures by design. Design Is About Making Things Happen, Not Just Making Things. Good

  3. Direct sunlight facility for testing and research in HCPV

    SciTech Connect (OSTI)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa [Dipartimento di Fisica e Chimica, Universitŕ degli Studi di Palermo, Via Archirafi 36, 90123 PA (Italy); Barbera, Marco [Dipartimento di Fisica e Chimica, Universitŕ degli Studi di Palermo, Via Archirafi 36, 90123 PA, Italy and Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy); Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo [IDEA s.r.l., Contrada Molara, Zona Industriale III Fase, 90018 Termini Imerese (Panama) (Italy); Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy)

    2014-09-26T23:59:59.000Z

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  4. The design of a fluidized bed for testing of a robotic burrowing device which mimics razor clams

    E-Print Network [OSTI]

    Dorsch, Daniel Scott

    2012-01-01T23:59:59.000Z

    This thesis reviews the design of a fluidized bed test setup for testing digging kinematics of RoboClam, a burrowing device based on Atlantic Razor Clams. This test bed allows for in-lab testing in an environment covered ...

  5. Task 8 -- Design and test of critical components

    SciTech Connect (OSTI)

    Chance, T.F.

    1996-11-01T23:59:59.000Z

    This report covers tasks 8.1, 8.1.1, and 8.2. The primary objective of Task 8.1, Particulates Flow Deposition, is to characterize the particulate generated in an operating gas turbine combined cycle (GTCC) power plant whose configuration approximates that proposed for an ATS power plant. In addition, the task is to evaluate the use of full-flow filtering to reduce the steam particulate loads. Before the start of this task, GE had already negotiated an agreement with the candidate power plant, piping and a filter unit had already been installed at the power plant site, and major elements of the data acquisition system had been purchased. The objective of Task 8.1.1, Coolant Purity, is to expose typical ATS gas turbine airfoil cooling channel geometries to real steam flow to determine whether there are any unexpected deposit formations. The task is a static analog of the centrifugal deposition rig trials of Task 8.2, in which a bucket channel return bend is exposed to steam flow. Two cooling channel geometries are of primary interest in this static exposure. The primary objective of Task 8.2, Particle Centrifugal Sedimentation, is to determine the settling characteristics of particles in a cooling stream from an operating gas turbine combined cycle (GTCC) power plant when that stream is ducted through a passage experiencing the G-loads expected in a simulated bucket channel specimen representative of designs proposed for an ATS gas turbine.

  6. Dynamic load test of Arquin-designed CMU wall.

    SciTech Connect (OSTI)

    Jensen, Richard Pearson

    2010-02-01T23:59:59.000Z

    The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as a means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBA), Sandia National Laboratories conducted a series of tests that dynamically loaded wall segments to compare the performance of walls constructed using the Arquin method to a more traditional method of constructing CMU walls. A total of four walls were built, two with traditional methods and two with the Arquin method. Two of the walls, one traditional and one Arquin, had every third cell filled with grout. The remaining two walls, one traditional and one Arquin, had every cell filled with grout. The walls were dynamically loaded with explosive forces. No significant difference was noted between the performance of the walls constructed by the Arquin method when compared to the walls constructed by the traditional method.

  7. Evolutionary Test Program Induction for Microprocessor Design Verification Fulvio Corno, Gianluca Cumani, Matteo Sonza Reorda, Giovanni Squillero

    E-Print Network [OSTI]

    Fernandez, Thomas

    Evolutionary Test Program Induction for Microprocessor Design Verification Fulvio Corno, Gianluca is an assembly program able to maximize a predefined verification metric. Design verification of on-chip

  8. Design, build and test of an axial flow hydrokinetic turbine with fatigue analysis

    E-Print Network [OSTI]

    Ketcham, Jerod W

    2010-01-01T23:59:59.000Z

    OpenProp is an open source propeller and turbine design and analysis code that has been in development since 2007 by MIT graduate students under the supervision of Professor Richard Kimball. In order to test the performance ...

  9. Designing and testing the neutron source deployment system and calibration plan for a dark matter detector

    E-Print Network [OSTI]

    Westerdale, Shawn (Shawn S.)

    2011-01-01T23:59:59.000Z

    In this thesis, we designed and tested a calibration and deployment system for the MiniCLEAN dark matter detector. The deployment system uses a computer controlled winch to lower a canister containing a neutron source into ...

  10. Design and testing of an experiment to measure self-filtration in particulate suspensions

    E-Print Network [OSTI]

    Flander, Mattias S. (Mattias Simon)

    2011-01-01T23:59:59.000Z

    An experiment for measuring self-filtration in terms of change in volume fraction downstream of a constriction compared to volume fraction upstream of said constriction was designed and tested. The user has the ability to ...

  11. Development of flexible, intuitive methods for aerodynamic design Type of award PhD Research Studentship

    E-Print Network [OSTI]

    Bristol, University of

    Development of flexible, intuitive methods for aerodynamic design Type of award PhD Research is beginning a project to develop new techniques for aerodynamic design. The interest is based around free, they are offering a fully funded 3- year PhD position within the University of Bristol Aerodynamics research group

  12. First Principles Modeling for Research and Design of New Materials

    E-Print Network [OSTI]

    Ceder, Gerbrand

    First principles computation can be used to investigate an design materials in ways that can not be achieved with experimental means. We show how computations can be used to rapidly capture the essential physics that ...

  13. Field tests and new design procedure for laterally loaded drilled shafts in clay

    E-Print Network [OSTI]

    Bierschwale, Mark W.

    1980-01-01T23:59:59.000Z

    FIELD TESTS AND NEW DESIGN PROCEDURE FOR LATERALLY LOADED DRILLED SHAFTS IN CLAY A Thesis by l1ARK WILLIAM BIERSCHWALE Submitted to ihe Graduate College Texas A8M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1980 Major Subject: Civil Engineering FIELD TESTS AND NEW DESIGN PROCEDURE FOR LATERALLY LOADED DRILLED SHAFTS IN CLAY A Thesis by NARK WILLIAM BIERSCHWALE Approved as to style and content by: Harry M. Coyle - Chairman...

  14. The John Deere E diesel Test & Research Project

    SciTech Connect (OSTI)

    Fields, Nathan; Mitchell, William E.

    2008-09-23T23:59:59.000Z

    Three non-road Tier II emissions compliant diesel engines manufactured by John Deere were placed on a durability test plan of 2000 hours each at full load, rated speed (FLRS). The fuel was a blend of 10% fuel ethanol and 90% low sulfur #2 diesel fuel. Seven operational failures involving twenty seven fuel system components occurred prior to completion of the intended test plan. Regulated emissions measured prior to component failure indicated compliance to Tier II certification goals for the observed test experience. The program plan included operating three non-road Tier II diesel engines for 2000 hours each monitoring the regulated emissions at 500 hour intervals for changes/deterioration. The program was stopped prematurely due to number and frequency of injection system failures. The failures and weaknesses observed involved injector seat and valve wear, control solenoid material incompatibility, injector valve deposits and injector high pressure seal cavitation erosion. Future work should target an E diesel fuel standard that emphasizes minimum water content, stability, lubricity, cetane neutrality and oxidation resistance. Standards for fuel ethanol need to require water content no greater than the base diesel fuel standard. Lubricity bench test standards may need new development for E diesel.

  15. Fish Protection: Cooperative research advances fish-friendly turbine design

    SciTech Connect (OSTI)

    Brown, Richard S.; Ahmann, Martin L.; Trumbo, Bradly A.; Foust, Jason

    2012-12-01T23:59:59.000Z

    Renewable hydropower is a tremendous resource within the Pacific Northwest that is managed with considerable cost and consideration for the safe migration of salmon. Recent research conducted in this region has provided results that could lower the impacts of hydro power production and make the technology more fish-friendly. This research is now being applied during a period when a huge emphasis is being made to develop clean, renewable energy sources.

  16. Bearing options, including design and testing, for direct drive linear generators in wave energy converters 

    E-Print Network [OSTI]

    Caraher, Sarah

    2011-11-22T23:59:59.000Z

    The key focus of this research was to investigate the bearing options most suited to operation in a novel direct drive linear generator. This was done through bearing comparisons, modelling and testing. It is fundamental ...

  17. SECOND GENERATION EXPERIMENTAL EQUIPMENT DESIGN TO SUPPORT VOLOXIDATION TESTING AT INL

    SciTech Connect (OSTI)

    Dennis L. Wahlquit; Kenneth J. Bateman; Brian R. Westphal

    2008-05-01T23:59:59.000Z

    Voloxidation is a potential head-end process used prior to aqueous or pyrochemical spent-oxide-fuel treatment. The spent oxide fuel is heated to an elevated temperature in oxygen or air to promote separation of the fuel from the cladding as well as volatize the fission products. The Idaho National Laboratory (INL) and the Korea Atomic Energy Research Institute (KAERI) have been collaborating on voloxidation research through a joint International Nuclear Energy Research Initiative (I-NERI). A new furnace and off-gas trapping system (OTS) with enhanced capability was necessary to perform further testing. The design criteria for the OTS were jointly agreed upon by INL and KAERI. First, the equipment must accommodate the use of spent nuclear fuel and be capable of operating in the Hot Fuel Examination Facility (HFEF) at the INL. This primarily means the furnace and OTS must be remotely operational and maintainable. The system requires special filters and distinctive temperature zones so that the fission products can be uniquely captured. The OTS must be sealed to maximize the amount of fission products captured. Finally, to accommodate the largest range of operating conditions, the OTS must be capable of handling high temperatures and various oxidizing environments. The constructed system utilizes a vertical split-tube furnace with four independently controlled zones. One zone is capable of reaching 1200°C to promote the release of volatile fission products. The three additional zones that capture fission products can be controlled to operate between 100-1100°C. A detailed description of the OTS will be presented as well as some initial background information on high temperature seal options.

  18. Design and analysis of experiments testing for biodiversity effects in ecology

    E-Print Network [OSTI]

    Design and analysis of experiments testing for biodiversity effects in ecology R. A. Baileya is that a nested family of plausible models is fitted. The results of three experiments suggest that biodiversity are discussed. Keywords: Biodiversity, Design of experiments, Family of models, Hasse diagram 2008 MSC: 62K99

  19. Fusion Engineering and Design 7579 (2005) 2932 First integrated test of the superconducting magnet systems

    E-Print Network [OSTI]

    Fusion Engineering and Design 75­79 (2005) 29­32 First integrated test of the superconducting of Applied Physics and Applied Mathematics Room 210 S.W., Mudd Building, New York, NY 10027, USA Available at the center of a 5 m diameter, 3 m tall vacuum chamber. The Floating coil (F-coil) is designed for a maximum

  20. DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER (2} (3) (21 icense in and to any copyright covering the drticle. This paper describes a high-efficiency water heater which uses a design approach quite different from the conventional center-flue water heater. While high

  1. Which research in design creativity and innovation? Let us not forget the reality of companies

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Which research in design creativity and innovation? Let us not forget the reality of companies Bernard Yannou Professor of Design & Industrial Engineering Laboratoire Genie Industriel Ecole Centrale design creativity and innovation from practical perspectives for companies requires both a good

  2. When the Rubber Meets the Road: Putting Research-based Methods to Test in Urban Classrooms

    E-Print Network [OSTI]

    Klahr, David

    When the Rubber Meets the Road: Putting Research-based Methods to Test in Urban Classrooms Junlei group's performance was assessed by standardized test items and compared with that of a high also reveal a significant discrepancy between low-SES students' performance on standardized test items

  3. Edinburgh Research Explorer The Dalmarnock Fire Tests on a Cast Insitu Concrete Structure

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer The Dalmarnock Fire Tests on a Cast Insitu Concrete Structure Citation Fire Tests on a Cast Insitu Concrete Structure'. in Proceedings of the international Workshop Fire THE DALMARNOCK FIRE TESTS ON A CAST INSITU CONCRETE STRUCTURE Susan Deeny PhD Student University of Edinburgh, UK

  4. VEHICLE-BARRIER TRACKING OF ASCALED CRASH TEST FOR ROADSIDE BARRIER DESIGN

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    reality of the vehicle-barrier impact. Scaled testing may thus be a cost effective method to evaluateVEHICLE-BARRIER TRACKING OF ASCALED CRASH TEST FOR ROADSIDE BARRIER DESIGN Giuseppina Amato1 Engineering, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK 2 Trinity College Dublin, Dept

  5. ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION

    SciTech Connect (OSTI)

    Frank Bishop

    2003-01-01T23:59:59.000Z

    This multi-state collaborative project brings together federal, state, and private sector resources in order to move the design and use of high-performance energy technologies in schools to the forefront. Projects within each task area have begun to show results. Recently, NETL representatives and NASEO met with all Task Project Managers to discuss the progress of each project. Each project began slowly due to several unforeseen obstacles, which have now been overcome. Some projects may require an extension to complete project to full extent. Most tasks are now running smoothly and have or will soon acquire results.

  6. Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility

    E-Print Network [OSTI]

    Lee, Dongwon

    , hydrocarbons and carbon dioxide from transit buses and heavy-duty vehicles when they are tested on simulated · CO2, CO, HC, NOx, and particulates · Fuels: Diesel, gasoline, CNG, propane, LNG, LPG, ethanol · 30-ton axle capacity · 80 mph speed · Simulated road load curve · Test cycle simulation with driver

  7. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect (OSTI)

    Unknown

    2002-03-31T23:59:59.000Z

    The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

  8. Research Frontiers and Capability Gaps for Controlling and Designing Functional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearch Form Research FormUR

  9. ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION

    SciTech Connect (OSTI)

    Kate Burke

    2004-01-01T23:59:59.000Z

    This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

  10. Researchers Collaborate with Global Good To Improve Malaria Test | GE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B C D E F G4878Global Research

  11. Towards OLAP Security Design Survey and Research Issues

    E-Print Network [OSTI]

    Song, Il-Yeol

    as an open system. Especially exploratory OLAP analysis requires this open nature; security controls may hinder the analytical discovery process. Keywords Data warehouse, OLAP, security, access control, design on the technical issues laying an accent on authorization and access control. We explore these security issues

  12. GridAgents DER Testing: Cooperative Research and Development Final Report, CRADA Number CRD-08-265

    SciTech Connect (OSTI)

    Harrison, K.

    2012-04-01T23:59:59.000Z

    The project objectives are to perform research, development, and pilot-scale testing of advanced, next-generation distribution operational strategies using ConEdison's 3G: Distribution System of the Future and associated infrastructure for the real-world Test Bed (demonstration network) combined with the Infotility GridAgents: Secure Agent Framework for Energy as the software platform for advanced operational strategies development. The objective is to accelerate high-payoff technologies that, because of their risk, are unlikely to be developed in a timely manner without a partnership between industry and the Federal government. NREL will be responsible for the evaluation of equipment design and control methods for DER integration and testing of prototype DER technologies and control equipment at the NREL test facility.

  13. NREL: Transportation Research - Fleet Test and Evaluation Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of medium-duty truck

  14. NREL: Transportation Research - Hybrid Electric Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of

  15. NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo ofHydraulic Hybrid Fleet

  16. RESEARCH POSTER PRESENTATION DESIGN 2011 www.PosterPresentations.com

    E-Print Network [OSTI]

    Hall, Sharon J.

    Gallagher Expected Results Methodology We will merge life cycle assessment (LCA) methodology with urban: Urban Metabolism and Life Cycle Assessment Our team is composed of seven researchers from three Chester, M.V, S. Pincetl, and P. Bunje, 2011, Complementing Urban Metabolisms with Life-cycle Assessment

  17. Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance

    SciTech Connect (OSTI)

    Eric P. Loewen; Paul Demkowicz

    2005-05-01T23:59:59.000Z

    The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive global position. This fundamental heavy-metal research supports the National Energy Policy Development Group’s stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will maintain and extend the U.S. nuclear knowledge base, while educating young scientists and engineers. The uniqueness of the Lead-Bismuth Eutectic Test Facility is its integrated Pool Unit and Storage Unit. This combination will support large-scale investigation of structural and fuel cladding material compatibility issues with heavy-metal coolants, oxygen chemistry control, and thermal hydraulic physics properties. Its ability to reconfigure flow conditions and piping configurations to more accurately approximate prototypical reactor designs will provide a key resource for Lead Fast Reactor research and development. The other principal elements of the Lead-Bismuth Eutectic Test Facility (in addition to the Pool Unit and Storage Unit) are the Bench Scale Unit and Supporting Systems, principal of which are the O2 Sensor/Calibration System, Feed System, Transfer System, Off- Gas System, Purge and Evacuation System, Oxygen Sensor and Control System, Data Acquisition and Control System, and the Safety Systems. Parallel and/or independent corrosion studies and convective heat transfer experiments for cylindrical and annular geometries will support investigation of heat transfer phenomena into the secondary side. In addition, molten metal pumping concepts and power requirements will be measured for future design use.

  18. Design and Test of an Event Detector for the ReflectoActive Seals System

    SciTech Connect (OSTI)

    Stinson, Brad J [ORNL

    2006-05-01T23:59:59.000Z

    The purpose of this thesis was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphical user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.

  19. Design and Test of an Event Detector and Locator for the ReflectoActive Seals System

    SciTech Connect (OSTI)

    Stinson, Brad J [ORNL

    2006-06-01T23:59:59.000Z

    The purpose of this work was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive{trademark} Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphical user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.

  20. ENERGY SMART SCHOOLS APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION

    SciTech Connect (OSTI)

    Frank Bishop

    2003-04-01T23:59:59.000Z

    This multi-state collaborative project brings together federal, state, and private sector resources in order to move the design and use of high-performance energy technologies in schools to the forefront. NASEO and its contractors continue to make progress on completion of the statement of work. The high watermark for this period is the installation and operation of the micro-turbine in the Canton School District. The school is pleased to begin the monitoring phase of the project and looks forward to a ribbon cutting this Spring. The other projects continue to move forward and NYSERDA has now begun work in earnest. We expect the NASEO/NYSERDA workshop sometime this Spring as well. By the time the next Annual Technical Progress Report is submitted, we plan to have finished all of the work. The next year should be filled with dissemination of information to interested parties on the success of the project in an effort to get others to duplicate the high performance, and energy smart schools initiatives. We expect all of the deliverables to be completed with the possible exception of the high-performance schools retrofits in California. We expect that 2 of the 3 campuses undergoing retrofits will be complete and the third will be nearly complete. All other activities are on schedule for 10/1/03 completion at this time.

  1. New facility design and work method for the quantitative fit testing laboratory. Master's thesis

    SciTech Connect (OSTI)

    Ward, G.F.

    1989-05-01T23:59:59.000Z

    The United States Air Force School of Aerospace Medicine (USAFSAM) tests the quantitative fit of masks which are worn by military personnel during nuclear, biological, and chemical warfare. Subjects are placed in a Dynatech-Frontier Fit Testing Chamber, salt air is fed into the chamber, and samples of air are drawn from the mask and the chamber. The ratio of salt air outside the mask to salt air inside the mask is called the quantitative fit factor. A motion-time study was conducted to evaluate the efficiency of the layout and work method presently used in the laboratory. A link analysis was done to determine equipment priorities, and the link data and design guidelines were used to develop three proposed laboratory designs. The proposals were evaluated by projecting the time and motion efficiency, and the energy expended working in each design. Also evaluated were the lengths of the equipment links for each proposal, and each proposal's adherence to design guidelines. A mock-up was built of the best design proposal, and a second motion-time study was run. Results showed that with the new laboratory and work procedures, the USAFSAM analyst could test 116 more subjects per year than are currently tested. Finally, the results of a questionnaire given to the analyst indicated that user acceptance of the work area improved with the new design.

  2. Test Plan for Characterization Testing of SO2-depolarized Electrolyzer Cell Designs

    SciTech Connect (OSTI)

    Steimke, J. L.

    2006-02-15T23:59:59.000Z

    SRNL received funding in FY 2005 to test the Hybrid Sulfur (HyS) Process for generating hydrogen. This technology employs an electrolyzer that uses a sulfur dioxide depolarized anode to greatly reduce the electrical energy requirement. The required current is the same as for conventional electrolysis of water, but the required cell voltage is reduced. The electrolyzer is a key part of HyS technology. Completing the material loop for HyS requires a high temperature decomposition of sulfuric acid to regenerate the sulfur dioxide gas needed for the anode reaction. Oxygen is also produced and could be sold. The decomposition of sulfuric acid is being studied by others in a separately funded task. It is not included in this SRNL task.

  3. Design and first cold test of BNL superconducting 112 MHz QWR for electron gun applications

    SciTech Connect (OSTI)

    Belomestnykh, S.; Ben-Zvi, I.; Boulware, C.H.; Chang, X.; Grimm, T.L.; Siegel, B.; Than, R.; Winowski, M.

    2011-03-28T23:59:59.000Z

    Brookhaven National Laboratory and Niowave, Inc. have designed, fabricated, and performed the first cold test of a superconducting 112 MHz quarter-wave resonator (QWR) for electron gun experiments. The first cold test of the QWR cryomodule has been completed at Niowave. The paper discusses the cryomodule design, presents the cold test results, and outline plans to upgrade the cryomodule for future experiments. A quarter-wave resonator concept of superconducting RF (SRF) electron gun was proposed at BNL for electron cooling ion/proton beams at RHIC. QWRs can be made sufficiently compact even at low RF frequencies (long wavelengths). The long wavelength allows to produce long electron bunches, thus minimizing space charge effects and enabling high bunch charge. Also, such guns should be suitable for experiments requiring high average current electron beams. A 112 MHz QWR gun was designed, fabricated, and cold-tested in collaboration between BNL and Niowave. This is the lowest frequency SRF gun ever tested successfully. In this paper we describe the gun design and fabrication, present the cold test results, and outline plans for the cryomodule upgrade for future experiments.

  4. Generation of Software Test Data from the Design Specification Using Heuristic Techniques. Exploring the UML State Machine Diagrams and GA Based Heuristic Techniques in the Automated Generation of Software Test Data and Test Code.

    E-Print Network [OSTI]

    Doungsa-ard, Chartchai

    2011-01-01T23:59:59.000Z

    ??Software testing is a tedious and very expensive undertaking. Automatic test data generation is, therefore, proposed in this research to help testers reduce their work… (more)

  5. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  6. LSU EFRC - Center for Atomic Level Catalyst Design - Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement TitanProposals |Research >> space

  7. Center for Inverse Design: EFRC Researchers in Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium:and TechnicalTheory and OrganizationEFRC

  8. AMERICAN INDIANS AND THE NEVADA TEST SITE A MODEL OF RESEARCH...

    National Nuclear Security Administration (NNSA)

    3046-2001 OO1 AMERICAN INDIANS AND THE NEVADA TEST SITE A MODEL OF RESEARCH AND CONSULTATION Richard W. Stoffle, Maria Nieves Zedeno, and David B. Halmo, editors Bureau of Applied...

  9. NREL: Wind Research - Offshore Design Tools and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossible for2

  10. The research and design of a low cost, all terrain, mechanically advantageous wheelchair for developed markets

    E-Print Network [OSTI]

    Judge, Benjamin Michael

    2011-01-01T23:59:59.000Z

    This thesis presents a case for a paradigm shift in the way mobility technology is approached in the United States. Spawning from the research of developing world wheelchair technology, a conceptual design for a capable ...

  11. NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes.

    E-Print Network [OSTI]

    NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems

  12. Design of irradiation rig for reactor testing of prototype bolometers for ITER

    SciTech Connect (OSTI)

    Gusarov, A.; Huysmans, S. [SCK.CEN Belgian Nucrear Research Center, 2400 Mol (Belgium); Meister, H. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching b. Muenchen (Germany); Hodgson, E. [Euratom/CIEMAT Fusion Association, Avenida Complutense 22, 28040 Madrid (Spain)

    2011-07-01T23:59:59.000Z

    We describe the design of an experimental rig, which was developed to allow reactor testing at relevant conditions, i.e. vacuum and {approx}400 deg.C temperature, of prototype resistive bolometers, which will be used in ITER to acquire information on the radiated power distribution from the main plasma and in the diverter region. The main feature of the design is that the rig has no active temperature control. (authors)

  13. Design Guidelines for Test Level 3 (TL-3) Through Test Level 5 (TL-5) Roadside Barrier Systems Placed on Mechanically Stabilized Earth (MSE) Retaining Wall

    E-Print Network [OSTI]

    Saez Barrios, Deeyvid 1980-

    2012-12-05T23:59:59.000Z

    DESIGN GUIDELINES FOR TEST LEVEL 3 (TL-3) THROUGH TEST LEVEL 5 (TL-5) ROADSIDE BARRIER SYSTEMS PLACED ON MECHANICALLY STABILIZED EARTH (MSE) RETAINING WALL A Dissertation by DEEYVID OSCAR SAEZ BARRIOS Submitted to the Office... ............................................................................................. 28 2.2.3 Full-Scale Crash Testing for TL-4 .............................................................. 32 2.2.4 Full-Scale Crash Testing for TL-5 .............................................................. 34 2.3 Background on Design Impact...

  14. Design and testing of a combustion-heated nineteen-converter SAVTEC array

    SciTech Connect (OSTI)

    Nyren, T.; Fitzpatrick, G.O.; Korringa, M.; McVey, J.; Sahines, T.

    1984-08-01T23:59:59.000Z

    The SAVTEC (Self-Adjusting Versatile Thermionic Energy Converter) is a new design approach for achieving very close (<12..mu..) interelectrode spacing in a thermionic converter. Techniques were developed for fabricating an array of nineteen SAVTEC converters. The array was incorporated in an SiC protective ''hot shell'' which also served as a radiant heat source for the emitter of each converter. The completed assembly was tested with a specially constructed combustion heat source. Electric output was generated by sixteen of the nineteen converters, despite poor thermal contact in a cooling block, which resulted in high collector temperatures. Details of the array design and test results are described.

  15. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect (OSTI)

    Unknown

    2002-01-31T23:59:59.000Z

    The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

  16. Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research Hossein Akhavan data set for PHEV-related research in the field of smart grid. Our developed data set is made available, publicly available data set, smart grid applications, experimental vehicle driving traces, state of charge

  17. Detailed design, fabrication and testing of an engineering prototype compensated pulsed alternator. Final report

    SciTech Connect (OSTI)

    Bird, W.L. Jr.; Woodson, H.H.

    1980-03-01T23:59:59.000Z

    The design, fabrication, and test results of a prototype compensated pulsed alternator are discussed. The prototype compulsator is a vertical shaft single phase alternator with a rotating armature and salient pole stator. The machine is designed for low rep rate pulsed duty and is sized to drive a modified 10 cm Beta amplifier. The load consists of sixteen 15 mm x 20 mm x 112 cm long xenon flashlamps connected in parallel. The prototype compulsator generates an open circuit voltage of 6 kV, 180 Hz, at a maximum design speed of 5400 rpm. At maximum speed, the inertial energy stored in the compulsator rotor is 3.4 megajoules.

  18. Design, Fabrication and Testing of a Superconducting Fault Current Limiter (SFCL)

    SciTech Connect (OSTI)

    Gouge, M..; Schwenterly, S.W.; Hazelton, D. (SuperPower, Inc.)

    2011-06-15T23:59:59.000Z

    The purpose of this project was to conduct R&D on specified components and provide technical design support to a SuperPower team developing a high temperature superconducting Fault Current Limiter (SFCL). ORNL teamed with SuperPower, Inc. on a Superconductivity Partnerships with Industry (SPI) proposal for the SFCL that was submitted to DOE and approved in FY 2003. A contract between DOE and SuperPower, Inc. was signed on July 14, 2003 to design, fabricate and test the SFCL. This device employs high temperature superconducting (HTS) elements and SuperPower's proprietary technology. The program goal was to demonstrate a device that will address a broad range of the utility applications and meet utility industry requirements. This DOE-sponsored Superconductivity Partnership with Industry project would positively impact electric power transmission reliability and security by introducing a new element in the grid that can significantly mitigate fault currents and provide lower cost solutions for grid protection. The project will conduct R&D on specified components and provide technical design support to a SuperPower-led team developing a SFCL as detailed in tasks 1-5 below. Note the SuperPower scope over the broad SPI project is much larger than that shown below which indicates only the SuperPower tasks that are complementary to the ORNL tasks. SuperPower is the Project Manager for the SFCL program, and is responsible for completion of the project on schedule and budget. The scope of work for ORNL is to provide R&D support for the SFCL in the following four broad areas: (1) Assist with high voltage subsystem R&D, design, fabrication and testing including characterization of the general dielectric performance of LN2 and component materials; (2) Consult on cryogenic subsystem R&D, design, fabrication and testing; (3) Participate in project conceptual and detailed design reviews; and (4) Guide commercialization by participation on the Technical Advisory Board (TAB). SuperPower's in-kind work for the SFCL will be provided in the following areas: (1) Work with ORNL to develop suitable test platforms for the evaluation of subsystems and components; (2) Provide cryogenic and high voltage subsystem designs for evaluation; (3) Lead the development of the test plans associated with the subsystem and components and participate in test programs at ORNL; and (4) Based on the test results, finalize the subsystem and component designs and incorporate into the respective SFCL prototypes.

  19. The Micro Craft iSTAR Micro Air Vehicle: Control System Design and Testing

    E-Print Network [OSTI]

    Rotkowitz, Michael C.

    -rotating propellers) benefits both reliability and cost. Figure 1: iSTAR Micro Air Vehicle The Micro Craft iSTAR VTOLThe Micro Craft iSTAR Micro Air Vehicle: Control System Design and Testing Larry Lipera i Abstract The iSTAR Micro Air Vehicle (MAV) is a unique 9-inch diameter ducted air vehicle weighing

  20. DESIGN, MODELING, TESTING, AND SPICE PARAMETER EXTRACTION OF DIMOS TRANSISTOR IN 4H-SILICON CARBIDE

    E-Print Network [OSTI]

    Tolbert, Leon M.

    DESIGN, MODELING, TESTING, AND SPICE PARAMETER EXTRACTION OF DIMOS TRANSISTOR IN 4H-SILICON CARBIDE (DIMOS) transistor structure in 4H-Silicon Carbide (SiC) is presented. Simulation for transport Silicon carbide (SiC), a wide bandgap material, shows a tremendous potential for high temperature

  1. LSPE Qualification and Flight Acceptance T /V Test Su.m..mary and Thermal Design

    E-Print Network [OSTI]

    Rathbun, Julie A.

    5. 2 5. 3 5.4 5.5 5. 6 5.7 Nodal Description Thermal Resistances Solar Heating Lunar SurfaceLSPE Qualification and Flight Acceptance T /V Test Su.m..mary and Thermal Design Final Report NO Thermal Control Systems. The report is divided into three sections. The first section introduces

  2. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    SciTech Connect (OSTI)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13T23:59:59.000Z

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  3. Design, Testing, and Applications of Digital Microfluidics-Based Biochips Krishnendu Chakrabarty

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    Design, Testing, and Applications of Digital Microfluidics-Based Biochips Krishnendu Chakrabarty@ee.duke.edu Abstract Microfluidics-based biochips offer a promising platform for massively parallel DNA analysis readers to digital microfluidics technology. The second part describes a recent technique

  4. Results from evaporation tests to support the MWTF heat removal system design

    SciTech Connect (OSTI)

    Crea, B.A.

    1994-12-22T23:59:59.000Z

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  5. Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design Overview The team was tasked with modelling the accelerations and pressures of an impact of the scaled landing vehicle to reduce the accelerations and pressures of the vehicle. Objectives Provide

  6. Design, prototyping and testing of a compact superconducting double quarter wave crab cavity

    E-Print Network [OSTI]

    Xiao, Binping; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdú-Andres, Silvia; Wu, Qiong

    2015-01-01T23:59:59.000Z

    A novel design of superconducting Crab Cavity was proposed and designed at Brookhaven National Laboratory. The new cavity shape is a Double Quarter Wave or DQWCC. After fabrication and surface treatments, the niobium proof-of-principle cavity was cryogenically tested in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service for the Large Hadron Collider luminosity upgrade. The electromagnetic properties of the cavity are also well matched for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the requirement for a crab cavity in the future High Luminosity LHC of 3.34 MV. In this paper we present the design, prototyping and test results of the DQWCC.

  7. Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 4th Presenting a JUnit Testing Framework to a

    E-Print Network [OSTI]

    Tappert, Charles

    A2.1 Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 4th , 2007 Presenting a JUnit Testing Framework to a Multi-University Community Romerl Elizes Research Administration Systems testing process only involves MIT internal testing of the application and a one week testing process

  8. The Science, Technology and Mission Design for the Laser Astrometric Test of Relativity

    E-Print Network [OSTI]

    Slava G. Turyshev

    2005-12-22T23:59:59.000Z

    The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system -- the close proximity to the Sun. By using independent time-series of highly accurate measurements of the Shapiro time-delay (laser ranging accurate to 1 cm) and interferometric astrometry (accurate to 0.1 picoradian), LATOR will measure gravitational deflection of light by the solar gravity with accuracy of 1 part in a billion, a factor ~30,000 better than currently available. LATOR will perform series of highly-accurate tests of gravitation and cosmology in its search for cosmological remnants of scalar field in the solar system. We present science, technology and mission design for the LATOR mission.

  9. Scaleup tests and supporting research for the development of duct injection technology

    SciTech Connect (OSTI)

    Gooch, J.P.; Dismukes, E.B.; Dahlin, R.S.; Faulkner, M.G. (Southern Research Inst., Birmingham, AL (United States)); Klett, M.G.; Buchanan, T.L.; Hunt, J.E. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

    1989-05-01T23:59:59.000Z

    Gilbert Commonwealth, Southern Research Institute and the American Electric Power Service Corporation have embarked on a program to convert DOE's Duct Injection Test Facility located at the Muskingum River Power Plant of Ohio Power Company to test alternate duct injection technologies. The technologies to be tested include slurry sorbent injection of hydrated lime using dual fluid nozzles, or a rotary atomizer and pneumatic injection of hydrated lime, with flue gas humidification before or after sorbent injection. The literature review and analysis contained in this report is a part of the preparatory effort for the test program.

  10. Status of axial heterogeneous liquid-metal fast breeder reactor core design studies and research and development

    SciTech Connect (OSTI)

    Nakagawa, H.; Inagaki, T.; Yoshimi, H.; Shirakata, K.; Watari, Y.; Suzuki, M.; Inoue, K.

    1988-11-01T23:59:59.000Z

    The current status of axial heterogeneous core (AHC) design development in Japan, which consists of an AHC core design in a pool-type demonstration fast breeder reactor (DFBR) and research and development activities supporting AHC core design, is presented. The DFBR core design objectives developed by The Japan Atomic Power Company include (a) favorable core seismic response, (b) core compactness, (c) high availability, and (d) lower fuel cycle cost. The AHC concept was selected as a reference pool-type DFBR core because it met these objectives more suitably than the homogeneous core (HOC). The AHC core layouts were optimized emphasizing the reduction of the burnup reactivity swing, peak fast fluence, and power peaking. The key performance parameters resulting from the AHC, such as flat axial power/flux distribution, lower peak fast fluence, lower burnup reactivity swing, etc., were evaluated in comparison with the HOC. The critical experiments at the Japan Atomic Energy Research Institute's Fast Critical Assembly facility demonstrate the key AHC performance characteristics. The large AHC engineering benchmark experiments using the zero-power plutonium reactor and the AHC fuel pin irradiation test program using the JOYO reactor are also presented.

  11. Design, Construction and Test of Cryogen-Free HTS Coil Structure

    SciTech Connect (OSTI)

    Hocker, H.; Anerella, M.; Gupta, R.; Plate, S.; Sampson, W.; Schmalzle, J.; Shiroyanagi, Y.

    2011-03-28T23:59:59.000Z

    This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconducting magnets.

  12. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01T23:59:59.000Z

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  13. A design for a high voltage magnet coil ringer test set

    SciTech Connect (OSTI)

    Koska, W. [Fermi National Accelerator Lab., Batavia, IL (United States); Sims, R.E. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1992-04-01T23:59:59.000Z

    By discharging a bank of charged capacitors through a high power SCR switch into an SSC dipole magnet assembly, it is possible to ``ring`` the coil and develop a voltage stress of greater than 50 volts turn-to-turn, thereby verifying the insulation integrity. We will present an overview of the test set design for a 2 kV isolated SCR firing circuit, including safety features, selectable capacitor banks, and digital waveform storage system. Results from testing typical coils and magnets will be included. Possible upgrades are also discussed.

  14. A design for a high voltage magnet coil ringer test set

    SciTech Connect (OSTI)

    Koska, W. (Fermi National Accelerator Lab., Batavia, IL (United States)); Sims, R.E. (Superconducting Super Collider Lab., Dallas, TX (United States))

    1992-04-01T23:59:59.000Z

    By discharging a bank of charged capacitors through a high power SCR switch into an SSC dipole magnet assembly, it is possible to ring'' the coil and develop a voltage stress of greater than 50 volts turn-to-turn, thereby verifying the insulation integrity. We will present an overview of the test set design for a 2 kV isolated SCR firing circuit, including safety features, selectable capacitor banks, and digital waveform storage system. Results from testing typical coils and magnets will be included. Possible upgrades are also discussed.

  15. Testing and analysis of the Semiscale Mod-1 heater rod design

    SciTech Connect (OSTI)

    Larson, T.K.

    1980-01-01T23:59:59.000Z

    The use of electrically heated nuclear fuel rod simulators in the Semiscale Program is traced from a historical viewpoint. The design of the Semiscale Mod-1 electrical heater rod and core simulator is discussed. Heater rod thermal response during transient thermal-hydraulic depressurization experiments conducted in the Mod-1 system, and analysis techniques and tests conducted to help quantify heater rod characteristics and behavior are presented.

  16. NIH Grant Support for Health Behavior Technologies Parent Mechanisms for Design, Development, and Testing

    E-Print Network [OSTI]

    Chisholm, Rex L.

    NIH Grant Support for Health Behavior Technologies Parent Mechanisms for Design, Development, and Testing: R03 http://grants.nih.gov/grants/guide/pa-files/PA-11-262.html R21 http://grants.nih.gov/grants/guide/pa-files/PA-11-261.html R34 http://grants.nih.gov/grants/guide/pa-files/PAR-10-005.html R41/42 http://grants.nih

  17. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2005-10-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  18. Water Research 38 (2004) 33313339 Testing a surface tension-based model to predict the salting

    E-Print Network [OSTI]

    Herbert, Bruce

    Water Research 38 (2004) 3331­3339 Testing a surface tension-based model to predict the salting out associated with transferring solutes from water to a salt solution to the difference in surface tensions likely reflects the inability of the simple surface tension model to account for all interactions among

  19. Design and Testing of a Prototype Spallation Neutron Source Rotating Target Assembly

    SciTech Connect (OSTI)

    Rennich, Mark J [ORNL; McManamy, Thomas J [ORNL; Graves, Van [Oak Ridge National Laboratory (ORNL); Garmendia, Amaia Zarraoa [IDOM Bilbao; Sorda, Fernando [ESS Bilbao

    2010-01-01T23:59:59.000Z

    The mechanical aspects of an extended vertical shaft rotating target have been evaluated in a full-scale mockup test. A prototype assembly based on a conceptual target design for a 1 to 3-MW spallation facility was built and tested. Key elements of the drive/coupling assembly implemented in the prototype include high integrity dynamic face seals, commercially available bearings, realistic manufacturing tolerances, effective monitoring and controls, and fail-safe shutdown features. A representative target disk suspended on a 3.5 meter prototypical shaft was coupled with the drive to complete the mechanical tests. After1800 hours of operation the test program has confirmed the overall mechanical feasibility of the extended vertical shaft rotating target concept. Precision alignment of the suspended target disk; successful containment of the water and verification of operational stability over the full speed range of 30 to 60 rpm were primary indications the proposed mechanical design is valid for use in a high power target station.

  20. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    SciTech Connect (OSTI)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01T23:59:59.000Z

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  1. Design-Build Process for the Research Support Facility (RSF) (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

  2. RESEARCH TRAINING GROUP GRK 1095/1: "AERO-THERMODYNAMIC DESIGN OF A SCRAMJET PROPULSION SYSTEM"

    E-Print Network [OSTI]

    RESEARCH TRAINING GROUP GRK 1095/1: "AERO-THERMODYNAMIC DESIGN OF A SCRAMJET PROPULSION SYSTEM" U conception. In this context only the use of a scramjet-propulsion system meets all the aerodynamic it must be mentioned that scramjet-technologies are one of the key technologies for hypersonic flight

  3. Data Warehouse Design for Pharmaceutical Drug Discovery Research Melinda G. Axel and Il-Yeol Song

    E-Print Network [OSTI]

    Song, Il-Yeol

    an analysis of the principal activities involved in drug discovery in the pharmaceutical industry, and a setData Warehouse Design for Pharmaceutical Drug Discovery Research Melinda G. Axel and Il-Yeol Song: axel@superlink.net, songiy@post.drexel.edu Abstract Pharmaceutical companies spend billions of dollars

  4. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01T23:59:59.000Z

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  5. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01T23:59:59.000Z

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  6. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01T23:59:59.000Z

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  7. Grout long radius flow testing to support Saltstone disposal Unit 5 design

    SciTech Connect (OSTI)

    Stefanko, D. B.; Langton, C. A.; Serrato, M. G.; Brooks, T. E. II; Huff, T. H.

    2013-02-24T23:59:59.000Z

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as “Saltstone”. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a “mega vault” and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (saltstone premix plus water) were designed to simulate slurry with the reference saltstone rheology and a saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0ş, 2.4ş, and 0.72ş. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7ş to 0.9ş. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch.

  8. Grout Long Radius Flow Testing to Support Saltstone Disposal Unit 6 Design - 13352

    SciTech Connect (OSTI)

    Stefanko, D.B.; Langton, C.A.; Serrato, M.G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States); Brooks, T.E. II; Huff, T.H. [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as 'Saltstone'. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a 'mega vault' and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; Saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (Saltstone premix plus water) were designed to simulate slurry with the reference Saltstone rheology and a Saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0 deg., 2.4 deg., and 0.72 deg.. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7 deg. to 0.9 deg. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch. (authors)

  9. High Pressure Test Rig Case The goal of this project was to design a high pressure test casing which will be

    E-Print Network [OSTI]

    Demirel, Melik C.

    casing which will be used to test low flow coefficient centrifugal impellers. We chose to design in Olean, NY to get a visual representation of existing designs and applications of compressors the actual compressor would be far too large and expensive to manufacture, we had decided to create a wooden

  10. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    SciTech Connect (OSTI)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01T23:59:59.000Z

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and development. To address these challenges, NREL has embarked on an initiative to evaluate how methods of systems engineering can be applied to the research, design and development of wind energy systems. Systems engineering is a field within engineering with a long history of research and application to complex technical systems in domains such as aerospace, automotive, and naval architecture. As such, the field holds potential for addressing critical issues that face the wind industry today. This paper represents a first step for understanding this potential through a review of systems engineering methods as applied to related technical systems. It illustrates how this might inform a Wind Energy Systems Engineering (WESE) approach to the research, design, and development needs for the future of the industry. Section 1 provides a brief overview of systems engineering and wind as a complex system. Section 2 describes these system engineering methods in detail. Section 3 provides an overview of different types of design tools for wind energy with emphasis on NREL tools. Finally, Section 4 provides an overview of the role and importance of software architecture and computing to the use of systems engineering methods and the future development of any WESE programs. Section 5 provides a roadmap of potential research integrating systems engineering research methodologies and wind energy design tools for a WESE framework.

  11. Design and field test of collaborative tools in the service of an innovative organization

    SciTech Connect (OSTI)

    De Beler, N.; Parfouru, S. [EdF R and D -Industrial Risk Management Dept., Human Factors Group, 1, avenue du General de Gaulle, 92 141 Clamart Cedex (France)

    2012-07-01T23:59:59.000Z

    This paper presents the design process of collaborative tools, based on ICT, aiming at supporting the tasks of the team that manages an outage of an energy production plant for maintenance activities. The design process follows an iterative and multidisciplinary approach, based on a collective tasks modeling of the outage management team in the light of Socio Organizational and Human (SOH) field studies, and on the state of the art of ICT. Field test of the collaborative tools designed plays a great place in this approach, allowing taking into account the operational world but involves also some risks which must be managed. To implement tools on all the production plants, we build an 'operational concept' with a level of description which authorizes the evolution of tools and allows some local adaptations. The field tests provide lessons on the ICT topics. For examples: the status of the remote access tools, the potential of use of a given information input by an actor for several individual and collective purposes, the actors perception of the tools meaning, and the requirements for supporting the implementation of change. (authors)

  12. Science, Technology and Mission Design for the Laser Astrometric Test Of Relativity

    E-Print Network [OSTI]

    Slava G. Turyshev; Michael Shao; Kenneth L. Nordtvedt Jr

    2006-02-09T23:59:59.000Z

    The Laser Astrometric Test Of Relativity (LATOR) is a Michelson-Morley-type experiment designed to achieve a major improvement in the accuracy of the tests of relativistic gravity in the solar system. By using a combination of independent time-series of gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the relativistic time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will measure the key post-Newtonian Eddington parameter \\gamma with accuracy of one part in a billion - a factor of 30,000 improvement compared to the present best result, Cassini's 2003 test. LATOR's primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor modifications of gravity by looking for a remnant scalar field in today's solar system. We present a comprehensive discussion of the science objectives, proposed technology, mission and optical designs, as well as the expected performance of this fundamental physics experiment in space.

  13. Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data: Custom Engineering trough with glass reflector surface and Sandia-designed receivers

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-05-01T23:59:59.000Z

    Thermal performance predictions based on test data are presented for the Custom Engineering trough and Sandia-designed receivers, with glass reflector surface, for three output temperatures at five cities in the United States. Two experimental receivers were tested, one with an antireflective coating on the glass envelope around the receiver tube and one without the antireflective coating.

  14. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    SciTech Connect (OSTI)

    Frank Darmann; Robert Lombaerde; Franco Moriconi; Albert Nelson

    2011-10-31T23:59:59.000Z

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with â??warm boreâ?ť diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged â??spiderâ?ť design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project â??Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limitersâ?ť was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZPâ??s product development program, the amount of HTS wire employed per FCL and its cost as a percentage of the total FCL product content had not dropped substantially from an unsustainable level of more than 50% of the total cost of the FCL, nor had the availability increased (today the availability of 2G wire for commercial applications outside of specific partnerships with the leading 2G wire manufacturers is extremely limited). ZP had projected a very significant commercial potential for FCLs with higher performance and lower costs compared to the initial models built with 1G wire, which would come about from the widespread availability of low-cost, high-performance 2G HTS wire. The potential for 2G wires at greatly reduced performance-based prices compared to 1G HTS conductor held out the potential for the commercial production of FCLs at price and performance levels attractive to the utility industry. However, the price of HTS wire did not drop as expected and today the available quantities of 2G wire are limited, and the price is higher than the currently available supplies of 1G wire. The commercial option for ZP to provide a reliable and reasonably priced FCL to the utility industry is to employ conventional resistive conductor DC electromagnets to bias the FCL. Since the premise of the original funding was to stimulate the HTS wire industry and ZP concluded that copper-based magnets were more economical for the foreseeable future, DOE and ZP decided to mutually terminate the project.

  15. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01T23:59:59.000Z

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

  16. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately.

  17. Plasma Panel Detectors for MIP Detection for the SLHC and a Test Chamber Design

    E-Print Network [OSTI]

    Robert Ball; John W. Chapman; Erez Etzion; Peter S. Friedman; Daniel S. Levin; Meny Ben Moshe; Curtis Weaverdyck; Bing Zhou

    2010-07-03T23:59:59.000Z

    Performance demands for high and super-high luminosity at the LHC (up to 10^35 cm^(-2) sec^(-1) after the 2017 shutdown) and at future colliders demand high resolution tracking detectors with very fast time response and excellent temporal and spatial resolution. We are investigating a new radiation detector technology based on Plasma Display Panels (PDP), the underlying engine of panel plasma television displays. The design and production of PDPs is supported by four decades of industrial development. Emerging from this television technology is the Plasma Panel Sensor (PPS), a novel variant of the micropattern radiation detector. The PPS is fundamentally an array of micro-Geiger plasma discharge cells operating in a non-ageing, hermetically sealed gas mixture . We report on the PPS development program, including design of a PPS Test Cell.

  18. Dynamometer Testing of a NW2200 Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-10-394

    SciTech Connect (OSTI)

    Wallen, R.

    2012-04-01T23:59:59.000Z

    Northern Power Systems specializes in direct drive wind turbine designs. CRADA CRD-10-394 involved testing the NW2200 wind turbine power train. Power train testing is important because it allows validation of the generator design and some control algorithms prior to installation on a tower, where this data would be more difficult and time consuming to collect. In an effort to keep the commercial product schedule on time, Northern Power requested testing support from the National Renewable Energy Laboratory for this testing. The test program was performed using NREL's 2.5 MW dynamometer test bed at the National Wind Technology Center near Boulder, CO.

  19. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  20. A new design criterion based on pressure testing of torispherical heads

    SciTech Connect (OSTI)

    Kalnins, A. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Mechanical Engineering and Mechanics; Rana, M.D. [Praxair, Inc., Tonawanda, NY (United States). Research and Development Dept.

    1996-08-01T23:59:59.000Z

    Two vessels with torispherical heads were pressurized to destruction at the Praxair Tonawanda facility on September 12--13, 1994. The objective was to determine pressures at which observable or measurable indications of failure could be detected. Plastic limit pressures for the two heads were calculated at 190 and 240 psi, respectively. For Vessel 1, the only observable action was a slow formation of some waviness of the knuckle profile at approximately 600 psi. It lost pressure at 700 psi when a crack developed at a nozzle weld at the bottom of the shell. For Vessel 2, no indication of any sign of failure was observed until it burst at a pressure of 1,080 psi by a ductile fracture along the longitudinal weld of the shell. The main conclusion is that there is a problem in the application of the double elastic slope collapse criterion to torispherical heads. It was determined that when using this criterion a collapse pressure signaling excessive deformation cannot be determined with any certainty. Furthermore, the test data do not show anything at any of the calculated collapse pressures that suggests excessive deformation. Thus, the collapse pressures for torispherical heads cannot be confirmed by test. This leads to the inconsistency that if the collapse load is divided by a safety factor, say 1.5, to obtain an allowable pressure, the actual safety margin of the design is not known and may not be 1.5. For a material with sufficient ductility, the use of an estimated burst pressure appears preferable. A design criterion based on the membrane stress at the crown of a torispherical head reaching the ultimate tensile strength is proposed, which is simple, can be supported by theoretical arguments, and is shown to be conservative by current test results as well as by those of two previous test programs.

  1. Design concepts for a pulse power test facility to simulate EMP surges. Part II. Slow pulses

    SciTech Connect (OSTI)

    Dethlefsen, R.

    1985-10-01T23:59:59.000Z

    The work described in this report was sponsored by the Division of Electric Energy Systems (EES) of the US Department of Energy (DOE) through a subcontract with the Power Systems Technology Program at the Oak Ridge National Laboratory (ORNL). The work deals with the effect of high altitude nuclear bursts on electric power systems. In addition to fast voltage transients, slow, quasi-dc currents are also induced into extended power systems with grounded neutral connections. Similar phenomena at lower magnitude are generated by solar induced electromagnetic pulses (EMP). These have caused power outages, related to solar storms, at northern latitudes. The applicable utility experience is reviewed in order to formulate an optimum approach to future testing. From a wide variety of options two pulser designs were selected as most practical, a transformer-rectifier power supply, and a lead acid battery pulser. both can be mounted on a trailer as required for field testing on utility systems. The battery system results in the least cost. Testing on power systems requires that the dc pulser pass high values of alternating current, resulting from neutral imbalance or from potential fault currents. Batteries have a high ability to pass alternating currents. Most other pulser options must be protected by an ac bypass in the form of an expensive capacitor bank. 8D truck batteries can meet the original specification of 1 kA test current. Improved batteries for higher discharge currents are available.

  2. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01T23:59:59.000Z

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  3. Report on design, construction, and testing of CO/sub 2/ breakout system for geothermal brines

    SciTech Connect (OSTI)

    Robertus, R.J.; Shannon, D.W.; Sullivan, R.G.

    1984-03-01T23:59:59.000Z

    A skid mounted test facility has been built for determining conditions at which CO/sub 2/ flashes from geothermal brines. The system has been checked and operated at one geothermal plant. It performed as designed. The equipment is designed to operate at temperatures and pressures typical of wells near Heber, California. (Nominally 180/sup 0/C and 300 to 500 psig). It has heat exchangers which can cool the brine to less than 70/sup 0/C. (The cooling water is recirculated after being cooled by a forced air heat exchanger). Breakout pressures can be determined for any temperature between 70/sup 0/C and wellhead temperature. An adjustable orifice provides final control on pressure required to initiate flashing. The orifice is at the bottom of a sight glass. A light beam shines through the sight glass and focuses on a photoelectric cell. The presence of bubbles scatters light and decreases the output of the cell. Results using the cell were more reproducible than those using the naked eye. Results from one test show a smooth curve over the temperature range 75/sup 0/C to 165/sup 0/C. Agreement between the experimental values and calculated ones is discussed.

  4. Design and Test of a Nb3Sn Subscale Dipole Magnet for Training Studies

    SciTech Connect (OSTI)

    Felice, Helene; Caspi, Shlomo; Dietderich, Daniel R.; Felice, Helene; Ferracin, Paolo; Gourlay, Steve A.; Hafalia, Aurelo R.; Lietzke, Alan F.; Mailfert, Alain; Sabbi, GainLuca; Vedrine, Pierre

    2007-06-01T23:59:59.000Z

    As part of a collaboration between CEA/Saclay and the Superconducting Magnet Group at LBNL, a subscale dipole structure has been developed to study training in Nb3Sn coils under variable pre-stress conditions. This design is derived from the LBNL Subscale Magnet and relies on the use of identical Nb{sub 3}Sn racetrack coils. Whereas the original LBNL subscale magnet was in a dual bore 'common-coil' configuration, the new subscale dipole magnet (SD) is assembled as a single bore dipole made of two superposed racetrack coils. The dipole is supported by a new mechanical structure developed to withstand the horizontal and axial Lorentz forces and capable of applying variable vertical, horizontal and axial preload. The magnet was tested at LBNL as part of a series of training studies aiming at understanding of the relation between pre-stress and magnet performance. Particular attention is given to the coil ends where the magnetic field peaks and stress conditions are the least understood. After a description of SD design, assembly, cool-down and tests results are reported and compared with the computations of the OPERA3D and ANSYS magnetic and mechanical models.

  5. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31T23:59:59.000Z

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  6. Design and Application of an Electronic Logbook for Space System Integration and Test Operations

    SciTech Connect (OSTI)

    Kavelaars, Alicia T.; /SLAC /Stanford U., Dept. Aeronaut. Astronaut.; ,

    2006-10-10T23:59:59.000Z

    In the highly technological aerospace world paper is still widely used to document space system integration and test (I&T) operations. E-Logbook is a new technology designed to substitute the most commonly used paper logbooks in space system I&T, such as the connector mate/demate logbook, the flight hardware and flight software component installation logbook, the material mix record logbook and the electronic ground support equipment validation logbook. It also includes new logbook concepts, such as the shift logbook, which optimizes management oversight and the shift hand-over process, and the configuration logbook, which instantly reports on the global I&T state of the space system before major test events or project reviews. The design of E-Logbook focuses not only on a reliable and efficient relational database, but also on an ergonomic human-computer interactive (HCI) system that can help reduce human error and improve I&T management and oversight overall. E-Logbook has been used for the I&T operation of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) at the Stanford Linear Accelerator Center (SLAC). More than 41,000 records have been created for the different I&T logbooks, with no data having been corrupted or critically lost. 94% of the operators and 100% of the management exposed to E-Logbook prefer it to paper logbooks and recommend its use in the aerospace industry.

  7. OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003.

    SciTech Connect (OSTI)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23T23:59:59.000Z

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. The Melt Coolability and Concrete Interaction (MCCI) program is pursuing separate effect tests to examine the viability of the melt coolability mechanisms identified as part of the MACE program. These mechanisms include bulk cooling, water ingression, volcanic eruptions, and crust breach. At the second PRG meeting held at ANL on 22-23 October 2002, a preliminary design1 for a separate effects test to investigate the melt eruption cooling mechanism was presented for PRG review. At this meeting, NUPEC made several recommendations on the experiment approach aimed at optimizing the chances of achieving a floating crust boundary condition in this test. The principal recommendation was to incorporate a mortar sidewall liner into the test design, since data from the COTELS experiment program indicates that corium does not form a strong mechanical bond with this material. Other recommendations included: (i) reduction of the electrode elevation to well below the melt upper surface elevation (since the crust may bond to these solid surfaces), and (ii) favorably taper the mortar liner to facilitate crust detachment and relocation during the experiment. Finally, as a precursor to implementing these modifications, the PRG recommended the development of a design for a small-scale scoping test intended to verify the ability of the mortar liner to preclude formation of an anchored bridge crust under core-concrete interaction conditions. This revised Melt Eruption Test (MET) plan is intended to satisfy these PRG recommendations. Specifically, the revised plan focuses on providing data on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions, including a floating crust boundary condition. The overall objective of MET is to determine to what extent core debris is rendered coolable by eruptive-type processes that breach the crust that rests upon the melt. The specific objectives of this test are as follows: (1) Evaluate the augmentation in surface heat flux during periods of melt eruption; (2) Evaluate the melt entrainment coefficient from the heat flux and gas flow rate data for input into models that calculate ex-vessel debris coolability; (3) Characterize the morphology and coolability of debris resulting from eruptive processes that transport melt into overlying water; and (4) Discriminate between periods when eruptions take the form of particle ejections into overlying water, leading to a porous particle bed, and single-phase extrusions, which lead to volcano-type structures.

  8. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01T23:59:59.000Z

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratory’s desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATR’s instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. “These new systems represent state-of-the-art monitoring and annunciation capabilities,” said Don Feldman, ATR Station Manager. “They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.”

  9. chemical engineering research and design 8 9 ( 2 0 1 1 ) 18551864 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Haszeldine, Stuart

    chemical engineering research and design 8 9 ( 2 0 1 1 ) 1855­1864 Contents lists available at ScienceDirect Chemical Engineering Research and Design journal homepage: www sedimentary basins. © 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights

  10. Design of a micro-Functional Testing System for process characterization of a hot micro-embossing machine

    E-Print Network [OSTI]

    Thaker, Kunal H. (Kunal Harish)

    2006-01-01T23:59:59.000Z

    Growth in industrial, commercial, and medical applications for micro-fluidic devices has fueled heightened research and development into micro-fluidic design, materials, and increasingly manufacturing. Polymers (Poly(methyl ...

  11. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect (OSTI)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01T23:59:59.000Z

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  12. Design and Validation of Control Room Upgrades Using a Research Simulator Facility

    SciTech Connect (OSTI)

    Ronald L. Boring; Vivek Agarwal; Jeffrey C. Joe; Julius J. Persensky

    2012-11-01T23:59:59.000Z

    Since 1981, the United States (U.S.) Nuclear Regulatory Commission (NRC) [1] requires a plant- specific simulator facility for use in training at U.S. nuclear power plants (NPPs). These training simulators are in near constant use for training and qualification of licensed NPP operators. In the early 1980s, the Halden Man-Machine Laboratory (HAMMLab) at the Halden Reactor Project (HRP) in Norway first built perhaps the most well known set of research simulators. The HRP offered a high- fidelity simulator facility in which the simulator is functionally linked to a specific plant but in which the human-machine interface (HMI) may differ from that found in the plant. As such, HAMMLab incorporated more advanced digital instrumentation and controls (I&C) than the plant, thereby giving it considerable interface flexibility that researchers took full advantage of when designing and validating different ways to upgrade NPP control rooms. Several U.S. partners—the U.S. NRC, the Electrical Power Research Institute (EPRI), Sandia National Laboratories, and Idaho National Laboratory (INL) – as well as international members of the HRP, have been working with HRP to run control room simulator studies. These studies, which use crews from Scandinavian plants, are used to determine crew behavior in a variety of normal and off-normal plant operations. The findings have ultimately been used to guide safety considerations at plants and to inform advanced HMI design—both for the regulator and in industry. Given the desire to use U.S. crews of licensed operators on a simulator of a U.S. NPP, there is a clear need for a research simulator facility in the U.S. There is no general-purpose reconfigurable research oriented control room simulator facility in the U.S. that can be used for a variety of studies, including the design and validation of control room upgrades.

  13. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

  14. Design of a re-configurable test stand for a multi degree of freedom compliant robot prototype

    E-Print Network [OSTI]

    Klenk, Daniel E

    2009-01-01T23:59:59.000Z

    A test stand was designed and constructed to compress a compliant robot prototype, while measuring the force applied and the displacement of the prototype's end. The prototype is a five degree of freedom, compliant device, ...

  15. Design, fabrication, and testing of a multichannel microfluidic device to dynamically control oxygen concentration conditions in-vitro

    E-Print Network [OSTI]

    Rodriguez, Rosa H

    2008-01-01T23:59:59.000Z

    Multilayer microfluidic devices were designed and fabricated such that an array of different oxygen concentrations could be applied to a testing area in any desired sequence and with unconstraint application times. The ...

  16. Design of a Portable Test Facility for the ATLAS Tile Calorimeter Front-End Electronics Verification

    E-Print Network [OSTI]

    Kim, H Y; The ATLAS collaboration; Carrio, F; Moreno, P; Masike, T; Reed, R; Sandrock, C; Schettino, V; Shalyugin, A; Solans, C; Souza, J; Suter, R; Usai, G; Valero, A

    2013-01-01T23:59:59.000Z

    The stand-alone test-bench deployed in the past for the verification of the Tile Calorimeter (TileCal) front-end electronics is reaching the end of its life cycle. A new version of the test-bench has been designed and built with the aim of improving the portability and exploring new technologies for future versions of the TileCal read-out electronics. An FPGA based motherboard with an embedded hardware processor and a few dedicated daughter-boards are used to implement all the functionalities needed to interface with the front-end electronics (TTC, G-Link, CANbus) and to verify the functionalities using electronic signals and LED pulses. The new device is portable and performs well, allowing the validation in realistic conditions of the data transmission rate. We discuss the system implementation and all the tests required to gain full confidence in the operation of the front-end electronics of the TileCal in the ATLAS detector.

  17. Research in the design and implementation of a comprehensive facility for scientific computation. Final project report

    SciTech Connect (OSTI)

    Fateman, R.J.; Kahan, W.

    1983-01-01T23:59:59.000Z

    Research on ways to organize a body of numerical procedures in such a way that they may be invoked automatically by processes which accept symbolic and algebraic specifications from a user, and produce combined symbolic, numeric and graphical output is described. Efforts are made to make these algebraic systems as flexible and useful as possible in this context, and to integrate them successfully into a man-machine design which provides operating system, language, and algorithm support. Various aspects of this research are reviewed including languages for symbolic algebra systems, programming environments, numerical software, numeric/symbolic programs, floating point hardware, elementary functions, Macsyma distribution, VAX/Macsyma/computer architecture, interactive systems, Lisp language, and advanced computer concepts (supercomputers). The computing environment for this research are UNIX-VAX-11/780, Vax 11/750, and Motorola 68000 systems. 32 refs. (DWL)

  18. Proceedings of the 1990 International Meeting on Reduced Enrichment for Research and Test Reactors

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The global effort to reduce, and possibly, eliminate the international traffic in highly-enriched uranium caused by its use in research reactors requires extensive cooperation and free exchange of information among all participants. To foster this free exchange of information, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the thirteenth of a series which began in 1978. The common effort brought together, past, a large number of specialists from many countries. On hundred twenty-three participants from 26 countries, including scientists, reactor operators, and personnel from commercial fuel suppliers, research centers, and government organizations, convened in Newport, Rhode Island to discuss their results, their activities, and their plans relative to converting research reactors to low-enriched fuels. As more and more reactors convert to the use of low-enriched uranium, the emphasis of our effort has begun to shift from research and development to tasks more directly related to implementation of the new fuels and technologies that have been developed, and to refinements of those fuels and technologies. It is appropriate, for this reason, that the emphasis of this meeting was placed on safety and on conversion experiences. This individual papers in this report have been cataloged separately.

  19. The design, implementation and testing of data gathering instrumentation for measurement of electromagnetic interference in electric power substations

    E-Print Network [OSTI]

    Gerloff, Gary Wayne

    1983-01-01T23:59:59.000Z

    THE DESIGN, IMPLEMENTATION AND TESTING OF DATA GATHERING INSTRUMENTATION FOR MEASUREMENT OF ELECTROMAGNETIC INTERFERENCE IN ELECTRIC POWER SUBSTATIONS A Thesis by GARY WAYNE GERLOFF Submitted to the Graduate College of Texas AAM University... IN ELECTRIC POWER SUBSTATIONS A Thesis by GARY WAYNE GERLOFF Approved as to style and content by: B. Don Russell (Chairman of Committee) A. K. A IM Sallie She p rd (Member) August 1983 ABSTRACT The Design, Implementation and Testing of Data...

  20. Design methodologies for built-in testing of integrated RF transceivers with the on-chip loopback technique

    E-Print Network [OSTI]

    Onabajo, Marvin Olufemi

    2009-05-15T23:59:59.000Z

    Advances toward increased integration and complexity of radio frequency (RF) andmixed-signal integrated circuits reduce the effectiveness of contemporary testmethodologies and result in a rising cost of testing. The focus in this research...

  1. Design of SystemonaChip Test Access Architectures using Integer Linear Programming 1

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    integration. An ef­ ficient test access architecture should reduce test cost and time­to­market by minimizing. In order to reduce test cost and shorten short time­to­ market, the testing time for an SOC should) For a given test access architecture, how much test data bandwidth is required to meet specified testing time

  2. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    SciTech Connect (OSTI)

    Godfroy, Thomas J.; Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, TD40, Huntsville, Alabama, 35812 (United States); University of Michgan, Dept. of Nuclear Engineering and Radiological Sciences, Ann Arbor MI 48109 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-02-04T23:59:59.000Z

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  3. NREL Determines Better Testing Methods for Photovoltaic Module Durability (Fact Sheet), NREL Highlights, Research & Development

    SciTech Connect (OSTI)

    Not Available

    2011-11-01T23:59:59.000Z

    NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage stress that modules experience in fielded arrays. This is partly because qualification tests and standards do not adequately evaluate the durability of modules that undergo the long-term effects of high voltage. Scientists at the National Renewable Energy Laboratory (NREL) tried various testing methods and stress levels to demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. The results of these accelerated tests, along with outdoor testing, were used to estimate the acceleration factors needed to more accurately evaluate the durability of modules to system voltage stress. NREL was able to determine stress factors, levels, and methods for testing based on the stresses experienced by modules in the field. These results, in combination with those in the literature, suggest that constant stress with humidity and system voltage is more damaging than stress applied intermittently or with periods of recovery comprising hot and dry conditions or alternating bias in between. NREL has determined some module constructions to be extremely durable to PID. These findings will help the manufacturers of PV materials and components produce more durable products that better satisfy their customers. NREL determined that there is rapid degradation of some PV modules under system voltage stress and evaluated degradation rates in the field to develop more accurate accelerated testing methods. PV module manufacturers will be better able to choose robust materials and durable designs and guarantee sturdier, longer-lasting products. As PV modules become more durable, and thus more efficient over the long term, the risks and the cost of PV power will be reduced.

  4. Design and laboratory testing of an unequal parallel multicompressor supermarket refrigeration system

    SciTech Connect (OSTI)

    Toscano, W.M.; Cooper, W.L.; Oven, M.J.; Vineyard, E.A.; Walker, D.H.

    1982-01-01T23:59:59.000Z

    The Supermarket Refrigeration Systems Project was structured to investigate and develop new highly energy-efficient supermarket refrigeration systems. A supermarket refrigeration system that included unequal parallel compressors, a condenser with floating head-pressure control, and a microprocessor-based electronic control system was analyzed, designed, and tested. The total system capacity is 35 hp (26.10 kW), consisting of three compressors of 5, 10, and 20 hp (3.73, 7.46, and 14.91 kW), which were determined to be the optimum number and capacity distribution. A theoretical comparison to conventional supermarket refrigeration systems revealed that the three unequal parallel compressor system with R-12 exhibited a maximum annual energy savings of 29,100 kWh, or 26 percent and with R-502 exhibited a maximum annual energy savings of 20,100 kWh, or 15 percent. A compressor capacity control algorithm was designed to select the optimum compressor combination for each operating condition by matching compressor capacity to refrigeration load. A microprocessor system was selected for system control and data acquisition. The economic analysis revealed that for a payback period of three years or less, an added microprocessor-based electronic control system that costs between $500 and $1500, depending on the refrigerant used and the refrigeration load, is acceptable. Testing was performed on the unequal parallel compressor system over a refrigeration load range of 78,000 to 160,000 Btu/hr (22.86 to 46.88 kW). For refrigerant R-12, the increase in the energy efficiency ratio (EER) for the microprocessor-based electronic control system, as compared to the mechanical pressure control system, ranged from 9.8 to 14.4 percent.

  5. Design and test results of a 600-kW tetrode amplifier for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Rees, D.E.; Brittain, D.L. [Los Alamos National Lab., NM (United States); Grippe, J.M.; Marrufo, O. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1993-05-01T23:59:59.000Z

    This paper describes the design and testing of a pulsed 600-kW tetrode amplifier that will be used to drive a radiofrequency quadrupole (RFQ) for the Superconducting Super Collider (SSC). Three stages of amplification provide a nominal gain of 77 dB and peak output power of 600 kW. The amplifier is operated at a pulse width of 100 {mu}s and a repetition frequency of 10 Hz. This paper presents the rf design and calculated operating conditions for the amplifier. Details of the electrical design are presented, along with test results.

  6. Design and test results of a 600-kW tetrode amplifier for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Rees, D.E.; Brittain, D.L. (Los Alamos National Lab., NM (United States)); Grippe, J.M.; Marrufo, O. (Superconducting Super Collider Lab., Dallas, TX (United States))

    1993-01-01T23:59:59.000Z

    This paper describes the design and testing of a pulsed 600-kW tetrode amplifier that will be used to drive a radiofrequency quadrupole (RFQ) for the Superconducting Super Collider (SSC). Three stages of amplification provide a nominal gain of 77 dB and peak output power of 600 kW. The amplifier is operated at a pulse width of 100 [mu]s and a repetition frequency of 10 Hz. This paper presents the rf design and calculated operating conditions for the amplifier. Details of the electrical design are presented, along with test results.

  7. RERTR Program: goals, progress and plans. [Reduced Enrichment Research and Test Reactor

    SciTech Connect (OSTI)

    Travelli, A.

    1984-09-25T23:59:59.000Z

    The status of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of RERTR Program objectives and goals, program accomplishments are discussed with emphasis on the development, demonstration and application of new LEU fuels. Most program activities have proceeded as planned, and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) holds excellent promise for achieving the long-term program goals. Current plans and schedules project the uranium density of qualified RERTR fuels for plate-type reactors to grow by approximately 1 g U/cm/sup 3/ each year, from the nearly null value of 1982 to the 7.0 g U/cm/sup 3/ which will be reached in early 1989. The technical needs of research reactors for HEU exports are also estimated to undergo a gradual but dramatic decline in the coming years.

  8. Fuel development activities of the US RERTR Program. [Reduced Enrichment Research and Test Reactor

    SciTech Connect (OSTI)

    Snelgrove, J.L.; Domagala, R.F.; Wiencek, T.C.; Copeland, G.L.

    1983-01-01T23:59:59.000Z

    Progress in the development and irradiation testing of high-density fuels for use with low-enriched uranium in research and test reactors is reported. Swelling and blister-threshold temperature data obtained from the examination of miniature fuel plates containing UAl/sub x/, U/sub 3/O/sub 8/, U/sub 3/Si/sub 2/, or U/sub 3/Si dispersed in an aluminum matrix are presented. Combined with the results of metallurgical examinations, these data show that these four fuel types will perform adequately to full burnup of the /sup 235/U contained in the low-enriched fuel. The exothermic reaction of the uranium-silicide fuels with aluminum has been found to occur at about the same temperature as the melting of the aluminum matrix and cladding and to be essentially quenched by the melting endotherm. A new series of miniature fuel plate irradiations is also discussed.

  9. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01T23:59:59.000Z

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  10. Progress of the RERTR (Reduced Enrichment Research and Test Reactor) Program in 1989

    SciTech Connect (OSTI)

    Travelli, A.

    1989-01-01T23:59:59.000Z

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1988, the major events, findings, and activities of 1989 are reviewed. The scope of the RERTR Program activities was curtailed, in 1989, by an unexpected legislative restriction which limited the ability of the Arms Control and Disarmament Agency to adequately fund the program. Nevertheless, the thrust of the major planned program activities was maintained, and meaningful results were obtained in several areas of great significance for future work. 15 refs., 12 figs.

  11. Profile of the Department of Design Engineering and the Focus on New Research Areas May 2014 Department of Design Engineering: Profile and Focus on New Research Areas

    E-Print Network [OSTI]

    Langendoen, Koen

    areincreasingly becoming producers (or `prosumers' or `co- designers'). They are now involved in the development

  12. The internal design phase of the breeding and multigeneration support system: A tracking and decision support system for NCTR (National Center for Toxicological Research)

    SciTech Connect (OSTI)

    Strand, R.; Cox, T.L.; Sjoreen, A.; Alvic, D.

    1989-06-01T23:59:59.000Z

    The National Center for Toxicological Research (NCTR) is the basic research arm of the US Food and Drug Administration (FDA). The NCTR has upgraded and standardized its computer operations on Digital Equipment Corporation VAX minicomputers using Software AG's ADABAS data base management system for all research applications. The NCTR is currently performing a large study to improve the functionality of the animal husbandry systems and applications called Breeding/Multigeneration Support System (BMSS). When functional, it will operate on VAX equipment using the ADABAS data base management system, TDMS, and COBOL. Oak Ridge National Laboratory (ORNL) is supporting NCTR in the design, prototyping, and software engineering of the BMSS. This document summarizes the internal design elements that include data structures, file structures, and system attributes that were required to facilitate the decision support requirements defined in the external design work. Prototype pseudocode then was developed for the recommended system attributes and file and data structures. Finally, ORNL described the processing requirements including the initial access of the BMSS, integration of the existing INLIFE system and the STUDY DEFINITION system under development, data system initialization and maintenance, and BMSS testing and verification. This document describes ORNL's recommendations for the internal design of the BMSS. ORNL will provide research support to NCTR in the additional phases of systems life cycle development for BMSS. ORNL has prepared this document according to NCTR's Standard Operating Procedures for Systems Development. 6 figs., 5 tabs.

  13. ONTOLOGY OF TEST Larisa Soldatova

    E-Print Network [OSTI]

    Mizoguchi, Riichiro

    ONTOLOGY OF TEST Larisa Soldatova Post doctoral researcher Riichiro Mizoguchi Professor ISIR, Osaka In the present paper design of test generation systems (TGS) based on test ontology and student's knowledge model parts: domain independent- and domain-dependant knowledge. Suggested test ontology allows analyzing test

  14. Reactor core design and modeling of the MIT research reactor for conversion to LEU

    SciTech Connect (OSTI)

    Newton, Thomas H. Jr. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Olson, Arne P.; Stillman, John A. [RERTR Program, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2008-07-15T23:59:59.000Z

    Feasibility design studies for conversion of the MIT Research Reactor (MITR) to LEU are described. Because the reactor fuel has a rhombic cross section, a special input processor was created in order to model the reactor in great detail with the REBUS-PC diffusion theory code, in 3D (triangular-z) geometry. Comparisons are made of fuel assembly power distributions and control blade worth vs. axial position, between REBUS-PC results and Monte Carlo predictions from the MCNP code. Results for the original HEU core at zero burnup are also compared with measurement. These two analysis methods showed remarkable agreement. Ongoing fuel cycle studies are summarized. A status report will be given as to results thus far that affect key design decisions. Future work plans and schedules to achieve completion of the conversion are presented. (author)

  15. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-02-27T23:59:59.000Z

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy, and cost effectiveness. These efforts partially fulfill expectations of the DOE, other federal agencies, and the State of New Mexico for waste minimization. If the improvements discussed here are implemented, an estimated 1.8 million dollars in cost savings is expected.

  16. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02T23:59:59.000Z

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  17. Status of the RERTR (Reduced Enrichment Research and Test Reactor) Program

    SciTech Connect (OSTI)

    Travelli, A.

    1988-01-01T23:59:59.000Z

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1987, the major events, findings and activities of 1988 are reviewed. The US Nuclear Regulatory Commission issued a formal and generic approval of the use of U3Si2-Al dispersion fuel in research and test reactors, with densities up to 4.8 g U/cmT. New significant findings from postirradiation examinations, from ion-beam irradiations, and from analytical modeling, have raised serious doubts about the potential of LEU U3Si-Al dispersion fuel for applications requiring very high uranium densities and high burnups (>6 g U/cmT, >50% burnup). As a result of these findings, the fuel development efforts have been redirected towards three new initiatives: (1) a systematic application of ion-beam irradiations to screen new materials; (2) application of Hot Isostatic Pressing (HIP) procedures to produce U3Si2-Al plates with high uranium densities and thin uniform cladding; and (3) application of HIP procedures to produce plates with U3Si wires imbedded in an aluminum matrix, achieving stability, high uranium density, and thin uniform cladding. The new fuel concepts hold the promise of extraordinary performance potential and require approximately five years to develop.

  18. Blade Testing Equipment Development and Commercialization: Cooperative Research and Development Final Report, CRADA Number CRD-09-346

    SciTech Connect (OSTI)

    Snowberg, D.; Hughes, S.

    2013-04-01T23:59:59.000Z

    Blade testing is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and financial risk of deploying mass-produced wind turbine models. NREL?s National Wind Technology Center (NWTC) in Colorado is the only blade test facility in the U.S. capable of performing full-scale static and fatigue testing of multi-megawatt-scale wind turbine blades. Rapid growth in wind turbine size over the past two decades has outstripped the size capacity of the NWTC blade test facility leaving the U.S. wind industry without a suitable means of testing blades for large land-based and offshore turbines. This CRADA will develop and commercialize testing technologies and test equipment, including scaling up, value engineering, and testing of equipment to be used at blade testing facilities in the U.S. and around the world.

  19. Nevada Test Site-Directed Research and Development: FY 2006 Report

    SciTech Connect (OSTI)

    Wil Lewis, editor

    2007-08-01T23:59:59.000Z

    The Nevada Test Site–Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R&D projects, as presented in this report.

  20. Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report

    SciTech Connect (OSTI)

    Will Lewis, Compiler

    2006-09-01T23:59:59.000Z

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

  1. Electric Power Research Institute, High Sulfur Test Center report to the Steering Committee, March 1994. [Monthly report

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    Operations and maintenance continued this month at the Electric Power Research Institute`s High Sulfur Test Center. The Suncor Limestone Reagent and Dewatering tests were completed on the Pilot unit this month. As this test block ended, the Pilot unit was modified for the High Velocity Scrubbing tests. This testing began on March 28, 1994 with test PHV-AN. As Phase II of the Mini-Pilot Clear Liquor Scrubbing test block was completed this month, the unit was taken off-line. Testing on the Cold-Side Selective Catalytic Reduction (SCR) unit continued this month as ammonia slip measurements were conducted. Catalyst material from the reactor was inspected and sampled during a scheduled outage this month in preparation for a low temperature test block.

  2. Design of a low enrichment, enhanced fast flux core for the Massachusetts Institute of Technology Research Reactor

    E-Print Network [OSTI]

    Ellis, Tyler Shawn

    2009-01-01T23:59:59.000Z

    Worldwide, there is limited test reactor capacity to perform the required irradiation experiments on advanced fast reactor materials and fuel designs. This is particularly true in the U.S., which no longer has an operating ...

  3. Energy Smart Schools--Applied Research, Field Testing, and Technology Integration

    SciTech Connect (OSTI)

    Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

    2004-12-01T23:59:59.000Z

    The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

  4. Design, testing and two-dimensional flow modeling of a multiple-disk fan

    SciTech Connect (OSTI)

    Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki [Department of Mechanical Engineering, The University of Sakarya, Esentepe Campus, 54187 Sakarya (Turkey)

    2009-11-15T23:59:59.000Z

    A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

  5. GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 22452248, AUGUST 1, 2000 Subsurface nuclear tests monitoring through the

    E-Print Network [OSTI]

    Hourdin, Chez Frédéric

    nuclear tests down to 1 kiloton (kt) TNT equivalent anywhere on the planet. The IMS is based upon four waves will help check for underground, under­water and atmospheric nuclear tests. The fourth networkGEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 2245­2248, AUGUST 1, 2000 Sub­surface nuclear

  6. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect (OSTI)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  7. Status of the RERTR program: overview, progress and plans. [Reduced Enrighment Research and Test Reactor

    SciTech Connect (OSTI)

    Travelli, A.

    1985-01-01T23:59:59.000Z

    The status of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a summary of the accomplishments which the RERTR Program had achieved by the end of 1984 with its many international partners, emphasis is placed on the progress achieved during 1985 and on current plans and schedules. A new miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was fabricated and is well into irradiation. The whole-core ORR demonstration is scheduled to begin in November 1985, with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/. Altogether, 921 full-size test and prototype elements have been ordered for fabrication with reduced enrichment and the new technologies. Qualification of U/sub 3/Si-Al fuel with approx.7 g U/cm/sup 3/ is still projected for 1989. This progress could not have been achieved without the close international cooperation which has existed since the beginning, and whose continuation and intensification will be essential to the achievement of the long-term RERTR goals.

  8. Design, construction, and testing of a prototype robotic leg for controls experiments

    E-Print Network [OSTI]

    Countouris, Paula Marie

    2012-01-01T23:59:59.000Z

    The complex underactuated legs used in the FastRunner robot, designed by the Florida Institute for Human and Machine Cognition, are designed with multiple linkages and nonlinear springs to exploit the natural dynamics of ...

  9. In Neil Salkind (Ed.), Encyclopedia of Research Design. Thousand Oaks, CA: Sage. 2010

    E-Print Network [OSTI]

    O'Toole, Alice J.

    -Keuls Test and Tukey Test Herv´e Abdi · Lynne J. Williams 1 Pairwise Comparisons An analysis of variance comparisons are the Tukey test and the Newman-Keuls test. Both tests are based Herv´e Abdi The University and Tukey Test on the "Studentized range" or "Student's q". They differ in that the Newman-Keuls test

  10. Nevada Test Site-Directed Research and Development, FY 2007 Report

    SciTech Connect (OSTI)

    Wil Lewis, editor

    2008-02-20T23:59:59.000Z

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R&D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory (NWL), and NNSA sources. This tool continues to be of considerable value in aligning the SDRD program with mission priorities, and was expanded in FY 2007 to include technology development needs from the DHS and other agencies with missions closely aligned to that of the NTS.

  11. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

  12. The design of lightweight composite structures, for example airframe structures, relies on extensive testing, coupled to a

    E-Print Network [OSTI]

    Reisslein, Martin

    is also researching ceramic matrix "hot" structures, nano-composites, and multi-material structuresSEMTE abstract The design of lightweight composite structures, for example airframe structures will be highlighted. Finite element models developed for laminated composites that can be used in ICME and "digital

  13. Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a , S. Y. Liang2 , R, USA a jjmiau@mail.ncku.edu.tw Keywords: vertical-axis wind turbine, pitch control, wind of a small vertical-axis wind turbine. Benefits gained can be shown by the experimental and numerical results

  14. Design and testing of a non-intrusive torque measurement system

    E-Print Network [OSTI]

    Wilson, Edwin Ernest

    1998-01-01T23:59:59.000Z

    rpm conditions. Two sensor types, phototransistor and photodiode, were tested. The photodiode sensor was tested with two emitter types: infrared LED and red laser. No significant difference in response was found using either the LED or red laser...

  15. Scaleup tests and supporting research for the development of duct injection technology. Topical report No. 1, Literature review

    SciTech Connect (OSTI)

    Gooch, J.P.; Dismukes, E.B.; Dahlin, R.S.; Faulkner, M.G. [Southern Research Inst., Birmingham, AL (United States); Klett, M.G.; Buchanan, T.L.; Hunt, J.E. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1989-05-01T23:59:59.000Z

    Gilbert Commonwealth, Southern Research Institute and the American Electric Power Service Corporation have embarked on a program to convert DOE`s Duct Injection Test Facility located at the Muskingum River Power Plant of Ohio Power Company to test alternate duct injection technologies. The technologies to be tested include slurry sorbent injection of hydrated lime using dual fluid nozzles, or a rotary atomizer and pneumatic injection of hydrated lime, with flue gas humidification before or after sorbent injection. The literature review and analysis contained in this report is a part of the preparatory effort for the test program.

  16. Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1992-01-01T23:59:59.000Z

    This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

  17. Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1992-07-01T23:59:59.000Z

    This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

  18. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01T23:59:59.000Z

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

  19. The RERTR (Reduced Enrichment Research and Test Reactor) Program: Progress and plans

    SciTech Connect (OSTI)

    Travelli, A.

    1987-01-01T23:59:59.000Z

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1986, the activities, results, and new developments which occurred in 1987 are reviewed. Irradiation of the second miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was completed and postirradiation examinations were performed on many of its miniplates. The whole-core ORR demonstration with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/ was completed at the end of March with excellent results and with 29 elements estimated to have reached at least 40% average burnup. Good progress was made in the area of LEU usage for the production of fission /sup 99/Mo, and in the coordination of safety evaluations related to LEU conversions of US university reactors. Planned activities include testing and demonstrating advanced fuels intended to allow use of reduced enrichment uranium in very-high-performance reactors. Two candidate fuels are U/sub 3/Si-Al with 19.75% enrichment and U/sub 3/Si/sub 2/-Al with 45% enrichment. Demonstration of these fuels will include irradiation of full-size elements and, possibly, a full-core demonstration. Achievement of the final program goals is still projected for 1990. This progress could not have been possible without the close international cooperation which has existed from the beginning, and which is essential to the ultimate success of the RERTR Program.

  20. Design, modeling, fabrication and testing of a piezoelectric microvalve for high pressure, high frequency hydraulic applications

    E-Print Network [OSTI]

    Roberts, David C. (David Christopher)

    2002-01-01T23:59:59.000Z

    A piezoelectrically-driven hydraulic amplification microvalve for use in high specific power hydraulic pumping applications was designed, fabricated, and experimentally characterized. High frequency, high force actuation ...

  1. TESTING AND EVALUATION OF THE MODIFIED DESIGN OF THE 25-DISK ROTARY MICROFILTER

    SciTech Connect (OSTI)

    Herman, D; Michael Poirier, M; Samuel Fink, S

    2006-09-29T23:59:59.000Z

    This report details redesign of a commercially available rotary microfilter to meet the operational and maintenance requirements for radioactive service. Personnel developed the design and coordinated procurement of two filters followed by testing of one unit. System testing examined the ability to rinse soluble material from the system, filtration performance using several insoluble solids loadings, effectiveness in washing sludge, amount of wear to parts and maintenance of the system including the insertion and removal of the filter stack, and the ability to flush solids from the system. The test program examined flushing the filter for soluble material by filling the system with a Rhodamine WT dye solution. Results showed that draining the system and rinsing with 50 gallons of water resulted in grater than 100X reduction of the dye concentration. Personnel determined filter performance using various amounts of insoluble sludge solids ranging from 0.06 to 15 weight percent (wt%) insoluble solids in a 3 molar (M) sodium simulated supernate. Through approximately 120 hours of start-and-stop (i.e., day shift) operation and various insoluble solids loadings, the filter produced filtration rates between 3 and 7 gallons per minute (gpm) (0.12-0.29 gpm/ft{sup 2}) for a 25-disk filter. Personnel washed approximately 80 gallons of simulated sludge using 207 gallons of inhibited water. Washing occurred at constant volume with wash water fed to a well mixed tank at the same rate as filtrate removal. Performance measurement involved collecting and analyzing samples throughout the washing for density and sodium content. Results showed an effective washing, mimicking a predicted dilution calculation for a well mixed tank and reducing the sodium concentration from 3.2 M to less than 0.3 M. Filtration rates during the washing process ranged between 3 and 4.3 gpm for one filter unit. The filter system then concentrated the washed 15 wt% insoluble solids slurry to approximately 20 wt% insoluble solids with no operational problems with the exception of the entrainment of air due to leaking packing in the feed pump. Prior to the air entrainment, the filtration rate was approximately 4.2 gpm for one filter assembly with the process fluid temperature adjusted to 35 C. Personnel measured the turbidity of filtrate samples from all phases of testing. All samples measured were less than 3 NTU, with the majority of samples less than 1 NTU. Thus, all measurements fell below the process acceptance criterion of less than 5 NTU. After slurry operations, personnel rinsed the filter with the equivalent of 250 gallons of water by re-circulating 50 gallons of water. The residual sludge solids remaining on the filter stack weighed approximately 685 grams. This amount of solids corresponds to an equivalent activity of 15.1 curies (Ci) beta and 0.38 Ci gamma radiation dose for Sludge Batch 4. Workers completely disassembled the filter system and examined it for signs of wear and component operation. An evaluation by a John Crane Inc. representative concluded that the wear observed on the mechanical seal resulted primarily from the numerous stops and starts, the abrasive nature of the process fluid and the possibility that the seal faces did not receive enough lubrication from the process fluid. No measurable slurry bypassed the mechanical seal. While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement with an air seal might be expected to increase lifetime to five years. The bottom bushing showed wear due to a misalignment during the manufacture of the filter tank. Minor adjustments to the alignment with shims and replacement of the graphite bushing with a superior material will greatly reduce this wear pattern.

  2. Bearing options, including design and testing, for direct drive linear generators in wave energy converters.

    E-Print Network [OSTI]

    Caraher, Sarah

    2011-01-01T23:59:59.000Z

    ??The key focus of this research was to investigate the bearing options most suited to operation in a novel direct drive linear generator. This was… (more)

  3. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    SciTech Connect (OSTI)

    Dev, H.

    1994-08-16T23:59:59.000Z

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100{degrees} to 400{degrees}C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85{degrees} to 95{degrees}C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C.

  4. WRF Test on IBM BG/L:Toward High Performance Application to Regional Climate Research

    SciTech Connect (OSTI)

    Chin, H S

    2008-09-25T23:59:59.000Z

    The effects of climate change will mostly be felt on local to regional scales (Solomon et al., 2007). To develop better forecast skill in regional climate change, an integrated multi-scale modeling capability (i.e., a pair of global and regional climate models) becomes crucially important in understanding and preparing for the impacts of climate change on the temporal and spatial scales that are critical to California's and nation's future environmental quality and economical prosperity. Accurate knowledge of detailed local impact on the water management system from climate change requires a resolution of 1km or so. To this end, a high performance computing platform at the petascale appears to be an essential tool in providing such local scale information to formulate high quality adaptation strategies for local and regional climate change. As a key component of this modeling system at LLNL, the Weather Research and Forecast (WRF) model is implemented and tested on the IBM BG/L machine. The objective of this study is to examine the scaling feature of WRF on BG/L for the optimal performance, and to assess the numerical accuracy of WRF solution on BG/L.

  5. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30T23:59:59.000Z

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

  6. Software_Design_Document,Testing,Deployment_and_Configuration_Management,and_Use_Manual_of_the_UUIS--a_Team_2_COMP5541-W10_Project_Approach

    E-Print Network [OSTI]

    Ahmad, Omer Shahid; Jason,; Chen,; Ilham, Najah; Lu, Jianhai; Sun, Yiwei; Wang, Tong; Zhu, Yongxin

    2010-01-01T23:59:59.000Z

    The Software Design Document has three part: 1. Overview of System Architecture;2. System Architecture;3. Database Layer and two Appendix I: Deployment and Configuration; II: Test cases

  7. 2007 international meeting on Reduced Enrichment for Research and Test Reactors (RERTR). Abstracts and available papers presented at the meeting

    SciTech Connect (OSTI)

    NONE

    2008-07-15T23:59:59.000Z

    The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems.

  8. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    SciTech Connect (OSTI)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01T23:59:59.000Z

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  9. Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant

    E-Print Network [OSTI]

    Roeger, A., III; Jones, J. E., Jr.

    1983-01-01T23:59:59.000Z

    commercial scale gasification test with Kentucky 9 coal in a Lurgi Mark IV dry-bottom gasifier at the Sasol One Plant in Sasolburg, Republic of South Africa, in 1981. The test was conducted to confirm the operability of the Lurgi process on Western Kentucky...

  10. Design and control of an high maneuverability remotely operated vehicle with multi-degree of freedom thrusters

    E-Print Network [OSTI]

    Walker, Daniel G. (Daniel George)

    2005-01-01T23:59:59.000Z

    This research involves the design, manufacture, and testing of a small, thrust-to- mass ratio in all directions. One ...

  11. 4 ESS switch electromagnetic pulse assessment. Volume 1. Test-bed design installation, and baselining. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-06-19T23:59:59.000Z

    The content of this report is defined by paragraph 3/1 of the Statement of Work for contract DCA100-88-C-0027. This report documents Task 1 and 2, Test-Bed Design, Installation, and Baselining of the 4 ESS Switch Electromagnetic Pulse (EMP) Assessment Program. ATT has engineered an operational digital 4 ESS switch for the purpose of testing the susceptibility of 4 ESS switch systems to high-altitude EMP. The switch is installed in two specially designed trailers that are transparent to electro-magnetic radiation and is located in Colorado Springs, Colorado, where current-injection testing and further performance baselining is presently underway. Batteries, air conditioning, and spare parts are housed in two additional trailers. ATT Bell Laboratories has developed and implemented a test system for generating current pulses, monitoring the pulses, generating calls, and measuring switch performance. Digital traffic has been successfully generated and switched for three signaling systems: Multifrequency (MF); Common Channel Signaling System 7 (CCS7); and Q.931 (used on direct Integrated Services Digital Network connections). Due to problems in acquiring properly engineered signaling-translation software, however, the CCS7 and Q.931 signaling systems have not yet been implemented with a full complement of trunk assignments. Subsequent tasks will entail further baselining, provisioning of backup methods for the operating software, and current-injection testing of the switch.

  12. Design, prototyping and preliminary testing of an elastic-powered climbing exoskeleton

    E-Print Network [OSTI]

    Briner, Hazel (Hazel Linn)

    2011-01-01T23:59:59.000Z

    Human powered elastic mechanisms can be used to reduce work requirements of muscles, by storing and releasing energy to more evenly distribute work load. An exoskeleton was designed to delay human fatigue during rock ...

  13. Press fit design : force and torque testing of steel dowel pins in brass and nylon samples

    E-Print Network [OSTI]

    Nelson, Alexandra T

    2006-01-01T23:59:59.000Z

    An experimental study was conducted to determine the accuracy of current press fit theory when applied to press fit design. Brass and nylon hex samples were press fitted with hardened steel dowel pins. Press fit force and ...

  14. Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System

    E-Print Network [OSTI]

    Wu, You

    Uranium present in low concentration in ocean water has the potential to greatly augment the current fuel reserve for nuclear power generation, but the challenge of extracting it economically remains. Two new designs of ...

  15. Advancement of Erosion Testing, Modeling, and Design of Concrete Pavement Subbase Layers

    E-Print Network [OSTI]

    Jung, Youn Su

    2010-10-12T23:59:59.000Z

    Concrete pavement systems have great capacity to provide long service lives; however, if the subbase layer is improperly designed or mismanaged, service life would be diminished significantly since the subbase layer performs many important roles...

  16. Safety Design and Mock-Up Tests on the Combustion of Hydrogen-Air Mixture in the Vertical CNS Channel of the CARR-CNS

    SciTech Connect (OSTI)

    Qingfeng Yu; Quanke Feng [Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049 (China)

    2006-07-01T23:59:59.000Z

    A two-phase thermo-siphon loop is applied to the Cold Neutron Source (CNS) of China Advanced Research Reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The most characteristic point is that the cold helium gas is introduced into the helium sub-cooling system covering the moderator cell and then flows up through the tube covering the moderator transfer tube into the condenser. The helium sub-cooling system also reduces the void fraction of the liquid hydrogen and takes a role of the helium barrier for preventing air from intruding into the hydrogen system. We call the two-phase thermo-siphon the hydrogen cold system. The main part of this system is installed in the CNS channel made of 6061 aluminum alloy (6061A) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS, the combustion tests were carried out using the hydrogen-air mixture under the conditions in which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.140 MPa Gauge (G). This condition includes the design accident of the CNS. The peak pressure due to combustion is 1.09 MPa, and the design strength of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the design basis accident occurs. The pressure distribution, the stress, and the displacement of the tube were also measured. (authors)

  17. Toward the design and testing of a model-sharing collaboratory

    E-Print Network [OSTI]

    Tomczak, Mika A. (Mika Andrea)

    2008-01-01T23:59:59.000Z

    The frequency and importance of collaboration in scientific research continue to increase, and technologies to facilitate these collaborative efforts are being developed. Collaboratories, or Internet-based virtual laboratories, ...

  18. Design, construction and testing of an ocean renewable energy storage scaled prototype

    E-Print Network [OSTI]

    Meredith, James D. C. (James Douglas Charles)

    2012-01-01T23:59:59.000Z

    The concept for a new form of pumped storage hydro is being developed within the Precision Engineering Research Group at MIT: the Ocean Renewable Energy Storage (ORES) project. Large, hollow concrete spheres are created, ...

  19. Design of a testing device for quasi-confined compression of lithium-ion battery cells

    E-Print Network [OSTI]

    Roselli, Eric (Eric J.)

    2011-01-01T23:59:59.000Z

    The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

  20. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect (OSTI)

    None

    1981-03-01T23:59:59.000Z

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  1. Turf in Texas: still sustainable, Researchers test management practices and tout landscapes' benefits

    E-Print Network [OSTI]

    Lee, Leslie

    2013-01-01T23:59:59.000Z

    Fall 2013 txH2O 21 Story by Leslie Lee A Texas A&M AgriLife Research turfgrass project examines root growth rates. Photo courtesy of AgriLife Research. Turfgrass researchers at Texas A&M University are scientists, not fortune tellers...

  2. The RERTR (Reduced Enrichment Research and Test Reactor) program: A progress report

    SciTech Connect (OSTI)

    Travelli, A.

    1986-11-01T23:59:59.000Z

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1985, the activities, results, and new developments which occurred in 1986 are reviewed. The second miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was expanded and its irradiation continued. Postirradiation examinations of several of these miniplates and of six previously irradiated U/sub 3/Si/sub 2/-Al full-size elements were completed with excellent results. The whole-core ORR demonstration with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/ is well under way and due for completion before the end of 1987. DOE removed an important barrier to conversions by announcing that the new LEU fuels will be accepted for reprocessing. New DOE prices for enrichment and reprocessing services were calculated to have minimal effect on HEU reactors, and to reduce by about 8 to 10% the total fuel cycle costs of LEU reactors. New program activities include preliminary feasibility studies of LEU use in DOE reactors, evaluation of the feasibility to use LEU targets for the production of fission-product /sup 99/Mo, and responsibility for coordinating safety evaluations related to LEU conversions of US university reactors, as required by NRC. Achievement of the final program goals is projected for 1990. This progress could not have been achieved without close international cooperation, whose continuation and intensification are essential to the achievement of the ultimate goals of the RERTR Program.

  3. Analysis of Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Kempe, M. D.; Kennedy, C. E.; Kurtz, S. R.

    2009-07-01T23:59:59.000Z

    Reliability of CPV systems' materials is not well known; methods for accelerated UV testing have not been developed. UV and IR spectra transmitted through representative optical systems are evaluated.

  4. Design and operation of a counter-rotating aspirated compressor blowdown test facility

    E-Print Network [OSTI]

    Parker, David V. (David Vickery)

    2005-01-01T23:59:59.000Z

    A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous blowdown turbine and blowdown compressor experiments. ...

  5. Design method of a modular electronic printed circuit board testing system

    E-Print Network [OSTI]

    McCalib, David, Jr

    2013-01-01T23:59:59.000Z

    The failure rate of the printed circuit board electronic testing process is higher than acceptable at a Lenze Americas factory. This thesis will understand the root causes of failure, and use system engineering methods to ...

  6. Design, construction and testing of a release actuator for the Planar Articulating Controls Experiment

    E-Print Network [OSTI]

    Romero, Ignacio

    1994-01-01T23:59:59.000Z

    This thesis presents a release actuator for the Planar Articulating Controls Experiment (PACE), the USAF Phillips Laboratory, Edwards AFB, CA. A release actuator needs to incorporated into the experimental hardware to hold the flexible test article...

  7. Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2009-05-01T23:59:59.000Z

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The final design phase for the first experiment was completed in September 2008, and the fabrication and assembly of the experiment test train as well as installation and testing of the control and support systems that will monitor and control the experiment during irradiation are being completed in early calendar 2009. The first experiment is scheduled to be ready for insertion in the ATR by April 30, 2009. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and data collection systems.

  8. Final Site Specific Decommissioning Inspection Report #2 for the University of Washington Research and Test Reactor, Seattle, Washington

    SciTech Connect (OSTI)

    S.J. Roberts

    2007-03-20T23:59:59.000Z

    During the period of August through November 2006, ORISE performed a comprehensive IV at the University of Washington Research and Test Reactor Facility. The objective of the ORISE IV was to validate the licensee’s final status survey processes and data, and to assure the requirements of the DP and FSSP were met.

  9. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    SciTech Connect (OSTI)

    Polzin, Kurt A.; Godfroy, Thomas J. [NASA Marshall Space Flight Center Propulsion Research and Technology Applications Branch/ER24, MSFC, AL 35812 (United States)

    2008-01-21T23:59:59.000Z

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

  10. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    SciTech Connect (OSTI)

    Amann, J.; Bane, K.; /SLAC

    2009-10-30T23:59:59.000Z

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  11. Design of central irradiation facilities for the MITR-II research reactor

    E-Print Network [OSTI]

    Meagher, Paul Christopher

    1976-01-01T23:59:59.000Z

    Design analysis studies have been made for various in-core irradiation facility designs which are presently used, or proposed for future use in the MITR-II. The information obtained includes reactivity effects, core flux ...

  12. A method of evaluating Sulphlex mix designs based on the indirect tension test

    E-Print Network [OSTI]

    Richey, Barry Lee

    1982-01-01T23:59:59.000Z

    approach to characteriz1ng fatigue life. A procedure for optimizing a mix design was outlined. Design charts for permanent deformation, thermal cracking and fat1gue cracking were presented for Sulphiex binders CR-1 and CR-2 and an asphalt cement (AC-10... of fracture temperature of an asphalt concrete [from Hills and Brien (16)]. . . . . . . 34 22 Failure envelopes for AC-10 crushed limestone mixes of 4 and 7 percent binder content . 37 23 Prediction of thermal cracking using the boundary curve. 39 24...

  13. Design and Testing of a Boron Carbide Capsule for Spectral Tailoring in Mixed-Spectrum Reactors

    SciTech Connect (OSTI)

    Greenwood, Lawrence R.; Wittman, Richard S.; Pierson, Bruce D.; Metz, Lori A.; Payne, Rosara F.; Finn, Erin C.; Friese, Judah I.

    2012-03-01T23:59:59.000Z

    A boron carbide capsule has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State University. Irradiations were conducted in pulsed mode and in continuous operation for up to 4 hours. A cadmium cover was used to reduce thermal heating. The neutron spectrum calculated with MCNP was found to be in good agreement with reactor dosimetry measurements using the STAY'SL computer code. The neutron spectrum resembles that of a fast reactor. Design of a capsule using boron carbide enriched in {sup 10}B shows that it is possible to produce a neutron spectrum similar to {sup 235}U fission.

  14. Design concept and testing of an in-bundle gamma densitometer for subchannel void fraction measurements in the THTF electrically heated rod bundle. [PWR

    SciTech Connect (OSTI)

    Felde, D. K.

    1982-04-01T23:59:59.000Z

    A design concept is presented for an in-bundle gamma densitometer system for measurement of subchannel average fluid density and void fraction in rod or tube bundles. This report describes (1) the application of the design concept to the Thermal-Hydraulic Test Facility (THTF) electrically heated rod bundle; and (2) results from tests conducted in the THTF.

  15. Design and Testing of a Heat Transfer Model of a Raccon (Procyon Lotor) in a Closed Tree Den Author(s): Jeffrey Thorkelson and Robert K. Maxwell

    E-Print Network [OSTI]

    Minnesota, University of

    Design and Testing of a Heat Transfer Model of a Raccon (Procyon Lotor) in a Closed Tree Den Author. http://www.jstor.org #12;Ecology (1974) 55: pp. 29-39 DESIGN AND TESTING OF A HEAT TRANSFER MODEL of Ecology and Behavioral Biology, Universityof Minnesota, St. Paul, Minnesota 55101 Aabstract. A heat

  16. Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan

    SciTech Connect (OSTI)

    Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

    1988-12-01T23:59:59.000Z

    This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

  17. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    SciTech Connect (OSTI)

    G. L. Sharp; R. T. McCracken

    2004-05-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzed in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety basis. The need for a design basis reconstitution program for the ATR has been identified along with the use of sound configuration management principles in order to support safe and efficient facility operation.

  18. The application of triaxial compression tests to the design of sand-asphalt paving mixtures

    E-Print Network [OSTI]

    Ritter, Leo J

    2012-06-07T23:59:59.000Z

    ' this fact, the f1ne yecxk was chosen as the aggregate to be used in all sand. -asphalt miztures tested 1n this pro/oct. It must be emphasise4. , that no sand sample, Lxas tested, mox ~ than ) " x i x . . y . * once during ths analpsis of the sands... shearing strength increases as the amount of mineral filler increases, thu ~ confirming the theory that the increase 1n surface area of the aggregate caused by the addition of dust must be taken ~ care of by an increase 1n the amount of bitumen used...

  19. Testing the Floor Scale Designated for Pacific Northwest National Laboratory's UF6 Cylinder Portal Monitor

    SciTech Connect (OSTI)

    Curtis, Michael M.; Weier, Dennis R.

    2009-03-12T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) obtained a Mettler Toledo floor scale for the purpose of testing it to determine whether it can replace the International Atomic Energy Agency’s (IAEA) cumbersome, hanging load cell. The floor scale is intended for use as a subsystem within PNNL’s nascent UF6 Cylinder Portal Monitor. The particular model was selected for its accuracy, size, and capacity. The intent will be to use it only for 30B cylinders; consequently, testing did not proceed beyond 8,000 lb.

  20. Design and optimization of a high thermal flux research reactor via Kriging-based algorithm

    E-Print Network [OSTI]

    Kempf, Stephanie Anne

    2011-01-01T23:59:59.000Z

    In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

  1. (Experimental development, testing and research work in support of the inertial confinement fusion program)

    SciTech Connect (OSTI)

    Drake, D.J.; Luckhardt, R.; Moyer, S.; Armentrout, C.J.; Downs, R.L.; Moncur, K. (eds.)

    1990-02-28T23:59:59.000Z

    This report discusses: Cryogenic technology; polymer shell fabrication; glass shell fabrication and characterization; coating technology; development of characterization techniques; laser technology; and plasma research and instrumentation.

  2. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-B: Resource description, program history, wells tested, university and company based research, site restoration

    SciTech Connect (OSTI)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01T23:59:59.000Z

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1 well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.

  3. DESIGN, CALIBRATION AND TESTING OF A FORCE BALANCE FOR A HYPERSONIC SHOCK TUNNEL

    E-Print Network [OSTI]

    Texas at Arlington, University of

    of the learning process", helped me to overcome the hardships during my research. A special thanks to Eric M Braun for his help, quick suggestions and for always being around. I acknowledge my fellow team mates in doing to measure drag at Mach 10. Static and dynamic calibrations were performed to find the transfer function

  4. Fusion Engineering and Design 81 (2006) 433441 An overview of US ITER test blanket module program

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01T23:59:59.000Z

    blankets: (1) a helium-cooled solid breeder concept with ferritic steel structure and Be neutron multiplierLi liquid breeder blanket concepts in ITER are identified. © 2005 Elsevier B.V. All rights reserved. Keywords: ITER test blanket module program; Helium-cooled solid breeder blanket; Dual-coolant lead

  5. THE DESIGN AND DEVELOPMENT OF TEST PLATFORM FOR WHEAT PRECISION SEEDING

    E-Print Network [OSTI]

    Boyer, Edmond

    vibration, low noise to meet the standard laboratory vibration and noise requirements. Fig.1.Total structure, species-bed conveyor, conveyor motor, seed metering device (air- suction seed metering device), drive motor, vacuum pump devices, computer vision detection system. The test-platform bench is 0.7 meters high

  6. Stability Design for the Crane Columns of the Wind Technology Testing Center E. M. Hines1

    E-Print Network [OSTI]

    Hines, Eric

    to test wind turbine blades up to 90 m in length. The laboratory is enclosed by eleven steel trussed generation of wind turbine blades for off-shore wind farm development. Whereas the largest blades for land of power per turbine, offshore wind turbines are expected to reach power outputs as high as 10 MW

  7. LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    SciTech Connect (OSTI)

    Warinner, D.K.

    1980-01-01T23:59:59.000Z

    The US Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element failure-propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurance expected in the US, USSR, France, UK, Japan, and West Germany is outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission-product monitors are briefly discussed to better realize the operational limits.

  8. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    SciTech Connect (OSTI)

    Hutton, R.D.

    1994-01-01T23:59:59.000Z

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).

  9. Design, Feasibility, and Testing of Instrumented Rod Bundles to Improve Heat Transfer Knowledge in PWR Fuel Assemblies

    SciTech Connect (OSTI)

    Bergeron, A. [CEA, Saclay (France); Chataing, T.; Garnier, J. [CEA, Genoble (France); Decossin, E.; Peturaud, P. [EDF/R and D, Chatou (France); Yagnik, S.K. [Electric Power Research Institute - EPRI (United States)

    2007-07-01T23:59:59.000Z

    Two 5 x 5 test rod bundles mimicking the PWR fuel assembly have been adapted into two suitable test loop facilities, respectively, to carry out sufficiently detailed hydraulic and thermal measurements in identical geometric configuration. The objective is to investigate heat transfer phenomena in single-phase as well as with onset of nucleate boiling (ONB). The accuracy and reproducibility of the temperature measurements using the sliding-traversing thermocouple device under typical PWR conditions has been demonstrated in the thermal test facility. In the hydraulic loop, a Laser Doppler Velocimetry (LDV) system to precisely scan the local axial velocity component in each sub-channel has been implemented. The approach is to utilize mean sub-channel axial velocity distributions and pressure drop data from the hydraulic loop and the global boundary conditions (Pressure, Temperature, flow rate) from the thermal loop to simulate sub-channels in appropriate T/H codes. This permits computation of sub-channel averaged fluid temperatures (as well as mass velocity) in various subchannels within the test bundle. Subsequently, in conjunction with the wall temperatures and applied heat flux values from the thermal loop, it is possible to develop a complete map of heat transfer coefficients along the 9 instrumented central heater rods. Locations downstream of spacer grids would be of special interest. Depending on pressure, mass velocity and heat flux conditions of a given test, the inlet temperature will be a parameter to be varied so that the ONB boundary can be observed within the bundle. Detailed designs of the test section, required loop modifications, and adaptation of specialized instrumentation and data acquisition systems have been accomplished in both test loops. Further we have established that based on such detailed rod surface temperature and sub-channel axial velocity measurements, it is possible to achieve sufficient accuracy in the temperature measurements to meet the objective of improving the heat transfer correlations applicable to PWR cores. (authors)

  10. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    SciTech Connect (OSTI)

    Warren, N. Jill [Editor

    1999-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Design and testing of a highly stable and precise resistivity-meter

    E-Print Network [OSTI]

    Chauvelier, Chantal Martine

    1991-01-01T23:59:59.000Z

    used to improve the signal-to-noise ratio for both signals. This chapter includes the simulations used to determine the optimum signal processing tool for various noise levels. Chapter V follows with a, ctual tests performed on the instrument... not show long-term monitoring. As it turns out, the instrument needs to be re-zeroed very often. Moreover, their variometer is not a portable piece of equipment. To our knowledge, this instrument is not functioning today. If one considers...

  12. Design of a Portable Test Facility for the ATLAS Tile Calorimeter Front-End Electronics Verification

    E-Print Network [OSTI]

    Kim, HY; The ATLAS collaboration; Carrio, F; Moreno, P; Masike, T; Reed, R; Sandrock, C; Schettino, V; Shalyugin, A; Solans, C; Souza, J; Suter, R; Usai, G; Valero, A

    2013-01-01T23:59:59.000Z

    An FPGA-based motherboard with an embedded hardware processor is used to implement a portable test- bench for the full certification of Tile Calorimeter front-end electronics in the ATLAS experiment at CERN. This upgrade will also allow testing future versions of the TileCal read-out electronics as well. Because of its lightness the new facility is highly portable, allowing on-detector validation using sophisticated algorithms. The new system comprises a front-end GUI running on an external portable computer which controls the motherboard. It also includes several dedicated daughter-boards that exercise the different specialized functionalities of the system. Apart from being used to evaluate different technologies for the future upgrades, it will be used to certify the consolidation of the electronics by identifying low frequency failures. The results of the tests presented here show that new system is well suited for the 2013 ATLAS Long Shutdown. We discuss all requirements necessary to give full confidence...

  13. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2003-05-01T23:59:59.000Z

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

  14. Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack

    SciTech Connect (OSTI)

    Dr. Ram Adapa; Mr. Dante Piccone

    2012-04-30T23:59:59.000Z

    ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the line in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide current limiting or current interrupting capabilities. It can be applied to variety of applications from distribution class to transmission class power delivery grids and networks. It can also be applied to single major commercial and industrial loads and distributed generator supplies. The active switching of devices can be further utilized for protection of substation transformers. The stress on the system can be reduced substantially improving the life of the power system. It minimizes the voltage sag by speedy elimination of heavy fault currents and promises to be an important element of the utility power system. DOE Perspective This development effort is now focused on a 15kV system. This project will help mitigate the challenges of increasing available fault current. DOE has made a major contribution in providing a cost effective SSCL designed to integrate seamlessly into the Transmission and Distribution networks of today and the future. Approach SSCL development program for a 69kV SSCL was initiated which included the use of the Super GTO advanced semiconductor device which won the 2007 R&D100 Award. In the beginning, steps were identified to accomplish the economically viable design of a 69kV class Solid State Current Limiter that is extremely reliable, cost effective, and compact enough to be applied in urban transmission. The prime thrust in design and development was to encompass the 1000A and the 3000A ratings and provide a modular design to cover the wide range of applications. The focus of the project was then shifted to a 15kV class SSCL. The specifications for the 15kV power stack are reviewed. The design changes integrated into the 15kV power stack are discussed. In this Technical Update the complete project is summarized followed by a detailed test report. The power stack independent high voltage laboratory test requirements and results are presented. Keywords Solid State Current Limiter, SSCL, Fault Current Limiter, Fault Current Controller, Power electronics controller, Intelligent power-electronics Device, IED

  15. Design and testing of a continuous metal biosorption system. Final report, March 10, 1994--June 9, 1995

    SciTech Connect (OSTI)

    Faison, B.D.; Hu, M.Z.C.; Reeves, M.E. [Oak Ridge National Lab., TN (United States); McGraw, T.F.; Gupte, U.; Haris, W.G. [Scientific and Commercial Systems Corp., Beltsville, Maryland (United States)

    1995-12-31T23:59:59.000Z

    The research pursued in this project consisted of two portions that were conducted with constant coordination to allow the ultimate merger of research results. ORNL was assigned the task of developing the biomass portion of the bioreactor, while SCSC was responsible for the mechanical portions of the bioreactor. This report describes the technical aspects of a novel biological sorbent, consisting of microbial biomass immobilized within a polyurethane gel matrix, that was developed and characterized (on a bench scale, within batch and flow-through systems) for use in a novel, continuous-flow bioreactor system. The report also addresses an initial effort to develop a delivery technology that takes advantage of the specific characteristics of the biosorbent material to permits its deployment against contamination problems. The report concludes with recommendations for future work that would allow the designated wastes to be treated on a large scale.

  16. Interior Design Program Ranked Among Top in Nation Learning by Doing: Undergraduate Researchers

    E-Print Network [OSTI]

    Collins, Gary S.

    Wheat Disease: A Race Against Nature Toasting a Vintage Partnership: WSU and Washington's Wine Industry by Design .......................................10 Interior Design program and students recognized Wheat. Hawaii, Qwest Field, seattle 19 Wsu vs. southern methodist, pullman 26 Wsu vs. usC, Los angeles, Ca

  17. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A.; Fleming, P.

    2010-12-01T23:59:59.000Z

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  18. OECD MCCI Small-Scale Water Ingression and Crust Strength tests (SSWICS) design report, Rev. 2 October 31, 2002.

    SciTech Connect (OSTI)

    Farmer, M.; Lomperski, S.; Kilsdonk, D.; Aeschlimann, B.; Pfeiffer, P. (Nuclear Engineering Division); (NRC)

    2011-05-23T23:59:59.000Z

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are planned to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. A description of the test apparatus, instrumentation, data reduction, and test matrix are the subject of the first portion of this report. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The introduction of a thermal gradient across the crust is thought to be important for these tests because of uncertainty in the magnitude of the thermal stresses and thus their relative importance in the crust fracture mechanism at plant scale. The second half of this report describes the apparatus for measuring crust strength. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength).

  19. Design and testing of a dual 8-T 380-mm/12-T 220-mm split superconducting solenoid for ORNL

    SciTech Connect (OSTI)

    Ballou, J.K.; Brown, R.L.; Fietz, W.A.; Forseman, J.W.; Gray, W.H.; Kenney, W.J.; Wysor, R.B.; Markiewicz, W.D.; Van Alstyne, R.G.

    1981-01-01T23:59:59.000Z

    A superconducting high field magnet facility has recently been prepared for operation at the Oak Ridge National Laboratory (ORNL). The facility consists of a background NbTi coil and an insert coil made of Nb/sub 3/Sn tape. The background coil produces an 8-T central field, with a peak field of 8.8 T, in a bore of 380 mm and contains radial access ports of 67-mm diam. Details of magnet design both for the background coil and insert coil will be presented. The protection scheme will be discussed and test results will be given.

  20. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect (OSTI)

    Otey, G.R.

    1989-07-01T23:59:59.000Z

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  1. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect (OSTI)

    Truitt, R.W. [Westinghouse Hanford Co., Richland, WA (United States); Pounds, T.S.; Smith, S.O. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

    1994-08-24T23:59:59.000Z

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump`s ability to mitigate the SY-101 tank hydrogen gas hazard.

  2. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    SciTech Connect (OSTI)

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01T23:59:59.000Z

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  3. Nonlinear Decelerator for Payloads in Aerial Delivery Systems. I: Design and Testing

    E-Print Network [OSTI]

    T. Lyons; M. Ginther; P. Mascarenas; E. Rickard; J. Robinson; J. Braeger; H. Liu; A. Ludu

    2014-08-19T23:59:59.000Z

    We study the dynamics and the optimization of the shock deceleration supported by a payload when its airborne carrier impacts the ground. We build a nonlinear elastic model for a container prototype and an elastic suspension system for the payload. We model the dynamics of this system and extract information on maximum deceleration, energy transfer between the container and payload, and energy resonant damping. We designed the system and perform lab experiments for various terminal velocities and types of grounds (cement, grass, sand water, etc.). The results are compared with the theoretical model and results are commented, including predictions for deceleration at different types of ground impact. The results can be used for aerial delivery systems, splash-down of capsules, recoveries, weather balloons, coastal surveying systems, or the new introduced goal-line technology in sport competitions.

  4. Integrated Design&Delivery Solutions (IDDS) The International Council for Research and Innovation in Building and

    E-Print Network [OSTI]

    Perkins, Richard A.

    Workshop on Net Zero Energy Residential Test Facility Net Zero Energy Residential Test Facility (208) Hunter Fanney, Chief, Energy and Environment Division, Engineering Laboratory The Net Zero Energy to achieve net zero energy residential homes. The facility will initially be used to demonstrate

  5. Conceptual Design of Molten Salt Loop Experiment for MIT Research Reactor

    E-Print Network [OSTI]

    Bean, Malcolm K.

    2011-08-01T23:59:59.000Z

    Molten salt is a promising coolant candidate for Advanced High Temperature Reactor (AHTR) Gen-IV designs. The low neutron absorption, high thermal capacity, chemical inertness, and high boiling point at low pressure of ...

  6. EDIC RESEARCH PROPOSAL 1 A Trustworthy Physical Designer for Databases in

    E-Print Network [OSTI]

    DIAS, I&C, EPFL Abstract--Configuring a state-of-the-art database management system (DBMS) to provide's estimates, they can propose designs that result in degraded instead of improved performance. Nowadays, DBMS

  7. Risk Management in Product Design: Current State, Conceptual Model and Future Research

    E-Print Network [OSTI]

    Oehmen, Josef

    Risk management is an important element of product design. It helps to minimize the project- and product-related risks such as project budget and schedule overrun, or missing product cost and quality targets. Risk management ...

  8. Development of a research methodology to study lumber waste due to design causes in residential construction

    E-Print Network [OSTI]

    Vyas, Ashok Madhusudan

    2012-06-07T23:59:59.000Z

    Residential Construction faces problems regarding inefficiencies of material usage. Builders pay twice for the lumber that is wasted. Once when it is purchased and once when it is disposed. Part of the lumber waste is generated due to the design...

  9. The Design and Manufacturability of Metastasis Mimetic Devices Used for Cancer Research

    E-Print Network [OSTI]

    White III, John Preston

    2012-12-31T23:59:59.000Z

    of the organisms in which the tumor resides. 5 The device from Ibidi, LLC is a microfluidic perfusion culture system that is currently on the market, which allows for examining cell migration across a given distance and over time. This in-vitro device.... This metastatic device should be disposable after one use; so it needs to be inexpensive to manufacture and easy to package and transport. 12 2.2 Design Considerations Designing a microfluidic perfusion culture system involves many decisions, including...

  10. Design modifications, fabrication and test of HFDB-03 racetrack magnet wound with pre-reacted Nb3Sn Rutherford cable

    SciTech Connect (OSTI)

    Giorgio Ambrosio et al.

    2003-10-07T23:59:59.000Z

    A 10 T racetrack magnet (HFDB-03) wound with pre-reacted Nb{sub 3}Sn Rutherford cable has been fabricated and tested at Fermilab. This magnet is the third one in a proof-of-principle series for the use of the React-and-Wind technology in common-coil dipole magnets for future accelerators. It consists of two flat racetrack coils (28 turns each) separated by 5 mm. The maximum field on the coil, at the short sample limit of 16530 A, is 10 tesla. The cable has 41 strands with 0.7 mm diameter and the minimum bend radius in the magnet ends is 90 mm. The predecessor of this magnet (HFDB-02) reached 78% of the short sample limit at 7.7 T. The mechanical design was improved and the fabrication procedure was slightly modified in order to address possible causes of limitation. In this paper we present the mechanical design and analysis of HFDB-03, the modifications to the fabrication procedure and the test results.

  11. Design and laboratory testing of an unequal parallel multicompressor supermarket refrigeration system with a microprocessor-based electronic control system

    SciTech Connect (OSTI)

    Toscano, W.M.; Oven, M.J.; Walker, D.H.; Vineyard, E.A.; Cooper, W.L. Jr.

    1982-01-01T23:59:59.000Z

    The Supermarket Energy Systems Program was structured to investigate and develop new highly energy-efficient supermarket systems. A supermarket refrigeration system consisting of: unequal parallel compressors; condenser with floating head-pressure control; and micoprocessor-based electronic control system was analyzed, designed, and tested. The total system capacity is 35 hp and three compressors of 5, 10, and 20 hp capacity were determined to be the optimum number and capacity distribution. Compared to the conventional supermarket refrigeration systems, the three unequal parallel compressor systems with R-12 will demonstrate a maximum annual energy savings of 29,100 kWhr or 26% and with R-502 will demonstrate a maximum annual energy savings of 20,100 kWhr or 15%. A compressor capacity control algorithm was designed to select the optimum compressor combination for each operating condition to match compressor capacity to refrigeration load. A microprocessor system based on an Intel 8085 microprocessor was selected for system control and data acquisition. The economic analysis revealed that for a payback period of 3 years or less, an added microprocessor-based electronic controls cost between $500 to $1500 is acceptable. Testing was performed on the unequal parallel compressor system over a refrigeration load range of 78,000 to 160,000 Btu/h. For refrigerant R-12, the increase in the energy efficiency ratio (EER) for the microprocessor-based electronic control system as compared to the mechanical pressure control system ranged from 9.8 to 12.5%

  12. Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2006-10-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  13. Baseline information development for Energy Smart Schools -applied research, field testing and technology integration

    E-Print Network [OSTI]

    Center (FSEC, FL), Energy Center of Wisconsin (ECW, WI), New York State Energy Research & Development our communications with NYSERDA, there is no K-12 energy usage information from New York state readily and emerging data in four states: California, Florida, New York, and Wisconsin. The goal of this data

  14. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11T23:59:59.000Z

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  15. Benchmark of aerodynamic cycling helmets using a refined wind tunnel test protocol for helmet drag research

    E-Print Network [OSTI]

    Sidelko, Stephanie

    2007-01-01T23:59:59.000Z

    The study of aerodynamics is very important in the world of cycling. Wind tunnel research is conducted on most of the equipment that is used by a rider and is a critical factor in the advancement of the sport. However, to ...

  16. Shock Tube Design for High Intensity Blast Waves for Laboratory Testing of Armor and Combat Materiel

    E-Print Network [OSTI]

    Courtney, Elijah; Courtney, Michael

    2015-01-01T23:59:59.000Z

    Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods were investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which works by increasing the turbulent flow of the deflagration wave, thus increasing its speed and pressure. This approach increased the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increased the peak pressure from 1.17 MPa to 2.25 MPa. Using a 1...

  17. CENER/NREL Collaboration in Testing Facility and Code Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-207

    SciTech Connect (OSTI)

    Moriarty, P.

    2014-11-01T23:59:59.000Z

    Under the funds-in CRADA agreement, NREL and CENER will collaborate in the areas of blade and drivetrain testing facility development and code development. The project shall include NREL assisting in the review and instruction necessary to assist in commissioning the new CENER blade test and drivetrain test facilities. In addition, training will be provided by allowing CENER testing staff to observe testing and operating procedures at the NREL blade test and drivetrain test facilities. CENER and NREL will exchange blade and drivetrain facility and equipment design and performance information. The project shall also include exchanging expertise in code development and data to validate numerous computational codes.

  18. OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002.

    SciTech Connect (OSTI)

    Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschliman, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23T23:59:59.000Z

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series has been initiated to provide fundamental information on the ability of water to ingress into cracks and fissures that form in the debris during quench, thereby augmenting the otherwise conduction-limited heat transfer process. A test plan for Melt Eruption Separate Effects Tests (MESET) has also been developed to provide information on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions. In terms of the second program objective, the project Management Board (MB) has approved startup activities required to carry out experiments to address remaining uncertainties related to long-term two-dimensional molten core-concrete interaction. In particular, for both wet and dry cavity conditions, there is uncertainty insofar as evaluating the lateral vs. axial power split during a core-concrete interaction due to a lack of experiment data. As a result, there are differences in the 2-D cavity erosion predicted by codes such as MELCOR, WECHSL, and COSACO. The first step towards generating this data is to produce a test plan for review by the Project Review Group (PRG). The purpose of this document is to provide this plan.

  19. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02T23:59:59.000Z

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

  20. Monitoring and Control Research Using a University Reactor and SBWR Test-Loop

    SciTech Connect (OSTI)

    Robert M. Edwards

    2003-09-28T23:59:59.000Z

    The existing hybrid simulation capability of the Penn State Breazeale nuclear reactor was expanded to conduct research for monitoring, operations and control. Hybrid simulation in this context refers to the use of the physical time response of the research reactor as an input signal to a real-time simulation of power-reactor thermal-hydraulics which in-turn provides a feedback signal to the reactor through positioning of an experimental changeable reactivity device. An ECRD is an aluminum tube containing an absorber material that is positioned in the central themble of the reactor kinetics were used to expand the hybrid reactor simulation (HRS) capability to include out-of-phase stability characteristics observed in operating BWRs.

  1. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect (OSTI)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30T23:59:59.000Z

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  2. Research and development of highly energy-efficient supermarket refrigeration systems. Volume 2. Supplemental laboratory testing

    SciTech Connect (OSTI)

    Toscano, W.M.; Walker, D.H.; Tetreault, R.D.

    1983-06-01T23:59:59.000Z

    The Supermarket Refrigeration System project was structured to investigate and develop a new, highly energy-efficient supermarket refrigeration system which features unequal, parallel compressors, microprocessor suction pressure control, and floating head pressure control. Energy savings are achieved because such a system is better able to match compressor capacity with the required refrigeration load. For this same reason, the unequal, parallel compressor system can operate at the lowest possible condenser pressure. The combined effect of highest possible suction pressure and lowest possible condensing pressure substantially increases the energy efficiency ratio (EER) of the refrigeration system. The test conditions included winter and spring ambient temperatures ranging from 8/sup 0/ to 70/sup 0/F, refrigerants R-12 and R-502 with corresponding evaporator temperatures of 20/sup 0/ and -20/sup 0/F, respectively, and variable refrigeration loads between 100,000 and 170,000 Btu/hr. Heat reclaim tests were performed with R-12 only. For the three sets of tests performed, R-12, R-12 with heat reclaim, and R-502, the highest system EER was achieved when the unequal, parallel compressor system was operated with microprocessor control and floating head control.

  3. RIF Final Report: Experimental Facility Design for an Integrated Space Technology Research

    E-Print Network [OSTI]

    Zhou, Chongwu

    for small scale experiments. Currently, only the small chamber is operating at the designed condition to sponsors. The objectives of this RIF project are to develop a plan for repairing and upgrading the CHAFF during this RIF project: 1) developed a plan to repair and upgrade the CHAFF-IV facility 2) obtained

  4. Baseline information development for energy smart schools -- applied research, field testing and technology integration

    SciTech Connect (OSTI)

    Xu, Tengfang; Piette, Mary Ann

    2004-08-05T23:59:59.000Z

    The original scope of work was to obtain and analyze existing and emerging data in four states: California, Florida, New York, and Wisconsin. The goal of this data collection was to deliver a baseline database or recommendations for such a database that could possibly contain window and daylighting features and energy performance characteristics of Kindergarten through 12th grade (K-12) school buildings (or those of classrooms when available). In particular, data analyses were performed based upon the California Commercial End-Use Survey (CEUS) databases to understand school energy use, features of window glazing, and availability of daylighting in California K-12 schools. The outcomes from this baseline task can be used to assist in establishing a database of school energy performance, assessing applications of existing technologies relevant to window and daylighting design, and identifying future R&D needs. These are in line with the overall project goals as outlined in the proposal. Through the review and analysis of this data, it is clear that there are many compounding factors impacting energy use in K-12 school buildings in the U.S., and that there are various challenges in understanding the impact of K-12 classroom energy use associated with design features of window glazing and skylight. First, the energy data in the existing CEUS databases has, at most, provided the aggregated electricity and/or gas usages for the building establishments that include other school facilities on top of the classroom spaces. Although the percentage of classroom floor area in schools is often available from the databases, there is no additional information that can be used to quantitatively segregate the EUI for classroom spaces. In order to quantify the EUI for classrooms, sub-metering of energy usage by classrooms must be obtained. Second, magnitudes of energy use for electricity lighting are not attainable from the existing databases, nor are the lighting levels contributed by artificial lighting or daylight. It is impossible to reasonably estimate the lighting energy consumption for classroom areas in the sample of schools studied in this project. Third, there are many other compounding factors that may as well influence the overall classroom energy use, e.g., ventilation, insulation, system efficiency, occupancy, control, schedules, and weather. Fourth, although we have examined the school EUI grouped by various factors such as climate zones, window and daylighting design features from the California databases, no statistically significant associations can be identified from the sampled California K-12 schools in the current California CEUS. There are opportunities to expand such analyses by developing and including more powerful CEUS databases in the future. Finally, a list of parameters is recommended for future database development and for use of future investigation in K-12 classroom energy use, window and skylight design, and possible relations between them. Some of the key parameters include: (1) Energy end use data for lighting systems, classrooms, and schools; (2) Building design and operation including features for windows and daylighting; and (3) Other key parameters and information that would be available to investigate overall energy uses, building and systems design, their operation, and services provided.

  5. Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01T23:59:59.000Z

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are very similar. The purpose and design of this experiment will be discussed followed by its progress and status to date.

  6. Software Design Document, Testing, and Deployment and Configuration Management of the UUIS - a Team 1 COMP5541-W10 Project Approach

    E-Print Network [OSTI]

    Sankaran, Abirami; Attar, Maab; Parham, Mohammad; Zayikina, Olena; Rifai, Omar Jandali; Lepin, Pavel; Hassan, Rana

    2010-01-01T23:59:59.000Z

    The document presents a detailed description of the designs for the implementation of the Unified University Inventory System for the Imaginary University of Arctica. The document, through numerous diagrams and UI samples, gives the structure of the system and the functions of its modules. It also gives test cases and reports that support the system's architecture and design.

  7. General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

    1996-07-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  8. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01T23:59:59.000Z

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  9. Review of selected recent research on US seismic design and retrofit

    E-Print Network [OSTI]

    Bruneau, Michel

    at Buffalo, Buffalo, NY, USA 2 University of Texas Austin, Department of Civil Engineering, Austin, TX, USA 3 on research on retrofit of beam-to-column moment connections, frame modifications at beams' mid- span, self-centering systems, zipper frames, buckling-restrained braced frames, steel plate shear walls, plastic and rotation

  10. NREL: Photovoltaics Research - Testing and Analysis to Advance R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D.Solar Energy Research Facility

  11. WatSen: Design and testing of a prototype mid-IR spectrometer and microscope package for Mars exploration

    E-Print Network [OSTI]

    Wolters, Stephen D; Sund, Arnt T; Bohman, Axel; Guthery, William; Sund, Bjornar T; Hagermann, Axel; Tomkinson, Tim; Romstedt, Jens; Morgan, Geraint H; Grady, Monica M; 10.1007/s10686-012-9328-8

    2013-01-01T23:59:59.000Z

    We have designed and built a compact breadboard prototype instrument called WatSen: a combined ATR mid-IR spectrometer, fixed-focus microscope, and humidity sensor. The instrument package is enclosed in a rugged cylindrical casing only 26mm in diameter. The functionality, reliability and performance of the instrument was tested in an environment chamber set up to resemble martian surface conditions. The effective wavelength range of the spectrometer is 6.2 - 10.3 micron with a resolution delta-wavelength/wavelength = 0.015. This allows detection of silicates and carbonates, including an indication of the presence of water (ice). Spectra of clusters of grains < 1mm across were acquired that are comparable with spectra of the same material obtained using a commercial system. The microscope focuses through the diamond ATR crystal. Colour images of the grains being spectroscopically analysed are obtainable with a resolution of ~ 20 micron.

  12. Design and test of a wet type helium turbo-expander with an alternator as a brake

    SciTech Connect (OSTI)

    Kato, T.; Miyake, A.; Kawano, K.; Hamada, K.; Hiyama, T.; Iwamoto, S.; Ebisu, H.; Tsuji, H. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Saji, N.; Kaneko, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)] [and others

    1994-12-31T23:59:59.000Z

    A wet type helium turbo-expander with expected adiabatic efficiency of 70% at inlet pressure, temperature, and outlet pressure of 1.3 MPa, 6.0 K, and 0.2 MPa, respectively, has been developed. An alternator is adopted as a brake where a permanent magnet is held in the turbine shaft. And a self-acting gas bearing is used at thrust and journal bearings. An electromagnet supports thrust bearing to lift up the thrust disk when initiating operation. Design mass flow rate of the turbine is determined to be 60 g/s, corresponding to the JT mass flow rate in the existing helium liquefier/refrigerator. In the cryogenic performance test, the turbine had increased helium liquefaction rate by four times larger than the liquefaction rate without turbine operation.

  13. Reactor Physics Methods and Preconceptual Core Design Analyses for Conversion of the Advanced Test Reactor to Low-Enriched Uranium Fuel Annual Report for Fiscal Year 2012

    SciTech Connect (OSTI)

    David W. Nigg; Sean R. Morrell

    2012-09-01T23:59:59.000Z

    Under the current long-term DOE policy and planning scenario, both the ATR and the ATRC will be reconfigured at an appropriate time within the next several years to operate with low-enriched uranium (LEU) fuel. This will be accomplished under the auspices of the Reduced Enrichment Research and Test Reactor (RERTR) Program, administered by the DOE National Nuclear Security Administration (NNSA). At a minimum, the internal design and composition of the fuel element plates and support structure will change, to accommodate the need for low enrichment in a manner that maintains total core excess reactivity at a suitable level for anticipated operational needs throughout each cycle while respecting all control and shutdown margin requirements and power distribution limits. The complete engineering design and optimization of LEU cores for the ATR and the ATRC will require significant multi-year efforts in the areas of fuel design, development and testing, as well as a complete re-analysis of the relevant reactor physics parameters for a core composed of LEU fuel, with possible control system modifications. Ultimately, revalidation of the computational physics parameters per applicable national and international standards against data from experimental measurements for prototypes of the new ATR and ATRC core designs will also be required for Safety Analysis Report (SAR) changes to support routine operations with LEU. This report is focused on reactor physics analyses conducted during Fiscal Year (FY) 2012 to support the initial development of several potential preconceptual fuel element designs that are suitable candidates for further study and refinement during FY-2013 and beyond. In a separate, but related, effort in the general area of computational support for ATR operations, the Idaho National Laboratory (INL) is conducting a focused multiyear effort to introduce modern high-fidelity computational reactor physics software and associated validation protocols to replace several obsolete components of the current analytical tool set used for ATR neutronics support. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). It will also greatly facilitate the LEU conversion effort, since the upgraded computational capabilities are now at a stage where they can be, and in fact have been, used for the required physics analysis from the beginning. In this context, extensive scoping neutronics analyses were completed for six preconceptual candidate LEU fuel element designs for the ATR (and for its companion critical facility, ATRC). Of these, four exhibited neutronics performance in what is believed to be an acceptable range. However, there are currently some concerns with regard to fabricability and mechanical performance that have emerged for one of the four latter concepts. Thus three concepts have been selected for more comprehensive conceptual design analysis during the upcoming fiscal year.

  14. A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK

    SciTech Connect (OSTI)

    Spencer, Cherrill M.; /slac; Sugahara, Ryuhei; Masuzawa, Mika; /KEK, Tsukuba; Bolzon, Benoit; Jeremie, Andrea; /Annecy, LAPP

    2011-02-07T23:59:59.000Z

    In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus system to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.

  15. Research and Design of a Sample Heater for Beam Line 6-2c Transmission X-ray Microscope

    SciTech Connect (OSTI)

    Policht, Veronica; /Loyola U., Chicago /SLAC

    2012-08-27T23:59:59.000Z

    There exists a need for environmental control of samples to be imaged by the Transmission X-Ray Microscope (TXM) at the SSRLs Beam Line 6-2c. In order to observe heat-driven chemical or morphological changes that normally occur in situ, microscopes require an additional component that effectively heats a given sample without heating any of the microscope elements. The confinement of the heat and other concerns about the heaters integrity limit which type of heater is appropriate for the TXM. The bulk of this research project entails researching different heating methods used previously in microscopes, but also in other industrial applications, with the goal of determining the best-fitting method, and finally in designing a preliminary sample heater.

  16. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect (OSTI)

    Ritterbusch, S.E.

    2000-08-01T23:59:59.000Z

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  17. Flexibility in Design, Outcomes and Analysis in “Evidence- Based” Drug Prevention Research: The Case of the Midwestern Prevention Project

    E-Print Network [OSTI]

    Gorman, Dennis M.

    2013-11-22T23:59:59.000Z

    , column 2]. h Dwyer et al. [20] used a number of different models in their analysis and concluded that these showed “no evidence of an effect on alcohol use” [20, p. 781]. Hence “?” appears in the table. i Data for the 1-year follow-up are from Pentz et...Citation: Gorman DM. Flexibility in Design, Outcomes and Analysis in “Evidence-Based” Drug Prevention Research: The Case of the Midwestern Prevention Project. J Addiction Prevention. 2013;1(3): 8. J Addiction Prevention November 2013 Vol.:1, Issue...

  18. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01T23:59:59.000Z

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  19. Preliminary Characterization and Analysis of the Designs and Research-Manufacturing Approaches

    SciTech Connect (OSTI)

    Scott Swartz; Gwendolyn Cheney; Williams Dawson; Michael Cobb; Kirby Meacham; James Stephan; Bob Remick; Harlan Anderson; Wayne Huebner; Aaron Crumm; John Holloran; Tim Armstrong

    2000-10-30T23:59:59.000Z

    This report summarizes the results of Phase I of a study entitled, Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells. The work was carried out by a group called the Multilayer Fuel Cell Alliance (MLFCA) led by NexTech Materials and including Adaptive Materials, Advanced Materials Technologies (AMT), Cobb & Co., Edison Materials Technology Center, Iowa State University, Gas Technology Institute (GTI), Northwestern University, Oak Ridge National Laboratory (ORNL), Ohio State University, University of Missouri-Rolla (UMR), and Wright-Patterson Air Force Base. The objective of the program is to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. In the Phase I effort, five approaches were considered: two based on NexTech's planar approach using anode and cathode supported variations, one based on UMR's ultra-thin electrolyte approach, and two based on AMI's co-extrusion technology. Based on a detailed manufacturing cost analysis, all of the approaches are projected to result in a significantly reduced production cost. Projected costs range from $139/kW to $179/kW for planar designs. Development risks were assessed for each approach and it was determined that the NexTech and UMR approaches carried the least risk for successful development. Using advanced manufacturing methods and a proprietary high power density design, the team estimated that production costs could be reduced to $94/kW.

  20. Testing Basis of Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 . Tensile StrainTerry LawLBlog »Commerce |

  1. Scaleup tests and supporting research for the development of duct injection technology

    SciTech Connect (OSTI)

    Felix, L.G.; Dismukes, E.B.; Gooch, J.P. (Southern Research Inst., Birmingham, AL (United States)); Klett, M.G.; Demian, A.G. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

    1992-04-20T23:59:59.000Z

    This Topical Report No. 2 is an interim report on the Duct Injection Test Facility being operated for the Department of Energy at Beverly, Ohio. Either dry calcium hydroxide or an aqueous slurry of calcium hydroxide (prepared by slaking quicklime) is injected into a slipstream of flue gas to achieve partial removal of SO{sub 2} from a coal-burning power station. Water injected with the slurry or injected separately from the dry sorbents cools the flue gas and increases the water vapor content of the gas. The addition of water, either in the slurry or in a separate spray, makes the extent of reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state, when it is able to wet the sorbent particles physically, and not especially effective in the vapor state. An electrostatic precipitator collects the combination of suspended solids (fly ash from the boiler and sorbent from the duct injection process). All of the operations are being carried out on the scale of approximately 50,000 acfm of flue gas.

  2. Design, improvement, and testing of a thermal-electrical analysis application of a multiple beta-tube AMTEC converter

    E-Print Network [OSTI]

    Pavlenko, Ilia V.

    2004-09-30T23:59:59.000Z

    A new design AMTEC converter model was developed, and its effectiveness as a design tool was evaluated. To develop the model, requirements of the model were defined, several new design models were successively developed, and finally an optimal new...

  3. Empirical design charts against earthquake-induced liquefaction in cohesionless soils based on in-situ tests

    E-Print Network [OSTI]

    Menendez, Jose Rafael

    1997-01-01T23:59:59.000Z

    Available methods to predict the liquefaction susceptibility of cohesionless soils are based either in empirical charts (in-situ test) or laboratory tests. In-situ tests are a valuable source of information; especially in cohesionless soils, due...

  4. My research goal is to better integrate technical activities such as behavior modeling, interface design, and system building with conceptualizations of social dynamics as expressed by social

    E-Print Network [OSTI]

    Keinan, Alon

    design, and system building with conceptualizations of social dynamics as expressed by social science. For instance, understanding the working of memory might help designers build better memory support toolsMy research goal is to better integrate technical activities such as behavior modeling, interface

  5. Design, Preparation and Activity of Cotton Gauze for Use in Chronic Wound Research

    SciTech Connect (OSTI)

    Edwards, J. V.; Yager, Dorne; Bopp, Alvin; Diegelmann, Robert F.; Goheen, Steven C.; Cohen, I. K.

    2001-01-01T23:59:59.000Z

    We consider the rational design and chemical modification of cotton gauze, which is used widely in chronic wounds, to improve wound dressing fibers for application to chronic wound healing. Cotton gauze may be tailored to more effectively enhance the biochemistry of wound healing. The presence of elevated levels of elastase in non-healing wounds has been associated with the degradation of important growth factors and fibronectin necessary for wound healing. In the healing wound a balance of elastase and antiproteases precludes degradation of beneficial proteins from taking place. Cotton gauze modified to release elastase inhibitors or selectively functionalized to sequester elastase provides a dressing that decreases high levels of destructive elastase in the chronic wounds. Three approaches have been taken to explore the potential of fiber-inhibitors useful in chronic wounds: 1) Formulation of inhibitors on the dressing; 2) Synthesis of elastase recognition sequences on cotton cellulose; and 3) Data presented here on carboxymethylating, and oxidizing textile finishes of cotton gauze to remove elastase from the wound.

  6. Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01T23:59:59.000Z

    Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

  7. Observational Study Designs for Comparative Effectiveness Research: An Alternative Approach to Close Evidence Gaps in Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Goulart, Bernardo H.L., E-mail: bhg@uw.edu [Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Hutchinson Institute for Cancer Outcomes Research (HICOR), Seattle, Washington (United States); University of Washington, Seattle, Washington (United States); Ramsey, Scott D. [Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Hutchinson Institute for Cancer Outcomes Research (HICOR), Seattle, Washington (United States); University of Washington, Seattle, Washington (United States); Parvathaneni, Upendra [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); University of Washington, Seattle, Washington (United States)

    2014-01-01T23:59:59.000Z

    Comparative effectiveness research (CER) has emerged as an approach to improve quality of care and patient outcomes while reducing healthcare costs by providing evidence to guide healthcare decisions. Randomized controlled trials (RCTs) have represented the ideal study design to support treatment decisions in head-and-neck (H and N) cancers. In RCTs, formal chance (randomization) determines treatment allocation, which prevents selection bias from distorting the measure of treatment effects. Despite this advantage, only a minority of patients qualify for inclusion in H and N RCTs, which limits the validity of their results to the broader H and N cancer patient population seen in clinical practice. Randomized controlled trials often do not address other knowledge gaps in the management of H and N cancer, including treatment comparisons for rare types of H and N cancers, monitoring of rare or late toxicity events (eg, osteoradionecrosis), or in some instances an RCT is simply not feasible. Observational studies, or studies in which treatment allocation occurs independently of investigators' choice or randomization, may address several of these gaps in knowledge, thereby complementing the role of RCTs. This critical review discusses how observational CER studies complement RCTs in generating the evidence to inform healthcare decisions and improve the quality of care and outcomes of H and N cancer patients. Review topics include a balanced discussion about the strengths and limitations of both RCT and observational CER study designs; a brief description of design and analytic techniques to handle selection bias in observational studies; examples of observational studies that inform current clinical practices and management of H and N cancers; and suggestions for relevant CER questions that could be addressed by an observational study design.

  8. GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 2245-2248, AUGUST 1, 2000 Sub-surface nuclear tests monitoring through the

    E-Print Network [OSTI]

    Hourdin, Chez Frédéric

    ) which should detect nuclear tests down to 1 kiloton (kt) TNT equivalent anywhere on the planet. The IMS), hydroacoustic and infrasound waves will help check for underground, under-water and atmospheric nuclear testsGEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 2245-2248, AUGUST 1, 2000 Sub-surface nuclear

  9. AWong Scholarship Description and Application_v2[2].docx 6/16/14 Anthony Wong Scholarship for Research in Sustainable Design

    E-Print Network [OSTI]

    for Research in Sustainable Design Description The Department of Architecture gratefully acknowledges the gift from Anthony Wong (`76) to support student travel to present cutting-edge research in sustainable and is committed to personally presenting the work at the conference; b. demonstrate the topic in sustainable

  10. Setting the stage for effective teams: a meta-analysis of team design variables and team effectiveness

    E-Print Network [OSTI]

    Bell, Suzanne Tamara

    2004-11-15T23:59:59.000Z

    and is inconsistent, and conclusions regarding optimal team design are difficult to make. The present study sought to unify the team design research by proposing a conceptual model and testing hypothesized relationships between specified design variables and team...

  11. Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS)

    E-Print Network [OSTI]

    Boeser, S; Descamps, F; Fischer, J; Hallgren, A; Heller, R; Hundertmark, S; Krieger, K; Nahnhauer, R; Pohl, M; Price, P B; Sulanke, K -H; Tosi, D; Vandenbroucke, J

    2008-01-01T23:59:59.000Z

    The South Pole Acoustic Test Setup (SPATS) has been built to evaluate the acoustic characteristics of the South Pole ice in the 10 to 100 kHz frequency range so that the feasibility and specific design of an acoustic neutrino detection array at South Pole can be evaluated. SPATS consists of three vertical strings that were deployed in the upper 400 meters of the South Pole ice cap in January 2007, using the upper part of IceCube holes. The strings form a triangular array with the longest baseline 421 meters. Each of them has 7 stages with one transmitter and one sensor module. Both are equipped with piezoelectric ceramic elements in order to produce or detect sound. Analog signals are brought to the surface on electric cables where they are digitized by a PC-based data acquisition system. The data from all three strings are collected on a master-PC in a central facility, from which they are sent to the northern hemisphere via a satellite link or locally stored on tape. A technical overview of the SPATS detect...

  12. Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS)

    E-Print Network [OSTI]

    S. Boeser; C. Bohm; F. Descamps; J. Fischer; A. Hallgren; R. Heller; S. Hundertmark; K. Krieger; R. Nahnhauer; M. Pohl; P. B. Price; K. -H. Sulanke; D. Tosi; J. Vandenbroucke

    2008-07-29T23:59:59.000Z

    The South Pole Acoustic Test Setup (SPATS) has been built to evaluate the acoustic characteristics of the South Pole ice in the 10 to 100 kHz frequency range so that the feasibility and specific design of an acoustic neutrino detection array at South Pole can be evaluated. SPATS consists of three vertical strings that were deployed in the upper 400 meters of the South Pole ice cap in January 2007, using the upper part of IceCube holes. The strings form a triangular array with the longest baseline 421 meters. Each of them has 7 stages with one transmitter and one sensor module. Both are equipped with piezoelectric ceramic elements in order to produce or detect sound. Analog signals are brought to the surface on electric cables where they are digitized by a PC-based data acquisition system. The data from all three strings are collected on a master-PC in a central facility, from which they are sent to the northern hemisphere via a satellite link or locally stored on tape. A technical overview of the SPATS detector and its performance is presented.

  13. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    research, engineering design & analysis, and laboratory-scale testing of new electro-mechanical actuator mechanisms for fail-safe valve closure. Gary L. Covatch Digitally signed by...

  14. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories » RemovingResearch CORE-SHELL NANOPARTICLES AND

  15. Design, development, and testing of a prototype of an Ozone Badge plastic holder suitable for use by children.

    E-Print Network [OSTI]

    Wu, Mingshen

    Kunioka Senior Research Engineer and Supervisor Environmental Assessment Systems Group kunioka@aecl.ntt.co.jp Mr. Takashi Miwa Researcher Environmental Assessment Systems Group t-miwa@aecl.ntt.co.jp People

  16. Design, prototyping, and testing of an apparatus for establishing a linear temperature gradient in experimental fish tanks

    E-Print Network [OSTI]

    Kadri, Romi Sinclair

    2014-01-01T23:59:59.000Z

    Immunology researchers require a new type of fish tank that provides a linear thermal gradient for experimental zebrafish in order to improve the accuracy and validity of their research. Zebrafish require the ability to ...

  17. A conical mandrel tube drawing test designed to assess failure criteria. C. Linardona,b,c, D. Favierb, G. Chagnonb, B. Grueza

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    process. The principle of cold drawing is to reduce tube cross section and wall thickness by pullingA conical mandrel tube drawing test designed to assess failure criteria. C. Linardona,b,c, D Grenoble Alpes/CNRS/Lab3SR, BP53, 38041 Grenoble Cedex 9, France. Abstract Cold tube drawing is a metal

  18. NaREC Offshore and Drivetrain Test Facility Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-04-140

    SciTech Connect (OSTI)

    Musial, W.

    2014-08-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

  19. Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design

    SciTech Connect (OSTI)

    Spane, Frank A.; Newcomer, Darrell R.

    2009-09-23T23:59:59.000Z

    This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

  20. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    E-Print Network [OSTI]

    Sartor, Dale

    2011-01-01T23:59:59.000Z

    simply through the energy-efficient design of the facilitywas able to design a very energy-efficient building with a

  1. Communicating Design Research Effectively

    E-Print Network [OSTI]

    Roschuni, Celeste Nicole

    2012-01-01T23:59:59.000Z

    Creativity/Problem Solving, Software, Business, Liberal Arts, Engineering,Creativity 5 models Software 17 models Business 11 models Liberal Arts 4 models Engineering

  2. Design Principles of a flywheel Regenerative Braking System (f-RBS) for Formula SAE type racecar and system testing on a Virtual Test Rig modeled on MSC ADAMS

    E-Print Network [OSTI]

    Pochiraju, Anirudh

    2012-08-31T23:59:59.000Z

    momentum in the industry [4]. These vehicles (BEVs and HEVS) use electric motor/generator pairs to propel themselves and to recapture braking energy (electric RBS) and the power source is the battery. The regenerative braking system uses a generator..., aerodynamic and road losses. 4. Improvised Transmission design to reduce losses. 5. Hybrid and Alternative Energy Propulsion systems e.g. the Hybrid Electric Vehicle (HEV), the Fuel Cell Vehicle (FCV). 6. Recycling Braking energy – Storage and reuse...

  3. Testing theoretical game theory results on a large scale : prisoner's dilemma on Facebook

    E-Print Network [OSTI]

    Long, Sunny (Sunny X.)

    2013-01-01T23:59:59.000Z

    In my research, I designed and implemented an online game accessable to a large diverse audience via the Facebook social network to test out game theoretic results and study social interactions. In this game, we designed ...

  4. Light-Emitting Tag Testing in Conjunction with Testing of the Minimum Gap Runner Turbine Design at Bonneville Dam Powerhouse 1

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Weiland, Mark A.

    2001-01-30T23:59:59.000Z

    This report describes a pilot study conducted by Tom Carlson of PNNL and Mark Weiland of MEVATEC Corp to test the feasibility of using light-emitting tags to visually track objects passing through the turbine environment of a hydroelectric dam. Light sticks were released at the blade tip, mid-blade, and hub in the MGR turbine and a Kaplan turbine at Bonneville Dam and videotaped passing thru the dam to determine visibility and object trajectories.

  5. Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353

    SciTech Connect (OSTI)

    Neubauer, J.

    2013-05-01T23:59:59.000Z

    Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

  6. 1. This research was supported by General Motors R&D Center. Digest of Papers: IEEE International On-Line Testing Workshop, 1996, pp. 164-167.

    E-Print Network [OSTI]

    Al-Asaad, Hussain

    of this technique. 1 Introduction There are four primary parameters to be considered in the design of any on-line overhead. On-line BIST is usually implemented with the goals of complete error coverage, near-minimal error On-Line Testing Workshop, 1996, pp. 164-167. Abstract This paper briefly reviews on-line built

  7. Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Research continued on the design of advanced turbine systems. This report describes the design and test of critical components such as blades, materials, cooling, combustion, and optical diagnostics probes.

  8. Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Tests 1 and 2

    SciTech Connect (OSTI)

    Russcher, G. E.; Wilson, C. L.; Marshall, R, K.; King, L. L.; Parchen, L. J.; Pilger, J. P.; Hesson, G. M.; Mohr, C. L.

    1981-09-01T23:59:59.000Z

    A loss of Coolant Accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects of LOCA conditions on pressurized water reactor test fuel bundles. This experiment operation plan for the second and third experiments of the program will provide peak fuel cladding temperatures of up to 1172K (1650{degree}F) and 1061K (1450{degree}) respectively. for a long enough time to cause test fuel cladding deformation and rupture in both. Reflood coolant delay times and the reflooding rates for the experiments were selected from thermal-hydraulic data measured in the National Research Universal (NRU) reactor facilities and test train assembly during the first experiment.

  9. Passive solar buildings research

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1992-12-31T23:59:59.000Z

    This chapter covers research advances in passive solar buildings research during the time span from 1982 through 1991. These advances fall within the following categories: (1) short-term energy monitoring, (2) heat transport by natural convection within buildings, and (3) design guidelines and design tools. In short-term energy monitoring, a simulation model of the building is calibrated, based on data taken in a 3-day test. The method accurately predicts performance over an extended period. Heat transport through doorways is characterized for complex situations that arise in passive solar buildings. Simple concepts and models adequately describe the energy transport in many situations of interest. In a new approach, design guidelines are automatically generated for any specific locality. Worksheets or an accompanying computer program allow the designer to quickly and accurately evaluate performance and investigate design alternatives. 29 refs., 19 figs., 2 tabs.

  10. Use of phenomena identification and ranking (PIRT) process in research related to design certification of the AP600 advanced passive light water reactor (LWR)

    SciTech Connect (OSTI)

    Wilson, G.E.; Fletcher, C.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Eltawila, F. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

    1996-07-01T23:59:59.000Z

    The AP600 LWR is a new advanced passive design that has been submitted to the USNRC for design certification. Within the certification process the USNRC will perform selected system thermal hydraulic response audit studies to help confirm parts of the vendor`s safety analysis submittal. Because of certain innovative design features of the safety systems, new experimental data and related advances in the system thermal hydraulic analysis computer code are being developed by the USNRC. The PIRT process is being used to focus the experimental and analytical work to obtain a sufficient and cost effective research effort. The objective of this paper is to describe the application and most significant results of the PIRT process, including several innovative features needed in the application to accommodate the short design certification schedule. The short design certification schedule has required that many aspects of the USNRC experimental and analytical research be performed in parallel, rather than in series as was normal for currently operating LWRS. This has required development and use of management techniques that focus and integrate the various diverse parts of the research. The original PIRTs were based on inexact knowledge of an evolving reactor design, and concentrated on the new passive features of the design. Subsequently, the PIRTs have evolved in two more stages as the design became more firm and experimental and analytical data became available. A fourth and final stage is planned and in progress to complete the PIRT development. The PIRTs existing at the end of each development stage have been used to guide the experimental program, scaling analyses and code development supporting the audit studies.

  11. Design and Analysis of a Test Rig for Modeling the Bit/Formation Interface in Petroleum Drilling Applications

    E-Print Network [OSTI]

    Wilson, Joshua Kyle

    2013-04-11T23:59:59.000Z

    resources as efficiently, and as safely, as possible. The research presented here focuses on minimizing vibrations of the drill string near the bottom-hole assembly (BHA) by identifying the cause of external forcing on the drillstring in vertical...

  12. Quantitative Analysis of Solar Technologies For Net-Zero Design Affordable Homes Research Group, School of Architecture, McGill University

    E-Print Network [OSTI]

    Barthelat, Francois

    Cost per Watt (U.S.) Mono-crystalline - thick modular panels on roof, walls or separate structure 17Quantitative Analysis of Solar Technologies For Net-Zero Design Affordable Homes Research Group PRINCIPLES & RESULTS CONCLUSIONS Photovoltaic (PV) Energy Production Water-Based Solar Thermal Collectors Air

  13. BP money will go to study dolphin, sharks, reefs, beaches A research council has awarded more than $9 million in BP money to 27 projects designed to

    E-Print Network [OSTI]

    Belogay, Eugene A.

    BP money will go to study dolphin, sharks, reefs, beaches TBO.com A research council has awarded more than $9 million in BP money to 27 projects designed to measure the Gulf oil disaster's impact on Florida's environment. The money will pay for studies of bottle-nosed dolphin, coral reefs, sharks, water

  14. The evaluation of micro-surfacing mixture design procedures and the effects of material variation on the test responses

    E-Print Network [OSTI]

    Andrews, Edward Mensah

    1994-01-01T23:59:59.000Z

    sand paper. c. 100 grit silicon carbide 'Carborundum' brand sand paper. d. Load cell to periodically check the cohesion meter pressure. 12 Sample Preparation and Testing Procedure Aggregate falling within the Texas Department of Transportation (Tx...

  15. Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 6th, 2005 Quality is About Testing Early and Testing Often

    E-Print Network [OSTI]

    Tappert, Charles

    a high quality project, through reviews, testing and the establishment of best practices. The 2003/4 QA with components from multiple hardware manufacturers while having to coexist with multiple other running programs implementation. We communicated the following Quality attributes during the first semester and then observed

  16. Design, fabrication, RF test at 2 K of 1050MHz, ?=0.49 single cell large and fine grain niobium cavity

    SciTech Connect (OSTI)

    Jayanta Mondal, Gianluigi Ciovati, Peter Kneisel, Kailash Mittal, Ganapati Rao Myneni

    2011-11-01T23:59:59.000Z

    BARC is developing a technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and prototyping of a superconducting medium velocity cavity has been taken up as a part of the ADSS project. The cavity design for {beta} = 0.49, f = 1050 MHz has been optimized to minimize the peak electric and magnetic fields, with a goal of 5 MV/m of accelerating gradient at a Q > 5 x 10{sup 9} at 2 K. After the design optimization, two single cell cavities were fabricated from polycrystalline (RRR > 200) and large grain (RRR > 96) Niobium material. The cavities have been tested at 2 K in a vertical cryostat at Jefferson Lab and both achieved the performance specifications.

  17. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  18. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  19. ORNL results for Test Case 1 of the International Atomic Energy Agency`s research program on the safety assessment of Near-Surface Radioactive Waste Disposal Facilities

    SciTech Connect (OSTI)

    Thorne, D.J.; McDowell-Boyer, L.M.; Kocher, D.C.; Little, C.A. [Oak Ridge National Lab., Grand Junction, CO (United States); Roemer, E.K. [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-07-01T23:59:59.000Z

    The International Atomic Energy Agency (IAEA) started the Coordinated Research Program entitled ```The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities.`` The program is aimed at improving the confidence in the modeling results for safety assessments of waste disposal facilities. The program has been given the acronym NSARS (Near-Surface Radioactive Waste Disposal Safety Assessment Reliability Study) for ease of reference. The purpose of this report is to present the ORNL modeling results for the first test case (i.e., Test Case 1) of the IAEA NSARS program. Test Case 1 is based on near-surface disposal of radionuclides that are subsequently leached to a saturated-sand aquifer. Exposure to radionuclides results from use of a well screened in the aquifer and from intrusion into the repository. Two repository concepts were defined in Test Case 1: a simple earth trench and an engineered vault.

  20. Design and testing of a deep sea formation water and temeperature sampling probe for the Ocean Drilling Program

    E-Print Network [OSTI]

    Fisseler, Patrick James

    2012-06-07T23:59:59.000Z

    . Components were then fabricated by a local machine shop. All components under went quality inspection and were then assembled. Full scale testing at the Ocean Drilling Programs Annex is the next step. If successful, the probe is to undergo sea trials...

  1. Research and development of highly energy-efficient supermarket refrigeration systems. Volume 3. Evaluation of a test system in a supermarket

    SciTech Connect (OSTI)

    Walker, D.H.; Burnett, M.; Krepchin, I.P.

    1984-12-01T23:59:59.000Z

    This report covers in detail the engineering evaluation of a highly energy-efficient supermarket refrigeration system. The primary components of this system were a set of three unequal parallel compressors, a microprocessor-based compressor controller, and floating head pressure for condenser operation. For this evaluation, such a system - referred to here as the test system - was designed, fabricated, installed and instrumented in a supermarket operated by the H.E. Butt Grocery Co., in San Antonio, TX. A second refrigeration system - referred to here as the reference system and located in another HEB supermarket in San Antonio - was also instrumented so that comparative measurements between the two systems could be made. The major components of the reference system were two equal parallel compressors, a solid state compressor controller, and conventional head pressure control. The two systems were monitored for a period of approximately one year. The results showed that the test system produced a system EER (energy efficiency ratio) that was on the average 15.9% higher than that of the reference system. Further analysis of the performance data showed that the following parameters (presented in descending order of importance) contributed to this improvement: Operation of the test system at higher suction pressure; cycling control strategy for the test system condenser fans; fewer defrosts experienced by the test system; and operation of the test system at lower condenser pressure. Similar analyses were carried out for the power consumptions and refrigeration loads of both the test and reference systems. 9 figures, 10 tables.

  2. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    SciTech Connect (OSTI)

    Koybasi, Ozhan; /Purdue U.; Bortoletto, Daniela; /Purdue U.; Hansen, Thor-Erik; /SINTEF, Oslo; Kok, Angela; /SINTEF, Oslo; Hansen, Trond Andreas; /SINTEF, Oslo; Lietaer, Nicolas; /SINTEF, Oslo; Jensen, Geir Uri; /SINTEF, Oslo; Summanwar, Anand; /SINTEF, Oslo; Bolla, Gino; /Purdue U.; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01T23:59:59.000Z

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  3. The LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    SciTech Connect (OSTI)

    Warinner, D.K.

    1983-07-01T23:59:59.000Z

    The U.S. Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element-failure propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurances expected in the United States, USSR, France, UK, Japan, and West Germany are outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission product monitors are briefly discussed to better realize the operational limits.

  4. Design report on the test system used to assess treatment of trench water from Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Kent, T.E.; Taylor, P.A.

    1992-09-01T23:59:59.000Z

    New liquid waste streams will be generated as a consequence of closure activities at Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). It is proposed that these waste streams be treated for removal of contaminants by adding them to the ORNL wastewater treatment facilities. Previous bench-scale treatability studies indicate that ORNL treatment operations will adequately remove the contaminants, although additional study is required to characterize the secondary waste materials produced as a result of the treatment. A larger scale treatment system was constructed to produce secondary wastes in the quantities necessary for characterization and US Environmental protection Agency toxicity characteristic leaching procedure (TCLP) testing. The test system is designed to simulate the operation of the ORNL process waste treatment facilities and to treat a mixture of ORNL process wastewater and WAG 6 wastewater at a combined flow rate of 0.5 L/min. The system is designed to produce the necessary quantities of waste sludges and spent carbon for characterization studies and TCLP testing.

  5. Durability testing of medium speed diesel engine components designed for operating on coal/water slurry fuel

    SciTech Connect (OSTI)

    McDowell, R.E.; Giammarise, A.W.; Johnson, R.N.

    1994-04-01T23:59:59.000Z

    Over 200 operating cylinder hours were run on critical wearing engine parts. The main components tested included cylinder liners, piston rings, and fuel injector nozzles for coal/water slurry fueled operation. The liners had no visible indication of scoring nor major wear steps found on their tungsten carbide coating. While the tungsten carbide coating on the rings showed good wear resistance, some visual evidence suggests adhesive wear mode was present. Tungsten carbide coated rings running against tungsten carbide coated liners in GE 7FDL engines exhibit wear rates which suggest an approximate 500 to 750 hour life. Injector nozzle orifice materials evaluated were diamond compacts, chemical vapor deposited diamond tubes, and thermally stabilized diamond. Based upon a total of 500 cylinder hours of engine operation (including single-cylinder combustion tests), diamond compact was determined to be the preferred orifice material.

  6. Rapid Deployment Drilling System for on-site inspections under a Comprehensive Test Ban Preliminary Engineering Design

    SciTech Connect (OSTI)

    Maurer, W.C.; Deskins, W.G.; McDonald, W.J.; Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States); Heuze, F.E.; Butler, M.W. [Lawrence Livermore National Lab., CA (United States)

    1996-09-01T23:59:59.000Z

    While not a new drilling technology, coiled-tubing (CT) drilling continues to undergo rapid development and expansion, with new equipment, tools and procedures developed almost daily. This project was undertaken to: analyze available technological options for a Rapid Deployment Drilling System (RDDS) CT drilling system: recommend specific technologies that best match the requirements for the RDDS; and highlight any areas where adequate technological solutions are not currently available. Postshot drilling is a well established technique at the Nevada Test Site (NTS). Drilling provides essential data on the results of underground tests including obtaining samples for the shot zone, information on cavity size, chimney dimensions, effects of the event on surrounding material, and distribution of radioactivity.

  7. Integration of engineering models in computer-aided preliminary design

    E-Print Network [OSTI]

    Lajoie, Ronnie M.

    The problems of the integration of engineering models in computer-aided preliminary design are reviewed. This paper details the research, development, and testing of modifications to Paper Airplane, a LISP-based computer ...

  8. Design and analysis of diagnostic machines utilizing compliant mechanisms

    E-Print Network [OSTI]

    Sung, Edward, S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    In this paper, the design and testing of an ankle rehabilitation device is presented. The purpose of the research done is to provide physicians with a diagnostics tool that can quantitatively measure the severity of an ...

  9. BBC WORLD SERVICE TRUST Terms of Reference: Head of Research

    E-Print Network [OSTI]

    Group in London on research team integration, study design, analysis and reporting, and will secure to guide project strategies; 2. Conducting qualitative and quantitative research studies to capture of the India office. This includes the effective design and implementation of formative, pre-testing, rapid

  10. Testing and Evaluation of Photoelectrochemical Membranes: Cooperative Research and Development Final Report, CRADA Number CRD-08-313

    SciTech Connect (OSTI)

    Deutsch, T.

    2012-09-01T23:59:59.000Z

    This research work will be undertaken in close coordination with Synkera Technologies and in concurrence with the overall objectives of the Synkera DOE SBIR Phase II project. The subcontract is conditional on Synkera receiving the DOE Phase II SBIR award.

  11. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 15, System design description. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-09-22T23:59:59.000Z

    This System Design Description, prepared in accordance with the TPX Project Management Plan provides a summary or TF Magnet System design features at the conclusion of Phase I, Preliminary Design and Manufacturing Research. The document includes the analytical and experimental bases for the design, and plans for implementation in final design, manufacturing, test, and magnet integration into the tokamak. Requirements for operation and maintenance are outlined, and references to sources of additional information are provided.

  12. MECHANICAL TEST LAB CAPABILITIES

    E-Print Network [OSTI]

    MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

  13. Design and Testing of a 10B4C Capsule for Spectral-Tailoring in Mixed-Spectrum Reactors

    SciTech Connect (OSTI)

    Greenwood, Lawrence R.; Wittman, Richard S.; Metz, Lori A.; Finn, Erin C.; Friese, Judah I.

    2014-04-11T23:59:59.000Z

    A boron carbide capsule highly enriched in 10B has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State University. New experiments show that enriching the boron to 96% B-10 results in additional absorption of neutrons in the resonance region thereby producing a neutron spectrum that is much closer to a pure 235U fission spectrum. A cadmium outer cover was used to reduce thermal heating. The neutron spectrum calculated with MCNP was found to be in very good agreement with measured activation rates from neutron fluence monitors.

  14. US/French joint research program regarding the behavior of polymer base materials subjected to beta radiation: Volume 2, Phase-2a screening tests: (Final report)

    SciTech Connect (OSTI)

    Buckalew, W.H.; Wyant, F.J.; Chenion, J.; Carlin, F.; Gaussens, G.; Le Tutour, P.; Le Meur, M.

    1987-09-01T23:59:59.000Z

    As part of the ongoing joint NRC/CEA cooperative test program to investigate the relative effectiveness of beta and gamma irradiation to produce damage in polymer base materials, ethylene propylene rubber (EPR) specimens, in slab geometry, were exposed to Cobalt-60 gamma rays and accelerator produced electron beams. Specimens were irradiated and evaluated at research facilities in the US (Sandia National Laboratories) and France (Compagnie ORIS Industrie). These tests included several electron beam energies, sample thicknesses, exposure doses, and dose rates. Based on changes in the tensile properties, of the test specimens, results of these studies suggest that material damage resulting from electron and gamma irradiations can be correlated on the basis of absorbed radiation dose.

  15. Prototype to Test WHY prototype to test

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    Prototype to Test METHOD WHY prototype to test HOW to prototype to test Prototyping to test or design space. The fundamental way you test your prototypes is by letting users experience them and react to them. In creating prototypes to test with users you have the opportunity to examine your solution

  16. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    SciTech Connect (OSTI)

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01T23:59:59.000Z

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest status and plans are presented.

  17. Research and development of energy-efficient appliance motor-compressors. Volume IV. Production demonstration and field test

    SciTech Connect (OSTI)

    Middleton, M.G.; Sauber, R.S.

    1983-09-01T23:59:59.000Z

    Two models of a high-efficiency compressor were manufactured in a pilot production run. These compressors were for low back-pressure applications. While based on a production compressor, there were many changes that required production process changes. Some changes were performed within our company and others were made by outside vendors. The compressors were used in top mount refrigerator-freezers and sold in normal distribution channels. Forty units were placed in residences for a one-year field test. Additional compressors were built so that a life test program could be performed. The results of the field test reveal a 27.0% improvement in energy consumption for the 18 ft/sup 3/ high-efficiency model and a 15.6% improvement in the 21 ft/sup 3/ improvement in the 21 ft/sup 3/ high-efficiency model as compared to the standard production unit.

  18. The external design phase of the breeding and multigeneration support system: A tracking and decision support system for NCTR (National Center for Toxicological Research)

    SciTech Connect (OSTI)

    Strand, R.; Cox, T.L.; Sjoreen, A.; Alvic, D.

    1989-05-01T23:59:59.000Z

    The National Center for Toxicological Research (NCTR) is the basic research arm of the US Food and Drug Administration (FDA). The NCTR has upgraded and standardized its computer operations on Digital Equipment Corporation VAX minicomputers using Software AG's ADABAS data base management system for all research applications. The NCTR is currently performing a large study to improve the functionality of the animal husbandry systems and applications called Breeding/Multigeneration Support System (BMSS). When functional, it will operate on VAX equipment using the ADABAS data base management system, TDMS, and COBOL. Oak Ridge National Laboratory (ORNL) is supporting NCTR in the design, prototyping, and software engineering of the BMSS. This document summarizes the external design elements that include data entry screens, screen reports, summary and status reports, and functional definitions of screen and report data. ORNL will provide research support to NCTR in the additional phases of systems life cycle development for BMSS. ORNL has prepared this document according to NCTR's Standard Operating Procedures for Systems Development. 8 figs., 7 tabs.

  19. The Credibility Revolution in Empirical Economics: How Better Research Design is Taking the Con out of Econometrics

    E-Print Network [OSTI]

    Angrist, Joshua

    2010-01-01T23:59:59.000Z

    Just over a quarter century ago, Edward Leamer (1983) reflected on the state of empirical work in economics. He urged empirical researchers to “take the con out of econometrics” and memorably observed (p. 37): “Hardly ...

  20. A modular neural interface for massively parallel recording and control : subsystem design considerations for research and clinical applications

    E-Print Network [OSTI]

    Wentz, Christian T

    2010-01-01T23:59:59.000Z

    The closed-loop Brain-Machine Interface (BMI) has long been a dream for clinicians and neuroscience researchers alike - that is, the ability to extract meaningful information from the brain, perform computation on this ...